/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2011 Nexenta Systems, Inc. All rights reserved. */ /* * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma weak hypotl = __hypotl /* * long double hypotl(long double x, long double y); * Method : * If z=x*x+y*y has error less than sqrt(2)/2 ulp than sqrt(z) has * error less than 1 ulp. * So, compute sqrt(x*x+y*y) with some care as follows: * Assume x>y>0; * 1. save and set rounding to round-to-nearest * 2. if x > 2y use * x1*x1+(y*y+(x2*(x+x2))) for x*x+y*y * where x1 = x with lower 64 bits cleared, x2 = x-x1; else * 3. if x <= 2y use * t1*y1+((x-y)*(x-y)+(t1*y2+t2*y)) * where t1 = 2x with lower 64 bits cleared, t2 = 2x-t1, y1= y with * lower 64 bits chopped, y2 = y-y1. * * NOTE: DO NOT remove parenthsis! * * Special cases: * hypot(x,y) is INF if x or y is +INF or -INF; else * hypot(x,y) is NAN if x or y is NAN. * * Accuracy: * hypot(x,y) returns sqrt(x^2+y^2) with error less than 1 ulps (units * in the last place) */ #include "libm.h" #include "longdouble.h" extern enum fp_direction_type __swapRD(enum fp_direction_type); static const long double zero = 0.0L, one = 1.0L; long double hypotl(long double x, long double y) { int n0, n1, n2, n3; long double t1, t2, y1, y2, w; int *px = (int *) &x, *py = (int *) &y; int *pt1 = (int *) &t1, *py1 = (int *) &y1; enum fp_direction_type rd; int j, k, nx, ny, nz; if ((*(int *) &one) != 0) { /* determine word ordering */ n0 = 0; n1 = 1; n2 = 2; n3 = 3; } else { n0 = 3; n1 = 2; n2 = 1; n3 = 0; } px[n0] &= 0x7fffffff; /* clear sign bit of x and y */ py[n0] &= 0x7fffffff; k = 0x7fff0000; nx = px[n0] & k; /* exponent of x and y */ ny = py[n0] & k; if (ny > nx) { w = x; x = y; y = w; nz = ny; ny = nx; nx = nz; } /* force x > y */ if ((nx - ny) >= 0x00730000) return (x + y); /* x/y >= 2**116 */ if (nx < 0x5ff30000 && ny > 0x205b0000) { /* medium x,y */ /* save and set RD to Rounding to nearest */ rd = __swapRD(fp_nearest); w = x - y; if (w > y) { pt1[n0] = px[n0]; pt1[n1] = px[n1]; pt1[n2] = pt1[n3] = 0; t2 = x - t1; x = sqrtl(t1 * t1 - (y * (-y) - t2 * (x + t1))); } else { x = x + x; py1[n0] = py[n0]; py1[n1] = py[n1]; py1[n2] = py1[n3] = 0; y2 = y - y1; pt1[n0] = px[n0]; pt1[n1] = px[n1]; pt1[n2] = pt1[n3] = 0; t2 = x - t1; x = sqrtl(t1 * y1 - (w * (-w) - (t2 * y1 + y2 * x))); } if (rd != fp_nearest) (void) __swapRD(rd); /* restore rounding mode */ return (x); } else { if (nx == k || ny == k) { /* x or y is INF or NaN */ if (isinfl(x)) t2 = x; else if (isinfl(y)) t2 = y; else t2 = x + y; /* invalid if x or y is sNaN */ return (t2); } if (ny == 0) { if (y == zero || x == zero) return (x + y); t1 = scalbnl(one, 16381); x *= t1; y *= t1; return (scalbnl(one, -16381) * hypotl(x, y)); } j = nx - 0x3fff0000; px[n0] -= j; py[n0] -= j; pt1[n0] = nx; pt1[n1] = pt1[n2] = pt1[n3] = 0; return (t1 * hypotl(x, y)); } }