/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2005 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" /* * This module contains functions used to bring up and tear down the * Virtual Platform: [un]mounting file-systems, [un]plumbing network * interfaces, [un]configuring devices, establishing resource controls, * and creating/destroying the zone in the kernel. These actions, on * the way up, ready the zone; on the way down, they halt the zone. * See the much longer block comment at the beginning of zoneadmd.c * for a bigger picture of how the whole program functions. * * This module also has primary responsibility for the layout of "scratch * zones." These are mounted, but inactive, zones that are used during * operating system upgrade and potentially other administrative action. The * scratch zone environment is similar to the miniroot environment. The zone's * actual root is mounted read-write on /a, and the standard paths (/usr, * /sbin, /lib) all lead to read-only copies of the running system's binaries. * This allows the administrative tools to manipulate the zone using "-R /a" * without relying on any binaries in the zone itself. * * If the scratch zone is on an alternate root (Live Upgrade [LU] boot * environment), then we must resolve the lofs mounts used there to uncover * writable (unshared) resources. Shared resources, though, are always * read-only. In addition, if the "same" zone with a different root path is * currently running, then "/b" inside the zone points to the running zone's * root. This allows LU to synchronize configuration files during the upgrade * process. * * To construct this environment, this module creates a tmpfs mount on * $ZONEPATH/lu. Inside this scratch area, the miniroot-like environment as * described above is constructed on the fly. The zone is then created using * $ZONEPATH/lu as the root. * * Note that scratch zones are inactive. The zone's bits are not running and * likely cannot be run correctly until upgrade is done. Init is not running * there, nor is SMF. Because of this, the "mounted" state of a scratch zone * is not a part of the usual halt/ready/boot state machine. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* for _autofssys() */ #include #include #include #include #include "zoneadmd.h" #define V4_ADDR_LEN 32 #define V6_ADDR_LEN 128 /* 0755 is the default directory mode. */ #define DEFAULT_DIR_MODE \ (S_IRWXU | S_IRGRP | S_IXGRP | S_IROTH | S_IXOTH) #define IPD_DEFAULT_OPTS \ MNTOPT_RO "," MNTOPT_LOFS_NOSUB "," MNTOPT_NODEVICES #define DFSTYPES "/etc/dfs/fstypes" /* * A list of directories which should be created. */ struct dir_info { char *dir_name; mode_t dir_mode; }; /* * The pathnames below are relative to the zonepath */ static struct dir_info dev_dirs[] = { { "/dev", 0755 }, { "/dev/dsk", 0755 }, { "/dev/fd", 0555 }, { "/dev/pts", 0755 }, { "/dev/rdsk", 0755 }, { "/dev/rmt", 0755 }, { "/dev/sad", 0755 }, { "/dev/swap", 0755 }, { "/dev/term", 0755 }, }; /* * A list of devices which should be symlinked to /dev/zconsole. */ struct symlink_info { char *sl_source; char *sl_target; }; /* * The "source" paths are relative to the zonepath */ static struct symlink_info dev_symlinks[] = { { "/dev/stderr", "./fd/2" }, { "/dev/stdin", "./fd/0" }, { "/dev/stdout", "./fd/1" }, { "/dev/dtremote", "/dev/null" }, { "/dev/console", "zconsole" }, { "/dev/syscon", "zconsole" }, { "/dev/sysmsg", "zconsole" }, { "/dev/systty", "zconsole" }, { "/dev/msglog", "zconsole" }, }; /* for routing socket */ static int rts_seqno = 0; /* mangled zone name when mounting in an alternate root environment */ static char kernzone[ZONENAME_MAX]; /* array of cached mount entries for resolve_lofs */ static struct mnttab *resolve_lofs_mnts, *resolve_lofs_mnt_max; /* from libsocket, not in any header file */ extern int getnetmaskbyaddr(struct in_addr, struct in_addr *); /* * An optimization for build_mnttable: reallocate (and potentially copy the * data) only once every N times through the loop. */ #define MNTTAB_HUNK 32 /* * Private autofs system call */ extern int _autofssys(int, void *); static int autofs_cleanup(zoneid_t zoneid) { /* * Ask autofs to unmount all trigger nodes in the given zone. */ return (_autofssys(AUTOFS_UNMOUNTALL, (void *)zoneid)); } static void free_mnttable(struct mnttab *mnt_array, uint_t nelem) { uint_t i; if (mnt_array == NULL) return; for (i = 0; i < nelem; i++) { free(mnt_array[i].mnt_mountp); free(mnt_array[i].mnt_fstype); free(mnt_array[i].mnt_special); free(mnt_array[i].mnt_mntopts); assert(mnt_array[i].mnt_time == NULL); } free(mnt_array); } /* * Build the mount table for the zone rooted at "zroot", storing the resulting * array of struct mnttabs in "mnt_arrayp" and the number of elements in the * array in "nelemp". */ static int build_mnttable(zlog_t *zlogp, const char *zroot, size_t zrootlen, FILE *mnttab, struct mnttab **mnt_arrayp, uint_t *nelemp) { struct mnttab mnt; struct mnttab *mnts; struct mnttab *mnp; uint_t nmnt; rewind(mnttab); resetmnttab(mnttab); nmnt = 0; mnts = NULL; while (getmntent(mnttab, &mnt) == 0) { struct mnttab *tmp_array; if (strncmp(mnt.mnt_mountp, zroot, zrootlen) != 0) continue; if (nmnt % MNTTAB_HUNK == 0) { tmp_array = realloc(mnts, (nmnt + MNTTAB_HUNK) * sizeof (*mnts)); if (tmp_array == NULL) { free_mnttable(mnts, nmnt); return (-1); } mnts = tmp_array; } mnp = &mnts[nmnt++]; /* * Zero out any fields we're not using. */ (void) memset(mnp, 0, sizeof (*mnp)); if (mnt.mnt_special != NULL) mnp->mnt_special = strdup(mnt.mnt_special); if (mnt.mnt_mntopts != NULL) mnp->mnt_mntopts = strdup(mnt.mnt_mntopts); mnp->mnt_mountp = strdup(mnt.mnt_mountp); mnp->mnt_fstype = strdup(mnt.mnt_fstype); if ((mnt.mnt_special != NULL && mnp->mnt_special == NULL) || (mnt.mnt_mntopts != NULL && mnp->mnt_mntopts == NULL) || mnp->mnt_mountp == NULL || mnp->mnt_fstype == NULL) { zerror(zlogp, B_TRUE, "memory allocation failed"); free_mnttable(mnts, nmnt); return (-1); } } *mnt_arrayp = mnts; *nelemp = nmnt; return (0); } /* * This is an optimization. The resolve_lofs function is used quite frequently * to manipulate file paths, and on a machine with a large number of zones, * there will be a huge number of mounted file systems. Thus, we trigger a * reread of the list of mount points */ static void lofs_discard_mnttab(void) { free_mnttable(resolve_lofs_mnts, resolve_lofs_mnt_max - resolve_lofs_mnts); resolve_lofs_mnts = resolve_lofs_mnt_max = NULL; } static int lofs_read_mnttab(zlog_t *zlogp) { FILE *mnttab; uint_t nmnts; if ((mnttab = fopen(MNTTAB, "r")) == NULL) return (-1); if (build_mnttable(zlogp, "", 0, mnttab, &resolve_lofs_mnts, &nmnts) == -1) { (void) fclose(mnttab); return (-1); } (void) fclose(mnttab); resolve_lofs_mnt_max = resolve_lofs_mnts + nmnts; return (0); } /* * This function loops over potential loopback mounts and symlinks in a given * path and resolves them all down to an absolute path. */ static void resolve_lofs(zlog_t *zlogp, char *path, size_t pathlen) { int len, arlen; const char *altroot; char tmppath[MAXPATHLEN]; boolean_t outside_altroot; if ((len = resolvepath(path, tmppath, sizeof (tmppath))) == -1) return; tmppath[len] = '\0'; (void) strlcpy(path, tmppath, sizeof (tmppath)); /* This happens once per zoneadmd operation. */ if (resolve_lofs_mnts == NULL && lofs_read_mnttab(zlogp) == -1) return; altroot = zonecfg_get_root(); arlen = strlen(altroot); outside_altroot = B_FALSE; for (;;) { struct mnttab *mnp; for (mnp = resolve_lofs_mnts; mnp < resolve_lofs_mnt_max; mnp++) { if (mnp->mnt_fstype == NULL || mnp->mnt_mountp == NULL || mnp->mnt_special == NULL || strcmp(mnp->mnt_fstype, MNTTYPE_LOFS) != 0) continue; len = strlen(mnp->mnt_mountp); if (strncmp(mnp->mnt_mountp, path, len) == 0 && (path[len] == '/' || path[len] == '\0')) break; } if (mnp >= resolve_lofs_mnt_max) break; if (outside_altroot) { char *cp; int olen = sizeof (MNTOPT_RO) - 1; /* * If we run into a read-only mount outside of the * alternate root environment, then the user doesn't * want this path to be made read-write. */ if (mnp->mnt_mntopts != NULL && (cp = strstr(mnp->mnt_mntopts, MNTOPT_RO)) != NULL && (cp == mnp->mnt_mntopts || cp[-1] == ',') && (cp[olen] == '\0' || cp[olen] == ',')) { break; } } else if (arlen > 0 && (strncmp(mnp->mnt_special, altroot, arlen) != 0 || (mnp->mnt_special[arlen] != '\0' && mnp->mnt_special[arlen] != '/'))) { outside_altroot = B_TRUE; } /* use temporary buffer because new path might be longer */ (void) snprintf(tmppath, sizeof (tmppath), "%s%s", mnp->mnt_special, path + len); if ((len = resolvepath(tmppath, path, pathlen)) == -1) break; path[len] = '\0'; } } /* * For a regular mount, check if a replacement lofs mount is needed because the * referenced device is already mounted somewhere. */ static int check_lofs_needed(zlog_t *zlogp, struct zone_fstab *fsptr) { struct mnttab *mnp; zone_fsopt_t *optptr, *onext; /* This happens once per zoneadmd operation. */ if (resolve_lofs_mnts == NULL && lofs_read_mnttab(zlogp) == -1) return (-1); /* * If this special node isn't already in use, then it's ours alone; * no need to worry about conflicting mounts. */ for (mnp = resolve_lofs_mnts; mnp < resolve_lofs_mnt_max; mnp++) { if (strcmp(mnp->mnt_special, fsptr->zone_fs_special) == 0) break; } if (mnp >= resolve_lofs_mnt_max) return (0); /* * Convert this duplicate mount into a lofs mount. */ (void) strlcpy(fsptr->zone_fs_special, mnp->mnt_mountp, sizeof (fsptr->zone_fs_special)); (void) strlcpy(fsptr->zone_fs_type, MNTTYPE_LOFS, sizeof (fsptr->zone_fs_type)); fsptr->zone_fs_raw[0] = '\0'; /* * Discard all but one of the original options and set that to be the * same set of options used for inherit package directory resources. */ optptr = fsptr->zone_fs_options; if (optptr == NULL) { optptr = malloc(sizeof (*optptr)); if (optptr == NULL) { zerror(zlogp, B_TRUE, "cannot mount %s", fsptr->zone_fs_dir); return (-1); } } else { while ((onext = optptr->zone_fsopt_next) != NULL) { optptr->zone_fsopt_next = onext->zone_fsopt_next; free(onext); } } (void) strcpy(optptr->zone_fsopt_opt, IPD_DEFAULT_OPTS); optptr->zone_fsopt_next = NULL; fsptr->zone_fs_options = optptr; return (0); } static int make_one_dir(zlog_t *zlogp, const char *prefix, const char *subdir, mode_t mode) { char path[MAXPATHLEN]; struct stat st; if (snprintf(path, sizeof (path), "%s%s", prefix, subdir) > sizeof (path)) { zerror(zlogp, B_FALSE, "pathname %s%s is too long", prefix, subdir); return (-1); } if (lstat(path, &st) == 0) { /* * We don't check the file mode since presumably the zone * administrator may have had good reason to change the mode, * and we don't need to second guess him. */ if (!S_ISDIR(st.st_mode)) { zerror(zlogp, B_FALSE, "%s is not a directory", path); return (-1); } } else if (mkdirp(path, mode) != 0) { if (errno == EROFS) zerror(zlogp, B_FALSE, "Could not mkdir %s.\nIt is on " "a read-only file system in this local zone.\nMake " "sure %s exists in the global zone.", path, subdir); else zerror(zlogp, B_TRUE, "mkdirp of %s failed", path); return (-1); } return (0); } /* * Make /dev and various directories underneath it. */ static int make_dev_dirs(zlog_t *zlogp, const char *zonepath) { int i; for (i = 0; i < sizeof (dev_dirs) / sizeof (struct dir_info); i++) { if (make_one_dir(zlogp, zonepath, dev_dirs[i].dir_name, dev_dirs[i].dir_mode) != 0) return (-1); } return (0); } /* * Make various sym-links underneath /dev. */ static int make_dev_links(zlog_t *zlogp, char *zonepath) { int i; for (i = 0; i < sizeof (dev_symlinks) / sizeof (struct symlink_info); i++) { char dev[MAXPATHLEN]; struct stat st; (void) snprintf(dev, sizeof (dev), "%s%s", zonepath, dev_symlinks[i].sl_source); if (lstat(dev, &st) == 0) { /* * Try not to call unlink(2) on directories, since that * makes UFS unhappy. */ if (S_ISDIR(st.st_mode)) { zerror(zlogp, B_FALSE, "symlink path %s is a " "directory", dev_symlinks[i].sl_source); return (-1); } (void) unlink(dev); } if (symlink(dev_symlinks[i].sl_target, dev) != 0) { zerror(zlogp, B_TRUE, "could not setup %s->%s symlink", dev_symlinks[i].sl_source, dev_symlinks[i].sl_target); return (-1); } } return (0); } /* * Create various directories and sym-links under /dev. */ static int create_dev_files(zlog_t *zlogp) { char zonepath[MAXPATHLEN]; if (zone_get_zonepath(zone_name, zonepath, sizeof (zonepath)) != Z_OK) { zerror(zlogp, B_TRUE, "unable to determine zone root"); return (-1); } if (zonecfg_in_alt_root()) resolve_lofs(zlogp, zonepath, sizeof (zonepath)); if (make_dev_dirs(zlogp, zonepath) != 0) return (-1); if (make_dev_links(zlogp, zonepath) != 0) return (-1); return (0); } static void free_remote_fstypes(char **types) { uint_t i; if (types == NULL) return; for (i = 0; types[i] != NULL; i++) free(types[i]); free(types); } static char ** get_remote_fstypes(zlog_t *zlogp) { char **types = NULL; FILE *fp; char buf[MAXPATHLEN]; char fstype[MAXPATHLEN]; uint_t lines = 0; uint_t i; if ((fp = fopen(DFSTYPES, "r")) == NULL) { zerror(zlogp, B_TRUE, "failed to open %s", DFSTYPES); return (NULL); } /* * Count the number of lines */ while (fgets(buf, sizeof (buf), fp) != NULL) lines++; if (lines == 0) /* didn't read anything; empty file */ goto out; rewind(fp); /* * Allocate enough space for a NULL-terminated array. */ types = calloc(lines + 1, sizeof (char *)); if (types == NULL) { zerror(zlogp, B_TRUE, "memory allocation failed"); goto out; } i = 0; while (fgets(buf, sizeof (buf), fp) != NULL) { /* LINTED - fstype is big enough to hold buf */ if (sscanf(buf, "%s", fstype) == 0) { zerror(zlogp, B_FALSE, "unable to parse %s", DFSTYPES); free_remote_fstypes(types); types = NULL; goto out; } types[i] = strdup(fstype); if (types[i] == NULL) { zerror(zlogp, B_TRUE, "memory allocation failed"); free_remote_fstypes(types); types = NULL; goto out; } i++; } out: (void) fclose(fp); return (types); } static boolean_t is_remote_fstype(const char *fstype, char *const *remote_fstypes) { uint_t i; if (remote_fstypes == NULL) return (B_FALSE); for (i = 0; remote_fstypes[i] != NULL; i++) { if (strcmp(remote_fstypes[i], fstype) == 0) return (B_TRUE); } return (B_FALSE); } /* * This converts a zone root path (normally of the form .../root) to a Live * Upgrade scratch zone root (of the form .../lu). */ static void root_to_lu(zlog_t *zlogp, char *zroot, size_t zrootlen, boolean_t isresolved) { if (!isresolved && zonecfg_in_alt_root()) resolve_lofs(zlogp, zroot, zrootlen); (void) strcpy(strrchr(zroot, '/') + 1, "lu"); } /* * The general strategy for unmounting filesystems is as follows: * * - Remote filesystems may be dead, and attempting to contact them as * part of a regular unmount may hang forever; we want to always try to * forcibly unmount such filesystems and only fall back to regular * unmounts if the filesystem doesn't support forced unmounts. * * - We don't want to unnecessarily corrupt metadata on local * filesystems (ie UFS), so we want to start off with graceful unmounts, * and only escalate to doing forced unmounts if we get stuck. * * We start off walking backwards through the mount table. This doesn't * give us strict ordering but ensures that we try to unmount submounts * first. We thus limit the number of failed umount2(2) calls. * * The mechanism for determining if we're stuck is to count the number * of failed unmounts each iteration through the mount table. This * gives us an upper bound on the number of filesystems which remain * mounted (autofs trigger nodes are dealt with separately). If at the * end of one unmount+autofs_cleanup cycle we still have the same number * of mounts that we started out with, we're stuck and try a forced * unmount. If that fails (filesystem doesn't support forced unmounts) * then we bail and are unable to teardown the zone. If it succeeds, * we're no longer stuck so we continue with our policy of trying * graceful mounts first. * * Zone must be down (ie, no processes or threads active). */ static int unmount_filesystems(zlog_t *zlogp, zoneid_t zoneid, boolean_t unmount_cmd) { int error = 0; FILE *mnttab; struct mnttab *mnts; uint_t nmnt; char zroot[MAXPATHLEN + 1]; size_t zrootlen; uint_t oldcount = UINT_MAX; boolean_t stuck = B_FALSE; char **remote_fstypes = NULL; if (zone_get_rootpath(zone_name, zroot, sizeof (zroot)) != Z_OK) { zerror(zlogp, B_FALSE, "unable to determine zone root"); return (-1); } if (unmount_cmd) root_to_lu(zlogp, zroot, sizeof (zroot), B_FALSE); (void) strcat(zroot, "/"); zrootlen = strlen(zroot); if ((mnttab = fopen(MNTTAB, "r")) == NULL) { zerror(zlogp, B_TRUE, "failed to open %s", MNTTAB); return (-1); } /* * Use our hacky mntfs ioctl so we see everything, even mounts with * MS_NOMNTTAB. */ if (ioctl(fileno(mnttab), MNTIOC_SHOWHIDDEN, NULL) < 0) { zerror(zlogp, B_TRUE, "unable to configure %s", MNTTAB); error++; goto out; } /* * Build the list of remote fstypes so we know which ones we * should forcibly unmount. */ remote_fstypes = get_remote_fstypes(zlogp); for (; /* ever */; ) { uint_t newcount = 0; boolean_t unmounted; struct mnttab *mnp; char *path; uint_t i; mnts = NULL; nmnt = 0; /* * MNTTAB gives us a way to walk through mounted * filesystems; we need to be able to walk them in * reverse order, so we build a list of all mounted * filesystems. */ if (build_mnttable(zlogp, zroot, zrootlen, mnttab, &mnts, &nmnt) != 0) { error++; goto out; } for (i = 0; i < nmnt; i++) { mnp = &mnts[nmnt - i - 1]; /* access in reverse order */ path = mnp->mnt_mountp; unmounted = B_FALSE; /* * Try forced unmount first for remote filesystems. * * Not all remote filesystems support forced unmounts, * so if this fails (ENOTSUP) we'll continue on * and try a regular unmount. */ if (is_remote_fstype(mnp->mnt_fstype, remote_fstypes)) { if (umount2(path, MS_FORCE) == 0) unmounted = B_TRUE; } /* * Try forced unmount if we're stuck. */ if (stuck) { if (umount2(path, MS_FORCE) == 0) { unmounted = B_TRUE; stuck = B_FALSE; } else { /* * The first failure indicates a * mount we won't be able to get * rid of automatically, so we * bail. */ error++; zerror(zlogp, B_FALSE, "unable to unmount '%s'", path); free_mnttable(mnts, nmnt); goto out; } } /* * Try regular unmounts for everything else. */ if (!unmounted && umount2(path, 0) != 0) newcount++; } free_mnttable(mnts, nmnt); if (newcount == 0) break; if (newcount >= oldcount) { /* * Last round didn't unmount anything; we're stuck and * should start trying forced unmounts. */ stuck = B_TRUE; } oldcount = newcount; /* * Autofs doesn't let you unmount its trigger nodes from * userland so we have to tell the kernel to cleanup for us. */ if (autofs_cleanup(zoneid) != 0) { zerror(zlogp, B_TRUE, "unable to remove autofs nodes"); error++; goto out; } } out: free_remote_fstypes(remote_fstypes); (void) fclose(mnttab); return (error ? -1 : 0); } static int fs_compare(const void *m1, const void *m2) { struct zone_fstab *i = (struct zone_fstab *)m1; struct zone_fstab *j = (struct zone_fstab *)m2; return (strcmp(i->zone_fs_dir, j->zone_fs_dir)); } /* * Fork and exec (and wait for) the mentioned binary with the provided * arguments. Returns (-1) if something went wrong with fork(2) or exec(2), * returns the exit status otherwise. * * If we were unable to exec the provided pathname (for whatever * reason), we return the special token ZEXIT_EXEC. The current value * of ZEXIT_EXEC doesn't conflict with legitimate exit codes of the * consumers of this function; any future consumers must make sure this * remains the case. */ static int forkexec(zlog_t *zlogp, const char *path, char *const argv[]) { pid_t child_pid; int child_status = 0; /* * Do not let another thread localize a message while we are forking. */ (void) mutex_lock(&msglock); child_pid = fork(); (void) mutex_unlock(&msglock); if (child_pid == -1) { zerror(zlogp, B_TRUE, "could not fork for %s", argv[0]); return (-1); } else if (child_pid == 0) { closefrom(0); (void) execv(path, argv); /* * Since we are in the child, there is no point calling zerror() * since there is nobody waiting to consume it. So exit with a * special code that the parent will recognize and call zerror() * accordingly. */ _exit(ZEXIT_EXEC); } else { (void) waitpid(child_pid, &child_status, 0); } if (WIFSIGNALED(child_status)) { zerror(zlogp, B_FALSE, "%s unexpectedly terminated due to " "signal %d", path, WTERMSIG(child_status)); return (-1); } assert(WIFEXITED(child_status)); if (WEXITSTATUS(child_status) == ZEXIT_EXEC) { zerror(zlogp, B_FALSE, "failed to exec %s", path); return (-1); } return (WEXITSTATUS(child_status)); } static int dofsck(zlog_t *zlogp, const char *fstype, const char *rawdev) { char cmdbuf[MAXPATHLEN]; char *argv[4]; int status; /* * We could alternatively have called /usr/sbin/fsck -F , but * that would cost us an extra fork/exec without buying us anything. */ if (snprintf(cmdbuf, sizeof (cmdbuf), "/usr/lib/fs/%s/fsck", fstype) > sizeof (cmdbuf)) { zerror(zlogp, B_FALSE, "file-system type %s too long", fstype); return (-1); } argv[0] = "fsck"; argv[1] = "-m"; argv[2] = (char *)rawdev; argv[3] = NULL; status = forkexec(zlogp, cmdbuf, argv); if (status == 0 || status == -1) return (status); zerror(zlogp, B_FALSE, "fsck of '%s' failed with exit status %d; " "run fsck manually", rawdev, status); return (-1); } static int domount(zlog_t *zlogp, const char *fstype, const char *opts, const char *special, const char *directory) { char cmdbuf[MAXPATHLEN]; char *argv[6]; int status; /* * We could alternatively have called /usr/sbin/mount -F , but * that would cost us an extra fork/exec without buying us anything. */ if (snprintf(cmdbuf, sizeof (cmdbuf), "/usr/lib/fs/%s/mount", fstype) > sizeof (cmdbuf)) { zerror(zlogp, B_FALSE, "file-system type %s too long", fstype); return (-1); } argv[0] = "mount"; if (opts[0] == '\0') { argv[1] = (char *)special; argv[2] = (char *)directory; argv[3] = NULL; } else { argv[1] = "-o"; argv[2] = (char *)opts; argv[3] = (char *)special; argv[4] = (char *)directory; argv[5] = NULL; } status = forkexec(zlogp, cmdbuf, argv); if (status == 0 || status == -1) return (status); if (opts[0] == '\0') zerror(zlogp, B_FALSE, "\"%s %s %s\" " "failed with exit code %d", cmdbuf, special, directory, status); else zerror(zlogp, B_FALSE, "\"%s -o %s %s %s\" " "failed with exit code %d", cmdbuf, opts, special, directory, status); return (-1); } /* * Make sure if a given path exists, it is not a sym-link, and is a directory. */ static int check_path(zlog_t *zlogp, const char *path) { struct stat statbuf; char respath[MAXPATHLEN]; int res; if (lstat(path, &statbuf) != 0) { if (errno == ENOENT) return (0); zerror(zlogp, B_TRUE, "can't stat %s", path); return (-1); } if (S_ISLNK(statbuf.st_mode)) { zerror(zlogp, B_FALSE, "%s is a symlink", path); return (-1); } if (!S_ISDIR(statbuf.st_mode)) { zerror(zlogp, B_FALSE, "%s is not a directory", path); return (-1); } if ((res = resolvepath(path, respath, sizeof (respath))) == -1) { zerror(zlogp, B_TRUE, "unable to resolve path %s", path); return (-1); } respath[res] = '\0'; if (strcmp(path, respath) != 0) { /* * We don't like ".."s and "."s throwing us off */ zerror(zlogp, B_FALSE, "%s is not a canonical path", path); return (-1); } return (0); } /* * Check every component of rootpath/relpath. If any component fails (ie, * exists but isn't the canonical path to a directory), it is returned in * badpath, which is assumed to be at least of size MAXPATHLEN. * * Relpath must begin with '/'. */ static boolean_t valid_mount_path(zlog_t *zlogp, const char *rootpath, const char *relpath) { char abspath[MAXPATHLEN], *slashp; /* * Make sure abspath has at least one '/' after its rootpath * component, and ends with '/'. */ if (snprintf(abspath, sizeof (abspath), "%s%s/", rootpath, relpath) > sizeof (abspath)) { zerror(zlogp, B_FALSE, "pathname %s%s is too long", rootpath, relpath); return (B_FALSE); } slashp = &abspath[strlen(rootpath)]; assert(*slashp == '/'); do { *slashp = '\0'; if (check_path(zlogp, abspath) != 0) return (B_FALSE); *slashp = '/'; slashp++; } while ((slashp = strchr(slashp, '/')) != NULL); return (B_TRUE); } static int mount_one(zlog_t *zlogp, struct zone_fstab *fsptr, const char *rootpath) { char path[MAXPATHLEN]; char specpath[MAXPATHLEN]; char optstr[MAX_MNTOPT_STR]; zone_fsopt_t *optptr; if (!valid_mount_path(zlogp, rootpath, fsptr->zone_fs_dir)) { zerror(zlogp, B_FALSE, "%s%s is not a valid mount point", rootpath, fsptr->zone_fs_dir); return (-1); } if (make_one_dir(zlogp, rootpath, fsptr->zone_fs_dir, DEFAULT_DIR_MODE) != 0) return (-1); (void) snprintf(path, sizeof (path), "%s%s", rootpath, fsptr->zone_fs_dir); if (strlen(fsptr->zone_fs_special) == 0) { /* * A zero-length special is how we distinguish IPDs from * general-purpose FSs. Make sure it mounts from a place that * can be seen via the alternate zone's root. */ if (snprintf(specpath, sizeof (specpath), "%s%s", zonecfg_get_root(), fsptr->zone_fs_dir) >= sizeof (specpath)) { zerror(zlogp, B_FALSE, "cannot mount %s: path too " "long in alternate root", fsptr->zone_fs_dir); return (-1); } if (zonecfg_in_alt_root()) resolve_lofs(zlogp, specpath, sizeof (specpath)); if (domount(zlogp, MNTTYPE_LOFS, IPD_DEFAULT_OPTS, specpath, path) != 0) { zerror(zlogp, B_TRUE, "failed to loopback mount %s", specpath); return (-1); } return (0); } /* * In general the strategy here is to do just as much verification as * necessary to avoid crashing or otherwise doing something bad; if the * administrator initiated the operation via zoneadm(1m), he'll get * auto-verification which will let him know what's wrong. If he * modifies the zone configuration of a running zone and doesn't attempt * to verify that it's OK we won't crash but won't bother trying to be * too helpful either. zoneadm verify is only a couple keystrokes away. */ if (!zonecfg_valid_fs_type(fsptr->zone_fs_type)) { zerror(zlogp, B_FALSE, "cannot mount %s on %s: " "invalid file-system type %s", fsptr->zone_fs_special, fsptr->zone_fs_dir, fsptr->zone_fs_type); return (-1); } /* * If we're looking at an alternate root environment, then construct * read-only loopback mounts as necessary. For all lofs mounts, make * sure that the 'special' entry points inside the alternate root. (We * don't do this with other mounts, as devfs isn't in the alternate * root, and we need to assume the device environment is roughly the * same.) */ if (zonecfg_in_alt_root()) { struct stat64 st; if (stat64(fsptr->zone_fs_special, &st) != -1 && S_ISBLK(st.st_mode) && check_lofs_needed(zlogp, fsptr) == -1) return (-1); if (strcmp(fsptr->zone_fs_type, MNTTYPE_LOFS) == 0) { if (snprintf(specpath, sizeof (specpath), "%s%s", zonecfg_get_root(), fsptr->zone_fs_special) >= sizeof (specpath)) { zerror(zlogp, B_FALSE, "cannot mount %s: path " "too long in alternate root", fsptr->zone_fs_special); return (-1); } resolve_lofs(zlogp, specpath, sizeof (specpath)); (void) strlcpy(fsptr->zone_fs_special, specpath, sizeof (fsptr->zone_fs_special)); } } /* * Run 'fsck -m' if there's a device to fsck. */ if (fsptr->zone_fs_raw[0] != '\0' && dofsck(zlogp, fsptr->zone_fs_type, fsptr->zone_fs_raw) != 0) return (-1); /* * Build up mount option string. */ optstr[0] = '\0'; if (fsptr->zone_fs_options != NULL) { (void) strlcpy(optstr, fsptr->zone_fs_options->zone_fsopt_opt, sizeof (optstr)); for (optptr = fsptr->zone_fs_options->zone_fsopt_next; optptr != NULL; optptr = optptr->zone_fsopt_next) { (void) strlcat(optstr, ",", sizeof (optstr)); (void) strlcat(optstr, optptr->zone_fsopt_opt, sizeof (optstr)); } } return (domount(zlogp, fsptr->zone_fs_type, optstr, fsptr->zone_fs_special, path)); } static void free_fs_data(struct zone_fstab *fsarray, uint_t nelem) { uint_t i; if (fsarray == NULL) return; for (i = 0; i < nelem; i++) zonecfg_free_fs_option_list(fsarray[i].zone_fs_options); free(fsarray); } /* * This function constructs the miniroot-like "scratch zone" environment. If * it returns B_FALSE, then the error has already been logged. */ static boolean_t build_mounted(zlog_t *zlogp, char *rootpath, size_t rootlen, const char *zonepath) { char tmp[MAXPATHLEN], fromdir[MAXPATHLEN]; char luroot[MAXPATHLEN]; const char **cpp; static const char *mkdirs[] = { "/system", "/system/contract", "/proc", "/dev", "/tmp", "/a", NULL }; static const char *localdirs[] = { "/etc", "/var", NULL }; static const char *loopdirs[] = { "/etc/lib", "/etc/fs", "/lib", "/sbin", "/platform", "/usr", NULL }; static const char *tmpdirs[] = { "/tmp", "/var/run", NULL }; FILE *fp; struct stat st; char *altstr; uuid_t uuid; /* * Construct a small Solaris environment, including the zone root * mounted on '/a' inside that environment. */ resolve_lofs(zlogp, rootpath, rootlen); (void) snprintf(luroot, sizeof (luroot), "%s/lu", zonepath); resolve_lofs(zlogp, luroot, sizeof (luroot)); (void) snprintf(tmp, sizeof (tmp), "%s/bin", luroot); (void) symlink("./usr/bin", tmp); /* * These are mostly special mount points; not handled here. (See * zone_mount_early.) */ for (cpp = mkdirs; *cpp != NULL; cpp++) { (void) snprintf(tmp, sizeof (tmp), "%s%s", luroot, *cpp); if (mkdir(tmp, 0755) != 0) { zerror(zlogp, B_TRUE, "cannot create %s", tmp); return (B_FALSE); } } /* * These are mounted read-write from the zone undergoing upgrade. We * must be careful not to 'leak' things from the main system into the * zone, and this accomplishes that goal. */ for (cpp = localdirs; *cpp != NULL; cpp++) { (void) snprintf(tmp, sizeof (tmp), "%s%s", luroot, *cpp); (void) snprintf(fromdir, sizeof (fromdir), "%s%s", rootpath, *cpp); if (mkdir(tmp, 0755) != 0) { zerror(zlogp, B_TRUE, "cannot create %s", tmp); return (B_FALSE); } if (domount(zlogp, MNTTYPE_LOFS, "", fromdir, tmp) != 0) { zerror(zlogp, B_TRUE, "cannot mount %s on %s", tmp, *cpp); return (B_FALSE); } } /* * These are things mounted read-only from the running system because * they contain binaries that must match system. */ for (cpp = loopdirs; *cpp != NULL; cpp++) { (void) snprintf(tmp, sizeof (tmp), "%s%s", luroot, *cpp); if (mkdir(tmp, 0755) != 0) { if (errno != EEXIST) { zerror(zlogp, B_TRUE, "cannot create %s", tmp); return (B_FALSE); } if (lstat(tmp, &st) != 0) { zerror(zlogp, B_TRUE, "cannot stat %s", tmp); return (B_FALSE); } /* * Ignore any non-directories encountered. These are * things that have been converted into symlinks * (/etc/fs and /etc/lib) and no longer need a lofs * fixup. */ if (!S_ISDIR(st.st_mode)) continue; } if (domount(zlogp, MNTTYPE_LOFS, IPD_DEFAULT_OPTS, *cpp, tmp) != 0) { zerror(zlogp, B_TRUE, "cannot mount %s on %s", tmp, *cpp); return (B_FALSE); } } /* * These are things with tmpfs mounted inside. */ for (cpp = tmpdirs; *cpp != NULL; cpp++) { (void) snprintf(tmp, sizeof (tmp), "%s%s", luroot, *cpp); if (mkdir(tmp, 0755) != 0 && errno != EEXIST) { zerror(zlogp, B_TRUE, "cannot create %s", tmp); return (B_FALSE); } if (domount(zlogp, MNTTYPE_TMPFS, "", "swap", tmp) != 0) { zerror(zlogp, B_TRUE, "cannot mount swap on %s", *cpp); return (B_FALSE); } } /* * This is here to support lucopy. If there's an instance of this same * zone on the current running system, then we mount its root up as * read-only inside the scratch zone. */ (void) zonecfg_get_uuid(zone_name, uuid); altstr = strdup(zonecfg_get_root()); if (altstr == NULL) { zerror(zlogp, B_TRUE, "out of memory"); return (B_FALSE); } zonecfg_set_root(""); (void) strlcpy(tmp, zone_name, sizeof (tmp)); (void) zonecfg_get_name_by_uuid(uuid, tmp, sizeof (tmp)); if (zone_get_rootpath(tmp, fromdir, sizeof (fromdir)) == Z_OK && strcmp(fromdir, rootpath) != 0) { (void) snprintf(tmp, sizeof (tmp), "%s/b", luroot); if (mkdir(tmp, 0755) != 0) { zerror(zlogp, B_TRUE, "cannot create %s", tmp); return (B_FALSE); } if (domount(zlogp, MNTTYPE_LOFS, IPD_DEFAULT_OPTS, fromdir, tmp) != 0) { zerror(zlogp, B_TRUE, "cannot mount %s on %s", tmp, fromdir); return (B_FALSE); } } zonecfg_set_root(altstr); free(altstr); if ((fp = zonecfg_open_scratch(luroot, B_TRUE)) == NULL) { zerror(zlogp, B_TRUE, "cannot open zone mapfile"); return (B_FALSE); } (void) ftruncate(fileno(fp), 0); if (zonecfg_add_scratch(fp, zone_name, kernzone, "/") == -1) { zerror(zlogp, B_TRUE, "cannot add zone mapfile entry"); } zonecfg_close_scratch(fp); (void) snprintf(tmp, sizeof (tmp), "%s/a", luroot); if (domount(zlogp, MNTTYPE_LOFS, "", rootpath, tmp) != 0) return (B_FALSE); (void) strlcpy(rootpath, tmp, rootlen); return (B_TRUE); } static int mount_filesystems(zlog_t *zlogp, boolean_t mount_cmd) { char rootpath[MAXPATHLEN]; char zonepath[MAXPATHLEN]; int num_fs = 0, i; struct zone_fstab fstab, *fs_ptr = NULL, *tmp_ptr; struct zone_fstab *fsp; zone_dochandle_t handle = NULL; zone_state_t zstate; if (zone_get_state(zone_name, &zstate) != Z_OK || (zstate != ZONE_STATE_READY && zstate != ZONE_STATE_MOUNTED)) { zerror(zlogp, B_FALSE, "zone must be in '%s' or '%s' state to mount file-systems", zone_state_str(ZONE_STATE_READY), zone_state_str(ZONE_STATE_MOUNTED)); goto bad; } if (zone_get_zonepath(zone_name, zonepath, sizeof (zonepath)) != Z_OK) { zerror(zlogp, B_TRUE, "unable to determine zone path"); goto bad; } if (zone_get_rootpath(zone_name, rootpath, sizeof (rootpath)) != Z_OK) { zerror(zlogp, B_TRUE, "unable to determine zone root"); goto bad; } if ((handle = zonecfg_init_handle()) == NULL) { zerror(zlogp, B_TRUE, "could not get zone configuration handle"); goto bad; } if (zonecfg_get_snapshot_handle(zone_name, handle) != Z_OK || zonecfg_setfsent(handle) != Z_OK) { zerror(zlogp, B_FALSE, "invalid configuration"); goto bad; } /* * /dev in the zone is loopback'd from the external /dev repository, * in order to provide a largely read-only semantic. But because * processes in the zone need to be able to chown, chmod, etc. zone * /dev files, we can't use a 'ro' lofs mount. Instead we use a * special mode just for zones, "zonedevfs". * * In the future we should front /dev with a full-fledged filesystem. */ num_fs++; if ((tmp_ptr = realloc(fs_ptr, num_fs * sizeof (*tmp_ptr))) == NULL) { zerror(zlogp, B_TRUE, "memory allocation failed"); num_fs--; goto bad; } fs_ptr = tmp_ptr; fsp = &fs_ptr[num_fs - 1]; /* * Note that mount_one will prepend the alternate root to * zone_fs_special and do the necessary resolution, so all that is * needed here is to strip the root added by zone_get_zonepath. */ (void) strlcpy(fsp->zone_fs_dir, "/dev", sizeof (fsp->zone_fs_dir)); (void) snprintf(fsp->zone_fs_special, sizeof (fsp->zone_fs_special), "%s/dev", zonepath + strlen(zonecfg_get_root())); fsp->zone_fs_raw[0] = '\0'; (void) strlcpy(fsp->zone_fs_type, MNTTYPE_LOFS, sizeof (fsp->zone_fs_type)); fsp->zone_fs_options = NULL; if (zonecfg_add_fs_option(fsp, MNTOPT_LOFS_ZONEDEVFS) != Z_OK) { zerror(zlogp, B_FALSE, "error adding property"); goto bad; } /* * Iterate through the rest of the filesystems, first the IPDs, then * the general FSs. Sort them all, then mount them in sorted order. * This is to make sure the higher level directories (e.g., /usr) * get mounted before any beneath them (e.g., /usr/local). */ if (zonecfg_setipdent(handle) != Z_OK) { zerror(zlogp, B_FALSE, "invalid configuration"); goto bad; } while (zonecfg_getipdent(handle, &fstab) == Z_OK) { num_fs++; if ((tmp_ptr = realloc(fs_ptr, num_fs * sizeof (*tmp_ptr))) == NULL) { zerror(zlogp, B_TRUE, "memory allocation failed"); num_fs--; (void) zonecfg_endipdent(handle); goto bad; } fs_ptr = tmp_ptr; fsp = &fs_ptr[num_fs - 1]; /* * IPDs logically only have a mount point; all other properties * are implied. */ (void) strlcpy(fsp->zone_fs_dir, fstab.zone_fs_dir, sizeof (fsp->zone_fs_dir)); fsp->zone_fs_special[0] = '\0'; fsp->zone_fs_raw[0] = '\0'; fsp->zone_fs_type[0] = '\0'; fsp->zone_fs_options = NULL; } (void) zonecfg_endipdent(handle); if (zonecfg_setfsent(handle) != Z_OK) { zerror(zlogp, B_FALSE, "invalid configuration"); goto bad; } while (zonecfg_getfsent(handle, &fstab) == Z_OK) { num_fs++; if ((tmp_ptr = realloc(fs_ptr, num_fs * sizeof (*tmp_ptr))) == NULL) { zerror(zlogp, B_TRUE, "memory allocation failed"); num_fs--; (void) zonecfg_endfsent(handle); goto bad; } fs_ptr = tmp_ptr; fsp = &fs_ptr[num_fs - 1]; (void) strlcpy(fsp->zone_fs_dir, fstab.zone_fs_dir, sizeof (fsp->zone_fs_dir)); (void) strlcpy(fsp->zone_fs_special, fstab.zone_fs_special, sizeof (fsp->zone_fs_special)); (void) strlcpy(fsp->zone_fs_raw, fstab.zone_fs_raw, sizeof (fsp->zone_fs_raw)); (void) strlcpy(fsp->zone_fs_type, fstab.zone_fs_type, sizeof (fsp->zone_fs_type)); fsp->zone_fs_options = fstab.zone_fs_options; } (void) zonecfg_endfsent(handle); zonecfg_fini_handle(handle); handle = NULL; /* * If we're mounting a zone for administration, then we need to set up * the "/a" environment inside the zone so that the commands that run * in there have access to both the running system's utilities and the * to-be-modified zone's files. */ if (mount_cmd && !build_mounted(zlogp, rootpath, sizeof (rootpath), zonepath)) goto bad; qsort(fs_ptr, num_fs, sizeof (*fs_ptr), fs_compare); for (i = 0; i < num_fs; i++) { if (mount_cmd && strcmp(fs_ptr[i].zone_fs_dir, "/dev") == 0) { size_t slen = strlen(rootpath) - 2; /* /dev is special and always goes at the top */ rootpath[slen] = '\0'; if (mount_one(zlogp, &fs_ptr[i], rootpath) != 0) goto bad; rootpath[slen] = '/'; continue; } if (mount_one(zlogp, &fs_ptr[i], rootpath) != 0) goto bad; } free_fs_data(fs_ptr, num_fs); /* * Everything looks fine. */ return (0); bad: if (handle != NULL) zonecfg_fini_handle(handle); free_fs_data(fs_ptr, num_fs); return (-1); } /* caller makes sure neither parameter is NULL */ static int addr2netmask(char *prefixstr, int maxprefixlen, uchar_t *maskstr) { int prefixlen; prefixlen = atoi(prefixstr); if (prefixlen < 0 || prefixlen > maxprefixlen) return (1); while (prefixlen > 0) { if (prefixlen >= 8) { *maskstr++ = 0xFF; prefixlen -= 8; continue; } *maskstr |= 1 << (8 - prefixlen); prefixlen--; } return (0); } /* * Tear down all interfaces belonging to the given zone. This should * be called with the zone in a state other than "running", so that * interfaces can't be assigned to the zone after this returns. * * If anything goes wrong, log an error message and return an error. */ static int unconfigure_network_interfaces(zlog_t *zlogp, zoneid_t zone_id) { struct lifnum lifn; struct lifconf lifc; struct lifreq *lifrp, lifrl; int64_t lifc_flags = LIFC_NOXMIT | LIFC_ALLZONES; int num_ifs, s, i, ret_code = 0; uint_t bufsize; char *buf = NULL; if ((s = socket(AF_INET, SOCK_DGRAM, 0)) < 0) { zerror(zlogp, B_TRUE, "could not get socket"); ret_code = -1; goto bad; } lifn.lifn_family = AF_UNSPEC; lifn.lifn_flags = (int)lifc_flags; if (ioctl(s, SIOCGLIFNUM, (char *)&lifn) < 0) { zerror(zlogp, B_TRUE, "could not determine number of interfaces"); ret_code = -1; goto bad; } num_ifs = lifn.lifn_count; bufsize = num_ifs * sizeof (struct lifreq); if ((buf = malloc(bufsize)) == NULL) { zerror(zlogp, B_TRUE, "memory allocation failed"); ret_code = -1; goto bad; } lifc.lifc_family = AF_UNSPEC; lifc.lifc_flags = (int)lifc_flags; lifc.lifc_len = bufsize; lifc.lifc_buf = buf; if (ioctl(s, SIOCGLIFCONF, (char *)&lifc) < 0) { zerror(zlogp, B_TRUE, "could not get configured interfaces"); ret_code = -1; goto bad; } lifrp = lifc.lifc_req; for (i = lifc.lifc_len / sizeof (struct lifreq); i > 0; i--, lifrp++) { (void) close(s); if ((s = socket(lifrp->lifr_addr.ss_family, SOCK_DGRAM, 0)) < 0) { zerror(zlogp, B_TRUE, "%s: could not get socket", lifrl.lifr_name); ret_code = -1; continue; } (void) memset(&lifrl, 0, sizeof (lifrl)); (void) strncpy(lifrl.lifr_name, lifrp->lifr_name, sizeof (lifrl.lifr_name)); if (ioctl(s, SIOCGLIFZONE, (caddr_t)&lifrl) < 0) { zerror(zlogp, B_TRUE, "%s: could not determine zone interface belongs to", lifrl.lifr_name); ret_code = -1; continue; } if (lifrl.lifr_zoneid == zone_id) { if (ioctl(s, SIOCLIFREMOVEIF, (caddr_t)&lifrl) < 0) { zerror(zlogp, B_TRUE, "%s: could not remove interface", lifrl.lifr_name); ret_code = -1; continue; } } } bad: if (s > 0) (void) close(s); if (buf) free(buf); return (ret_code); } static union sockunion { struct sockaddr sa; struct sockaddr_in sin; struct sockaddr_dl sdl; struct sockaddr_in6 sin6; } so_dst, so_ifp; static struct { struct rt_msghdr hdr; char space[512]; } rtmsg; static int salen(struct sockaddr *sa) { switch (sa->sa_family) { case AF_INET: return (sizeof (struct sockaddr_in)); case AF_LINK: return (sizeof (struct sockaddr_dl)); case AF_INET6: return (sizeof (struct sockaddr_in6)); default: return (sizeof (struct sockaddr)); } } #define ROUNDUP_LONG(a) \ ((a) > 0 ? (1 + (((a) - 1) | (sizeof (long) - 1))) : sizeof (long)) /* * Look up which zone is using a given IP address. The address in question * is expected to have been stuffed into the structure to which lifr points * via a previous SIOCGLIFADDR ioctl(). * * This is done using black router socket magic. * * Return the name of the zone on success or NULL on failure. * * This is a lot of code for a simple task; a new ioctl request to take care * of this might be a useful RFE. */ static char * who_is_using(zlog_t *zlogp, struct lifreq *lifr) { static char answer[ZONENAME_MAX]; pid_t pid; int s, rlen, l, i; char *cp = rtmsg.space; struct sockaddr_dl *ifp = NULL; struct sockaddr *sa; char save_if_name[LIFNAMSIZ]; answer[0] = '\0'; pid = getpid(); if ((s = socket(PF_ROUTE, SOCK_RAW, 0)) < 0) { zerror(zlogp, B_TRUE, "could not get routing socket"); return (NULL); } if (lifr->lifr_addr.ss_family == AF_INET) { struct sockaddr_in *sin4; so_dst.sa.sa_family = AF_INET; sin4 = (struct sockaddr_in *)&lifr->lifr_addr; so_dst.sin.sin_addr = sin4->sin_addr; } else { struct sockaddr_in6 *sin6; so_dst.sa.sa_family = AF_INET6; sin6 = (struct sockaddr_in6 *)&lifr->lifr_addr; so_dst.sin6.sin6_addr = sin6->sin6_addr; } so_ifp.sa.sa_family = AF_LINK; (void) memset(&rtmsg, 0, sizeof (rtmsg)); rtmsg.hdr.rtm_type = RTM_GET; rtmsg.hdr.rtm_flags = RTF_UP | RTF_HOST; rtmsg.hdr.rtm_version = RTM_VERSION; rtmsg.hdr.rtm_seq = ++rts_seqno; rtmsg.hdr.rtm_addrs = RTA_IFP | RTA_DST; l = ROUNDUP_LONG(salen(&so_dst.sa)); (void) memmove(cp, &(so_dst), l); cp += l; l = ROUNDUP_LONG(salen(&so_ifp.sa)); (void) memmove(cp, &(so_ifp), l); cp += l; rtmsg.hdr.rtm_msglen = l = cp - (char *)&rtmsg; if ((rlen = write(s, &rtmsg, l)) < 0) { zerror(zlogp, B_TRUE, "writing to routing socket"); return (NULL); } else if (rlen < (int)rtmsg.hdr.rtm_msglen) { zerror(zlogp, B_TRUE, "write to routing socket got only %d for len\n", rlen); return (NULL); } do { l = read(s, &rtmsg, sizeof (rtmsg)); } while (l > 0 && (rtmsg.hdr.rtm_seq != rts_seqno || rtmsg.hdr.rtm_pid != pid)); if (l < 0) { zerror(zlogp, B_TRUE, "reading from routing socket"); return (NULL); } if (rtmsg.hdr.rtm_version != RTM_VERSION) { zerror(zlogp, B_FALSE, "routing message version %d not understood", rtmsg.hdr.rtm_version); return (NULL); } if (rtmsg.hdr.rtm_msglen != (ushort_t)l) { zerror(zlogp, B_FALSE, "message length mismatch, " "expected %d bytes, returned %d bytes", rtmsg.hdr.rtm_msglen, l); return (NULL); } if (rtmsg.hdr.rtm_errno != 0) { errno = rtmsg.hdr.rtm_errno; zerror(zlogp, B_TRUE, "RTM_GET routing socket message"); return (NULL); } if ((rtmsg.hdr.rtm_addrs & RTA_IFP) == 0) { zerror(zlogp, B_FALSE, "interface not found"); return (NULL); } cp = ((char *)(&rtmsg.hdr + 1)); for (i = 1; i != 0; i <<= 1) { /* LINTED E_BAD_PTR_CAST_ALIGN */ sa = (struct sockaddr *)cp; if (i != RTA_IFP) { if ((i & rtmsg.hdr.rtm_addrs) != 0) cp += ROUNDUP_LONG(salen(sa)); continue; } if (sa->sa_family == AF_LINK && ((struct sockaddr_dl *)sa)->sdl_nlen != 0) ifp = (struct sockaddr_dl *)sa; break; } if (ifp == NULL) { zerror(zlogp, B_FALSE, "interface could not be determined"); return (NULL); } /* * We need to set the I/F name to what we got above, then do the * appropriate ioctl to get its zone name. But lifr->lifr_name is * used by the calling function to do a REMOVEIF, so if we leave the * "good" zone's I/F name in place, *that* I/F will be removed instead * of the bad one. So we save the old (bad) I/F name before over- * writing it and doing the ioctl, then restore it after the ioctl. */ (void) strlcpy(save_if_name, lifr->lifr_name, sizeof (save_if_name)); (void) strncpy(lifr->lifr_name, ifp->sdl_data, ifp->sdl_nlen); lifr->lifr_name[ifp->sdl_nlen] = '\0'; i = ioctl(s, SIOCGLIFZONE, lifr); (void) strlcpy(lifr->lifr_name, save_if_name, sizeof (save_if_name)); if (i < 0) { zerror(zlogp, B_TRUE, "%s: could not determine the zone interface belongs to", lifr->lifr_name); return (NULL); } if (getzonenamebyid(lifr->lifr_zoneid, answer, sizeof (answer)) < 0) (void) snprintf(answer, sizeof (answer), "%d", lifr->lifr_zoneid); if (strlen(answer) > 0) return (answer); return (NULL); } typedef struct mcast_rtmsg_s { struct rt_msghdr m_rtm; union { struct { struct sockaddr_in m_dst; struct sockaddr_in m_gw; struct sockaddr_in m_netmask; } m_v4; struct { struct sockaddr_in6 m_dst; struct sockaddr_in6 m_gw; struct sockaddr_in6 m_netmask; } m_v6; } m_u; } mcast_rtmsg_t; #define m_dst4 m_u.m_v4.m_dst #define m_dst6 m_u.m_v6.m_dst #define m_gw4 m_u.m_v4.m_gw #define m_gw6 m_u.m_v6.m_gw #define m_netmask4 m_u.m_v4.m_netmask #define m_netmask6 m_u.m_v6.m_netmask /* * Configures a single interface: a new virtual interface is added, based on * the physical interface nwiftabptr->zone_nwif_physical, with the address * specified in nwiftabptr->zone_nwif_address, for zone zone_id. Note that * the "address" can be an IPv6 address (with a /prefixlength required), an * IPv4 address (with a /prefixlength optional), or a name; for the latter, * an IPv4 name-to-address resolution will be attempted. * * A default interface route for multicast is created on the first IPv4 and * IPv6 interfaces (that have the IFF_MULTICAST flag set), respectively. * This should really be done in the init scripts if we ever allow zones to * modify the routing tables. * * If anything goes wrong, we log an detailed error message, attempt to tear * down whatever we set up and return an error. */ static int configure_one_interface(zlog_t *zlogp, zoneid_t zone_id, struct zone_nwiftab *nwiftabptr, boolean_t *mcast_rt_v4_setp, boolean_t *mcast_rt_v6_setp) { struct lifreq lifr; struct sockaddr_in netmask4; struct sockaddr_in6 netmask6; struct in_addr in4; struct in6_addr in6; sa_family_t af; char *slashp = strchr(nwiftabptr->zone_nwif_address, '/'); mcast_rtmsg_t mcast_rtmsg; int s; int rs; int rlen; boolean_t got_netmask = B_FALSE; char addrstr4[INET_ADDRSTRLEN]; int res; res = zonecfg_valid_net_address(nwiftabptr->zone_nwif_address, &lifr); if (res != Z_OK) { zerror(zlogp, B_FALSE, "%s: %s", zonecfg_strerror(res), nwiftabptr->zone_nwif_address); return (-1); } af = lifr.lifr_addr.ss_family; if (af == AF_INET) in4 = ((struct sockaddr_in *)(&lifr.lifr_addr))->sin_addr; else in6 = ((struct sockaddr_in6 *)(&lifr.lifr_addr))->sin6_addr; if ((s = socket(af, SOCK_DGRAM, 0)) < 0) { zerror(zlogp, B_TRUE, "could not get socket"); return (-1); } (void) strlcpy(lifr.lifr_name, nwiftabptr->zone_nwif_physical, sizeof (lifr.lifr_name)); if (ioctl(s, SIOCLIFADDIF, (caddr_t)&lifr) < 0) { zerror(zlogp, B_TRUE, "%s: could not add interface", lifr.lifr_name); (void) close(s); return (-1); } if (ioctl(s, SIOCSLIFADDR, (caddr_t)&lifr) < 0) { zerror(zlogp, B_TRUE, "%s: could not set IP address to %s", lifr.lifr_name, nwiftabptr->zone_nwif_address); goto bad; } /* Preserve literal IPv4 address for later potential printing. */ if (af == AF_INET) (void) inet_ntop(AF_INET, &in4, addrstr4, INET_ADDRSTRLEN); lifr.lifr_zoneid = zone_id; if (ioctl(s, SIOCSLIFZONE, (caddr_t)&lifr) < 0) { zerror(zlogp, B_TRUE, "%s: could not place interface into zone", lifr.lifr_name); goto bad; } if (strcmp(nwiftabptr->zone_nwif_physical, "lo0") == 0) { got_netmask = B_TRUE; /* default setting will be correct */ } else { if (af == AF_INET) { /* * The IPv4 netmask can be determined either * directly if a prefix length was supplied with * the address or via the netmasks database. Not * being able to determine it is a common failure, * but it often is not fatal to operation of the * interface. In that case, a warning will be * printed after the rest of the interface's * parameters have been configured. */ (void) memset(&netmask4, 0, sizeof (netmask4)); if (slashp != NULL) { if (addr2netmask(slashp + 1, V4_ADDR_LEN, (uchar_t *)&netmask4.sin_addr) != 0) { *slashp = '/'; zerror(zlogp, B_FALSE, "%s: invalid prefix length in %s", lifr.lifr_name, nwiftabptr->zone_nwif_address); goto bad; } got_netmask = B_TRUE; } else if (getnetmaskbyaddr(in4, &netmask4.sin_addr) == 0) { got_netmask = B_TRUE; } if (got_netmask) { netmask4.sin_family = af; (void) memcpy(&lifr.lifr_addr, &netmask4, sizeof (netmask4)); } } else { (void) memset(&netmask6, 0, sizeof (netmask6)); if (addr2netmask(slashp + 1, V6_ADDR_LEN, (uchar_t *)&netmask6.sin6_addr) != 0) { *slashp = '/'; zerror(zlogp, B_FALSE, "%s: invalid prefix length in %s", lifr.lifr_name, nwiftabptr->zone_nwif_address); goto bad; } got_netmask = B_TRUE; netmask6.sin6_family = af; (void) memcpy(&lifr.lifr_addr, &netmask6, sizeof (netmask6)); } if (got_netmask && ioctl(s, SIOCSLIFNETMASK, (caddr_t)&lifr) < 0) { zerror(zlogp, B_TRUE, "%s: could not set netmask", lifr.lifr_name); goto bad; } /* * This doesn't set the broadcast address at all. Rather, it * gets, then sets the interface's address, relying on the fact * that resetting the address will reset the broadcast address. */ if (ioctl(s, SIOCGLIFADDR, (caddr_t)&lifr) < 0) { zerror(zlogp, B_TRUE, "%s: could not get address", lifr.lifr_name); goto bad; } if (ioctl(s, SIOCSLIFADDR, (caddr_t)&lifr) < 0) { zerror(zlogp, B_TRUE, "%s: could not reset broadcast address", lifr.lifr_name); goto bad; } } if (ioctl(s, SIOCGLIFFLAGS, (caddr_t)&lifr) < 0) { zerror(zlogp, B_TRUE, "%s: could not get flags", lifr.lifr_name); goto bad; } lifr.lifr_flags |= IFF_UP; if (ioctl(s, SIOCSLIFFLAGS, (caddr_t)&lifr) < 0) { int save_errno = errno; char *zone_using; /* * If we failed with something other than EADDRNOTAVAIL, * then skip to the end. Otherwise, look up our address, * then call a function to determine which zone is already * using that address. */ if (errno != EADDRNOTAVAIL) { zerror(zlogp, B_TRUE, "%s: could not bring interface up", lifr.lifr_name); goto bad; } if (ioctl(s, SIOCGLIFADDR, (caddr_t)&lifr) < 0) { zerror(zlogp, B_TRUE, "%s: could not get address", lifr.lifr_name); goto bad; } zone_using = who_is_using(zlogp, &lifr); errno = save_errno; if (zone_using == NULL) zerror(zlogp, B_TRUE, "%s: could not bring interface up", lifr.lifr_name); else zerror(zlogp, B_TRUE, "%s: could not bring interface " "up: address in use by zone '%s'", lifr.lifr_name, zone_using); goto bad; } if ((lifr.lifr_flags & IFF_MULTICAST) && ((af == AF_INET && mcast_rt_v4_setp != NULL && *mcast_rt_v4_setp == B_FALSE) || (af == AF_INET6 && mcast_rt_v6_setp != NULL && *mcast_rt_v6_setp == B_FALSE))) { rs = socket(PF_ROUTE, SOCK_RAW, 0); if (rs < 0) { zerror(zlogp, B_TRUE, "%s: could not create " "routing socket", lifr.lifr_name); goto bad; } (void) shutdown(rs, 0); (void) memset((void *)&mcast_rtmsg, 0, sizeof (mcast_rtmsg_t)); mcast_rtmsg.m_rtm.rtm_msglen = sizeof (struct rt_msghdr) + 3 * (af == AF_INET ? sizeof (struct sockaddr_in) : sizeof (struct sockaddr_in6)); mcast_rtmsg.m_rtm.rtm_version = RTM_VERSION; mcast_rtmsg.m_rtm.rtm_type = RTM_ADD; mcast_rtmsg.m_rtm.rtm_flags = RTF_UP; mcast_rtmsg.m_rtm.rtm_addrs = RTA_DST | RTA_GATEWAY | RTA_NETMASK; mcast_rtmsg.m_rtm.rtm_seq = ++rts_seqno; if (af == AF_INET) { mcast_rtmsg.m_dst4.sin_family = AF_INET; mcast_rtmsg.m_dst4.sin_addr.s_addr = htonl(INADDR_UNSPEC_GROUP); mcast_rtmsg.m_gw4.sin_family = AF_INET; mcast_rtmsg.m_gw4.sin_addr = in4; mcast_rtmsg.m_netmask4.sin_family = AF_INET; mcast_rtmsg.m_netmask4.sin_addr.s_addr = htonl(IN_CLASSD_NET); } else { mcast_rtmsg.m_dst6.sin6_family = AF_INET6; mcast_rtmsg.m_dst6.sin6_addr.s6_addr[0] = 0xffU; mcast_rtmsg.m_gw6.sin6_family = AF_INET6; mcast_rtmsg.m_gw6.sin6_addr = in6; mcast_rtmsg.m_netmask6.sin6_family = AF_INET6; mcast_rtmsg.m_netmask6.sin6_addr.s6_addr[0] = 0xffU; } rlen = write(rs, (char *)&mcast_rtmsg, mcast_rtmsg.m_rtm.rtm_msglen); if (rlen < mcast_rtmsg.m_rtm.rtm_msglen) { if (rlen < 0) { zerror(zlogp, B_TRUE, "%s: could not set " "default interface for multicast", lifr.lifr_name); } else { zerror(zlogp, B_FALSE, "%s: write to routing " "socket returned %d", lifr.lifr_name, rlen); } (void) close(rs); goto bad; } if (af == AF_INET) { *mcast_rt_v4_setp = B_TRUE; } else { *mcast_rt_v6_setp = B_TRUE; } (void) close(rs); } if (!got_netmask) { /* * A common, but often non-fatal problem, is that the system * cannot find the netmask for an interface address. This is * often caused by it being only in /etc/inet/netmasks, but * /etc/nsswitch.conf says to use NIS or NIS+ and it's not * in that. This doesn't show up at boot because the netmask * is obtained from /etc/inet/netmasks when no network * interfaces are up, but isn't consulted when NIS/NIS+ is * available. We warn the user here that something like this * has happened and we're just running with a default and * possible incorrect netmask. */ char buffer[INET6_ADDRSTRLEN]; void *addr; if (af == AF_INET) addr = &((struct sockaddr_in *) (&lifr.lifr_addr))->sin_addr; else addr = &((struct sockaddr_in6 *) (&lifr.lifr_addr))->sin6_addr; /* Find out what netmask interface is going to be using */ if (ioctl(s, SIOCGLIFNETMASK, (caddr_t)&lifr) < 0 || inet_ntop(af, addr, buffer, sizeof (buffer)) == NULL) goto bad; zerror(zlogp, B_FALSE, "WARNING: %s: no matching subnet found in netmasks(4) for " "%s; using default of %s.", lifr.lifr_name, addrstr4, buffer); } (void) close(s); return (Z_OK); bad: (void) ioctl(s, SIOCLIFREMOVEIF, (caddr_t)&lifr); (void) close(s); return (-1); } /* * Sets up network interfaces based on information from the zone configuration. * An IPv4 loopback interface is set up "for free", modeling the global system. * If any of the configuration interfaces were IPv6, then an IPv6 loopback * address is set up as well. * * If anything goes wrong, we log a general error message, attempt to tear down * whatever we set up, and return an error. */ static int configure_network_interfaces(zlog_t *zlogp) { zone_dochandle_t handle; struct zone_nwiftab nwiftab, loopback_iftab; boolean_t saw_v6 = B_FALSE; boolean_t mcast_rt_v4_set = B_FALSE; boolean_t mcast_rt_v6_set = B_FALSE; zoneid_t zoneid; if ((zoneid = getzoneidbyname(zone_name)) == ZONE_ID_UNDEFINED) { zerror(zlogp, B_TRUE, "unable to get zoneid"); return (-1); } if ((handle = zonecfg_init_handle()) == NULL) { zerror(zlogp, B_TRUE, "getting zone configuration handle"); return (-1); } if (zonecfg_get_snapshot_handle(zone_name, handle) != Z_OK) { zerror(zlogp, B_FALSE, "invalid configuration"); zonecfg_fini_handle(handle); return (-1); } if (zonecfg_setnwifent(handle) == Z_OK) { for (;;) { struct in6_addr in6; if (zonecfg_getnwifent(handle, &nwiftab) != Z_OK) break; if (configure_one_interface(zlogp, zoneid, &nwiftab, &mcast_rt_v4_set, &mcast_rt_v6_set) != Z_OK) { (void) zonecfg_endnwifent(handle); zonecfg_fini_handle(handle); return (-1); } if (inet_pton(AF_INET6, nwiftab.zone_nwif_address, &in6) == 1) saw_v6 = B_TRUE; } (void) zonecfg_endnwifent(handle); } zonecfg_fini_handle(handle); (void) strlcpy(loopback_iftab.zone_nwif_physical, "lo0", sizeof (loopback_iftab.zone_nwif_physical)); (void) strlcpy(loopback_iftab.zone_nwif_address, "127.0.0.1", sizeof (loopback_iftab.zone_nwif_address)); if (configure_one_interface(zlogp, zoneid, &loopback_iftab, NULL, NULL) != Z_OK) { return (-1); } if (saw_v6) { (void) strlcpy(loopback_iftab.zone_nwif_address, "::1/128", sizeof (loopback_iftab.zone_nwif_address)); if (configure_one_interface(zlogp, zoneid, &loopback_iftab, NULL, NULL) != Z_OK) { return (-1); } } return (0); } static int tcp_abort_conn(zlog_t *zlogp, zoneid_t zoneid, const struct sockaddr_storage *local, const struct sockaddr_storage *remote) { int fd; struct strioctl ioc; tcp_ioc_abort_conn_t conn; int error; conn.ac_local = *local; conn.ac_remote = *remote; conn.ac_start = TCPS_SYN_SENT; conn.ac_end = TCPS_TIME_WAIT; conn.ac_zoneid = zoneid; ioc.ic_cmd = TCP_IOC_ABORT_CONN; ioc.ic_timout = -1; /* infinite timeout */ ioc.ic_len = sizeof (conn); ioc.ic_dp = (char *)&conn; if ((fd = open("/dev/tcp", O_RDONLY)) < 0) { zerror(zlogp, B_TRUE, "unable to open %s", "/dev/tcp"); return (-1); } error = ioctl(fd, I_STR, &ioc); (void) close(fd); if (error == 0 || errno == ENOENT) /* ENOENT is not an error */ return (0); return (-1); } static int tcp_abort_connections(zlog_t *zlogp, zoneid_t zoneid) { struct sockaddr_storage l, r; struct sockaddr_in *local, *remote; struct sockaddr_in6 *local6, *remote6; int error; /* * Abort IPv4 connections. */ bzero(&l, sizeof (*local)); local = (struct sockaddr_in *)&l; local->sin_family = AF_INET; local->sin_addr.s_addr = INADDR_ANY; local->sin_port = 0; bzero(&r, sizeof (*remote)); remote = (struct sockaddr_in *)&r; remote->sin_family = AF_INET; remote->sin_addr.s_addr = INADDR_ANY; remote->sin_port = 0; if ((error = tcp_abort_conn(zlogp, zoneid, &l, &r)) != 0) return (error); /* * Abort IPv6 connections. */ bzero(&l, sizeof (*local6)); local6 = (struct sockaddr_in6 *)&l; local6->sin6_family = AF_INET6; local6->sin6_port = 0; local6->sin6_addr = in6addr_any; bzero(&r, sizeof (*remote6)); remote6 = (struct sockaddr_in6 *)&r; remote6->sin6_family = AF_INET6; remote6->sin6_port = 0; remote6->sin6_addr = in6addr_any; if ((error = tcp_abort_conn(zlogp, zoneid, &l, &r)) != 0) return (error); return (0); } static int devfsadm_call(zlog_t *zlogp, const char *arg) { char *argv[4]; int status; argv[0] = DEVFSADM; argv[1] = (char *)arg; argv[2] = zone_name; argv[3] = NULL; status = forkexec(zlogp, DEVFSADM_PATH, argv); if (status == 0 || status == -1) return (status); zerror(zlogp, B_FALSE, "%s call (%s %s %s) unexpectedly returned %d", DEVFSADM, DEVFSADM_PATH, arg, zone_name, status); return (-1); } static int devfsadm_register(zlog_t *zlogp) { /* * Ready the zone's devices. */ return (devfsadm_call(zlogp, "-z")); } static int devfsadm_unregister(zlog_t *zlogp) { return (devfsadm_call(zlogp, "-Z")); } static int get_rctls(zlog_t *zlogp, char **bufp, size_t *bufsizep) { nvlist_t *nvl = NULL; char *nvl_packed = NULL; size_t nvl_size = 0; nvlist_t **nvlv = NULL; int rctlcount = 0; int error = -1; zone_dochandle_t handle; struct zone_rctltab rctltab; rctlblk_t *rctlblk = NULL; *bufp = NULL; *bufsizep = 0; if ((handle = zonecfg_init_handle()) == NULL) { zerror(zlogp, B_TRUE, "getting zone configuration handle"); return (-1); } if (zonecfg_get_snapshot_handle(zone_name, handle) != Z_OK) { zerror(zlogp, B_FALSE, "invalid configuration"); zonecfg_fini_handle(handle); return (-1); } rctltab.zone_rctl_valptr = NULL; if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, 0) != 0) { zerror(zlogp, B_TRUE, "%s failed", "nvlist_alloc"); goto out; } if (zonecfg_setrctlent(handle) != Z_OK) { zerror(zlogp, B_FALSE, "%s failed", "zonecfg_setrctlent"); goto out; } if ((rctlblk = malloc(rctlblk_size())) == NULL) { zerror(zlogp, B_TRUE, "memory allocation failed"); goto out; } while (zonecfg_getrctlent(handle, &rctltab) == Z_OK) { struct zone_rctlvaltab *rctlval; uint_t i, count; const char *name = rctltab.zone_rctl_name; /* zoneadm should have already warned about unknown rctls. */ if (!zonecfg_is_rctl(name)) { zonecfg_free_rctl_value_list(rctltab.zone_rctl_valptr); rctltab.zone_rctl_valptr = NULL; continue; } count = 0; for (rctlval = rctltab.zone_rctl_valptr; rctlval != NULL; rctlval = rctlval->zone_rctlval_next) { count++; } if (count == 0) { /* ignore */ continue; /* Nothing to free */ } if ((nvlv = malloc(sizeof (*nvlv) * count)) == NULL) goto out; i = 0; for (rctlval = rctltab.zone_rctl_valptr; rctlval != NULL; rctlval = rctlval->zone_rctlval_next, i++) { if (nvlist_alloc(&nvlv[i], NV_UNIQUE_NAME, 0) != 0) { zerror(zlogp, B_TRUE, "%s failed", "nvlist_alloc"); goto out; } if (zonecfg_construct_rctlblk(rctlval, rctlblk) != Z_OK) { zerror(zlogp, B_FALSE, "invalid rctl value: " "(priv=%s,limit=%s,action=%s)", rctlval->zone_rctlval_priv, rctlval->zone_rctlval_limit, rctlval->zone_rctlval_action); goto out; } if (!zonecfg_valid_rctl(name, rctlblk)) { zerror(zlogp, B_FALSE, "(priv=%s,limit=%s,action=%s) is not a " "valid value for rctl '%s'", rctlval->zone_rctlval_priv, rctlval->zone_rctlval_limit, rctlval->zone_rctlval_action, name); goto out; } if (nvlist_add_uint64(nvlv[i], "privilege", rctlblk_get_privilege(rctlblk)) != 0) { zerror(zlogp, B_FALSE, "%s failed", "nvlist_add_uint64"); goto out; } if (nvlist_add_uint64(nvlv[i], "limit", rctlblk_get_value(rctlblk)) != 0) { zerror(zlogp, B_FALSE, "%s failed", "nvlist_add_uint64"); goto out; } if (nvlist_add_uint64(nvlv[i], "action", (uint_t)rctlblk_get_local_action(rctlblk, NULL)) != 0) { zerror(zlogp, B_FALSE, "%s failed", "nvlist_add_uint64"); goto out; } } zonecfg_free_rctl_value_list(rctltab.zone_rctl_valptr); rctltab.zone_rctl_valptr = NULL; if (nvlist_add_nvlist_array(nvl, (char *)name, nvlv, count) != 0) { zerror(zlogp, B_FALSE, "%s failed", "nvlist_add_nvlist_array"); goto out; } for (i = 0; i < count; i++) nvlist_free(nvlv[i]); free(nvlv); nvlv = NULL; rctlcount++; } (void) zonecfg_endrctlent(handle); if (rctlcount == 0) { error = 0; goto out; } if (nvlist_pack(nvl, &nvl_packed, &nvl_size, NV_ENCODE_NATIVE, 0) != 0) { zerror(zlogp, B_FALSE, "%s failed", "nvlist_pack"); goto out; } error = 0; *bufp = nvl_packed; *bufsizep = nvl_size; out: free(rctlblk); zonecfg_free_rctl_value_list(rctltab.zone_rctl_valptr); if (error && nvl_packed != NULL) free(nvl_packed); if (nvl != NULL) nvlist_free(nvl); if (nvlv != NULL) free(nvlv); if (handle != NULL) zonecfg_fini_handle(handle); return (error); } static int get_zone_pool(zlog_t *zlogp, char *poolbuf, size_t bufsz) { zone_dochandle_t handle; int error; if ((handle = zonecfg_init_handle()) == NULL) { zerror(zlogp, B_TRUE, "getting zone configuration handle"); return (-1); } if (zonecfg_get_snapshot_handle(zone_name, handle) != Z_OK) { zerror(zlogp, B_FALSE, "invalid configuration"); zonecfg_fini_handle(handle); return (-1); } error = zonecfg_get_pool(handle, poolbuf, bufsz); zonecfg_fini_handle(handle); return (error); } static int bind_to_pool(zlog_t *zlogp, zoneid_t zoneid) { pool_conf_t *poolconf; pool_t *pool; char poolname[MAXPATHLEN]; int status; int error; /* * Find the pool mentioned in the zone configuration, and bind to it. */ error = get_zone_pool(zlogp, poolname, sizeof (poolname)); if (error == Z_NO_ENTRY || (error == Z_OK && strlen(poolname) == 0)) { /* * The property is not set on the zone, so the pool * should be bound to the default pool. But that's * already done by the kernel, so we can just return. */ return (0); } if (error != Z_OK) { /* * Not an error, even though it shouldn't be happening. */ zerror(zlogp, B_FALSE, "WARNING: unable to retrieve default pool."); return (0); } /* * Don't do anything if pools aren't enabled. */ if (pool_get_status(&status) != PO_SUCCESS || status != POOL_ENABLED) { zerror(zlogp, B_FALSE, "WARNING: pools facility not active; " "zone will not be bound to pool '%s'.", poolname); return (0); } /* * Try to provide a sane error message if the requested pool doesn't * exist. */ if ((poolconf = pool_conf_alloc()) == NULL) { zerror(zlogp, B_FALSE, "%s failed", "pool_conf_alloc"); return (-1); } if (pool_conf_open(poolconf, pool_dynamic_location(), PO_RDONLY) != PO_SUCCESS) { zerror(zlogp, B_FALSE, "%s failed", "pool_conf_open"); pool_conf_free(poolconf); return (-1); } pool = pool_get_pool(poolconf, poolname); (void) pool_conf_close(poolconf); pool_conf_free(poolconf); if (pool == NULL) { zerror(zlogp, B_FALSE, "WARNING: pool '%s' not found; " "using default pool.", poolname); return (0); } /* * Bind the zone to the pool. */ if (pool_set_binding(poolname, P_ZONEID, zoneid) != PO_SUCCESS) { zerror(zlogp, B_FALSE, "WARNING: unable to bind to pool '%s'; " "using default pool.", poolname); } return (0); } int prtmount(const char *fs, void *x) { zerror((zlog_t *)x, B_FALSE, " %s", fs); return (0); } /* * Look for zones running on the main system that are using this root (or any * subdirectory of it). Return B_TRUE and print an error if a conflicting zone * is found or if we can't tell. */ static boolean_t duplicate_zone_root(zlog_t *zlogp, const char *rootpath) { zoneid_t *zids = NULL; uint_t nzids = 0; boolean_t retv; int rlen, zlen; char zroot[MAXPATHLEN]; char zonename[ZONENAME_MAX]; for (;;) { nzids += 10; zids = malloc(nzids * sizeof (*zids)); if (zids == NULL) { zerror(zlogp, B_TRUE, "unable to allocate memory"); return (B_TRUE); } if (zone_list(zids, &nzids) == 0) break; free(zids); } retv = B_FALSE; rlen = strlen(rootpath); while (nzids > 0) { /* * Ignore errors; they just mean that the zone has disappeared * while we were busy. */ if (zone_getattr(zids[--nzids], ZONE_ATTR_ROOT, zroot, sizeof (zroot)) == -1) continue; zlen = strlen(zroot); if (zlen > rlen) zlen = rlen; if (strncmp(rootpath, zroot, zlen) == 0 && (zroot[zlen] == '\0' || zroot[zlen] == '/') && (rootpath[zlen] == '\0' || rootpath[zlen] == '/')) { if (getzonenamebyid(zids[nzids], zonename, sizeof (zonename)) == -1) (void) snprintf(zonename, sizeof (zonename), "id %d", (int)zids[nzids]); zerror(zlogp, B_FALSE, "zone root %s already in use by zone %s", rootpath, zonename); retv = B_TRUE; break; } } free(zids); return (retv); } /* * Search for loopback mounts that use this same source node (same device and * inode). Return B_TRUE if there is one or if we can't tell. */ static boolean_t duplicate_reachable_path(zlog_t *zlogp, const char *rootpath) { struct stat64 rst, zst; struct mnttab *mnp; if (stat64(rootpath, &rst) == -1) { zerror(zlogp, B_TRUE, "can't stat %s", rootpath); return (B_TRUE); } if (resolve_lofs_mnts == NULL && lofs_read_mnttab(zlogp) == -1) return (B_TRUE); for (mnp = resolve_lofs_mnts; mnp < resolve_lofs_mnt_max; mnp++) { if (mnp->mnt_fstype == NULL || strcmp(MNTTYPE_LOFS, mnp->mnt_fstype) != 0) continue; /* We're looking at a loopback mount. Stat it. */ if (mnp->mnt_special != NULL && stat64(mnp->mnt_special, &zst) != -1 && rst.st_dev == zst.st_dev && rst.st_ino == zst.st_ino) { zerror(zlogp, B_FALSE, "zone root %s is reachable through %s", rootpath, mnp->mnt_mountp); return (B_TRUE); } } return (B_FALSE); } zoneid_t vplat_create(zlog_t *zlogp, boolean_t mount_cmd) { zoneid_t rval = -1; priv_set_t *privs; char rootpath[MAXPATHLEN]; char *rctlbuf = NULL; size_t rctlbufsz = 0; zoneid_t zoneid = -1; int xerr; char *kzone; FILE *fp = NULL; if (zone_get_rootpath(zone_name, rootpath, sizeof (rootpath)) != Z_OK) { zerror(zlogp, B_TRUE, "unable to determine zone root"); return (-1); } if (zonecfg_in_alt_root()) resolve_lofs(zlogp, rootpath, sizeof (rootpath)); if ((privs = priv_allocset()) == NULL) { zerror(zlogp, B_TRUE, "%s failed", "priv_allocset"); return (-1); } priv_emptyset(privs); if (zonecfg_get_privset(privs) != Z_OK) { zerror(zlogp, B_TRUE, "Failed to initialize privileges"); goto error; } if (!mount_cmd && get_rctls(zlogp, &rctlbuf, &rctlbufsz) != 0) { zerror(zlogp, B_FALSE, "Unable to get list of rctls"); goto error; } kzone = zone_name; /* * We must do this scan twice. First, we look for zones running on the * main system that are using this root (or any subdirectory of it). * Next, we reduce to the shortest path and search for loopback mounts * that use this same source node (same device and inode). */ if (duplicate_zone_root(zlogp, rootpath)) goto error; if (duplicate_reachable_path(zlogp, rootpath)) goto error; if (mount_cmd) { root_to_lu(zlogp, rootpath, sizeof (rootpath), B_TRUE); /* * Forge up a special root for this zone. When a zone is * mounted, we can't let the zone have its own root because the * tools that will be used in this "scratch zone" need access * to both the zone's resources and the running machine's * executables. * * Note that the mkdir here also catches read-only filesystems. */ if (mkdir(rootpath, 0755) != 0 && errno != EEXIST) { zerror(zlogp, B_TRUE, "cannot create %s", rootpath); goto error; } if (domount(zlogp, "tmpfs", "", "swap", rootpath) != 0) goto error; } if (zonecfg_in_alt_root()) { /* * If we are mounting up a zone in an alternate root partition, * then we have some additional work to do before starting the * zone. First, resolve the root path down so that we're not * fooled by duplicates. Then forge up an internal name for * the zone. */ if ((fp = zonecfg_open_scratch("", B_TRUE)) == NULL) { zerror(zlogp, B_TRUE, "cannot open mapfile"); goto error; } if (zonecfg_lock_scratch(fp) != 0) { zerror(zlogp, B_TRUE, "cannot lock mapfile"); goto error; } if (zonecfg_find_scratch(fp, zone_name, zonecfg_get_root(), NULL, 0) == 0) { zerror(zlogp, B_FALSE, "scratch zone already running"); goto error; } /* This is the preferred name */ (void) snprintf(kernzone, sizeof (kernzone), "SUNWlu-%s", zone_name); srandom(getpid()); while (zonecfg_reverse_scratch(fp, kernzone, NULL, 0, NULL, 0) == 0) { /* This is just an arbitrary name; note "." usage */ (void) snprintf(kernzone, sizeof (kernzone), "SUNWlu.%08lX%08lX", random(), random()); } kzone = kernzone; } xerr = 0; if ((zoneid = zone_create(kzone, rootpath, privs, rctlbuf, rctlbufsz, &xerr)) == -1) { if (xerr == ZE_AREMOUNTS) { if (zonecfg_find_mounts(rootpath, NULL, NULL) < 1) { zerror(zlogp, B_FALSE, "An unknown file-system is mounted on " "a subdirectory of %s", rootpath); } else { zerror(zlogp, B_FALSE, "These file-systems are mounted on " "subdirectories of %s:", rootpath); (void) zonecfg_find_mounts(rootpath, prtmount, zlogp); } } else if (xerr == ZE_CHROOTED) { zerror(zlogp, B_FALSE, "%s: " "cannot create a zone from a chrooted " "environment", "zone_create"); } else { zerror(zlogp, B_TRUE, "%s failed", "zone_create"); } goto error; } if (zonecfg_in_alt_root() && zonecfg_add_scratch(fp, zone_name, kernzone, zonecfg_get_root()) == -1) { zerror(zlogp, B_TRUE, "cannot add mapfile entry"); goto error; } /* * The following is a warning, not an error, and is not performed when * merely mounting a zone for administrative use. */ if (!mount_cmd && bind_to_pool(zlogp, zoneid) != 0) zerror(zlogp, B_FALSE, "WARNING: unable to bind zone to " "requested pool; using default pool."); rval = zoneid; zoneid = -1; error: if (zoneid != -1) (void) zone_destroy(zoneid); if (rctlbuf != NULL) free(rctlbuf); priv_freeset(privs); if (fp != NULL) zonecfg_close_scratch(fp); lofs_discard_mnttab(); return (rval); } int vplat_bringup(zlog_t *zlogp, boolean_t mount_cmd) { if (create_dev_files(zlogp) != 0 || mount_filesystems(zlogp, mount_cmd) != 0) { lofs_discard_mnttab(); return (-1); } if (!mount_cmd && (devfsadm_register(zlogp) != 0 || configure_network_interfaces(zlogp) != 0)) { lofs_discard_mnttab(); return (-1); } lofs_discard_mnttab(); return (0); } static int lu_root_teardown(zlog_t *zlogp) { char zroot[MAXPATHLEN]; if (zone_get_rootpath(zone_name, zroot, sizeof (zroot)) != Z_OK) { zerror(zlogp, B_FALSE, "unable to determine zone root"); return (-1); } root_to_lu(zlogp, zroot, sizeof (zroot), B_FALSE); /* * At this point, the processes are gone, the filesystems (save the * root) are unmounted, and the zone is on death row. But there may * still be creds floating about in the system that reference the * zone_t, and which pin down zone_rootvp causing this call to fail * with EBUSY. Thus, we try for a little while before just giving up. * (How I wish this were not true, and umount2 just did the right * thing, or tmpfs supported MS_FORCE This is a gross hack.) */ if (umount2(zroot, MS_FORCE) != 0) { if (errno == ENOTSUP && umount2(zroot, 0) == 0) goto unmounted; if (errno == EBUSY) { int tries = 10; while (--tries >= 0) { (void) sleep(1); if (umount2(zroot, 0) == 0) goto unmounted; if (errno != EBUSY) break; } } zerror(zlogp, B_TRUE, "unable to unmount '%s'", zroot); return (-1); } unmounted: /* * Only zones in an alternate root environment have scratch zone * entries. */ if (zonecfg_in_alt_root()) { FILE *fp; int retv; if ((fp = zonecfg_open_scratch("", B_FALSE)) == NULL) { zerror(zlogp, B_TRUE, "cannot open mapfile"); return (-1); } retv = -1; if (zonecfg_lock_scratch(fp) != 0) zerror(zlogp, B_TRUE, "cannot lock mapfile"); else if (zonecfg_delete_scratch(fp, kernzone) != 0) zerror(zlogp, B_TRUE, "cannot delete map entry"); else retv = 0; zonecfg_close_scratch(fp); return (retv); } else { return (0); } } int vplat_teardown(zlog_t *zlogp, boolean_t unmount_cmd) { char *kzone; zoneid_t zoneid; kzone = zone_name; if (zonecfg_in_alt_root()) { FILE *fp; if ((fp = zonecfg_open_scratch("", B_FALSE)) == NULL) { zerror(zlogp, B_TRUE, "unable to open map file"); goto error; } if (zonecfg_find_scratch(fp, zone_name, zonecfg_get_root(), kernzone, sizeof (kernzone)) != 0) { zerror(zlogp, B_FALSE, "unable to find scratch zone"); zonecfg_close_scratch(fp); goto error; } zonecfg_close_scratch(fp); kzone = kernzone; } if ((zoneid = getzoneidbyname(kzone)) == ZONE_ID_UNDEFINED) { if (!bringup_failure_recovery) zerror(zlogp, B_TRUE, "unable to get zoneid"); if (unmount_cmd) (void) lu_root_teardown(zlogp); goto error; } if (zone_shutdown(zoneid) != 0) { zerror(zlogp, B_TRUE, "unable to shutdown zone"); goto error; } if (!unmount_cmd && devfsadm_unregister(zlogp) != 0) goto error; if (!unmount_cmd && unconfigure_network_interfaces(zlogp, zoneid) != 0) { zerror(zlogp, B_FALSE, "unable to unconfigure network interfaces in zone"); goto error; } if (!unmount_cmd && tcp_abort_connections(zlogp, zoneid) != 0) { zerror(zlogp, B_TRUE, "unable to abort TCP connections"); goto error; } if (unmount_filesystems(zlogp, zoneid, unmount_cmd) != 0) { zerror(zlogp, B_FALSE, "unable to unmount file systems in zone"); goto error; } if (zone_destroy(zoneid) != 0) { zerror(zlogp, B_TRUE, "unable to destroy zone"); goto error; } /* * Special teardown for alternate boot environments: remove the tmpfs * root for the zone and then remove it from the map file. */ if (unmount_cmd && lu_root_teardown(zlogp) != 0) goto error; if (!unmount_cmd) destroy_console_slave(); lofs_discard_mnttab(); return (0); error: lofs_discard_mnttab(); return (-1); }