/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2011 Nexenta Systems, Inc. All rights reserved. */ /* * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma weak cexp = __cexp /* INDENT OFF */ /* * dcomplex cexp(dcomplex z); * * x+iy x * e = e (cos(y)+i*sin(y)) * * Over/underflow issue * -------------------- * exp(x) may be huge but cos(y) or sin(y) may be tiny. So we use * function __k_cexp(x,&n) to return exp(x) = __k_cexp(x,&n)*2**n. * Thus if exp(x+iy) = A + Bi and t = __k_cexp(x,&n), then * A = t*cos(y)*2**n, B = t*sin(y)*2**n * * Purge off all exceptional arguments: * (x,0) --> (exp(x),0) for all x, include inf and NaN * (+inf, y) --> (+inf, NaN) for inf, nan * (-inf, y) --> (+-0, +-0) for y = inf, nan * (x,+-inf/NaN) --> (NaN,NaN) for finite x * For all other cases, return * (x,y) --> exp(x)*cos(y)+i*exp(x)*sin(y)) * * Algorithm for out of range x and finite y * 1. compute exp(x) in factor form (t=__k_cexp(x,&n))*2**n * 2. compute sincos(y,&s,&c) * 3. compute t*s+i*(t*c), then scale back to 2**n and return. */ /* INDENT ON */ #include "libm.h" /* exp/scalbn/sincos/__k_cexp */ #include "complex_wrapper.h" static const double zero = 0.0; dcomplex cexp(dcomplex z) { dcomplex ans; double x, y, t, c, s; int n, ix, iy, hx, hy, lx, ly; x = D_RE(z); y = D_IM(z); hx = HI_WORD(x); lx = LO_WORD(x); hy = HI_WORD(y); ly = LO_WORD(y); ix = hx & 0x7fffffff; iy = hy & 0x7fffffff; if ((iy | ly) == 0) { /* y = 0 */ D_RE(ans) = exp(x); D_IM(ans) = y; } else if (ISINF(ix, lx)) { /* x is +-inf */ if (hx < 0) { if (iy >= 0x7ff00000) { D_RE(ans) = zero; D_IM(ans) = zero; } else { sincos(y, &s, &c); D_RE(ans) = zero * c; D_IM(ans) = zero * s; } } else { if (iy >= 0x7ff00000) { D_RE(ans) = x; D_IM(ans) = y - y; } else { (void) sincos(y, &s, &c); D_RE(ans) = x * c; D_IM(ans) = x * s; } } } else { (void) sincos(y, &s, &c); if (ix >= 0x40862E42) { /* |x| > 709.78... ~ log(2**1024) */ t = __k_cexp(x, &n); D_RE(ans) = scalbn(t * c, n); D_IM(ans) = scalbn(t * s, n); } else { t = exp(x); D_RE(ans) = t * c; D_IM(ans) = t * s; } } return (ans); }