/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ /* All Rights Reserved */ /* * Portions of this source code were derived from Berkeley * 4.3 BSD under license from the Regents of the University of * California. */ #pragma ident "%Z%%M% %I% %E% SMI" /* * Generic XDR routines implementation. * * These are the "generic" xdr routines used to serialize and de-serialize * most common data items. See xdr.h for more info on the interface to * xdr. */ #include "mt.h" #include <stdlib.h> #include <sys/types.h> #include <sys/isa_defs.h> #include <syslog.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <limits.h> #include <rpc/types.h> #include <rpc/xdr.h> #include <inttypes.h> #include <sys/sysmacros.h> #include <assert.h> #pragma weak xdr_int64_t = xdr_hyper #pragma weak xdr_uint64_t = xdr_u_hyper #pragma weak xdr_int32_t = xdr_int #pragma weak xdr_uint32_t = xdr_u_int #pragma weak xdr_int16_t = xdr_short #pragma weak xdr_uint16_t = xdr_u_short #pragma weak xdr_int8_t = xdr_char #pragma weak xdr_uint8_t = xdr_u_char /* * The following routine was part of a workaround for an rpcgen * that was fixed, this routine should be removed sometime. */ #pragma weak xdr_ulonglong_t = xdr_u_longlong_t /* * constants specific to the xdr "protocol" */ #define XDR_FALSE ((uint_t)0) #define XDR_TRUE ((uint_t)1) #define LASTUNSIGNED ((uint_t)0-1) /* fragment size to use when doing an xdr_string() */ #define FRAGMENT 65536 /* * for unit alignment */ static const char xdr_zero[BYTES_PER_XDR_UNIT] = { 0 }; /* * Free a data structure using XDR * Not a filter, but a convenient utility nonetheless */ void xdr_free(xdrproc_t proc, char *objp) { XDR x; x.x_op = XDR_FREE; (*proc)(&x, objp); } /* * XDR nothing */ bool_t xdr_void(void) { return (TRUE); } /* * xdr_time_t sends time_t value over the wire. * Due to RPC Protocol limitation, it can only send * up to 32-bit integer quantity over the wire. * */ bool_t xdr_time_t(XDR *xdrs, time_t *tp) { int32_t i; switch (xdrs->x_op) { case XDR_ENCODE: /* * Check for the time overflow, when encoding it. * Don't want to send OTW the time value too large to * handle by the protocol. */ #if defined(_LP64) if (*tp > INT32_MAX) *tp = INT32_MAX; else if (*tp < INT32_MIN) *tp = INT32_MIN; #endif i = (int32_t)*tp; return (XDR_PUTINT32(xdrs, &i)); case XDR_DECODE: if (!XDR_GETINT32(xdrs, &i)) return (FALSE); *tp = (time_t)i; return (TRUE); case XDR_FREE: return (TRUE); } return (FALSE); } /* * XDR integers */ bool_t xdr_int(XDR *xdrs, int *ip) { switch (xdrs->x_op) { case XDR_ENCODE: return (XDR_PUTINT32(xdrs, ip)); case XDR_DECODE: return (XDR_GETINT32(xdrs, ip)); case XDR_FREE: return (TRUE); } return (FALSE); } /* * XDR unsigned integers */ bool_t xdr_u_int(XDR *xdrs, uint_t *up) { switch (xdrs->x_op) { case XDR_ENCODE: return (XDR_PUTINT32(xdrs, (int *)up)); case XDR_DECODE: return (XDR_GETINT32(xdrs, (int *)up)); case XDR_FREE: return (TRUE); } return (FALSE); } /* * The definition of xdr_long()/xdr_u_long() is kept for backward * compatibitlity. * XDR long integers, same as xdr_u_long */ bool_t xdr_long(XDR *xdrs, long *lp) { int32_t i; switch (xdrs->x_op) { case XDR_ENCODE: #if defined(_LP64) if ((*lp > INT32_MAX) || (*lp < INT32_MIN)) return (FALSE); #endif i = (int32_t)*lp; return (XDR_PUTINT32(xdrs, &i)); case XDR_DECODE: if (!XDR_GETINT32(xdrs, &i)) return (FALSE); *lp = (long)i; return (TRUE); case XDR_FREE: return (TRUE); } return (FALSE); } /* * XDR unsigned long integers * same as xdr_long */ bool_t xdr_u_long(XDR *xdrs, ulong_t *ulp) { uint32_t ui; switch (xdrs->x_op) { case XDR_ENCODE: #if defined(_LP64) if (*ulp > UINT32_MAX) return (FALSE); #endif ui = (uint32_t)*ulp; return (XDR_PUTINT32(xdrs, (int32_t *)&ui)); case XDR_DECODE: if (!XDR_GETINT32(xdrs, (int32_t *)&ui)) return (FALSE); *ulp = (ulong_t)ui; return (TRUE); case XDR_FREE: return (TRUE); } return (FALSE); } /* * XDR short integers */ bool_t xdr_short(XDR *xdrs, short *sp) { int32_t l; switch (xdrs->x_op) { case XDR_ENCODE: l = (int32_t)*sp; return (XDR_PUTINT32(xdrs, &l)); case XDR_DECODE: if (!XDR_GETINT32(xdrs, &l)) return (FALSE); *sp = (short)l; return (TRUE); case XDR_FREE: return (TRUE); } return (FALSE); } /* * XDR unsigned short integers */ bool_t xdr_u_short(XDR *xdrs, ushort_t *usp) { uint_t i; switch (xdrs->x_op) { case XDR_ENCODE: i = (uint_t)*usp; return (XDR_PUTINT32(xdrs, (int *)&i)); case XDR_DECODE: if (!XDR_GETINT32(xdrs, (int *)&i)) return (FALSE); *usp = (ushort_t)i; return (TRUE); case XDR_FREE: return (TRUE); } return (FALSE); } /* * XDR a char */ bool_t xdr_char(XDR *xdrs, char *cp) { int i; switch (xdrs->x_op) { case XDR_ENCODE: i = (*cp); return (XDR_PUTINT32(xdrs, &i)); case XDR_DECODE: if (!XDR_GETINT32(xdrs, &i)) return (FALSE); *cp = (char)i; return (TRUE); case XDR_FREE: return (TRUE); } return (FALSE); } /* * XDR an unsigned char */ bool_t xdr_u_char(XDR *xdrs, uchar_t *cp) { int i; switch (xdrs->x_op) { case XDR_ENCODE: i = (*cp); return (XDR_PUTINT32(xdrs, &i)); case XDR_DECODE: if (!XDR_GETINT32(xdrs, &i)) return (FALSE); *cp = (uchar_t)i; return (TRUE); case XDR_FREE: return (TRUE); } return (FALSE); } /* * XDR booleans */ bool_t xdr_bool(XDR *xdrs, bool_t *bp) { int i; switch (xdrs->x_op) { case XDR_ENCODE: i = *bp ? XDR_TRUE : XDR_FALSE; return (XDR_PUTINT32(xdrs, &i)); case XDR_DECODE: if (!XDR_GETINT32(xdrs, &i)) return (FALSE); *bp = (i == XDR_FALSE) ? FALSE : TRUE; return (TRUE); case XDR_FREE: return (TRUE); } return (FALSE); } /* * XDR enumerations */ bool_t xdr_enum(XDR *xdrs, enum_t *ep) { enum sizecheck { SIZEVAL }; /* used to find the size of an enum */ /* * enums are treated as ints */ /* CONSTCOND */ assert(sizeof (enum sizecheck) == sizeof (int32_t)); return (xdr_int(xdrs, (int *)ep)); } /* * XDR opaque data * Allows the specification of a fixed size sequence of opaque bytes. * cp points to the opaque object and cnt gives the byte length. */ bool_t xdr_opaque(XDR *xdrs, caddr_t cp, const uint_t cnt) { uint_t rndup; char crud[BYTES_PER_XDR_UNIT]; /* * if no data we are done */ if (cnt == 0) return (TRUE); /* * round byte count to full xdr units */ rndup = cnt % BYTES_PER_XDR_UNIT; if ((int)rndup > 0) rndup = BYTES_PER_XDR_UNIT - rndup; switch (xdrs->x_op) { case XDR_DECODE: if (!XDR_GETBYTES(xdrs, cp, cnt)) return (FALSE); if (rndup == 0) return (TRUE); return (XDR_GETBYTES(xdrs, crud, rndup)); case XDR_ENCODE: if (!XDR_PUTBYTES(xdrs, cp, cnt)) return (FALSE); if (rndup == 0) return (TRUE); return (XDR_PUTBYTES(xdrs, (caddr_t)&xdr_zero[0], rndup)); case XDR_FREE: return (TRUE); } return (FALSE); } /* * XDR counted bytes * *cpp is a pointer to the bytes, *sizep is the count. * If *cpp is NULL maxsize bytes are allocated */ static const char xdr_err[] = "xdr_%s: out of memory"; bool_t xdr_bytes(XDR *xdrs, char **cpp, uint_t *sizep, const uint_t maxsize) { char *sp = *cpp; /* sp is the actual string pointer */ uint_t nodesize; /* * first deal with the length since xdr bytes are counted * We decided not to use MACRO XDR_U_INT here, because the * advantages here will be miniscule compared to xdr_bytes. * This saved us 100 bytes in the library size. */ if (!xdr_u_int(xdrs, sizep)) return (FALSE); nodesize = *sizep; if ((nodesize > maxsize) && (xdrs->x_op != XDR_FREE)) return (FALSE); /* * now deal with the actual bytes */ switch (xdrs->x_op) { case XDR_DECODE: if (nodesize == 0) return (TRUE); if (sp == NULL) *cpp = sp = malloc(nodesize); if (sp == NULL) { (void) syslog(LOG_ERR, xdr_err, (const char *)"bytes"); return (FALSE); } /*FALLTHROUGH*/ case XDR_ENCODE: return (xdr_opaque(xdrs, sp, nodesize)); case XDR_FREE: if (sp != NULL) { free(sp); *cpp = NULL; } return (TRUE); } return (FALSE); } /* * Implemented here due to commonality of the object. */ bool_t xdr_netobj(XDR *xdrs, struct netobj *np) { return (xdr_bytes(xdrs, &np->n_bytes, &np->n_len, MAX_NETOBJ_SZ)); } /* * XDR a descriminated union * Support routine for discriminated unions. * You create an array of xdrdiscrim structures, terminated with * an entry with a null procedure pointer. The routine gets * the discriminant value and then searches the array of xdrdiscrims * looking for that value. It calls the procedure given in the xdrdiscrim * to handle the discriminant. If there is no specific routine a default * routine may be called. * If there is no specific or default routine an error is returned. */ bool_t xdr_union(XDR *xdrs, enum_t *dscmp, char *unp, const struct xdr_discrim *choices, const xdrproc_t dfault) { enum_t dscm; /* * we deal with the discriminator; it's an enum */ if (!xdr_enum(xdrs, dscmp)) return (FALSE); dscm = *dscmp; /* * search choices for a value that matches the discriminator. * if we find one, execute the xdr routine for that value. */ for (; choices->proc != NULL_xdrproc_t; choices++) { if (choices->value == dscm) return ((*(choices->proc))(xdrs, unp, LASTUNSIGNED)); } /* * no match - execute the default xdr routine if there is one */ return ((dfault == NULL_xdrproc_t) ? FALSE : (*dfault)(xdrs, unp, LASTUNSIGNED)); } /* * Non-portable xdr primitives. * Care should be taken when moving these routines to new architectures. */ /* * XDR null terminated ASCII strings * xdr_string deals with "C strings" - arrays of bytes that are * terminated by a NULL character. The parameter cpp references a * pointer to storage; If the pointer is null, then the necessary * storage is allocated. The last parameter is the max allowed length * of the string as specified by a protocol. */ bool_t xdr_string(XDR *xdrs, char **cpp, const uint_t maxsize) { char *newsp, *sp = *cpp; /* sp is the actual string pointer */ uint_t size, block; uint64_t bytesread; /* * first deal with the length since xdr strings are counted-strings */ switch (xdrs->x_op) { case XDR_FREE: if (sp == NULL) return (TRUE); /* already free */ /*FALLTHROUGH*/ case XDR_ENCODE: size = (sp != NULL) ? (uint_t)strlen(sp) : 0; break; } /* * We decided not to use MACRO XDR_U_INT here, because the * advantages here will be miniscule compared to xdr_string. * This saved us 100 bytes in the library size. */ if (!xdr_u_int(xdrs, &size)) return (FALSE); if (size > maxsize) return (FALSE); /* * now deal with the actual bytes */ switch (xdrs->x_op) { case XDR_DECODE: /* if buffer is already given, call xdr_opaque() directly */ if (sp != NULL) { if (!xdr_opaque(xdrs, sp, size)) return (FALSE); sp[size] = 0; return (TRUE); } /* * We have to allocate a buffer of size 'size'. To avoid * malloc()ing one huge chunk, we'll read the bytes in max * FRAGMENT size blocks and keep realloc()ing. 'block' is * the number of bytes to read in each xdr_opaque() and * 'bytesread' is what we have already read. sp is NULL * when we are in the loop for the first time. */ bytesread = 0; do { block = MIN(size - bytesread, FRAGMENT); /* * allocate enough for 'bytesread + block' bytes and * one extra for the terminating NULL. */ newsp = realloc(sp, bytesread + block + 1); if (newsp == NULL) { if (sp != NULL) free(sp); return (FALSE); } sp = newsp; if (!xdr_opaque(xdrs, &sp[bytesread], block)) { free(sp); return (FALSE); } bytesread += block; } while (bytesread < size); sp[bytesread] = 0; /* terminate the string with a NULL */ *cpp = sp; return (TRUE); case XDR_ENCODE: return (xdr_opaque(xdrs, sp, size)); case XDR_FREE: free(sp); *cpp = NULL; return (TRUE); } return (FALSE); } bool_t xdr_hyper(XDR *xdrs, longlong_t *hp) { if (xdrs->x_op == XDR_ENCODE) { #if defined(_LONG_LONG_HTOL) if (XDR_PUTINT32(xdrs, (int *)hp) == TRUE) /* LINTED pointer cast */ return (XDR_PUTINT32(xdrs, (int *)((char *)hp + BYTES_PER_XDR_UNIT))); #else /* LINTED pointer cast */ if (XDR_PUTINT32(xdrs, (int *)((char *)hp + BYTES_PER_XDR_UNIT)) == TRUE) return (XDR_PUTINT32(xdrs, (int32_t *)hp)); #endif return (FALSE); } if (xdrs->x_op == XDR_DECODE) { #if defined(_LONG_LONG_HTOL) if (XDR_GETINT32(xdrs, (int *)hp) == FALSE || /* LINTED pointer cast */ (XDR_GETINT32(xdrs, (int *)((char *)hp + BYTES_PER_XDR_UNIT)) == FALSE)) return (FALSE); #else /* LINTED pointer cast */ if ((XDR_GETINT32(xdrs, (int *)((char *)hp + BYTES_PER_XDR_UNIT)) == FALSE) || (XDR_GETINT32(xdrs, (int *)hp) == FALSE)) return (FALSE); #endif return (TRUE); } return (TRUE); } bool_t xdr_u_hyper(XDR *xdrs, u_longlong_t *hp) { return (xdr_hyper(xdrs, (longlong_t *)hp)); } bool_t xdr_longlong_t(XDR *xdrs, longlong_t *hp) { return (xdr_hyper(xdrs, hp)); } bool_t xdr_u_longlong_t(XDR *xdrs, u_longlong_t *hp) { return (xdr_hyper(xdrs, (longlong_t *)hp)); } /* * Wrapper for xdr_string that can be called directly from * routines like clnt_call */ bool_t xdr_wrapstring(XDR *xdrs, char **cpp) { return (xdr_string(xdrs, cpp, LASTUNSIGNED)); }