/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2011 Nexenta Systems, Inc. All rights reserved. */ /* * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #if defined(ELFOBJ) #pragma weak pow = __pow #endif /* * pow(x,y) return x**y * n * Method: Let x = 2 * (1+f) * 1. Compute and return log2(x) in two pieces: * log2(x) = w1 + w2, * where w1 has 24 bits trailing zero. * 2. Perform y*log2(x) by simulating muti-precision arithmetic * 3. Return x**y = exp2(y*log(x)) * * Special cases: * 1. (anything) ** +-0 is 1 * 1'. 1 ** (anything) is 1 (C99; 1 ** +-INF/NAN used to be NAN) * 2. (anything) ** 1 is itself * 3. (anything except 1) ** NAN is NAN ("except 1" is C99) * 4. NAN ** (anything except 0) is NAN * 5. +-(|x| > 1) ** +INF is +INF * 6. +-(|x| > 1) ** -INF is +0 * 7. +-(|x| < 1) ** +INF is +0 * 8. +-(|x| < 1) ** -INF is +INF * 9. -1 ** +-INF is 1 (C99; -1 ** +-INF used to be NAN) * 10. +0 ** (+anything except 0, NAN) is +0 * 11. -0 ** (+anything except 0, NAN, odd integer) is +0 * 12. +0 ** (-anything except 0, NAN) is +INF * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF * 14. -0 ** (odd integer) = -( +0 ** (odd integer) ) * 15. +INF ** (+anything except 0,NAN) is +INF * 16. +INF ** (-anything except 0,NAN) is +0 * 17. -INF ** (anything) = -0 ** (-anything) * 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer) * 19. (-anything except 0 and inf) ** (non-integer) is NAN * * Accuracy: * pow(x,y) returns x**y nearly rounded. In particular * pow(integer,integer) * always returns the correct integer provided it is representable. */ #include "libm.h" #include "xpg6.h" /* __xpg6 */ #define _C99SUSv3_pow _C99SUSv3_pow_treats_Inf_as_an_even_int static const double zero = 0.0, one = 1.0, two = 2.0; extern const double _TBL_log2_hi[], _TBL_log2_lo[]; static const double two53 = 9007199254740992.0, A1_hi = 2.8853900432586669921875, A1_lo = 3.8519259825035041963606002e-8, A1 = 2.885390081777926817222541963606002026086e+0000, A2 = 9.617966939207270828380543979852286255862e-0001, A3 = 5.770807680887875964868853124873696201995e-0001, B0_hi = 2.8853900432586669921875, B0_lo = 3.8519259822532793056374320585e-8, B0 = 2.885390081777926814720293056374320585689e+0000, B1 = 9.617966939259755138949202350396200257632e-0001, B2 = 5.770780163585687000782112776448797953382e-0001, B3 = 4.121985488948771523290174512461778354953e-0001, B4 = 3.207590534812432970433641789022666850193e-0001; static double log2_x(double x, double *w) { double f, s, z, qn, h, t; int *px = (int *) &x; int *pz = (int *) &z; int i, j, ix, n; n = 0; ix = px[HIWORD]; if (ix >= 0x3fef03f1 && ix < 0x3ff08208) { /* 65/63 > x > 63/65 */ double f1, v; f = x - one; if (((ix - 0x3ff00000) | px[LOWORD]) == 0) { *w = zero; return (zero); /* log2(1)= +0 */ } qn = one / (two + f); s = f * qn; /* |s|<2**-6 */ v = s * s; h = (double) ((float) s); f1 = (double) ((float) f); t = qn * (((f - two * h) - h * f1) - h * (f - f1)); /* s = h+t */ f1 = h * B0_lo + s * (v * (B1 + v * (B2 + v * (B3 + v * B4)))); t = f1 + t * B0; h *= B0_hi; s = (double) ((float) (h + t)); *w = t - (s - h); return (s); } if (ix < 0x00100000) { /* subnormal x */ x *= two53; n = -53; ix = px[HIWORD]; } /* LARGE N */ n += ((ix + 0x1000) >> 20) - 0x3ff; ix = (ix & 0x000fffff) | 0x3ff00000; /* scale x to [1,2] */ px[HIWORD] = ix; i = ix + 0x1000; pz[HIWORD] = i & 0xffffe000; pz[LOWORD] = 0; qn = one / (x + z); f = x - z; s = f * qn; h = (double) ((float) s); t = qn * ((f - (h + h) * z) - h * f); j = (i >> 13) & 0x7f; f = s * s; t = t * A1 + h * A1_lo; t += (s * f) * (A2 + f * A3); qn = h * A1_hi; s = n + _TBL_log2_hi[j]; h = qn + s; t += _TBL_log2_lo[j] - ((h - s) - qn); f = (double) ((float) (h + t)); *w = t - (f - h); return (f); } extern const double _TBL_exp2_hi[], _TBL_exp2_lo[]; static const double /* poly app of 2^x-1 on [-1e-10,2^-7+1e-10] */ E1 = 6.931471805599453100674958533810346197328e-0001, E2 = 2.402265069587779347846769151717493815979e-0001, E3 = 5.550410866475410512631124892773937864699e-0002, E4 = 9.618143209991026824853712740162451423355e-0003, E5 = 1.333357676549940345096774122231849082991e-0003; double pow(double x, double y) { double z, ax; double y1, y2, w1, w2; int sbx, sby, j, k, yisint; int hx, hy, ahx, ahy; unsigned lx, ly; int *pz = (int *) &z; hx = ((int *) &x)[HIWORD]; lx = ((unsigned *) &x)[LOWORD]; hy = ((int *) &y)[HIWORD]; ly = ((unsigned *) &y)[LOWORD]; ahx = hx & ~0x80000000; ahy = hy & ~0x80000000; if ((ahy | ly) == 0) { /* y==zero */ if ((ahx | lx) == 0) z = _SVID_libm_err(x, y, 20); /* +-0**+-0 */ else if ((ahx | (((lx | -lx) >> 31) & 1)) > 0x7ff00000) z = _SVID_libm_err(x, y, 42); /* NaN**+-0 */ else z = one; /* x**+-0 = 1 */ return (z); } else if (hx == 0x3ff00000 && lx == 0 && (__xpg6 & _C99SUSv3_pow) != 0) return (one); /* C99: 1**anything = 1 */ else if (ahx > 0x7ff00000 || (ahx == 0x7ff00000 && lx != 0) || ahy > 0x7ff00000 || (ahy == 0x7ff00000 && ly != 0)) return (x * y); /* +-NaN return x*y; + -> * for Cheetah */ /* includes Sun: 1**NaN = NaN */ sbx = (unsigned) hx >> 31; sby = (unsigned) hy >> 31; ax = fabs(x); /* * determine if y is an odd int when x < 0 * yisint = 0 ... y is not an integer * yisint = 1 ... y is an odd int * yisint = 2 ... y is an even int */ yisint = 0; if (sbx) { if (ahy >= 0x43400000) yisint = 2; /* even integer y */ else if (ahy >= 0x3ff00000) { k = (ahy >> 20) - 0x3ff; /* exponent */ if (k > 20) { j = ly >> (52 - k); if ((j << (52 - k)) == ly) yisint = 2 - (j & 1); } else if (ly == 0) { j = ahy >> (20 - k); if ((j << (20 - k)) == ahy) yisint = 2 - (j & 1); } } } /* special value of y */ if (ly == 0) { if (ahy == 0x7ff00000) { /* y is +-inf */ if (((ahx - 0x3ff00000) | lx) == 0) { if ((__xpg6 & _C99SUSv3_pow) != 0) return (one); /* C99: (-1)**+-inf = 1 */ else return (y - y); /* Sun: (+-1)**+-inf = NaN */ } else if (ahx >= 0x3ff00000) /* (|x|>1)**+,-inf = inf,0 */ return (sby == 0 ? y : zero); else /* (|x|<1)**-,+inf = inf,0 */ return (sby != 0 ? -y : zero); } if (ahy == 0x3ff00000) { /* y is +-1 */ if (sby != 0) { /* y is -1 */ if (x == zero) /* divided by zero */ return (_SVID_libm_err(x, y, 23)); else if (ahx < 0x40000 || ((ahx - 0x40000) | lx) == 0) /* overflow */ return (_SVID_libm_err(x, y, 21)); else return (one / x); } else return (x); } if (hy == 0x40000000) { /* y is 2 */ if (ahx >= 0x5ff00000 && ahx < 0x7ff00000) return (_SVID_libm_err(x, y, 21)); /* x*x overflow */ else if ((ahx < 0x1e56a09e && (ahx | lx) != 0) || (ahx == 0x1e56a09e && lx < 0x667f3bcd)) return (_SVID_libm_err(x, y, 22)); /* x*x underflow */ else return (x * x); } if (hy == 0x3fe00000) { if (!((ahx | lx) == 0 || ((ahx - 0x7ff00000) | lx) == 0 || sbx == 1)) return (sqrt(x)); /* y is 0.5 and x > 0 */ } } /* special value of x */ if (lx == 0) { if (ahx == 0x7ff00000 || ahx == 0 || ahx == 0x3ff00000) { /* x is +-0,+-inf,-1 */ z = ax; if (sby == 1) { z = one / z; /* z = |x|**y */ if (ahx == 0) return (_SVID_libm_err(x, y, 23)); } if (sbx == 1) { if (ahx == 0x3ff00000 && yisint == 0) z = _SVID_libm_err(x, y, 24); /* neg**non-integral is NaN + invalid */ else if (yisint == 1) z = -z; /* (x<0)**odd = -(|x|**odd) */ } return (z); } } /* (x<0)**(non-int) is NaN */ if (sbx == 1 && yisint == 0) return (_SVID_libm_err(x, y, 24)); /* Now ax is finite, y is finite */ /* first compute log2(ax) = w1+w2, with 24 bits w1 */ w1 = log2_x(ax, &w2); /* split up y into y1+y2 and compute (y1+y2)*(w1+w2) */ if (((ly & 0x07ffffff) == 0) || ahy >= 0x47e00000 || ahy <= 0x38100000) { /* no need to split if y is short or too large or too small */ y1 = y * w1; y2 = y * w2; } else { y1 = (double) ((float) y); y2 = (y - y1) * w1 + y * w2; y1 *= w1; } z = y1 + y2; j = pz[HIWORD]; if (j >= 0x40900000) { /* z >= 1024 */ if (!(j == 0x40900000 && pz[LOWORD] == 0)) /* z > 1024 */ return (_SVID_libm_err(x, y, 21)); /* overflow */ else { w2 = y1 - z; w2 += y2; /* rounded to inf */ if (w2 >= -8.008566259537296567160e-17) return (_SVID_libm_err(x, y, 21)); /* overflow */ } } else if ((j & ~0x80000000) >= 0x4090cc00) { /* z <= -1075 */ if (!(j == 0xc090cc00 && pz[LOWORD] == 0)) /* z < -1075 */ return (_SVID_libm_err(x, y, 22)); /* underflow */ else { w2 = y1 - z; w2 += y2; if (w2 <= zero) /* underflow */ return (_SVID_libm_err(x, y, 22)); } } /* * compute 2**(k+f[j]+g) */ k = (int) (z * 64.0 + (((hy ^ (ahx - 0x3ff00000)) > 0) ? 0.5 : -0.5)); j = k & 63; w1 = y2 - ((double) k * 0.015625 - y1); w2 = _TBL_exp2_hi[j]; z = _TBL_exp2_lo[j] + (w2 * w1) * (E1 + w1 * (E2 + w1 * (E3 + w1 * (E4 + w1 * E5)))); z += w2; k >>= 6; if (k < -1021) z = scalbn(z, k); else /* subnormal output */ pz[HIWORD] += k << 20; if (sbx == 1 && yisint == 1) z = -z; /* (-ve)**(odd int) */ return (z); }