/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2011 Nexenta Systems, Inc. All rights reserved. */ /* * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma weak casinl = __casinl #include "libm.h" /* asinl/atanl/fabsl/isinfl/log1pl/logl/sqrtl */ #include "complex_wrapper.h" #include "longdouble.h" /* INDENT OFF */ static const long double zero = 0.0L, one = 1.0L, Acrossover = 1.5L, Bcrossover = 0.6417L, half = 0.5L, ln2 = 6.931471805599453094172321214581765680755e-0001L, Foursqrtu = 7.3344154702193886624856495681939326638255e-2466L, /* 2**-8189 */ #if defined(__x86) E = 5.4210108624275221700372640043497085571289e-20L, /* 2**-64 */ pi_4 = 0.7853981633974483095739921312272713294078130L, pi_4_l = 4.1668714592604391641479322342670193036704898e-20L, pi_2 = 1.5707963267948966191479842624545426588156260L, pi_2_l = 8.3337429185208783282958644685340386073409796e-20L; #else E = 9.6296497219361792652798897129246365926905e-35L, /* 2**-113 */ pi_4 = 0.7853981633974483096156608458198756993697670L, pi_4_l = 2.1679525325309452561992610065108379921905808e-35L, pi_2 = 1.5707963267948966192313216916397513987395340L, pi_2_l = 4.3359050650618905123985220130216759843811616e-35L; #endif /* INDENT ON */ #if defined(__x86) static const int ip1 = 0x40400000; /* 2**65 */ #else static const int ip1 = 0x40710000; /* 2**114 */ #endif ldcomplex casinl(ldcomplex z) { long double x, y, t, R, S, A, Am1, B, y2, xm1, xp1, Apx; int ix, iy, hx, hy; ldcomplex ans; x = LD_RE(z); y = LD_IM(z); hx = HI_XWORD(x); hy = HI_XWORD(y); ix = hx & 0x7fffffff; iy = hy & 0x7fffffff; x = fabsl(x); y = fabsl(y); /* special cases */ /* x is inf or NaN */ if (ix >= 0x7fff0000) { /* x is inf or NaN */ if (isinfl(x)) { /* x is INF */ LD_IM(ans) = x; if (iy >= 0x7fff0000) { if (isinfl(y)) /* casin(inf + i inf) = pi/4 + i inf */ LD_RE(ans) = pi_4 + pi_4_l; else /* casin(inf + i NaN) = NaN + i inf */ LD_RE(ans) = y + y; } else /* casin(inf + iy) = pi/2 + i inf */ LD_RE(ans) = pi_2 + pi_2_l; } else { /* x is NaN */ if (iy >= 0x7fff0000) { /* INDENT OFF */ /* * casin(NaN + i inf) = NaN + i inf * casin(NaN + i NaN) = NaN + i NaN */ /* INDENT ON */ LD_IM(ans) = y + y; LD_RE(ans) = x + x; } else { /* INDENT OFF */ /* casin(NaN + i y ) = NaN + i NaN */ /* INDENT ON */ LD_IM(ans) = LD_RE(ans) = x + y; } } if (hx < 0) LD_RE(ans) = -LD_RE(ans); if (hy < 0) LD_IM(ans) = -LD_IM(ans); return (ans); } /* casin(+0 + i 0) = 0 + i 0. */ if (x == zero && y == zero) return (z); if (iy >= 0x7fff0000) { /* y is inf or NaN */ if (isinfl(y)) { /* casin(x + i inf) = 0 + i inf */ LD_IM(ans) = y; LD_RE(ans) = zero; } else { /* casin(x + i NaN) = NaN + i NaN */ LD_IM(ans) = x + y; if (x == zero) LD_RE(ans) = x; else LD_RE(ans) = y; } if (hx < 0) LD_RE(ans) = -LD_RE(ans); if (hy < 0) LD_IM(ans) = -LD_IM(ans); return (ans); } if (y == zero) { /* region 1: y=0 */ if (ix < 0x3fff0000) { /* |x| < 1 */ LD_RE(ans) = asinl(x); LD_IM(ans) = zero; } else { LD_RE(ans) = pi_2 + pi_2_l; if (ix >= ip1) /* |x| >= i386 ? 2**65 : 2**114 */ LD_IM(ans) = ln2 + logl(x); else if (ix >= 0x3fff8000) /* x > Acrossover */ LD_IM(ans) = logl(x + sqrtl((x - one) * (x + one))); else { xm1 = x - one; LD_IM(ans) = log1pl(xm1 + sqrtl(xm1 * (x + one))); } } } else if (y <= E * fabsl(x - one)) { /* region 2: y < tiny*|x-1| */ if (ix < 0x3fff0000) { /* x < 1 */ LD_RE(ans) = asinl(x); LD_IM(ans) = y / sqrtl((one + x) * (one - x)); } else { LD_RE(ans) = pi_2 + pi_2_l; if (ix >= ip1) /* i386 ? 2**65 : 2**114 */ LD_IM(ans) = ln2 + logl(x); else if (ix >= 0x3fff8000) /* x > Acrossover */ LD_IM(ans) = logl(x + sqrtl((x - one) * (x + one))); else LD_IM(ans) = log1pl((x - one) + sqrtl((x - one) * (x + one))); } } else if (y < Foursqrtu) { /* region 3 */ t = sqrtl(y); LD_RE(ans) = pi_2 - (t - pi_2_l); LD_IM(ans) = t; } else if (E * y - one >= x) { /* region 4 */ LD_RE(ans) = x / y; /* need to fix underflow cases */ LD_IM(ans) = ln2 + logl(y); } else if (ix >= 0x5ffb0000 || iy >= 0x5ffb0000) { /* region 5: x+1 and y are both (>= sqrt(max)/8) i.e. 2**8188 */ t = x / y; LD_RE(ans) = atanl(t); LD_IM(ans) = ln2 + logl(y) + half * log1pl(t * t); } else if (x < Foursqrtu) { /* region 6: x is very small, < 4sqrt(min) */ A = sqrtl(one + y * y); LD_RE(ans) = x / A; /* may underflow */ if (iy >= 0x3fff8000) /* if y > Acrossover */ LD_IM(ans) = logl(y + A); else LD_IM(ans) = half * log1pl((y + y) * (y + A)); } else { /* safe region */ y2 = y * y; xp1 = x + one; xm1 = x - one; R = sqrtl(xp1 * xp1 + y2); S = sqrtl(xm1 * xm1 + y2); A = half * (R + S); B = x / A; if (B <= Bcrossover) LD_RE(ans) = asinl(B); else { /* use atan and an accurate approx to a-x */ Apx = A + x; if (x <= one) LD_RE(ans) = atanl(x / sqrtl(half * Apx * (y2 / (R + xp1) + (S - xm1)))); else LD_RE(ans) = atanl(x / (y * sqrtl(half * (Apx / (R + xp1) + Apx / (S + xm1))))); } if (A <= Acrossover) { /* use log1p and an accurate approx to A-1 */ if (x < one) Am1 = half * (y2 / (R + xp1) + y2 / (S - xm1)); else Am1 = half * (y2 / (R + xp1) + (S + xm1)); LD_IM(ans) = log1pl(Am1 + sqrtl(Am1 * (A + one))); } else { LD_IM(ans) = logl(A + sqrtl(A * A - one)); } } if (hx < 0) LD_RE(ans) = -LD_RE(ans); if (hy < 0) LD_IM(ans) = -LD_IM(ans); return (ans); }