/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2011 Nexenta Systems, Inc. All rights reserved. */ /* * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma weak csinh = __csinh /* INDENT OFF */ /* * dcomplex csinh(dcomplex z); * * z -z x -x * e - e e (cos(y)+i*sin(y)) - e (cos(-y)+i*sin(-y)) * sinh z = -------------- = --------------------------------------------- * 2 2 * x -x x -x * cos(y) ( e - e ) + i*sin(y) (e + e ) * = -------------------------------------------- * 2 * * = cos(y) sinh(x) + i sin(y) cosh(x) * * Implementation Note * ------------------- * * |x| -|x| |x| -2|x| -2|x| -P-4 * Note that e +- e = e ( 1 +- e ). If e < 2 , where * * P stands for the number of significant bits of the machine precision, * |x| * then the result will be rounded to e . Therefore, we have * * z * e * sinh z = ----- if |x| >= (P/2 + 2)*ln2 * 2 * * EXCEPTION (conform to ISO/IEC 9899:1999(E)): * csinh(0,0)=(0,0) * csinh(0,inf)=(+-0,NaN) * csinh(0,NaN)=(+-0,NaN) * csinh(x,inf) = (NaN,NaN) for finite positive x * csinh(x,NaN) = (NaN,NaN) for finite non-zero x * csinh(inf,0) = (inf, 0) * csinh(inf,y) = (inf*cos(y),inf*sin(y)) for positive finite y * csinh(inf,inf) = (+-inf,NaN) * csinh(inf,NaN) = (+-inf,NaN) * csinh(NaN,0) = (NaN,0) * csinh(NaN,y) = (NaN,NaN) for non-zero y * csinh(NaN,NaN) = (NaN,NaN) */ /* INDENT ON */ #include "libm.h" /* cosh/exp/fabs/scalbn/sinh/sincos/__k_cexp */ #include "complex_wrapper.h" dcomplex csinh(dcomplex z) { double t, x, y, S, C; int hx, ix, lx, hy, iy, ly, n; dcomplex ans; x = D_RE(z); y = D_IM(z); hx = HI_WORD(x); lx = LO_WORD(x); ix = hx & 0x7fffffff; hy = HI_WORD(y); ly = LO_WORD(y); iy = hy & 0x7fffffff; x = fabs(x); y = fabs(y); (void) sincos(y, &S, &C); if (ix >= 0x403c0000) { /* |x| > 28 = prec/2 (14,28,34,60) */ if (ix >= 0x40862E42) { /* |x| > 709.78... ~ log(2**1024) */ if (ix >= 0x7ff00000) { /* |x| is inf or NaN */ if ((iy | ly) == 0) { D_RE(ans) = x; D_IM(ans) = y; } else if (iy >= 0x7ff00000) { D_RE(ans) = x; D_IM(ans) = x - y; } else { D_RE(ans) = C * x; D_IM(ans) = S * x; } } else { /* return exp(x)=t*2**n */ t = __k_cexp(x, &n); D_RE(ans) = scalbn(C * t, n - 1); D_IM(ans) = scalbn(S * t, n - 1); } } else { t = exp(x) * 0.5; D_RE(ans) = C * t; D_IM(ans) = S * t; } } else { if ((ix | lx) == 0) { /* x = 0, return (0,S) */ D_RE(ans) = 0.0; D_IM(ans) = S; } else { D_RE(ans) = C * sinh(x); D_IM(ans) = S * cosh(x); } } if (hx < 0) D_RE(ans) = -D_RE(ans); if (hy < 0) D_IM(ans) = -D_IM(ans); return (ans); }