/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2011 Nexenta Systems, Inc. All rights reserved. */ /* * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma weak cacosl = __cacosl #include "libm.h" /* acosl/atanl/fabsl/isinfl/log1pl/logl/sqrtl */ #include "complex_wrapper.h" #include "longdouble.h" /* INDENT OFF */ static const long double zero = 0.0L, one = 1.0L, Acrossover = 1.5L, Bcrossover = 0.6417L, half = 0.5L, ln2 = 6.931471805599453094172321214581765680755e-0001L, Foursqrtu = 7.3344154702193886624856495681939326638255e-2466L, /* 2**-8189 */ #if defined(__x86) E = 5.4210108624275221700372640043497085571289e-20L, /* 2**-64 */ pi = 3.141592653589793238295968524909085317631252110004425048828125L, pi_l = 1.666748583704175665659172893706807721468195923078e-19L, pi_2 = 1.5707963267948966191479842624545426588156260L, pi_2_l = 8.3337429185208783282958644685340386073409796e-20L, pi_4 = 0.78539816339744830957399213122727132940781302750110626220703125L, pi_4_l = 4.166871459260439164147932234267019303670489807695410e-20L, pi3_4 = 2.35619449019234492872197639368181398822343908250331878662109375L, pi3_4_l = 1.250061437778131749244379670280105791101146942308e-19L; #else E = 9.6296497219361792652798897129246365926905e-35L, /* 2**-113 */ pi = 3.1415926535897932384626433832795027974790680981372955730045043318L, pi_l = 8.6718101301237810247970440260433519687623233462565303417759356862e-35L, pi_2 = 1.5707963267948966192313216916397513987395340L, pi_2_l = 4.3359050650618905123985220130216759843811616e-35L, pi_4 = 0.785398163397448309615660845819875699369767024534323893251126L, pi_4_l = 2.167952532530945256199261006510837992190580836564132585443e-35L, pi3_4 = 2.35619449019234492884698253745962709810930107360297167975337824L, pi3_4_l = 6.503857597592835768597783019532513976571742509692397756331e-35L; #endif /* INDENT ON */ #if defined(__x86) static const int ip1 = 0x40400000; /* 2**65 */ #else static const int ip1 = 0x40710000; /* 2**114 */ #endif ldcomplex cacosl(ldcomplex z) { long double x, y, t, R, S, A, Am1, B, y2, xm1, xp1, Apx; int ix, iy, hx, hy; ldcomplex ans; x = LD_RE(z); y = LD_IM(z); hx = HI_XWORD(x); hy = HI_XWORD(y); ix = hx & 0x7fffffff; iy = hy & 0x7fffffff; /* x is 0 */ if (x == zero) { if (y == zero || (iy >= 0x7fff0000)) { LD_RE(ans) = pi_2 + pi_2_l; LD_IM(ans) = -y; return (ans); } } /* |y| is inf or NaN */ if (iy >= 0x7fff0000) { if (isinfl(y)) { /* cacos(x + i inf) = pi/2 - i inf */ LD_IM(ans) = -y; if (ix < 0x7fff0000) { LD_RE(ans) = pi_2 + pi_2_l; } else if (isinfl(x)) { if (hx >= 0) LD_RE(ans) = pi_4 + pi_4_l; else LD_RE(ans) = pi3_4 + pi3_4_l; } else { LD_RE(ans) = x; } } else { /* cacos(x + i NaN) = NaN + i NaN */ LD_RE(ans) = y + x; if (isinfl(x)) LD_IM(ans) = -fabsl(x); else LD_IM(ans) = y; } return (ans); } y = fabsl(y); if (ix >= 0x7fff0000) { /* x is inf or NaN */ if (isinfl(x)) { /* x is INF */ LD_IM(ans) = -fabsl(x); if (iy >= 0x7fff0000) { if (isinfl(y)) { /* INDENT OFF */ /* cacos(inf + i inf) = pi/4 - i inf */ /* cacos(-inf+ i inf) =3pi/4 - i inf */ /* INDENT ON */ if (hx >= 0) LD_RE(ans) = pi_4 + pi_4_l; else LD_RE(ans) = pi3_4 + pi3_4_l; } else /* INDENT OFF */ /* cacos(inf + i NaN) = NaN - i inf */ /* INDENT ON */ LD_RE(ans) = y + y; } else { /* INDENT OFF */ /* cacos(inf + iy ) = 0 - i inf */ /* cacos(-inf+ iy ) = pi - i inf */ /* INDENT ON */ if (hx >= 0) LD_RE(ans) = zero; else LD_RE(ans) = pi + pi_l; } } else { /* x is NaN */ /* INDENT OFF */ /* * cacos(NaN + i inf) = NaN - i inf * cacos(NaN + i y ) = NaN + i NaN * cacos(NaN + i NaN) = NaN + i NaN */ /* INDENT ON */ LD_RE(ans) = x + y; if (iy >= 0x7fff0000) { LD_IM(ans) = -y; } else { LD_IM(ans) = x; } } if (hy < 0) LD_IM(ans) = -LD_IM(ans); return (ans); } if (y == zero) { /* region 1: y=0 */ if (ix < 0x3fff0000) { /* |x| < 1 */ LD_RE(ans) = acosl(x); LD_IM(ans) = zero; } else { LD_RE(ans) = zero; x = fabsl(x); if (ix >= ip1) /* i386 ? 2**65 : 2**114 */ LD_IM(ans) = ln2 + logl(x); else if (ix >= 0x3fff8000) /* x > Acrossover */ LD_IM(ans) = logl(x + sqrtl((x - one) * (x + one))); else { xm1 = x - one; LD_IM(ans) = log1pl(xm1 + sqrtl(xm1 * (x + one))); } } } else if (y <= E * fabsl(fabsl(x) - one)) { /* region 2: y < tiny*||x|-1| */ if (ix < 0x3fff0000) { /* x < 1 */ LD_RE(ans) = acosl(x); x = fabsl(x); LD_IM(ans) = y / sqrtl((one + x) * (one - x)); } else if (ix >= ip1) { /* i386 ? 2**65 : 2**114 */ if (hx >= 0) LD_RE(ans) = y / x; else { if (ix >= ip1 + 0x00040000) LD_RE(ans) = pi + pi_l; else { t = pi_l + y / x; LD_RE(ans) = pi + t; } } LD_IM(ans) = ln2 + logl(fabsl(x)); } else { x = fabsl(x); t = sqrtl((x - one) * (x + one)); LD_RE(ans) = (hx >= 0)? y / t : pi - (y / t - pi_l); if (ix >= 0x3fff8000) /* x > Acrossover */ LD_IM(ans) = logl(x + t); else LD_IM(ans) = log1pl(t - (one - x)); } } else if (y < Foursqrtu) { /* region 3 */ t = sqrtl(y); LD_RE(ans) = (hx >= 0)? t : pi + pi_l; LD_IM(ans) = t; } else if (E * y - one >= fabsl(x)) { /* region 4 */ LD_RE(ans) = pi_2 + pi_2_l; LD_IM(ans) = ln2 + logl(y); } else if (ix >= 0x5ffb0000 || iy >= 0x5ffb0000) { /* region 5: x+1 and y are both (>= sqrt(max)/8) i.e. 2**8188 */ t = x / y; LD_RE(ans) = atan2l(y, x); LD_IM(ans) = ln2 + logl(y) + half * log1pl(t * t); } else if (fabsl(x) < Foursqrtu) { /* region 6: x is very small, < 4sqrt(min) */ LD_RE(ans) = pi_2 + pi_2_l; A = sqrtl(one + y * y); if (iy >= 0x3fff8000) /* if y > Acrossover */ LD_IM(ans) = logl(y + A); else LD_IM(ans) = half * log1pl((y + y) * (y + A)); } else { /* safe region */ t = fabsl(x); y2 = y * y; xp1 = t + one; xm1 = t - one; R = sqrtl(xp1 * xp1 + y2); S = sqrtl(xm1 * xm1 + y2); A = half * (R + S); B = t / A; if (B <= Bcrossover) LD_RE(ans) = (hx >= 0)? acosl(B) : acosl(-B); else { /* use atan and an accurate approx to a-x */ Apx = A + t; if (t <= one) LD_RE(ans) = atan2l(sqrtl(half * Apx * (y2 / (R + xp1) + (S - xm1))), x); else LD_RE(ans) = atan2l((y * sqrtl(half * (Apx / (R + xp1) + Apx / (S + xm1)))), x); } if (A <= Acrossover) { /* use log1p and an accurate approx to A-1 */ if (ix < 0x3fff0000) Am1 = half * (y2 / (R + xp1) + y2 / (S - xm1)); else Am1 = half * (y2 / (R + xp1) + (S + xm1)); LD_IM(ans) = log1pl(Am1 + sqrtl(Am1 * (A + one))); } else { LD_IM(ans) = logl(A + sqrtl(A * A - one)); } } if (hy >= 0) LD_IM(ans) = -LD_IM(ans); return (ans); }