/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2011 Nexenta Systems, Inc. All rights reserved. */ /* * Copyright 2005 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma weak atan2f = __atan2f #include "libm.h" #if defined(__i386) && !defined(__amd64) extern int __swapRP(int); #endif /* * For i = 0, ..., 192, let x[i] be the double precision number whose * high order 32 bits are 0x3f900000 + (i << 16) and whose low order * 32 bits are zero. Then TBL[i] := atan(x[i]) to double precision. */ static const double TBL[] = { 1.56237286204768313e-02, 1.66000375562312640e-02, 1.75763148444955872e-02, 1.85525586258889763e-02, 1.95287670414137082e-02, 2.05049382324763683e-02, 2.14810703409090559e-02, 2.24571615089905717e-02, 2.34332098794675855e-02, 2.44092135955758099e-02, 2.53851708010611396e-02, 2.63610796402007873e-02, 2.73369382578244127e-02, 2.83127447993351995e-02, 2.92884974107309737e-02, 3.02641942386252458e-02, 3.12398334302682774e-02, 3.31909314971115949e-02, 3.51417768027967800e-02, 3.70923545503918164e-02, 3.90426499551669928e-02, 4.09926482452637811e-02, 4.29423346623621707e-02, 4.48916944623464972e-02, 4.68407129159696539e-02, 4.87893753095156174e-02, 5.07376669454602178e-02, 5.26855731431300420e-02, 5.46330792393594777e-02, 5.65801705891457105e-02, 5.85268325663017702e-02, 6.04730505641073168e-02, 6.24188099959573500e-02, 6.63088949198234884e-02, 7.01969710718705203e-02, 7.40829225490337306e-02, 7.79666338315423008e-02, 8.18479898030765457e-02, 8.57268757707448092e-02, 8.96031774848717461e-02, 9.34767811585894698e-02, 9.73475734872236709e-02, 1.01215441667466668e-01, 1.05080273416329528e-01, 1.08941956989865793e-01, 1.12800381201659389e-01, 1.16655435441069349e-01, 1.20507009691224562e-01, 1.24354994546761438e-01, 1.32039761614638762e-01, 1.39708874289163648e-01, 1.47361481088651630e-01, 1.54996741923940973e-01, 1.62613828597948568e-01, 1.70211925285474408e-01, 1.77790228992676075e-01, 1.85347949995694761e-01, 1.92884312257974672e-01, 2.00398553825878512e-01, 2.07889927202262986e-01, 2.15357699697738048e-01, 2.22801153759394521e-01, 2.30219587276843718e-01, 2.37612313865471242e-01, 2.44978663126864143e-01, 2.59629629408257512e-01, 2.74167451119658789e-01, 2.88587361894077410e-01, 3.02884868374971417e-01, 3.17055753209147029e-01, 3.31096076704132103e-01, 3.45002177207105132e-01, 3.58770670270572245e-01, 3.72398446676754202e-01, 3.85882669398073752e-01, 3.99220769575252543e-01, 4.12410441597387323e-01, 4.25449637370042266e-01, 4.38336559857957830e-01, 4.51069655988523499e-01, 4.63647609000806094e-01, 4.88333951056405535e-01, 5.12389460310737732e-01, 5.35811237960463704e-01, 5.58599315343562441e-01, 5.80756353567670414e-01, 6.02287346134964152e-01, 6.23199329934065904e-01, 6.43501108793284371e-01, 6.63202992706093286e-01, 6.82316554874748071e-01, 7.00854407884450192e-01, 7.18829999621624527e-01, 7.36257428981428097e-01, 7.53151280962194414e-01, 7.69526480405658297e-01, 7.85398163397448279e-01, 8.15691923316223422e-01, 8.44153986113171051e-01, 8.70903457075652976e-01, 8.96055384571343927e-01, 9.19719605350416858e-01, 9.42000040379463610e-01, 9.62994330680936206e-01, 9.82793723247329054e-01, 1.00148313569423464e+00, 1.01914134426634972e+00, 1.03584125300880014e+00, 1.05165021254837376e+00, 1.06663036531574362e+00, 1.08083900054116833e+00, 1.09432890732118993e+00, 1.10714871779409041e+00, 1.13095374397916038e+00, 1.15257199721566761e+00, 1.17227388112847630e+00, 1.19028994968253166e+00, 1.20681737028525249e+00, 1.22202532321098967e+00, 1.23605948947808186e+00, 1.24904577239825443e+00, 1.26109338225244039e+00, 1.27229739520871732e+00, 1.28274087974427076e+00, 1.29249666778978534e+00, 1.30162883400919616e+00, 1.31019393504755555e+00, 1.31824205101683711e+00, 1.32581766366803255e+00, 1.33970565959899957e+00, 1.35212738092095464e+00, 1.36330010035969384e+00, 1.37340076694501589e+00, 1.38257482149012589e+00, 1.39094282700241845e+00, 1.39860551227195762e+00, 1.40564764938026987e+00, 1.41214106460849531e+00, 1.41814699839963154e+00, 1.42371797140649403e+00, 1.42889927219073276e+00, 1.43373015248470903e+00, 1.43824479449822262e+00, 1.44247309910910193e+00, 1.44644133224813509e+00, 1.45368758222803240e+00, 1.46013910562100091e+00, 1.46591938806466282e+00, 1.47112767430373470e+00, 1.47584462045214027e+00, 1.48013643959415142e+00, 1.48405798811891154e+00, 1.48765509490645531e+00, 1.49096634108265924e+00, 1.49402443552511865e+00, 1.49685728913695626e+00, 1.49948886200960629e+00, 1.50193983749385196e+00, 1.50422816301907281e+00, 1.50636948736934317e+00, 1.50837751679893928e+00, 1.51204050407917401e+00, 1.51529782154917969e+00, 1.51821326518395483e+00, 1.52083793107295384e+00, 1.52321322351791322e+00, 1.52537304737331958e+00, 1.52734543140336587e+00, 1.52915374769630819e+00, 1.53081763967160667e+00, 1.53235373677370856e+00, 1.53377621092096650e+00, 1.53509721411557254e+00, 1.53632722579538861e+00, 1.53747533091664934e+00, 1.53854944435964280e+00, 1.53955649336462841e+00, 1.54139303859089161e+00, 1.54302569020147562e+00, 1.54448660954197448e+00, 1.54580153317597646e+00, 1.54699130060982659e+00, 1.54807296595325550e+00, 1.54906061995310385e+00, 1.54996600675867957e+00, 1.55079899282174605e+00, 1.55156792769518947e+00, 1.55227992472688747e+00, 1.55294108165534417e+00, 1.55355665560036682e+00, 1.55413120308095598e+00, 1.55466869295126031e+00, 1.55517259817441977e+00, }; static const double pio4 = 7.8539816339744827900e-01, pio2 = 1.5707963267948965580e+00, negpi = -3.1415926535897931160e+00, q1 = -3.3333333333296428046e-01, q2 = 1.9999999186853752618e-01, zero = 0.0; static const float two24 = 16777216.0; float atan2f(float fy, float fx) { double a, t, s, dbase; float x, y, base; int i, k, hx, hy, ix, iy, sign; #if defined(__i386) && !defined(__amd64) int rp; #endif iy = *(int *)&fy; ix = *(int *)&fx; hy = iy & ~0x80000000; hx = ix & ~0x80000000; sign = 0; if (hy > hx) { x = fy; y = fx; i = hx; hx = hy; hy = i; if (iy < 0) { x = -x; sign = 1; } if (ix < 0) { y = -y; a = pio2; } else { a = -pio2; sign = 1 - sign; } } else { y = fy; x = fx; if (iy < 0) { y = -y; sign = 1; } if (ix < 0) { x = -x; a = negpi; sign = 1 - sign; } else { a = zero; } } if (hx >= 0x7f800000 || hx - hy >= 0x0c800000) { if (hx >= 0x7f800000) { if (hx > 0x7f800000) /* nan */ return (x * y); else if (hy >= 0x7f800000) a += pio4; } else if ((int)a == 0) { a = (double)y / x; } return ((float)((sign)? -a : a)); } if (hy < 0x00800000) { if (hy == 0) return ((float)((sign)? -a : a)); /* scale subnormal y */ y *= two24; x *= two24; hy = *(int *)&y; hx = *(int *)&x; } #if defined(__i386) && !defined(__amd64) rp = __swapRP(fp_extended); #endif k = (hy - hx + 0x3f800000) & 0xfff80000; if (k >= 0x3c800000) { /* |y/x| >= 1/64 */ *(int *)&base = k; k = (k - 0x3c800000) >> 19; a += TBL[k]; } else { /* * For some reason this is faster on USIII than just * doing t = y/x in this case. */ *(int *)&base = 0; } dbase = (double)base; t = (y - x * dbase) / (x + y * dbase); s = t * t; a = (a + t) + t * s * (q1 + s * q2); #if defined(__i386) && !defined(__amd64) if (rp != fp_extended) (void) __swapRP(rp); #endif return ((float)((sign)? -a : a)); }