/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2008 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. * Copyright 2012 Milan Jurik. All rights reserved. * Copyright 2013 Joyent, Inc. All rights reserved. */ /* * The copyright in this file is taken from the original Leach & Salz * UUID specification, from which this implementation is derived. */ /* * Copyright (c) 1990- 1993, 1996 Open Software Foundation, Inc. * Copyright (c) 1989 by Hewlett-Packard Company, Palo Alto, Ca. & * Digital Equipment Corporation, Maynard, Mass. Copyright (c) 1998 * Microsoft. To anyone who acknowledges that this file is provided * "AS IS" without any express or implied warranty: permission to use, * copy, modify, and distribute this file for any purpose is hereby * granted without fee, provided that the above copyright notices and * this notice appears in all source code copies, and that none of the * names of Open Software Foundation, Inc., Hewlett-Packard Company, * or Digital Equipment Corporation be used in advertising or * publicity pertaining to distribution of the software without * specific, written prior permission. Neither Open Software * Foundation, Inc., Hewlett-Packard Company, Microsoft, nor Digital * Equipment Corporation makes any representations about the * suitability of this software for any purpose. */ /* * This module is the workhorse for generating abstract * UUIDs. It delegates system-specific tasks (such * as obtaining the node identifier or system time) * to the sysdep module. */ #include #include #include #include #include #include #include #include #include #include #include #include "uuid_misc.h" shared_buffer_t *data; static uuid_node_t node_id_cache; static int node_init; static int file_type; static int fd; /* * The urandmtx mutex prevents multiple opens of /dev/urandom and protects the * cache. */ #define RCACHE_SIZE 65535 static mutex_t urandmtx; static int fd_urand = -1; static char rcache[RCACHE_SIZE]; static char *rcachep = rcache; /* * misc routines */ uint16_t get_random(void); void get_current_time(uuid_time_t *); void struct_to_string(uuid_t, struct uuid *); void string_to_struct(struct uuid *, uuid_t); int get_ethernet_address(uuid_node_t *); /* * local functions */ static int map_state(); static void format_uuid(struct uuid *, uint16_t, uuid_time_t, uuid_node_t); static void fill_random_bytes(uchar_t *, int); static int uuid_create(struct uuid *); static void gen_ethernet_address(uuid_node_t *); static void revalidate_data(uuid_node_t *); /* * Generates a uuid based on version 1 format. * Returns 0 on success and -1 on failure. */ static int uuid_create(struct uuid *uuid) { uuid_time_t timestamp; uuid_node_t system_node; int ret, non_unique = 0; /* * Get the system MAC address and/or cache it */ if (node_init) { bcopy(&node_id_cache, &system_node, sizeof (uuid_node_t)); } else { gen_ethernet_address(&system_node); bcopy(&system_node, &node_id_cache, sizeof (uuid_node_t)); node_init = 1; } /* * Access the state file, mmap it and initialize the shared lock. * file_type tells us whether we had access to the state file or * created a temporary one. */ if (map_state() == -1) return (-1); /* * Acquire the lock */ for (;;) { if ((ret = mutex_lock(&data->lock)) == 0) break; else switch (ret) { case EOWNERDEAD: revalidate_data(&system_node); (void) mutex_consistent(&data->lock); (void) mutex_unlock(&data->lock); break; case ENOTRECOVERABLE: return (ret); } } /* State file is either new or is temporary, get a random clock seq */ if (data->state.clock == 0) { data->state.clock = get_random(); non_unique++; } if (memcmp(&system_node, &data->state.node, sizeof (uuid_node_t)) != 0) data->state.clock++; get_current_time(×tamp); /* * If timestamp is not set or is not in the past, bump * data->state.clock */ if ((data->state.ts == 0) || (data->state.ts >= timestamp)) { data->state.clock++; data->state.ts = timestamp; } if (non_unique) system_node.nodeID[0] |= 0x80; /* Stuff fields into the UUID struct */ format_uuid(uuid, data->state.clock, timestamp, system_node); (void) mutex_unlock(&data->lock); return (0); } /* * Fills system_node with Ethernet address if available, * else fills random numbers */ static void gen_ethernet_address(uuid_node_t *system_node) { uchar_t node[6]; if (get_ethernet_address(system_node) != 0) { fill_random_bytes(node, 6); (void) memcpy(system_node->nodeID, node, 6); /* * use 8:0:20 with the multicast bit set * to avoid namespace collisions. */ system_node->nodeID[0] = 0x88; system_node->nodeID[1] = 0x00; system_node->nodeID[2] = 0x20; } } /* * Formats a UUID, given the clock_seq timestamp, and node address. * Fills in passed-in pointer with the resulting uuid. */ static void format_uuid(struct uuid *uuid, uint16_t clock_seq, uuid_time_t timestamp, uuid_node_t node) { /* * First set up the first 60 bits from the timestamp */ uuid->time_low = (uint32_t)(timestamp & 0xFFFFFFFF); uuid->time_mid = (uint16_t)((timestamp >> 32) & 0xFFFF); uuid->time_hi_and_version = (uint16_t)((timestamp >> 48) & 0x0FFF); /* * This is version 1, so say so in the UUID version field (4 bits) */ uuid->time_hi_and_version |= (1 << 12); /* * Now do the clock sequence */ uuid->clock_seq_low = clock_seq & 0xFF; /* * We must save the most-significant 2 bits for the reserved field */ uuid->clock_seq_hi_and_reserved = (clock_seq & 0x3F00) >> 8; /* * The variant for this format is the 2 high bits set to 10, * so here it is */ uuid->clock_seq_hi_and_reserved |= 0x80; /* * write result to passed-in pointer */ (void) memcpy(&uuid->node_addr, &node, sizeof (uuid->node_addr)); } /* * Opens/creates the state file, falling back to a tmp */ static int map_state() { FILE *tmp; /* If file's mapped, return */ if (file_type != 0) return (1); if ((fd = open(STATE_LOCATION, O_RDWR)) < 0) { file_type = TEMP_FILE; if ((tmp = tmpfile()) == NULL) return (-1); else fd = fileno(tmp); } else { file_type = STATE_FILE; } (void) ftruncate(fd, (off_t)sizeof (shared_buffer_t)); /* LINTED - alignment */ data = (shared_buffer_t *)mmap(NULL, sizeof (shared_buffer_t), PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0); if (data == MAP_FAILED) return (-1); (void) mutex_init(&data->lock, USYNC_PROCESS|LOCK_ROBUST, 0); (void) close(fd); return (1); } static void revalidate_data(uuid_node_t *node) { int i; data->state.ts = 0; for (i = 0; i < sizeof (data->state.node.nodeID); i++) data->state.node.nodeID[i] = 0; data->state.clock = 0; gen_ethernet_address(node); bcopy(node, &node_id_cache, sizeof (uuid_node_t)); node_init = 1; } /* * Prints a nicely-formatted uuid to stdout. */ void uuid_print(struct uuid u) { int i; (void) printf("%8.8x-%4.4x-%4.4x-%2.2x%2.2x-", u.time_low, u.time_mid, u.time_hi_and_version, u.clock_seq_hi_and_reserved, u.clock_seq_low); for (i = 0; i < 6; i++) (void) printf("%2.2x", u.node_addr[i]); (void) printf("\n"); } /* * Only called with urandmtx held. * Fills/refills the cache of randomness. We know that our allocations of * randomness are always much less than the total size of the cache. * Tries to use /dev/urandom random number generator - if that fails for some * reason, it retries MAX_RETRY times then sets rcachep to NULL so we no * longer use the cache. */ static void load_cache() { int i, retries = 0; int nbytes = RCACHE_SIZE; char *buf = rcache; while (nbytes > 0) { i = read(fd_urand, buf, nbytes); if ((i < 0) && (errno == EINTR)) { continue; } if (i <= 0) { if (retries++ == MAX_RETRY) break; continue; } nbytes -= i; buf += i; retries = 0; } if (nbytes == 0) rcachep = rcache; else rcachep = NULL; } /* * Fills buf with random numbers - nbytes is the number of bytes * to fill-in. Tries to use cached data from the /dev/urandom random number * generator - if that fails for some reason, it uses srand48(3C) */ static void fill_random_bytes(uchar_t *buf, int nbytes) { int i; if (fd_urand == -1) { (void) mutex_lock(&urandmtx); /* check again now that we have the mutex */ if (fd_urand == -1) { if ((fd_urand = open(URANDOM_PATH, O_RDONLY)) >= 0) load_cache(); } (void) mutex_unlock(&urandmtx); } if (fd_urand >= 0 && rcachep != NULL) { int cnt; (void) mutex_lock(&urandmtx); if (rcachep != NULL && (rcachep + nbytes) >= (rcache + RCACHE_SIZE)) load_cache(); if (rcachep != NULL) { for (cnt = 0; cnt < nbytes; cnt++) *buf++ = *rcachep++; (void) mutex_unlock(&urandmtx); return; } (void) mutex_unlock(&urandmtx); } for (i = 0; i < nbytes; i++) { *buf++ = get_random() & 0xFF; } } /* * Unpacks the structure members in "struct uuid" to a char string "uuid_t". */ void struct_to_string(uuid_t ptr, struct uuid *uu) { uint_t tmp; uchar_t *out = ptr; tmp = uu->time_low; out[3] = (uchar_t)tmp; tmp >>= 8; out[2] = (uchar_t)tmp; tmp >>= 8; out[1] = (uchar_t)tmp; tmp >>= 8; out[0] = (uchar_t)tmp; tmp = uu->time_mid; out[5] = (uchar_t)tmp; tmp >>= 8; out[4] = (uchar_t)tmp; tmp = uu->time_hi_and_version; out[7] = (uchar_t)tmp; tmp >>= 8; out[6] = (uchar_t)tmp; tmp = uu->clock_seq_hi_and_reserved; out[8] = (uchar_t)tmp; tmp = uu->clock_seq_low; out[9] = (uchar_t)tmp; (void) memcpy(out+10, uu->node_addr, 6); } /* * Packs the values in the "uuid_t" string into "struct uuid". */ void string_to_struct(struct uuid *uuid, uuid_t in) { uchar_t *ptr; uint_t tmp; ptr = in; tmp = *ptr++; tmp = (tmp << 8) | *ptr++; tmp = (tmp << 8) | *ptr++; tmp = (tmp << 8) | *ptr++; uuid->time_low = tmp; tmp = *ptr++; tmp = (tmp << 8) | *ptr++; uuid->time_mid = tmp; tmp = *ptr++; tmp = (tmp << 8) | *ptr++; uuid->time_hi_and_version = tmp; tmp = *ptr++; uuid->clock_seq_hi_and_reserved = tmp; tmp = *ptr++; uuid->clock_seq_low = tmp; (void) memcpy(uuid->node_addr, ptr, 6); } /* * Generates UUID based on DCE Version 4 */ void uuid_generate_random(uuid_t uu) { struct uuid uuid; if (uu == NULL) return; (void) memset(uu, 0, sizeof (uuid_t)); (void) memset(&uuid, 0, sizeof (struct uuid)); fill_random_bytes(uu, sizeof (uuid_t)); string_to_struct(&uuid, uu); /* * This is version 4, so say so in the UUID version field (4 bits) */ uuid.time_hi_and_version |= (1 << 14); /* * we don't want the bit 1 to be set also which is for version 1 */ uuid.time_hi_and_version &= VER1_MASK; /* * The variant for this format is the 2 high bits set to 10, * so here it is */ uuid.clock_seq_hi_and_reserved |= 0x80; /* * Set MSB of Ethernet address to 1 to indicate that it was generated * randomly */ uuid.node_addr[0] |= 0x80; struct_to_string(uu, &uuid); } /* * Generates UUID based on DCE Version 1. */ void uuid_generate_time(uuid_t uu) { struct uuid uuid; if (uu == NULL) return; if (uuid_create(&uuid) < 0) { uuid_generate_random(uu); return; } struct_to_string(uu, &uuid); } /* * Creates a new UUID. The uuid will be generated based on high-quality * randomness from /dev/urandom, if available by calling uuid_generate_random. * If it failed to generate UUID then uuid_generate will call * uuid_generate_time. */ void uuid_generate(uuid_t uu) { if (uu == NULL) { return; } if (fd_urand == -1) { (void) mutex_lock(&urandmtx); /* check again now that we have the mutex */ if (fd_urand == -1) { if ((fd_urand = open(URANDOM_PATH, O_RDONLY)) >= 0) load_cache(); } (void) mutex_unlock(&urandmtx); } if (fd_urand >= 0) { uuid_generate_random(uu); } else { (void) uuid_generate_time(uu); } } /* * Copies the UUID variable src to dst. */ void uuid_copy(uuid_t dst, uuid_t src) { (void) memcpy(dst, src, UUID_LEN); } /* * Sets the value of the supplied uuid variable uu, to the NULL value. */ void uuid_clear(uuid_t uu) { (void) memset(uu, 0, UUID_LEN); } /* * This function converts the supplied UUID uu from the internal * binary format into a 36-byte string (plus trailing null char) * and stores this value in the character string pointed to by out. */ void uuid_unparse(uuid_t uu, char *out) { struct uuid uuid; uint16_t clock_seq; char etheraddr[13]; int index = 0, i; /* basic sanity checking */ if (uu == NULL) { return; } /* XXX user should have allocated enough memory */ /* * if (strlen(out) < UUID_PRINTABLE_STRING_LENGTH) { * return; * } */ string_to_struct(&uuid, uu); clock_seq = uuid.clock_seq_hi_and_reserved; clock_seq = (clock_seq << 8) | uuid.clock_seq_low; for (i = 0; i < 6; i++) { (void) sprintf(ðeraddr[index++], "%.2x", uuid.node_addr[i]); index++; } etheraddr[index] = '\0'; (void) snprintf(out, 25, "%08x-%04x-%04x-%04x-", uuid.time_low, uuid.time_mid, uuid.time_hi_and_version, clock_seq); (void) strlcat(out, etheraddr, UUID_PRINTABLE_STRING_LENGTH); } /* * The uuid_is_null function compares the value of the supplied * UUID variable uu to the NULL value. If the value is equal * to the NULL UUID, 1 is returned, otherwise 0 is returned. */ int uuid_is_null(uuid_t uu) { int i; uuid_t null_uu; (void) memset(null_uu, 0, sizeof (uuid_t)); i = memcmp(uu, null_uu, sizeof (uuid_t)); if (i == 0) { /* uu is NULL uuid */ return (1); } else { return (0); } } /* * uuid_parse converts the UUID string given by 'in' into the * internal uuid_t format. The input UUID is a string of the form * cefa7a9c-1dd2-11b2-8350-880020adbeef in printf(3C) format. * Upon successfully parsing the input string, UUID is stored * in the location pointed to by uu */ int uuid_parse(char *in, uuid_t uu) { char *ptr, buf[3]; int i; struct uuid uuid; uint16_t clock_seq; /* do some sanity checking */ if ((strlen(in) != 36) || (uu == NULL) || (in[36] != '\0')) { return (-1); } ptr = in; for (i = 0; i < 36; i++, ptr++) { if ((i == 8) || (i == 13) || (i == 18) || (i == 23)) { if (*ptr != '-') { return (-1); } } else { if (!isxdigit(*ptr)) { return (-1); } } } uuid.time_low = strtoul(in, NULL, 16); uuid.time_mid = strtoul(in+9, NULL, 16); uuid.time_hi_and_version = strtoul(in+14, NULL, 16); clock_seq = strtoul(in+19, NULL, 16); uuid.clock_seq_hi_and_reserved = (clock_seq & 0xFF00) >> 8; uuid.clock_seq_low = (clock_seq & 0xFF); ptr = in+24; buf[2] = '\0'; for (i = 0; i < 6; i++) { buf[0] = *ptr++; buf[1] = *ptr++; uuid.node_addr[i] = strtoul(buf, NULL, 16); } struct_to_string(uu, &uuid); return (0); } /* * uuid_time extracts the time at which the supplied UUID uu * was created. This function can only extract the creation * time for UUIDs created with the uuid_generate_time function. * The time at which the UUID was created, in seconds and * microseconds since the epoch is stored in the location * pointed to by ret_tv. */ time_t uuid_time(uuid_t uu, struct timeval *ret_tv) { struct uuid uuid; uint_t high; struct timeval tv; u_longlong_t clock_reg; uint_t tmp; uint8_t clk; string_to_struct(&uuid, uu); tmp = (uuid.time_hi_and_version & 0xF000) >> 12; clk = uuid.clock_seq_hi_and_reserved; /* check if uu is NULL, Version = 1 of DCE and Variant = 0b10x */ if ((uu == NULL) || ((tmp & 0x01) != 0x01) || ((clk & 0x80) != 0x80)) { return (-1); } high = uuid.time_mid | ((uuid.time_hi_and_version & 0xFFF) << 16); clock_reg = uuid.time_low | ((u_longlong_t)high << 32); clock_reg -= (((u_longlong_t)0x01B21DD2) << 32) + 0x13814000; tv.tv_sec = clock_reg / 10000000; tv.tv_usec = (clock_reg % 10000000) / 10; if (ret_tv) { *ret_tv = tv; } return (tv.tv_sec); }