/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2011 Nexenta Systems, Inc. All rights reserved. */ /* * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * expl(x) * Table driven method * Written by K.C. Ng, November 1988. * Algorithm : * 1. Argument Reduction: given the input x, find r and integer k * and j such that * x = (32k+j)*ln2 + r, |r| <= (1/64)*ln2 . * * 2. expl(x) = 2^k * (2^(j/32) + 2^(j/32)*expm1(r)) * Note: * a. expm1(r) = (2r)/(2-R), R = r - r^2*(t1 + t2*r^2) * b. 2^(j/32) is represented as * _TBL_expl_hi[j]+_TBL_expl_lo[j] * where * _TBL_expl_hi[j] = 2^(j/32) rounded * _TBL_expl_lo[j] = 2^(j/32) - _TBL_expl_hi[j]. * * Special cases: * expl(INF) is INF, expl(NaN) is NaN; * expl(-INF)= 0; * for finite argument, only expl(0)=1 is exact. * * Accuracy: * according to an error analysis, the error is always less than * an ulp (unit in the last place). * * Misc. info. * For 113 bit long double * if x > 1.135652340629414394949193107797076342845e+4 * then expl(x) overflow; * if x < -1.143346274333629787883724384345262150341e+4 * then expl(x) underflow * * Constants: * Only decimal values are given. We assume that the compiler will convert * from decimal to binary accurately enough to produce the correct * hexadecimal values. */ #pragma weak expl = __expl #include "libm.h" extern const long double _TBL_expl_hi[], _TBL_expl_lo[]; static const long double one = 1.0L, two = 2.0L, ln2_64 = 1.083042469624914545964425189778400898568e-2L, ovflthreshold = 1.135652340629414394949193107797076342845e+4L, unflthreshold = -1.143346274333629787883724384345262150341e+4L, invln2_32 = 4.616624130844682903551758979206054839765e+1L, ln2_32hi = 2.166084939249829091928849858592451515688e-2L, ln2_32lo = 5.209643502595475652782654157501186731779e-27L; /* rational approximation coeffs for [-(ln2)/64,(ln2)/64] */ static const long double t1 = 1.666666666666666666666666666660876387437e-1L, t2 = -2.777777777777777777777707812093173478756e-3L, t3 = 6.613756613756613482074280932874221202424e-5L, t4 = -1.653439153392139954169609822742235851120e-6L, t5 = 4.175314851769539751387852116610973796053e-8L; long double expl(long double x) { int *px = (int *) &x, ix, j, k, m; long double t, r; ix = px[0]; /* high word of x */ if (ix >= 0x7fff0000) return (x + x); /* NaN of +inf */ if (((unsigned) ix) >= 0xffff0000) return (-one / x); /* NaN or -inf */ if ((ix & 0x7fffffff) < 0x3fc30000) { if ((int) x < 1) return (one + x); /* |x|<2^-60 */ } if (ix > 0) { if (x > ovflthreshold) return (scalbnl(x, 20000)); k = (int) (invln2_32 * (x + ln2_64)); } else { if (x < unflthreshold) return (scalbnl(-x, -40000)); k = (int) (invln2_32 * (x - ln2_64)); } j = k&0x1f; m = k>>5; t = (long double) k; x = (x - t * ln2_32hi) - t * ln2_32lo; t = x * x; r = (x - t * (t1 + t * (t2 + t * (t3 + t * (t4 + t * t5))))) - two; x = _TBL_expl_hi[j] - ((_TBL_expl_hi[j] * (x + x)) / r - _TBL_expl_lo[j]); return (scalbnl(x, m)); }