/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2010 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #include "lint.h" #include <sys/feature_tests.h> /* * setcontext() really can return, if UC_CPU is not specified. * Make the compiler shut up about it. */ #if defined(__NORETURN) #undef __NORETURN #endif #define __NORETURN #include "thr_uberdata.h" #include "asyncio.h" #include <signal.h> #include <siginfo.h> #include <sys/systm.h> /* maskable signals */ const sigset_t maskset = {MASKSET0, MASKSET1, MASKSET2, MASKSET3}; /* * Return true if the valid signal bits in both sets are the same. */ int sigequalset(const sigset_t *s1, const sigset_t *s2) { /* * We only test valid signal bits, not rubbish following MAXSIG * (for speed). Algorithm: * if (s1 & fillset) == (s2 & fillset) then (s1 ^ s2) & fillset == 0 */ /* see lib/libc/inc/thr_uberdata.h for why this must be true */ #if (MAXSIG > (2 * 32) && MAXSIG <= (3 * 32)) return (!((s1->__sigbits[0] ^ s2->__sigbits[0]) | (s1->__sigbits[1] ^ s2->__sigbits[1]) | ((s1->__sigbits[2] ^ s2->__sigbits[2]) & FILLSET2))); #else #error "fix me: MAXSIG out of bounds" #endif } /* * Common code for calling the user-specified signal handler. */ void call_user_handler(int sig, siginfo_t *sip, ucontext_t *ucp) { ulwp_t *self = curthread; uberdata_t *udp = self->ul_uberdata; struct sigaction uact; volatile struct sigaction *sap; /* * If we are taking a signal while parked or about to be parked * on __lwp_park() then remove ourself from the sleep queue so * that we can grab locks. The code in mutex_lock_queue() and * cond_wait_common() will detect this and deal with it when * __lwp_park() returns. */ unsleep_self(); set_parking_flag(self, 0); if (__td_event_report(self, TD_CATCHSIG, udp)) { self->ul_td_evbuf.eventnum = TD_CATCHSIG; self->ul_td_evbuf.eventdata = (void *)(intptr_t)sig; tdb_event(TD_CATCHSIG, udp); } /* * Get a self-consistent set of flags, handler, and mask * while holding the sig's sig_lock for the least possible time. * We must acquire the sig's sig_lock because some thread running * in sigaction() might be establishing a new signal handler. * The code in sigaction() acquires the writer lock; here * we acquire the readers lock to ehance concurrency in the * face of heavy signal traffic, such as generated by java. * * Locking exceptions: * No locking for a child of vfork(). * If the signal is SIGPROF with an si_code of PROF_SIG, * then we assume that this signal was generated by * setitimer(ITIMER_REALPROF) set up by the dbx collector. * If the signal is SIGEMT with an si_code of EMT_CPCOVF, * then we assume that the signal was generated by * a hardware performance counter overflow. * In these cases, assume that we need no locking. It is the * monitoring program's responsibility to ensure correctness. */ sap = &udp->siguaction[sig].sig_uaction; if (self->ul_vfork || (sip != NULL && ((sig == SIGPROF && sip->si_code == PROF_SIG) || (sig == SIGEMT && sip->si_code == EMT_CPCOVF)))) { /* we wish this assignment could be atomic */ (void) memcpy(&uact, (void *)sap, sizeof (uact)); } else { rwlock_t *rwlp = &udp->siguaction[sig].sig_lock; lrw_rdlock(rwlp); (void) memcpy(&uact, (void *)sap, sizeof (uact)); if ((sig == SIGCANCEL || sig == SIGAIOCANCEL) && (sap->sa_flags & SA_RESETHAND)) sap->sa_sigaction = SIG_DFL; lrw_unlock(rwlp); } /* * Set the proper signal mask and call the user's signal handler. * (We overrode the user-requested signal mask with maskset * so we currently have all blockable signals blocked.) * * We would like to ASSERT() that the signal is not a member of the * signal mask at the previous level (ucp->uc_sigmask) or the specified * signal mask for sigsuspend() or pollsys() (self->ul_tmpmask) but * /proc can override this via PCSSIG, so we don't bother. * * We would also like to ASSERT() that the signal mask at the previous * level equals self->ul_sigmask (maskset for sigsuspend() / pollsys()), * but /proc can change the thread's signal mask via PCSHOLD, so we * don't bother with that either. */ ASSERT(ucp->uc_flags & UC_SIGMASK); if (self->ul_sigsuspend) { ucp->uc_sigmask = self->ul_sigmask; self->ul_sigsuspend = 0; /* the sigsuspend() or pollsys() signal mask */ sigorset(&uact.sa_mask, &self->ul_tmpmask); } else { /* the signal mask at the previous level */ sigorset(&uact.sa_mask, &ucp->uc_sigmask); } if (!(uact.sa_flags & SA_NODEFER)) /* add current signal */ (void) sigaddset(&uact.sa_mask, sig); self->ul_sigmask = uact.sa_mask; self->ul_siglink = ucp; (void) __lwp_sigmask(SIG_SETMASK, &uact.sa_mask); /* * If this thread has been sent SIGCANCEL from the kernel * or from pthread_cancel(), it is being asked to exit. * The kernel may send SIGCANCEL without a siginfo struct. * If the SIGCANCEL is process-directed (from kill() or * sigqueue()), treat it as an ordinary signal. */ if (sig == SIGCANCEL) { if (sip == NULL || SI_FROMKERNEL(sip) || sip->si_code == SI_LWP) { do_sigcancel(); goto out; } /* SIGCANCEL is ignored by default */ if (uact.sa_sigaction == SIG_DFL || uact.sa_sigaction == SIG_IGN) goto out; } /* * If this thread has been sent SIGAIOCANCEL (SIGLWP) and * we are an aio worker thread, cancel the aio request. */ if (sig == SIGAIOCANCEL) { aio_worker_t *aiowp = pthread_getspecific(_aio_key); if (sip != NULL && sip->si_code == SI_LWP && aiowp != NULL) siglongjmp(aiowp->work_jmp_buf, 1); /* SIGLWP is ignored by default */ if (uact.sa_sigaction == SIG_DFL || uact.sa_sigaction == SIG_IGN) goto out; } if (!(uact.sa_flags & SA_SIGINFO)) sip = NULL; __sighndlr(sig, sip, ucp, uact.sa_sigaction); #if defined(sparc) || defined(__sparc) /* * If this is a floating point exception and the queue * is non-empty, pop the top entry from the queue. This * is to maintain expected behavior. */ if (sig == SIGFPE && ucp->uc_mcontext.fpregs.fpu_qcnt) { fpregset_t *fp = &ucp->uc_mcontext.fpregs; if (--fp->fpu_qcnt > 0) { unsigned char i; struct fq *fqp; fqp = fp->fpu_q; for (i = 0; i < fp->fpu_qcnt; i++) fqp[i] = fqp[i+1]; } } #endif /* sparc */ out: (void) setcontext(ucp); thr_panic("call_user_handler(): setcontext() returned"); } /* * take_deferred_signal() is called when ul_critical and ul_sigdefer become * zero and a deferred signal has been recorded on the current thread. * We are out of the critical region and are ready to take a signal. * The kernel has all signals blocked on this lwp, but our value of * ul_sigmask is the correct signal mask for the previous context. * * We call __sigresend() to atomically restore the signal mask and * cause the signal to be sent again with the remembered siginfo. * We will not return successfully from __sigresend() until the * application's signal handler has been run via sigacthandler(). */ void take_deferred_signal(int sig) { extern int __sigresend(int, siginfo_t *, sigset_t *); ulwp_t *self = curthread; siguaction_t *suap = &self->ul_uberdata->siguaction[sig]; siginfo_t *sip; int error; ASSERT((self->ul_critical | self->ul_sigdefer | self->ul_cursig) == 0); /* * If the signal handler was established with SA_RESETHAND, * the kernel has reset the handler to SIG_DFL, so we have * to reestablish the handler now so that it will be entered * again when we call __sigresend(), below. * * Logically, we should acquire and release the signal's * sig_lock around this operation to protect the integrity * of the signal action while we copy it, as is done below * in _libc_sigaction(). However, we may be on a user-level * sleep queue at this point and lrw_wrlock(&suap->sig_lock) * might attempt to sleep on a different sleep queue and * that would corrupt the entire sleep queue mechanism. * * If we are on a sleep queue we will remove ourself from * it in call_user_handler(), called from sigacthandler(), * before entering the application's signal handler. * In the meantime, we must not acquire any locks. */ if (suap->sig_uaction.sa_flags & SA_RESETHAND) { struct sigaction tact = suap->sig_uaction; tact.sa_flags &= ~SA_NODEFER; tact.sa_sigaction = self->ul_uberdata->sigacthandler; tact.sa_mask = maskset; (void) __sigaction(sig, &tact, NULL); } if (self->ul_siginfo.si_signo == 0) sip = NULL; else sip = &self->ul_siginfo; /* EAGAIN can happen only for a pending SIGSTOP signal */ while ((error = __sigresend(sig, sip, &self->ul_sigmask)) == EAGAIN) continue; if (error) thr_panic("take_deferred_signal(): __sigresend() failed"); } void sigacthandler(int sig, siginfo_t *sip, void *uvp) { ucontext_t *ucp = uvp; ulwp_t *self = curthread; /* * Do this in case we took a signal while in a cancelable system call. * It does no harm if we were not in such a system call. */ self->ul_sp = 0; if (sig != SIGCANCEL) self->ul_cancel_async = self->ul_save_async; /* * If this thread has performed a longjmp() from a signal handler * back to main level some time in the past, it has left the kernel * thinking that it is still in the signal context. We repair this * possible damage by setting ucp->uc_link to NULL if we know that * we are actually executing at main level (self->ul_siglink == NULL). * See the code for setjmp()/longjmp() for more details. */ if (self->ul_siglink == NULL) ucp->uc_link = NULL; /* * If we are not in a critical region and are * not deferring signals, take the signal now. */ if ((self->ul_critical + self->ul_sigdefer) == 0) { call_user_handler(sig, sip, ucp); /* * On the surface, the following call seems redundant * because call_user_handler() cannot return. However, * we don't want to return from here because the compiler * might recycle our frame. We want to keep it on the * stack to assist debuggers such as pstack in identifying * signal frames. The call to thr_panic() serves to prevent * tail-call optimisation here. */ thr_panic("sigacthandler(): call_user_handler() returned"); } /* * We are in a critical region or we are deferring signals. When * we emerge from the region we will call take_deferred_signal(). */ ASSERT(self->ul_cursig == 0); self->ul_cursig = (char)sig; if (sip != NULL) (void) memcpy(&self->ul_siginfo, sip, sizeof (siginfo_t)); else self->ul_siginfo.si_signo = 0; /* * Make sure that if we return to a call to __lwp_park() * or ___lwp_cond_wait() that it returns right away * (giving us a spurious wakeup but not a deadlock). */ set_parking_flag(self, 0); /* * Return to the previous context with all signals blocked. * We will restore the signal mask in take_deferred_signal(). * Note that we are calling the system call trap here, not * the setcontext() wrapper. We don't want to change the * thread's ul_sigmask by this operation. */ ucp->uc_sigmask = maskset; (void) __setcontext(ucp); thr_panic("sigacthandler(): __setcontext() returned"); } #pragma weak _sigaction = sigaction int sigaction(int sig, const struct sigaction *nact, struct sigaction *oact) { ulwp_t *self = curthread; uberdata_t *udp = self->ul_uberdata; struct sigaction oaction; struct sigaction tact; struct sigaction *tactp = NULL; int rv; if (sig <= 0 || sig >= NSIG) { errno = EINVAL; return (-1); } if (!self->ul_vfork) lrw_wrlock(&udp->siguaction[sig].sig_lock); oaction = udp->siguaction[sig].sig_uaction; if (nact != NULL) { tact = *nact; /* make a copy so we can modify it */ tactp = &tact; delete_reserved_signals(&tact.sa_mask); #if !defined(_LP64) tact.sa_resv[0] = tact.sa_resv[1] = 0; /* cleanliness */ #endif /* * To be compatible with the behavior of SunOS 4.x: * If the new signal handler is SIG_IGN or SIG_DFL, do * not change the signal's entry in the siguaction array. * This allows a child of vfork(2) to set signal handlers * to SIG_IGN or SIG_DFL without affecting the parent. * * This also covers a race condition with some thread * setting the signal action to SIG_DFL or SIG_IGN * when the thread has also received and deferred * that signal. When the thread takes the deferred * signal, even though it has set the action to SIG_DFL * or SIG_IGN, it will execute the old signal handler * anyway. This is an inherent signaling race condition * and is not a bug. * * A child of vfork() is not allowed to change signal * handlers to anything other than SIG_DFL or SIG_IGN. */ if (self->ul_vfork) { if (tact.sa_sigaction != SIG_IGN) tact.sa_sigaction = SIG_DFL; } else if (sig == SIGCANCEL || sig == SIGAIOCANCEL) { /* * Always catch these signals. * We need SIGCANCEL for pthread_cancel() to work. * We need SIGAIOCANCEL for aio_cancel() to work. */ udp->siguaction[sig].sig_uaction = tact; if (tact.sa_sigaction == SIG_DFL || tact.sa_sigaction == SIG_IGN) tact.sa_flags = SA_SIGINFO; else { tact.sa_flags |= SA_SIGINFO; tact.sa_flags &= ~(SA_NODEFER | SA_RESETHAND | SA_RESTART); } tact.sa_sigaction = udp->sigacthandler; tact.sa_mask = maskset; } else if (tact.sa_sigaction != SIG_DFL && tact.sa_sigaction != SIG_IGN) { udp->siguaction[sig].sig_uaction = tact; tact.sa_flags &= ~SA_NODEFER; tact.sa_sigaction = udp->sigacthandler; tact.sa_mask = maskset; } } if ((rv = __sigaction(sig, tactp, oact)) != 0) udp->siguaction[sig].sig_uaction = oaction; else if (oact != NULL && oact->sa_sigaction != SIG_DFL && oact->sa_sigaction != SIG_IGN) *oact = oaction; /* * We detect setting the disposition of SIGIO just to set the * _sigio_enabled flag for the asynchronous i/o (aio) code. */ if (sig == SIGIO && rv == 0 && tactp != NULL) { _sigio_enabled = (tactp->sa_handler != SIG_DFL && tactp->sa_handler != SIG_IGN); } if (!self->ul_vfork) lrw_unlock(&udp->siguaction[sig].sig_lock); return (rv); } /* * This is a private interface for the linux brand interface. */ void setsigacthandler(void (*nsigacthandler)(int, siginfo_t *, void *), void (**osigacthandler)(int, siginfo_t *, void *)) { ulwp_t *self = curthread; uberdata_t *udp = self->ul_uberdata; if (osigacthandler != NULL) *osigacthandler = udp->sigacthandler; udp->sigacthandler = nsigacthandler; } /* * Tell the kernel to block all signals. * Use the schedctl interface, or failing that, use __lwp_sigmask(). * This action can be rescinded only by making a system call that * sets the signal mask: * __lwp_sigmask(), __sigprocmask(), __setcontext(), * __sigsuspend() or __pollsys(). * In particular, this action cannot be reversed by assigning * scp->sc_sigblock = 0. That would be a way to lose signals. * See the definition of restore_signals(self). */ void block_all_signals(ulwp_t *self) { volatile sc_shared_t *scp; enter_critical(self); if ((scp = self->ul_schedctl) != NULL || (scp = setup_schedctl()) != NULL) scp->sc_sigblock = 1; else (void) __lwp_sigmask(SIG_SETMASK, &maskset); exit_critical(self); } /* * setcontext() has code that forcibly restores the curthread * pointer in a context passed to the setcontext(2) syscall. * * Certain processes may need to disable this feature, so these routines * provide the mechanism to do so. * * (As an example, branded 32-bit x86 processes may use %gs for their own * purposes, so they need to be able to specify a %gs value to be restored * on return from a signal handler via the passed ucontext_t.) */ static int setcontext_enforcement = 1; void set_setcontext_enforcement(int on) { setcontext_enforcement = on; } #pragma weak _setcontext = setcontext int setcontext(const ucontext_t *ucp) { ulwp_t *self = curthread; int ret; ucontext_t uc; /* * Returning from the main context (uc_link == NULL) causes * the thread to exit. See setcontext(2) and makecontext(3C). */ if (ucp == NULL) thr_exit(NULL); (void) memcpy(&uc, ucp, sizeof (uc)); /* * Restore previous signal mask and context link. */ if (uc.uc_flags & UC_SIGMASK) { block_all_signals(self); delete_reserved_signals(&uc.uc_sigmask); self->ul_sigmask = uc.uc_sigmask; if (self->ul_cursig) { /* * We have a deferred signal present. * The signal mask will be set when the * signal is taken in take_deferred_signal(). */ ASSERT(self->ul_critical + self->ul_sigdefer != 0); uc.uc_flags &= ~UC_SIGMASK; } } self->ul_siglink = uc.uc_link; /* * We don't know where this context structure has been. * Preserve the curthread pointer, at least. * * Allow this feature to be disabled if a particular process * requests it. */ if (setcontext_enforcement) { #if defined(__sparc) uc.uc_mcontext.gregs[REG_G7] = (greg_t)self; #elif defined(__amd64) uc.uc_mcontext.gregs[REG_FS] = (greg_t)0; /* null for fsbase */ #elif defined(__i386) uc.uc_mcontext.gregs[GS] = (greg_t)LWPGS_SEL; #else #error "none of __sparc, __amd64, __i386 defined" #endif } /* * Make sure that if we return to a call to __lwp_park() * or ___lwp_cond_wait() that it returns right away * (giving us a spurious wakeup but not a deadlock). */ set_parking_flag(self, 0); self->ul_sp = 0; ret = __setcontext(&uc); /* * It is OK for setcontext() to return if the user has not specified * UC_CPU. */ if (uc.uc_flags & UC_CPU) thr_panic("setcontext(): __setcontext() returned"); return (ret); } #pragma weak _thr_sigsetmask = thr_sigsetmask int thr_sigsetmask(int how, const sigset_t *set, sigset_t *oset) { ulwp_t *self = curthread; sigset_t saveset; if (set == NULL) { enter_critical(self); if (oset != NULL) *oset = self->ul_sigmask; exit_critical(self); } else { switch (how) { case SIG_BLOCK: case SIG_UNBLOCK: case SIG_SETMASK: break; default: return (EINVAL); } /* * The assignments to self->ul_sigmask must be protected from * signals. The nuances of this code are subtle. Be careful. */ block_all_signals(self); if (oset != NULL) saveset = self->ul_sigmask; switch (how) { case SIG_BLOCK: self->ul_sigmask.__sigbits[0] |= set->__sigbits[0]; self->ul_sigmask.__sigbits[1] |= set->__sigbits[1]; self->ul_sigmask.__sigbits[2] |= set->__sigbits[2]; self->ul_sigmask.__sigbits[3] |= set->__sigbits[3]; break; case SIG_UNBLOCK: self->ul_sigmask.__sigbits[0] &= ~set->__sigbits[0]; self->ul_sigmask.__sigbits[1] &= ~set->__sigbits[1]; self->ul_sigmask.__sigbits[2] &= ~set->__sigbits[2]; self->ul_sigmask.__sigbits[3] &= ~set->__sigbits[3]; break; case SIG_SETMASK: self->ul_sigmask.__sigbits[0] = set->__sigbits[0]; self->ul_sigmask.__sigbits[1] = set->__sigbits[1]; self->ul_sigmask.__sigbits[2] = set->__sigbits[2]; self->ul_sigmask.__sigbits[3] = set->__sigbits[3]; break; } delete_reserved_signals(&self->ul_sigmask); if (oset != NULL) *oset = saveset; restore_signals(self); } return (0); } #pragma weak _pthread_sigmask = pthread_sigmask int pthread_sigmask(int how, const sigset_t *set, sigset_t *oset) { return (thr_sigsetmask(how, set, oset)); } #pragma weak _sigprocmask = sigprocmask int sigprocmask(int how, const sigset_t *set, sigset_t *oset) { int error; /* * Guard against children of vfork(). */ if (curthread->ul_vfork) return (__sigprocmask(how, set, oset)); if ((error = thr_sigsetmask(how, set, oset)) != 0) { errno = error; return (-1); } return (0); } /* * Called at library initialization to set up signal handling. * All we really do is initialize the sig_lock rwlocks. * All signal handlers are either SIG_DFL or SIG_IGN on exec(). * However, if any signal handlers were established on alternate * link maps before the primary link map has been initialized, * then inform the kernel of the new sigacthandler. */ void signal_init() { uberdata_t *udp = curthread->ul_uberdata; struct sigaction *sap; struct sigaction act; rwlock_t *rwlp; int sig; for (sig = 0; sig < NSIG; sig++) { rwlp = &udp->siguaction[sig].sig_lock; rwlp->rwlock_magic = RWL_MAGIC; rwlp->mutex.mutex_flag = LOCK_INITED; rwlp->mutex.mutex_magic = MUTEX_MAGIC; sap = &udp->siguaction[sig].sig_uaction; if (sap->sa_sigaction != SIG_DFL && sap->sa_sigaction != SIG_IGN && __sigaction(sig, NULL, &act) == 0 && act.sa_sigaction != SIG_DFL && act.sa_sigaction != SIG_IGN) { act = *sap; act.sa_flags &= ~SA_NODEFER; act.sa_sigaction = udp->sigacthandler; act.sa_mask = maskset; (void) __sigaction(sig, &act, NULL); } } } /* * Common code for cancelling self in _sigcancel() and pthread_cancel(). * First record the fact that a cancellation is pending. * Then, if cancellation is disabled or if we are holding unprotected * libc locks, just return to defer the cancellation. * Then, if we are at a cancellation point (ul_cancelable) just * return and let _canceloff() do the exit. * Else exit immediately if async mode is in effect. */ void do_sigcancel(void) { ulwp_t *self = curthread; ASSERT(self->ul_critical == 0); ASSERT(self->ul_sigdefer == 0); self->ul_cancel_pending = 1; if (self->ul_cancel_async && !self->ul_cancel_disabled && self->ul_libc_locks == 0 && !self->ul_cancelable) pthread_exit(PTHREAD_CANCELED); set_cancel_pending_flag(self, 0); } /* * Set up the SIGCANCEL handler for threads cancellation, * needed only when we have more than one thread, * or the SIGAIOCANCEL handler for aio cancellation, * called when aio is initialized, in __uaio_init(). */ void setup_cancelsig(int sig) { uberdata_t *udp = curthread->ul_uberdata; rwlock_t *rwlp = &udp->siguaction[sig].sig_lock; struct sigaction act; ASSERT(sig == SIGCANCEL || sig == SIGAIOCANCEL); lrw_rdlock(rwlp); act = udp->siguaction[sig].sig_uaction; lrw_unlock(rwlp); if (act.sa_sigaction == SIG_DFL || act.sa_sigaction == SIG_IGN) act.sa_flags = SA_SIGINFO; else { act.sa_flags |= SA_SIGINFO; act.sa_flags &= ~(SA_NODEFER | SA_RESETHAND | SA_RESTART); } act.sa_sigaction = udp->sigacthandler; act.sa_mask = maskset; (void) __sigaction(sig, &act, NULL); }