/* ***** BEGIN LICENSE BLOCK ***** * Version: MPL 1.1/GPL 2.0/LGPL 2.1 * * The contents of this file are subject to the Mozilla Public License Version * 1.1 (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * Software distributed under the License is distributed on an "AS IS" basis, * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License * for the specific language governing rights and limitations under the * License. * * The Original Code is the Netscape security libraries. * * The Initial Developer of the Original Code is * Netscape Communications Corporation. * Portions created by the Initial Developer are Copyright (C) 2000 * the Initial Developer. All Rights Reserved. * * Contributor(s): * Sheueling Chang Shantz <sheueling.chang@sun.com>, * Stephen Fung <stephen.fung@sun.com>, and * Douglas Stebila <douglas@stebila.ca> of Sun Laboratories. * * Alternatively, the contents of this file may be used under the terms of * either the GNU General Public License Version 2 or later (the "GPL"), or * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), * in which case the provisions of the GPL or the LGPL are applicable instead * of those above. If you wish to allow use of your version of this file only * under the terms of either the GPL or the LGPL, and not to allow others to * use your version of this file under the terms of the MPL, indicate your * decision by deleting the provisions above and replace them with the notice * and other provisions required by the GPL or the LGPL. If you do not delete * the provisions above, a recipient may use your version of this file under * the terms of any one of the MPL, the GPL or the LGPL. * * ***** END LICENSE BLOCK ***** */ /* * Copyright 2007 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. * * Sun elects to use this software under the MPL license. */ #pragma ident "%Z%%M% %I% %E% SMI" /* $Id: mpmontg.c,v 1.20 2006/08/29 02:41:38 nelson%bolyard.com Exp $ */ /* This file implements moduluar exponentiation using Montgomery's * method for modular reduction. This file implements the method * described as "Improvement 1" in the paper "A Cryptogrpahic Library for * the Motorola DSP56000" by Stephen R. Dusse' and Burton S. Kaliski Jr. * published in "Advances in Cryptology: Proceedings of EUROCRYPT '90" * "Lecture Notes in Computer Science" volume 473, 1991, pg 230-244, * published by Springer Verlag. */ #define MP_USING_CACHE_SAFE_MOD_EXP 1 #ifndef _KERNEL #include <string.h> #include <stddef.h> /* ptrdiff_t */ #endif #include "mpi-priv.h" #include "mplogic.h" #include "mpprime.h" #ifdef MP_USING_MONT_MULF #include "montmulf.h" #endif /* if MP_CHAR_STORE_SLOW is defined, we */ /* need to know endianness of this platform. */ #ifdef MP_CHAR_STORE_SLOW #if !defined(MP_IS_BIG_ENDIAN) && !defined(MP_IS_LITTLE_ENDIAN) #error "You must define MP_IS_BIG_ENDIAN or MP_IS_LITTLE_ENDIAN\n" \ " if you define MP_CHAR_STORE_SLOW." #endif #endif #ifndef STATIC #define STATIC #endif #define MAX_ODD_INTS 32 /* 2 ** (WINDOW_BITS - 1) */ #ifndef _KERNEL #if defined(_WIN32_WCE) #define ABORT res = MP_UNDEF; goto CLEANUP #else #define ABORT abort() #endif #else #define ABORT res = MP_UNDEF; goto CLEANUP #endif /* _KERNEL */ /* computes T = REDC(T), 2^b == R */ mp_err s_mp_redc(mp_int *T, mp_mont_modulus *mmm) { mp_err res; mp_size i; i = MP_USED(T) + MP_USED(&mmm->N) + 2; MP_CHECKOK( s_mp_pad(T, i) ); for (i = 0; i < MP_USED(&mmm->N); ++i ) { mp_digit m_i = MP_DIGIT(T, i) * mmm->n0prime; /* T += N * m_i * (MP_RADIX ** i); */ MP_CHECKOK( s_mp_mul_d_add_offset(&mmm->N, m_i, T, i) ); } s_mp_clamp(T); /* T /= R */ s_mp_div_2d(T, mmm->b); if ((res = s_mp_cmp(T, &mmm->N)) >= 0) { /* T = T - N */ MP_CHECKOK( s_mp_sub(T, &mmm->N) ); #ifdef DEBUG if ((res = mp_cmp(T, &mmm->N)) >= 0) { res = MP_UNDEF; goto CLEANUP; } #endif } res = MP_OKAY; CLEANUP: return res; } #if !defined(MP_ASSEMBLY_MUL_MONT) && !defined(MP_MONT_USE_MP_MUL) mp_err s_mp_mul_mont(const mp_int *a, const mp_int *b, mp_int *c, mp_mont_modulus *mmm) { mp_digit *pb; mp_digit m_i; mp_err res; mp_size ib; mp_size useda, usedb; ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); if (MP_USED(a) < MP_USED(b)) { const mp_int *xch = b; /* switch a and b, to do fewer outer loops */ b = a; a = xch; } MP_USED(c) = 1; MP_DIGIT(c, 0) = 0; ib = MP_USED(a) + MP_MAX(MP_USED(b), MP_USED(&mmm->N)) + 2; if((res = s_mp_pad(c, ib)) != MP_OKAY) goto CLEANUP; useda = MP_USED(a); pb = MP_DIGITS(b); s_mpv_mul_d(MP_DIGITS(a), useda, *pb++, MP_DIGITS(c)); s_mp_setz(MP_DIGITS(c) + useda + 1, ib - (useda + 1)); m_i = MP_DIGIT(c, 0) * mmm->n0prime; s_mp_mul_d_add_offset(&mmm->N, m_i, c, 0); /* Outer loop: Digits of b */ usedb = MP_USED(b); for (ib = 1; ib < usedb; ib++) { mp_digit b_i = *pb++; /* Inner product: Digits of a */ if (b_i) s_mpv_mul_d_add_prop(MP_DIGITS(a), useda, b_i, MP_DIGITS(c) + ib); m_i = MP_DIGIT(c, ib) * mmm->n0prime; s_mp_mul_d_add_offset(&mmm->N, m_i, c, ib); } if (usedb < MP_USED(&mmm->N)) { for (usedb = MP_USED(&mmm->N); ib < usedb; ++ib ) { m_i = MP_DIGIT(c, ib) * mmm->n0prime; s_mp_mul_d_add_offset(&mmm->N, m_i, c, ib); } } s_mp_clamp(c); s_mp_div_2d(c, mmm->b); if (s_mp_cmp(c, &mmm->N) >= 0) { MP_CHECKOK( s_mp_sub(c, &mmm->N) ); } res = MP_OKAY; CLEANUP: return res; } #endif