/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "zfs_iter.h" #include "zfs_util.h" libzfs_handle_t *g_zfs; static FILE *mnttab_file; static int zfs_do_clone(int argc, char **argv); static int zfs_do_create(int argc, char **argv); static int zfs_do_destroy(int argc, char **argv); static int zfs_do_get(int argc, char **argv); static int zfs_do_inherit(int argc, char **argv); static int zfs_do_list(int argc, char **argv); static int zfs_do_mount(int argc, char **argv); static int zfs_do_rename(int argc, char **argv); static int zfs_do_rollback(int argc, char **argv); static int zfs_do_set(int argc, char **argv); static int zfs_do_snapshot(int argc, char **argv); static int zfs_do_unmount(int argc, char **argv); static int zfs_do_share(int argc, char **argv); static int zfs_do_unshare(int argc, char **argv); static int zfs_do_send(int argc, char **argv); static int zfs_do_receive(int argc, char **argv); static int zfs_do_promote(int argc, char **argv); /* * These libumem hooks provide a reasonable set of defaults for the allocator's * debugging facilities. */ const char * _umem_debug_init() { return ("default,verbose"); /* $UMEM_DEBUG setting */ } const char * _umem_logging_init(void) { return ("fail,contents"); /* $UMEM_LOGGING setting */ } typedef enum { HELP_CLONE, HELP_CREATE, HELP_DESTROY, HELP_GET, HELP_INHERIT, HELP_LIST, HELP_MOUNT, HELP_PROMOTE, HELP_RECEIVE, HELP_RENAME, HELP_ROLLBACK, HELP_SEND, HELP_SET, HELP_SHARE, HELP_SNAPSHOT, HELP_UNMOUNT, HELP_UNSHARE } zfs_help_t; typedef struct zfs_command { const char *name; int (*func)(int argc, char **argv); zfs_help_t usage; } zfs_command_t; /* * Master command table. Each ZFS command has a name, associated function, and * usage message. The usage messages need to be internationalized, so we have * to have a function to return the usage message based on a command index. * * These commands are organized according to how they are displayed in the usage * message. An empty command (one with a NULL name) indicates an empty line in * the generic usage message. */ static zfs_command_t command_table[] = { { "create", zfs_do_create, HELP_CREATE }, { "destroy", zfs_do_destroy, HELP_DESTROY }, { NULL }, { "snapshot", zfs_do_snapshot, HELP_SNAPSHOT }, { "rollback", zfs_do_rollback, HELP_ROLLBACK }, { "clone", zfs_do_clone, HELP_CLONE }, { "promote", zfs_do_promote, HELP_PROMOTE }, { "rename", zfs_do_rename, HELP_RENAME }, { NULL }, { "list", zfs_do_list, HELP_LIST }, { NULL }, { "set", zfs_do_set, HELP_SET }, { "get", zfs_do_get, HELP_GET }, { "inherit", zfs_do_inherit, HELP_INHERIT }, { NULL }, { "mount", zfs_do_mount, HELP_MOUNT }, { NULL }, { "unmount", zfs_do_unmount, HELP_UNMOUNT }, { NULL }, { "share", zfs_do_share, HELP_SHARE }, { NULL }, { "unshare", zfs_do_unshare, HELP_UNSHARE }, { NULL }, { "send", zfs_do_send, HELP_SEND }, { "receive", zfs_do_receive, HELP_RECEIVE }, }; #define NCOMMAND (sizeof (command_table) / sizeof (command_table[0])) zfs_command_t *current_command; static const char * get_usage(zfs_help_t idx) { switch (idx) { case HELP_CLONE: return (gettext("\tclone \n")); case HELP_CREATE: return (gettext("\tcreate [[-o property=value] ... ] " "\n" "\tcreate [-s] [-b blocksize] [[-o property=value] ...]\n" "\t -V \n")); case HELP_DESTROY: return (gettext("\tdestroy [-rRf] " "\n")); case HELP_GET: return (gettext("\tget [-rHp] [-o field[,field]...] " "[-s source[,source]...]\n" "\t " "[filesystem|volume|snapshot] ...\n")); case HELP_INHERIT: return (gettext("\tinherit [-r] " " ...\n")); case HELP_LIST: return (gettext("\tlist [-rH] [-o property[,property]...] " "[-t type[,type]...]\n" "\t [-s property [-s property]...]" " [-S property [-S property]...]\n" "\t [filesystem|volume|snapshot] ...\n")); case HELP_MOUNT: return (gettext("\tmount\n" "\tmount [-o opts] [-O] -a\n" "\tmount [-o opts] [-O] \n")); case HELP_PROMOTE: return (gettext("\tpromote \n")); case HELP_RECEIVE: return (gettext("\treceive [-vnF] \n" "\treceive [-vnF] -d \n")); case HELP_RENAME: return (gettext("\trename " "\n")); case HELP_ROLLBACK: return (gettext("\trollback [-rRf] \n")); case HELP_SEND: return (gettext("\tsend [-i ] \n")); case HELP_SET: return (gettext("\tset " " ...\n")); case HELP_SHARE: return (gettext("\tshare -a\n" "\tshare \n")); case HELP_SNAPSHOT: return (gettext("\tsnapshot [-r] " "\n")); case HELP_UNMOUNT: return (gettext("\tunmount [-f] -a\n" "\tunmount [-f] \n")); case HELP_UNSHARE: return (gettext("\tunshare [-f] -a\n" "\tunshare [-f] \n")); } abort(); /* NOTREACHED */ } /* * Utility function to guarantee malloc() success. */ void * safe_malloc(size_t size) { void *data; if ((data = calloc(1, size)) == NULL) { (void) fprintf(stderr, "internal error: out of memory\n"); exit(1); } return (data); } /* * Display usage message. If we're inside a command, display only the usage for * that command. Otherwise, iterate over the entire command table and display * a complete usage message. */ static void usage(boolean_t requested) { int i; boolean_t show_properties = B_FALSE; FILE *fp = requested ? stdout : stderr; if (current_command == NULL) { (void) fprintf(fp, gettext("usage: zfs command args ...\n")); (void) fprintf(fp, gettext("where 'command' is one of the following:\n\n")); for (i = 0; i < NCOMMAND; i++) { if (command_table[i].name == NULL) (void) fprintf(fp, "\n"); else (void) fprintf(fp, "%s", get_usage(command_table[i].usage)); } (void) fprintf(fp, gettext("\nEach dataset is of the form: " "pool/[dataset/]*dataset[@name]\n")); } else { (void) fprintf(fp, gettext("usage:\n")); (void) fprintf(fp, "%s", get_usage(current_command->usage)); } if (current_command != NULL && (strcmp(current_command->name, "set") == 0 || strcmp(current_command->name, "get") == 0 || strcmp(current_command->name, "inherit") == 0 || strcmp(current_command->name, "list") == 0)) show_properties = B_TRUE; if (show_properties) { (void) fprintf(fp, gettext("\nThe following properties are supported:\n")); (void) fprintf(fp, "\n\t%-13s %s %s %s\n\n", "PROPERTY", "EDIT", "INHERIT", "VALUES"); for (i = 0; i < ZFS_NPROP_VISIBLE; i++) { (void) fprintf(fp, "\t%-13s ", zfs_prop_to_name(i)); if (zfs_prop_readonly(i)) (void) fprintf(fp, " NO "); else (void) fprintf(fp, " YES "); if (zfs_prop_inheritable(i)) (void) fprintf(fp, " YES "); else (void) fprintf(fp, " NO "); if (zfs_prop_values(i) == NULL) (void) fprintf(fp, "-\n"); else (void) fprintf(fp, "%s\n", zfs_prop_values(i)); } (void) fprintf(fp, gettext("\nSizes are specified in bytes " "with standard units such as K, M, G, etc.\n")); (void) fprintf(fp, gettext("\n\nUser-defined properties can " "be specified by using a name containing a colon (:).\n")); } else { /* * TRANSLATION NOTE: * "zfs set|get" must not be localised this is the * command name and arguments. */ (void) fprintf(fp, gettext("\nFor the property list, run: zfs set|get\n")); } /* * See comments at end of main(). */ if (getenv("ZFS_ABORT") != NULL) { (void) printf("dumping core by request\n"); abort(); } exit(requested ? 0 : 2); } /* * zfs clone fs * * Given an existing dataset, create a writable copy whose initial contents * are the same as the source. The newly created dataset maintains a * dependency on the original; the original cannot be destroyed so long as * the clone exists. */ static int zfs_do_clone(int argc, char **argv) { zfs_handle_t *zhp; int ret; /* check options */ if (argc > 1 && argv[1][0] == '-') { (void) fprintf(stderr, gettext("invalid option '%c'\n"), argv[1][1]); usage(B_FALSE); } /* check number of arguments */ if (argc < 2) { (void) fprintf(stderr, gettext("missing source dataset " "argument\n")); usage(B_FALSE); } if (argc < 3) { (void) fprintf(stderr, gettext("missing target dataset " "argument\n")); usage(B_FALSE); } if (argc > 3) { (void) fprintf(stderr, gettext("too many arguments\n")); usage(B_FALSE); } /* open the source dataset */ if ((zhp = zfs_open(g_zfs, argv[1], ZFS_TYPE_SNAPSHOT)) == NULL) return (1); /* pass to libzfs */ ret = zfs_clone(zhp, argv[2], NULL); /* create the mountpoint if necessary */ if (ret == 0) { zfs_handle_t *clone = zfs_open(g_zfs, argv[2], ZFS_TYPE_ANY); if (clone != NULL) { if ((ret = zfs_mount(clone, NULL, 0)) == 0) ret = zfs_share(clone); zfs_close(clone); } } zfs_close(zhp); return (ret == 0 ? 0 : 1); } /* * zfs create [-o prop=value] ... fs * zfs create [-s] [-b blocksize] [-o prop=value] ... -V vol size * * Create a new dataset. This command can be used to create filesystems * and volumes. Snapshot creation is handled by 'zfs snapshot'. * For volumes, the user must specify a size to be used. * * The '-s' flag applies only to volumes, and indicates that we should not try * to set the reservation for this volume. By default we set a reservation * equal to the size for any volume. */ static int zfs_do_create(int argc, char **argv) { zfs_type_t type = ZFS_TYPE_FILESYSTEM; zfs_handle_t *zhp = NULL; uint64_t volsize; int c; boolean_t noreserve = B_FALSE; int ret = 1; nvlist_t *props = NULL; uint64_t intval; char *propname; char *propval, *strval; if (nvlist_alloc(&props, NV_UNIQUE_NAME, 0) != 0) { (void) fprintf(stderr, gettext("internal error: " "out of memory\n")); return (1); } /* check options */ while ((c = getopt(argc, argv, ":V:b:so:")) != -1) { switch (c) { case 'V': type = ZFS_TYPE_VOLUME; if (zfs_nicestrtonum(g_zfs, optarg, &intval) != 0) { (void) fprintf(stderr, gettext("bad volume " "size '%s': %s\n"), optarg, libzfs_error_description(g_zfs)); goto error; } if (nvlist_add_uint64(props, zfs_prop_to_name(ZFS_PROP_VOLSIZE), intval) != 0) { (void) fprintf(stderr, gettext("internal " "error: out of memory\n")); goto error; } volsize = intval; break; case 'b': if (zfs_nicestrtonum(g_zfs, optarg, &intval) != 0) { (void) fprintf(stderr, gettext("bad volume " "block size '%s': %s\n"), optarg, libzfs_error_description(g_zfs)); goto error; } if (nvlist_add_uint64(props, zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), intval) != 0) { (void) fprintf(stderr, gettext("internal " "error: out of memory\n")); goto error; } break; case 'o': propname = optarg; if ((propval = strchr(propname, '=')) == NULL) { (void) fprintf(stderr, gettext("missing " "'=' for -o option\n")); goto error; } *propval = '\0'; propval++; if (nvlist_lookup_string(props, propname, &strval) == 0) { (void) fprintf(stderr, gettext("property '%s' " "specified multiple times\n"), propname); goto error; } if (nvlist_add_string(props, propname, propval) != 0) { (void) fprintf(stderr, gettext("internal " "error: out of memory\n")); goto error; } break; case 's': noreserve = B_TRUE; break; case ':': (void) fprintf(stderr, gettext("missing size " "argument\n")); goto badusage; break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); goto badusage; } } if (noreserve && type != ZFS_TYPE_VOLUME) { (void) fprintf(stderr, gettext("'-s' can only be used when " "creating a volume\n")); goto badusage; } argc -= optind; argv += optind; /* check number of arguments */ if (argc == 0) { (void) fprintf(stderr, gettext("missing %s argument\n"), zfs_type_to_name(type)); goto badusage; } if (argc > 1) { (void) fprintf(stderr, gettext("too many arguments\n")); goto badusage; } if (type == ZFS_TYPE_VOLUME && !noreserve && nvlist_lookup_string(props, zfs_prop_to_name(ZFS_PROP_RESERVATION), &strval) != 0) { if (nvlist_add_uint64(props, zfs_prop_to_name(ZFS_PROP_RESERVATION), volsize) != 0) { (void) fprintf(stderr, gettext("internal " "error: out of memory\n")); nvlist_free(props); return (1); } } /* pass to libzfs */ if (zfs_create(g_zfs, argv[0], type, props) != 0) goto error; if ((zhp = zfs_open(g_zfs, argv[0], ZFS_TYPE_ANY)) == NULL) goto error; /* * Mount and/or share the new filesystem as appropriate. We provide a * verbose error message to let the user know that their filesystem was * in fact created, even if we failed to mount or share it. */ if (zfs_mount(zhp, NULL, 0) != 0) { (void) fprintf(stderr, gettext("filesystem successfully " "created, but not mounted\n")); ret = 1; } else if (zfs_share(zhp) != 0) { (void) fprintf(stderr, gettext("filesystem successfully " "created, but not shared\n")); ret = 1; } else { ret = 0; } error: if (zhp) zfs_close(zhp); nvlist_free(props); return (ret); badusage: nvlist_free(props); usage(B_FALSE); return (2); } /* * zfs destroy [-rf] * * -r Recursively destroy all children * -R Recursively destroy all dependents, including clones * -f Force unmounting of any dependents * * Destroys the given dataset. By default, it will unmount any filesystems, * and refuse to destroy a dataset that has any dependents. A dependent can * either be a child, or a clone of a child. */ typedef struct destroy_cbdata { boolean_t cb_first; int cb_force; int cb_recurse; int cb_error; int cb_needforce; int cb_doclones; zfs_handle_t *cb_target; char *cb_snapname; } destroy_cbdata_t; /* * Check for any dependents based on the '-r' or '-R' flags. */ static int destroy_check_dependent(zfs_handle_t *zhp, void *data) { destroy_cbdata_t *cbp = data; const char *tname = zfs_get_name(cbp->cb_target); const char *name = zfs_get_name(zhp); if (strncmp(tname, name, strlen(tname)) == 0 && (name[strlen(tname)] == '/' || name[strlen(tname)] == '@')) { /* * This is a direct descendant, not a clone somewhere else in * the hierarchy. */ if (cbp->cb_recurse) goto out; if (cbp->cb_first) { (void) fprintf(stderr, gettext("cannot destroy '%s': " "%s has children\n"), zfs_get_name(cbp->cb_target), zfs_type_to_name(zfs_get_type(cbp->cb_target))); (void) fprintf(stderr, gettext("use '-r' to destroy " "the following datasets:\n")); cbp->cb_first = B_FALSE; cbp->cb_error = 1; } (void) fprintf(stderr, "%s\n", zfs_get_name(zhp)); } else { /* * This is a clone. We only want to report this if the '-r' * wasn't specified, or the target is a snapshot. */ if (!cbp->cb_recurse && zfs_get_type(cbp->cb_target) != ZFS_TYPE_SNAPSHOT) goto out; if (cbp->cb_first) { (void) fprintf(stderr, gettext("cannot destroy '%s': " "%s has dependent clones\n"), zfs_get_name(cbp->cb_target), zfs_type_to_name(zfs_get_type(cbp->cb_target))); (void) fprintf(stderr, gettext("use '-R' to destroy " "the following datasets:\n")); cbp->cb_first = B_FALSE; cbp->cb_error = 1; } (void) fprintf(stderr, "%s\n", zfs_get_name(zhp)); } out: zfs_close(zhp); return (0); } static int destroy_callback(zfs_handle_t *zhp, void *data) { destroy_cbdata_t *cbp = data; /* * Ignore pools (which we've already flagged as an error before getting * here. */ if (strchr(zfs_get_name(zhp), '/') == NULL && zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) { zfs_close(zhp); return (0); } /* * Bail out on the first error. */ if (zfs_unmount(zhp, NULL, cbp->cb_force ? MS_FORCE : 0) != 0 || zfs_destroy(zhp) != 0) { zfs_close(zhp); return (-1); } zfs_close(zhp); return (0); } static int destroy_snap_clones(zfs_handle_t *zhp, void *arg) { destroy_cbdata_t *cbp = arg; char thissnap[MAXPATHLEN]; zfs_handle_t *szhp; (void) snprintf(thissnap, sizeof (thissnap), "%s@%s", zfs_get_name(zhp), cbp->cb_snapname); libzfs_print_on_error(g_zfs, B_FALSE); szhp = zfs_open(g_zfs, thissnap, ZFS_TYPE_SNAPSHOT); libzfs_print_on_error(g_zfs, B_TRUE); if (szhp) { /* * Destroy any clones of this snapshot */ if (zfs_iter_dependents(szhp, B_FALSE, destroy_callback, cbp) != 0) { zfs_close(szhp); return (-1); } zfs_close(szhp); } return (zfs_iter_filesystems(zhp, destroy_snap_clones, arg)); } static int zfs_do_destroy(int argc, char **argv) { destroy_cbdata_t cb = { 0 }; int c; zfs_handle_t *zhp; char *cp; /* check options */ while ((c = getopt(argc, argv, "frR")) != -1) { switch (c) { case 'f': cb.cb_force = 1; break; case 'r': cb.cb_recurse = 1; break; case 'R': cb.cb_recurse = 1; cb.cb_doclones = 1; break; case '?': default: (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; /* check number of arguments */ if (argc == 0) { (void) fprintf(stderr, gettext("missing path argument\n")); usage(B_FALSE); } if (argc > 1) { (void) fprintf(stderr, gettext("too many arguments\n")); usage(B_FALSE); } /* * If we are doing recursive destroy of a snapshot, then the * named snapshot may not exist. Go straight to libzfs. */ if (cb.cb_recurse && (cp = strchr(argv[0], '@'))) { int ret; *cp = '\0'; if ((zhp = zfs_open(g_zfs, argv[0], ZFS_TYPE_ANY)) == NULL) return (1); *cp = '@'; cp++; if (cb.cb_doclones) { cb.cb_snapname = cp; if (destroy_snap_clones(zhp, &cb) != 0) { zfs_close(zhp); return (1); } } ret = zfs_destroy_snaps(zhp, cp); zfs_close(zhp); if (ret) { (void) fprintf(stderr, gettext("no snapshots destroyed\n")); } return (ret != 0); } /* Open the given dataset */ if ((zhp = zfs_open(g_zfs, argv[0], ZFS_TYPE_ANY)) == NULL) return (1); cb.cb_target = zhp; /* * Perform an explicit check for pools before going any further. */ if (!cb.cb_recurse && strchr(zfs_get_name(zhp), '/') == NULL && zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) { (void) fprintf(stderr, gettext("cannot destroy '%s': " "operation does not apply to pools\n"), zfs_get_name(zhp)); (void) fprintf(stderr, gettext("use 'zfs destroy -r " "%s' to destroy all datasets in the pool\n"), zfs_get_name(zhp)); (void) fprintf(stderr, gettext("use 'zpool destroy %s' " "to destroy the pool itself\n"), zfs_get_name(zhp)); zfs_close(zhp); return (1); } /* * Check for any dependents and/or clones. */ cb.cb_first = B_TRUE; if (!cb.cb_doclones && zfs_iter_dependents(zhp, B_TRUE, destroy_check_dependent, &cb) != 0) { zfs_close(zhp); return (1); } if (cb.cb_error || zfs_iter_dependents(zhp, B_FALSE, destroy_callback, &cb) != 0) { zfs_close(zhp); return (1); } /* * Do the real thing. The callback will close the handle regardless of * whether it succeeds or not. */ if (destroy_callback(zhp, &cb) != 0) return (1); return (0); } /* * zfs get [-rHp] [-o field[,field]...] [-s source[,source]...] * < all | property[,property]... > < fs | snap | vol > ... * * -r recurse over any child datasets * -H scripted mode. Headers are stripped, and fields are separated * by tabs instead of spaces. * -o Set of fields to display. One of "name,property,value,source". * Default is all four. * -s Set of sources to allow. One of * "local,default,inherited,temporary,none". Default is all * five. * -p Display values in parsable (literal) format. * * Prints properties for the given datasets. The user can control which * columns to display as well as which property types to allow. */ typedef struct get_cbdata { int cb_sources; int cb_columns[4]; int cb_colwidths[5]; boolean_t cb_scripted; boolean_t cb_literal; boolean_t cb_first; zfs_proplist_t *cb_proplist; } get_cbdata_t; #define GET_COL_NAME 1 #define GET_COL_PROPERTY 2 #define GET_COL_VALUE 3 #define GET_COL_SOURCE 4 /* * Print the column headers for 'zfs get'. */ static void print_get_headers(get_cbdata_t *cbp) { zfs_proplist_t *pl = cbp->cb_proplist; int i; char *title; size_t len; cbp->cb_first = B_FALSE; if (cbp->cb_scripted) return; /* * Start with the length of the column headers. */ cbp->cb_colwidths[GET_COL_NAME] = strlen(gettext("NAME")); cbp->cb_colwidths[GET_COL_PROPERTY] = strlen(gettext("PROPERTY")); cbp->cb_colwidths[GET_COL_VALUE] = strlen(gettext("VALUE")); cbp->cb_colwidths[GET_COL_SOURCE] = strlen(gettext("SOURCE")); /* * Go through and calculate the widths for each column. For the * 'source' column, we kludge it up by taking the worst-case scenario of * inheriting from the longest name. This is acceptable because in the * majority of cases 'SOURCE' is the last column displayed, and we don't * use the width anyway. Note that the 'VALUE' column can be oversized, * if the name of the property is much longer the any values we find. */ for (pl = cbp->cb_proplist; pl != NULL; pl = pl->pl_next) { /* * 'PROPERTY' column */ if (pl->pl_prop != ZFS_PROP_INVAL) { len = strlen(zfs_prop_to_name(pl->pl_prop)); if (len > cbp->cb_colwidths[GET_COL_PROPERTY]) cbp->cb_colwidths[GET_COL_PROPERTY] = len; } else { len = strlen(pl->pl_user_prop); if (len > cbp->cb_colwidths[GET_COL_PROPERTY]) cbp->cb_colwidths[GET_COL_PROPERTY] = len; } /* * 'VALUE' column */ if ((pl->pl_prop != ZFS_PROP_NAME || !pl->pl_all) && pl->pl_width > cbp->cb_colwidths[GET_COL_VALUE]) cbp->cb_colwidths[GET_COL_VALUE] = pl->pl_width; /* * 'NAME' and 'SOURCE' columns */ if (pl->pl_prop == ZFS_PROP_NAME && pl->pl_width > cbp->cb_colwidths[GET_COL_NAME]) { cbp->cb_colwidths[GET_COL_NAME] = pl->pl_width; cbp->cb_colwidths[GET_COL_SOURCE] = pl->pl_width + strlen(gettext("inherited from")); } } /* * Now go through and print the headers. */ for (i = 0; i < 4; i++) { switch (cbp->cb_columns[i]) { case GET_COL_NAME: title = gettext("NAME"); break; case GET_COL_PROPERTY: title = gettext("PROPERTY"); break; case GET_COL_VALUE: title = gettext("VALUE"); break; case GET_COL_SOURCE: title = gettext("SOURCE"); break; default: title = NULL; } if (title != NULL) { if (i == 3 || cbp->cb_columns[i + 1] == 0) (void) printf("%s", title); else (void) printf("%-*s ", cbp->cb_colwidths[cbp->cb_columns[i]], title); } } (void) printf("\n"); } /* * Display a single line of output, according to the settings in the callback * structure. */ static void print_one_property(zfs_handle_t *zhp, get_cbdata_t *cbp, const char *propname, const char *value, zfs_source_t sourcetype, const char *source) { int i; const char *str; char buf[128]; /* * Ignore those source types that the user has chosen to ignore. */ if ((sourcetype & cbp->cb_sources) == 0) return; if (cbp->cb_first) print_get_headers(cbp); for (i = 0; i < 4; i++) { switch (cbp->cb_columns[i]) { case GET_COL_NAME: str = zfs_get_name(zhp); break; case GET_COL_PROPERTY: str = propname; break; case GET_COL_VALUE: str = value; break; case GET_COL_SOURCE: switch (sourcetype) { case ZFS_SRC_NONE: str = "-"; break; case ZFS_SRC_DEFAULT: str = "default"; break; case ZFS_SRC_LOCAL: str = "local"; break; case ZFS_SRC_TEMPORARY: str = "temporary"; break; case ZFS_SRC_INHERITED: (void) snprintf(buf, sizeof (buf), "inherited from %s", source); str = buf; break; } break; default: continue; } if (cbp->cb_columns[i + 1] == 0) (void) printf("%s", str); else if (cbp->cb_scripted) (void) printf("%s\t", str); else (void) printf("%-*s ", cbp->cb_colwidths[cbp->cb_columns[i]], str); } (void) printf("\n"); } /* * Invoked to display the properties for a single dataset. */ static int get_callback(zfs_handle_t *zhp, void *data) { char buf[ZFS_MAXPROPLEN]; zfs_source_t sourcetype; char source[ZFS_MAXNAMELEN]; get_cbdata_t *cbp = data; nvlist_t *userprop = zfs_get_user_props(zhp); zfs_proplist_t *pl = cbp->cb_proplist; nvlist_t *propval; char *strval; char *sourceval; for (; pl != NULL; pl = pl->pl_next) { /* * Skip the special fake placeholder. This will also skip over * the name property when 'all' is specified. */ if (pl->pl_prop == ZFS_PROP_NAME && pl == cbp->cb_proplist) continue; if (pl->pl_prop != ZFS_PROP_INVAL) { if (zfs_prop_get(zhp, pl->pl_prop, buf, sizeof (buf), &sourcetype, source, sizeof (source), cbp->cb_literal) != 0) { if (pl->pl_all) continue; sourcetype = ZFS_SRC_NONE; (void) strlcpy(buf, "-", sizeof (buf)); } print_one_property(zhp, cbp, zfs_prop_to_name(pl->pl_prop), buf, sourcetype, source); } else { if (nvlist_lookup_nvlist(userprop, pl->pl_user_prop, &propval) != 0) { if (pl->pl_all) continue; sourcetype = ZFS_SRC_NONE; strval = "-"; } else { verify(nvlist_lookup_string(propval, ZFS_PROP_VALUE, &strval) == 0); verify(nvlist_lookup_string(propval, ZFS_PROP_SOURCE, &sourceval) == 0); if (strcmp(sourceval, zfs_get_name(zhp)) == 0) { sourcetype = ZFS_SRC_LOCAL; } else { sourcetype = ZFS_SRC_INHERITED; (void) strlcpy(source, sourceval, sizeof (source)); } } print_one_property(zhp, cbp, pl->pl_user_prop, strval, sourcetype, source); } } return (0); } static int zfs_do_get(int argc, char **argv) { get_cbdata_t cb = { 0 }; boolean_t recurse = B_FALSE; int i, c; char *value, *fields; int ret; zfs_proplist_t fake_name = { 0 }; /* * Set up default columns and sources. */ cb.cb_sources = ZFS_SRC_ALL; cb.cb_columns[0] = GET_COL_NAME; cb.cb_columns[1] = GET_COL_PROPERTY; cb.cb_columns[2] = GET_COL_VALUE; cb.cb_columns[3] = GET_COL_SOURCE; /* check options */ while ((c = getopt(argc, argv, ":o:s:rHp")) != -1) { switch (c) { case 'p': cb.cb_literal = B_TRUE; break; case 'r': recurse = B_TRUE; break; case 'H': cb.cb_scripted = B_TRUE; break; case ':': (void) fprintf(stderr, gettext("missing argument for " "'%c' option\n"), optopt); usage(B_FALSE); break; case 'o': /* * Process the set of columns to display. We zero out * the structure to give us a blank slate. */ bzero(&cb.cb_columns, sizeof (cb.cb_columns)); i = 0; while (*optarg != '\0') { static char *col_subopts[] = { "name", "property", "value", "source", NULL }; if (i == 4) { (void) fprintf(stderr, gettext("too " "many fields given to -o " "option\n")); usage(B_FALSE); } switch (getsubopt(&optarg, col_subopts, &value)) { case 0: cb.cb_columns[i++] = GET_COL_NAME; break; case 1: cb.cb_columns[i++] = GET_COL_PROPERTY; break; case 2: cb.cb_columns[i++] = GET_COL_VALUE; break; case 3: cb.cb_columns[i++] = GET_COL_SOURCE; break; default: (void) fprintf(stderr, gettext("invalid column name " "'%s'\n"), value); usage(B_FALSE); } } break; case 's': cb.cb_sources = 0; while (*optarg != '\0') { static char *source_subopts[] = { "local", "default", "inherited", "temporary", "none", NULL }; switch (getsubopt(&optarg, source_subopts, &value)) { case 0: cb.cb_sources |= ZFS_SRC_LOCAL; break; case 1: cb.cb_sources |= ZFS_SRC_DEFAULT; break; case 2: cb.cb_sources |= ZFS_SRC_INHERITED; break; case 3: cb.cb_sources |= ZFS_SRC_TEMPORARY; break; case 4: cb.cb_sources |= ZFS_SRC_NONE; break; default: (void) fprintf(stderr, gettext("invalid source " "'%s'\n"), value); usage(B_FALSE); } } break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; if (argc < 1) { (void) fprintf(stderr, gettext("missing property " "argument\n")); usage(B_FALSE); } fields = argv[0]; if (zfs_get_proplist(g_zfs, fields, &cb.cb_proplist) != 0) usage(B_FALSE); argc--; argv++; /* * As part of zfs_expand_proplist(), we keep track of the maximum column * width for each property. For the 'NAME' (and 'SOURCE') columns, we * need to know the maximum name length. However, the user likely did * not specify 'name' as one of the properties to fetch, so we need to * make sure we always include at least this property for * print_get_headers() to work properly. */ if (cb.cb_proplist != NULL) { fake_name.pl_prop = ZFS_PROP_NAME; fake_name.pl_width = strlen(gettext("NAME")); fake_name.pl_next = cb.cb_proplist; cb.cb_proplist = &fake_name; } cb.cb_first = B_TRUE; /* run for each object */ ret = zfs_for_each(argc, argv, recurse, ZFS_TYPE_ANY, NULL, &cb.cb_proplist, get_callback, &cb); if (cb.cb_proplist == &fake_name) zfs_free_proplist(fake_name.pl_next); else zfs_free_proplist(cb.cb_proplist); return (ret); } /* * inherit [-r] ... * * -r Recurse over all children * * For each dataset specified on the command line, inherit the given property * from its parent. Inheriting a property at the pool level will cause it to * use the default value. The '-r' flag will recurse over all children, and is * useful for setting a property on a hierarchy-wide basis, regardless of any * local modifications for each dataset. */ static int inherit_callback(zfs_handle_t *zhp, void *data) { return (zfs_prop_inherit(zhp, data) != 0); } static int zfs_do_inherit(int argc, char **argv) { boolean_t recurse = B_FALSE; int c; zfs_prop_t prop; char *propname; /* check options */ while ((c = getopt(argc, argv, "r")) != -1) { switch (c) { case 'r': recurse = B_TRUE; break; case '?': default: (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; /* check number of arguments */ if (argc < 1) { (void) fprintf(stderr, gettext("missing property argument\n")); usage(B_FALSE); } if (argc < 2) { (void) fprintf(stderr, gettext("missing dataset argument\n")); usage(B_FALSE); } propname = argv[0]; argc--; argv++; if ((prop = zfs_name_to_prop(propname)) != ZFS_PROP_INVAL) { if (zfs_prop_readonly(prop)) { (void) fprintf(stderr, gettext( "%s property is read-only\n"), propname); return (1); } if (!zfs_prop_inheritable(prop)) { (void) fprintf(stderr, gettext("'%s' property cannot " "be inherited\n"), propname); if (prop == ZFS_PROP_QUOTA || prop == ZFS_PROP_RESERVATION) (void) fprintf(stderr, gettext("use 'zfs set " "%s=none' to clear\n"), propname); return (1); } } else if (!zfs_prop_user(propname)) { (void) fprintf(stderr, gettext( "invalid property '%s'\n"), propname); usage(B_FALSE); } return (zfs_for_each(argc, argv, recurse, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME, NULL, NULL, inherit_callback, propname)); } /* * list [-rH] [-o property[,property]...] [-t type[,type]...] * [-s property [-s property]...] [-S property [-S property]...] * ... * * -r Recurse over all children * -H Scripted mode; elide headers and separate colums by tabs * -o Control which fields to display. * -t Control which object types to display. * -s Specify sort columns, descending order. * -S Specify sort columns, ascending order. * * When given no arguments, lists all filesystems in the system. * Otherwise, list the specified datasets, optionally recursing down them if * '-r' is specified. */ typedef struct list_cbdata { boolean_t cb_first; boolean_t cb_scripted; zfs_proplist_t *cb_proplist; } list_cbdata_t; /* * Given a list of columns to display, output appropriate headers for each one. */ static void print_header(zfs_proplist_t *pl) { char headerbuf[ZFS_MAXPROPLEN]; const char *header; int i; boolean_t first = B_TRUE; boolean_t right_justify; for (; pl != NULL; pl = pl->pl_next) { if (!first) { (void) printf(" "); } else { first = B_FALSE; } right_justify = B_FALSE; if (pl->pl_prop != ZFS_PROP_INVAL) { header = zfs_prop_column_name(pl->pl_prop); right_justify = zfs_prop_align_right(pl->pl_prop); } else { for (i = 0; pl->pl_user_prop[i] != '\0'; i++) headerbuf[i] = toupper(pl->pl_user_prop[i]); headerbuf[i] = '\0'; header = headerbuf; } if (pl->pl_next == NULL && !right_justify) (void) printf("%s", header); else if (right_justify) (void) printf("%*s", pl->pl_width, header); else (void) printf("%-*s", pl->pl_width, header); } (void) printf("\n"); } /* * Given a dataset and a list of fields, print out all the properties according * to the described layout. */ static void print_dataset(zfs_handle_t *zhp, zfs_proplist_t *pl, int scripted) { boolean_t first = B_TRUE; char property[ZFS_MAXPROPLEN]; nvlist_t *userprops = zfs_get_user_props(zhp); nvlist_t *propval; char *propstr; boolean_t right_justify; int width; for (; pl != NULL; pl = pl->pl_next) { if (!first) { if (scripted) (void) printf("\t"); else (void) printf(" "); } else { first = B_FALSE; } right_justify = B_FALSE; if (pl->pl_prop != ZFS_PROP_INVAL) { if (zfs_prop_get(zhp, pl->pl_prop, property, sizeof (property), NULL, NULL, 0, B_FALSE) != 0) propstr = "-"; else propstr = property; right_justify = zfs_prop_align_right(pl->pl_prop); } else { if (nvlist_lookup_nvlist(userprops, pl->pl_user_prop, &propval) != 0) propstr = "-"; else verify(nvlist_lookup_string(propval, ZFS_PROP_VALUE, &propstr) == 0); } width = pl->pl_width; /* * If this is being called in scripted mode, or if this is the * last column and it is left-justified, don't include a width * format specifier. */ if (scripted || (pl->pl_next == NULL && !right_justify)) (void) printf("%s", propstr); else if (right_justify) (void) printf("%*s", width, propstr); else (void) printf("%-*s", width, propstr); } (void) printf("\n"); } /* * Generic callback function to list a dataset or snapshot. */ static int list_callback(zfs_handle_t *zhp, void *data) { list_cbdata_t *cbp = data; if (cbp->cb_first) { if (!cbp->cb_scripted) print_header(cbp->cb_proplist); cbp->cb_first = B_FALSE; } print_dataset(zhp, cbp->cb_proplist, cbp->cb_scripted); return (0); } static int zfs_do_list(int argc, char **argv) { int c; boolean_t recurse = B_FALSE; boolean_t scripted = B_FALSE; static char default_fields[] = "name,used,available,referenced,mountpoint"; int types = ZFS_TYPE_ANY; char *fields = NULL; char *basic_fields = default_fields; list_cbdata_t cb = { 0 }; char *value; int ret; char *type_subopts[] = { "filesystem", "volume", "snapshot", NULL }; zfs_sort_column_t *sortcol = NULL; /* check options */ while ((c = getopt(argc, argv, ":o:rt:Hs:S:")) != -1) { switch (c) { case 'o': fields = optarg; break; case 'r': recurse = B_TRUE; break; case 'H': scripted = B_TRUE; break; case 's': if (zfs_add_sort_column(&sortcol, optarg, B_FALSE) != 0) { (void) fprintf(stderr, gettext("invalid property '%s'\n"), optarg); usage(B_FALSE); } break; case 'S': if (zfs_add_sort_column(&sortcol, optarg, B_TRUE) != 0) { (void) fprintf(stderr, gettext("invalid property '%s'\n"), optarg); usage(B_FALSE); } break; case 't': types = 0; while (*optarg != '\0') { switch (getsubopt(&optarg, type_subopts, &value)) { case 0: types |= ZFS_TYPE_FILESYSTEM; break; case 1: types |= ZFS_TYPE_VOLUME; break; case 2: types |= ZFS_TYPE_SNAPSHOT; break; default: (void) fprintf(stderr, gettext("invalid type '%s'\n"), value); usage(B_FALSE); } } break; case ':': (void) fprintf(stderr, gettext("missing argument for " "'%c' option\n"), optopt); usage(B_FALSE); break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; if (fields == NULL) fields = basic_fields; /* * If the user specifies '-o all', the zfs_get_proplist() doesn't * normally include the name of the dataset. For 'zfs list', we always * want this property to be first. */ if (zfs_get_proplist(g_zfs, fields, &cb.cb_proplist) != 0) usage(B_FALSE); cb.cb_scripted = scripted; cb.cb_first = B_TRUE; ret = zfs_for_each(argc, argv, recurse, types, sortcol, &cb.cb_proplist, list_callback, &cb); zfs_free_proplist(cb.cb_proplist); zfs_free_sort_columns(sortcol); if (ret == 0 && cb.cb_first) (void) printf(gettext("no datasets available\n")); return (ret); } /* * zfs rename * * Renames the given dataset to another of the same type. */ /* ARGSUSED */ static int zfs_do_rename(int argc, char **argv) { zfs_handle_t *zhp; int ret; /* check options */ if (argc > 1 && argv[1][0] == '-') { (void) fprintf(stderr, gettext("invalid option '%c'\n"), argv[1][1]); usage(B_FALSE); } /* check number of arguments */ if (argc < 2) { (void) fprintf(stderr, gettext("missing source dataset " "argument\n")); usage(B_FALSE); } if (argc < 3) { (void) fprintf(stderr, gettext("missing target dataset " "argument\n")); usage(B_FALSE); } if (argc > 3) { (void) fprintf(stderr, gettext("too many arguments\n")); usage(B_FALSE); } if ((zhp = zfs_open(g_zfs, argv[1], ZFS_TYPE_ANY)) == NULL) return (1); ret = (zfs_rename(zhp, argv[2]) != 0); zfs_close(zhp); return (ret); } /* * zfs promote * * Promotes the given clone fs to be the parent */ /* ARGSUSED */ static int zfs_do_promote(int argc, char **argv) { zfs_handle_t *zhp; int ret; /* check options */ if (argc > 1 && argv[1][0] == '-') { (void) fprintf(stderr, gettext("invalid option '%c'\n"), argv[1][1]); usage(B_FALSE); } /* check number of arguments */ if (argc < 2) { (void) fprintf(stderr, gettext("missing clone filesystem" " argument\n")); usage(B_FALSE); } if (argc > 2) { (void) fprintf(stderr, gettext("too many arguments\n")); usage(B_FALSE); } zhp = zfs_open(g_zfs, argv[1], ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME); if (zhp == NULL) return (1); ret = (zfs_promote(zhp) != 0); zfs_close(zhp); return (ret); } /* * zfs rollback [-rfR] * * -r Delete any intervening snapshots before doing rollback * -R Delete any snapshots and their clones * -f Force unmount filesystems, even if they are in use. * * Given a filesystem, rollback to a specific snapshot, discarding any changes * since then and making it the active dataset. If more recent snapshots exist, * the command will complain unless the '-r' flag is given. */ typedef struct rollback_cbdata { uint64_t cb_create; boolean_t cb_first; int cb_doclones; char *cb_target; int cb_error; boolean_t cb_recurse; boolean_t cb_dependent; } rollback_cbdata_t; /* * Report any snapshots more recent than the one specified. Used when '-r' is * not specified. We reuse this same callback for the snapshot dependents - if * 'cb_dependent' is set, then this is a dependent and we should report it * without checking the transaction group. */ static int rollback_check(zfs_handle_t *zhp, void *data) { rollback_cbdata_t *cbp = data; if (cbp->cb_doclones) { zfs_close(zhp); return (0); } if (!cbp->cb_dependent) { if (strcmp(zfs_get_name(zhp), cbp->cb_target) != 0 && zfs_get_type(zhp) == ZFS_TYPE_SNAPSHOT && zfs_prop_get_int(zhp, ZFS_PROP_CREATETXG) > cbp->cb_create) { if (cbp->cb_first && !cbp->cb_recurse) { (void) fprintf(stderr, gettext("cannot " "rollback to '%s': more recent snapshots " "exist\n"), cbp->cb_target); (void) fprintf(stderr, gettext("use '-r' to " "force deletion of the following " "snapshots:\n")); cbp->cb_first = 0; cbp->cb_error = 1; } if (cbp->cb_recurse) { cbp->cb_dependent = B_TRUE; if (zfs_iter_dependents(zhp, B_TRUE, rollback_check, cbp) != 0) { zfs_close(zhp); return (-1); } cbp->cb_dependent = B_FALSE; } else { (void) fprintf(stderr, "%s\n", zfs_get_name(zhp)); } } } else { if (cbp->cb_first && cbp->cb_recurse) { (void) fprintf(stderr, gettext("cannot rollback to " "'%s': clones of previous snapshots exist\n"), cbp->cb_target); (void) fprintf(stderr, gettext("use '-R' to " "force deletion of the following clones and " "dependents:\n")); cbp->cb_first = 0; cbp->cb_error = 1; } (void) fprintf(stderr, "%s\n", zfs_get_name(zhp)); } zfs_close(zhp); return (0); } static int zfs_do_rollback(int argc, char **argv) { int ret; int c; rollback_cbdata_t cb = { 0 }; zfs_handle_t *zhp, *snap; char parentname[ZFS_MAXNAMELEN]; char *delim; int force = 0; /* check options */ while ((c = getopt(argc, argv, "rfR")) != -1) { switch (c) { case 'f': force = 1; break; case 'r': cb.cb_recurse = 1; break; case 'R': cb.cb_recurse = 1; cb.cb_doclones = 1; break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; /* check number of arguments */ if (argc < 1) { (void) fprintf(stderr, gettext("missing dataset argument\n")); usage(B_FALSE); } if (argc > 1) { (void) fprintf(stderr, gettext("too many arguments\n")); usage(B_FALSE); } /* open the snapshot */ if ((snap = zfs_open(g_zfs, argv[0], ZFS_TYPE_SNAPSHOT)) == NULL) return (1); /* open the parent dataset */ (void) strlcpy(parentname, argv[0], sizeof (parentname)); verify((delim = strrchr(parentname, '@')) != NULL); *delim = '\0'; if ((zhp = zfs_open(g_zfs, parentname, ZFS_TYPE_ANY)) == NULL) { zfs_close(snap); return (1); } /* * Check for more recent snapshots and/or clones based on the presence * of '-r' and '-R'. */ cb.cb_target = argv[0]; cb.cb_create = zfs_prop_get_int(snap, ZFS_PROP_CREATETXG); cb.cb_first = B_TRUE; cb.cb_error = 0; if ((ret = zfs_iter_children(zhp, rollback_check, &cb)) != 0) goto out; if ((ret = cb.cb_error) != 0) goto out; /* * Rollback parent to the given snapshot. */ ret = zfs_rollback(zhp, snap, force); out: zfs_close(snap); zfs_close(zhp); if (ret == 0) return (0); else return (1); } /* * zfs set property=value { fs | snap | vol } ... * * Sets the given property for all datasets specified on the command line. */ typedef struct set_cbdata { char *cb_propname; char *cb_value; } set_cbdata_t; static int set_callback(zfs_handle_t *zhp, void *data) { set_cbdata_t *cbp = data; int ret = 1; if (zfs_prop_set(zhp, cbp->cb_propname, cbp->cb_value) != 0) { switch (libzfs_errno(g_zfs)) { case EZFS_MOUNTFAILED: (void) fprintf(stderr, gettext("property may be set " "but unable to remount filesystem\n")); break; case EZFS_SHAREFAILED: (void) fprintf(stderr, gettext("property may be set " "but unable to reshare filesystem\n")); break; } return (1); } ret = 0; error: return (ret); } static int zfs_do_set(int argc, char **argv) { set_cbdata_t cb; /* check for options */ if (argc > 1 && argv[1][0] == '-') { (void) fprintf(stderr, gettext("invalid option '%c'\n"), argv[1][1]); usage(B_FALSE); } /* check number of arguments */ if (argc < 2) { (void) fprintf(stderr, gettext("missing property=value " "argument\n")); usage(B_FALSE); } if (argc < 3) { (void) fprintf(stderr, gettext("missing dataset name\n")); usage(B_FALSE); } /* validate property=value argument */ cb.cb_propname = argv[1]; if ((cb.cb_value = strchr(cb.cb_propname, '=')) == NULL) { (void) fprintf(stderr, gettext("missing value in " "property=value argument\n")); usage(B_FALSE); } *cb.cb_value = '\0'; cb.cb_value++; if (*cb.cb_propname == '\0') { (void) fprintf(stderr, gettext("missing property in property=value argument\n")); usage(B_FALSE); } return (zfs_for_each(argc - 2, argv + 2, B_FALSE, ZFS_TYPE_ANY, NULL, NULL, set_callback, &cb)); } /* * zfs snapshot [-r] * * Creates a snapshot with the given name. While functionally equivalent to * 'zfs create', it is a separate command to diffferentiate intent. */ static int zfs_do_snapshot(int argc, char **argv) { int recursive = B_FALSE; int ret; char c; /* check options */ while ((c = getopt(argc, argv, ":r")) != -1) { switch (c) { case 'r': recursive = B_TRUE; break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; /* check number of arguments */ if (argc < 1) { (void) fprintf(stderr, gettext("missing snapshot argument\n")); usage(B_FALSE); } if (argc > 1) { (void) fprintf(stderr, gettext("too many arguments\n")); usage(B_FALSE); } ret = zfs_snapshot(g_zfs, argv[0], recursive); if (ret && recursive) (void) fprintf(stderr, gettext("no snapshots were created\n")); return (ret != 0); } /* * zfs send [-i ] * * Send a backup stream to stdout. */ static int zfs_do_send(int argc, char **argv) { char *fromname = NULL; zfs_handle_t *zhp_from = NULL, *zhp_to; int c, err; char fullname[MAXPATHLEN]; /* check options */ while ((c = getopt(argc, argv, ":i:")) != -1) { switch (c) { case 'i': fromname = optarg; break; case ':': (void) fprintf(stderr, gettext("missing argument for " "'%c' option\n"), optopt); usage(B_FALSE); break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; /* check number of arguments */ if (argc < 1) { (void) fprintf(stderr, gettext("missing snapshot argument\n")); usage(B_FALSE); } if (argc > 1) { (void) fprintf(stderr, gettext("too many arguments\n")); usage(B_FALSE); } if (isatty(STDOUT_FILENO)) { (void) fprintf(stderr, gettext("Error: Stream can not be written " "to a terminal.\n" "You must redirect standard output.\n")); return (1); } if ((zhp_to = zfs_open(g_zfs, argv[0], ZFS_TYPE_SNAPSHOT)) == NULL) return (1); if (fromname) { /* * If fromname is an abbreviated snapshot name, * then reconstruct the name of the parent dataset */ if ((strchr(fromname, '@') == NULL) || *fromname == '@') { char *cp; cp = strchr(argv[0], '@'); if (strchr(fromname, '@') == NULL) *(++cp) = '\0'; else *cp = '\0'; (void) strncpy(fullname, argv[0], sizeof (fullname)); (void) strlcat(fullname, fromname, sizeof (fullname)); fromname = fullname; } if ((zhp_from = zfs_open(g_zfs, fromname, ZFS_TYPE_SNAPSHOT)) == NULL) return (1); } err = zfs_send(zhp_to, zhp_from); if (zhp_from) zfs_close(zhp_from); zfs_close(zhp_to); return (err != 0); } /* * zfs receive * * Restore a backup stream from stdin. */ static int zfs_do_receive(int argc, char **argv) { int c, err; boolean_t isprefix = B_FALSE; boolean_t dryrun = B_FALSE; boolean_t verbose = B_FALSE; boolean_t force = B_FALSE; /* check options */ while ((c = getopt(argc, argv, ":dnvF")) != -1) { switch (c) { case 'd': isprefix = B_TRUE; break; case 'n': dryrun = B_TRUE; break; case 'v': verbose = B_TRUE; break; case 'F': force = B_TRUE; break; case ':': (void) fprintf(stderr, gettext("missing argument for " "'%c' option\n"), optopt); usage(B_FALSE); break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; /* check number of arguments */ if (argc < 1) { (void) fprintf(stderr, gettext("missing snapshot argument\n")); usage(B_FALSE); } if (argc > 1) { (void) fprintf(stderr, gettext("too many arguments\n")); usage(B_FALSE); } if (isatty(STDIN_FILENO)) { (void) fprintf(stderr, gettext("Error: Backup stream can not be read " "from a terminal.\n" "You must redirect standard input.\n")); return (1); } err = zfs_receive(g_zfs, argv[0], isprefix, verbose, dryrun, force); return (err != 0); } typedef struct get_all_cbdata { zfs_handle_t **cb_handles; size_t cb_alloc; size_t cb_used; } get_all_cbdata_t; static int get_one_filesystem(zfs_handle_t *zhp, void *data) { get_all_cbdata_t *cbp = data; /* * Skip any zvols */ if (zfs_get_type(zhp) != ZFS_TYPE_FILESYSTEM) { zfs_close(zhp); return (0); } if (cbp->cb_alloc == cbp->cb_used) { zfs_handle_t **handles; if (cbp->cb_alloc == 0) cbp->cb_alloc = 64; else cbp->cb_alloc *= 2; handles = safe_malloc(cbp->cb_alloc * sizeof (void *)); if (cbp->cb_handles) { bcopy(cbp->cb_handles, handles, cbp->cb_used * sizeof (void *)); free(cbp->cb_handles); } cbp->cb_handles = handles; } cbp->cb_handles[cbp->cb_used++] = zhp; return (zfs_iter_filesystems(zhp, get_one_filesystem, data)); } static void get_all_filesystems(zfs_handle_t ***fslist, size_t *count) { get_all_cbdata_t cb = { 0 }; (void) zfs_iter_root(g_zfs, get_one_filesystem, &cb); *fslist = cb.cb_handles; *count = cb.cb_used; } static int mountpoint_compare(const void *a, const void *b) { zfs_handle_t **za = (zfs_handle_t **)a; zfs_handle_t **zb = (zfs_handle_t **)b; char mounta[MAXPATHLEN]; char mountb[MAXPATHLEN]; verify(zfs_prop_get(*za, ZFS_PROP_MOUNTPOINT, mounta, sizeof (mounta), NULL, NULL, 0, B_FALSE) == 0); verify(zfs_prop_get(*zb, ZFS_PROP_MOUNTPOINT, mountb, sizeof (mountb), NULL, NULL, 0, B_FALSE) == 0); return (strcmp(mounta, mountb)); } /* * Generic callback for sharing or mounting filesystems. Because the code is so * similar, we have a common function with an extra parameter to determine which * mode we are using. */ #define OP_SHARE 0x1 #define OP_MOUNT 0x2 typedef struct share_mount_cbdata { int cb_type; int cb_explicit; int cb_flags; const char *cb_options; } share_mount_cbdata_t; /* * Share or mount the filesystem. */ static int share_mount_callback(zfs_handle_t *zhp, void *data) { char mountpoint[ZFS_MAXPROPLEN]; char shareopts[ZFS_MAXPROPLEN]; share_mount_cbdata_t *cbp = data; const char *cmdname = cbp->cb_type == OP_SHARE ? "share" : "mount"; struct mnttab mnt; uint64_t zoned, canmount; if (cbp->cb_options == NULL) mnt.mnt_mntopts = ""; else mnt.mnt_mntopts = (char *)cbp->cb_options; /* * Check to make sure we can mount/share this dataset. If we are in the * global zone and the filesystem is exported to a local zone, or if we * are in a local zone and the filesystem is not exported, then it is an * error. */ zoned = zfs_prop_get_int(zhp, ZFS_PROP_ZONED); if (zoned && getzoneid() == GLOBAL_ZONEID) { if (!cbp->cb_explicit) return (0); (void) fprintf(stderr, gettext("cannot %s '%s': dataset is " "exported to a local zone\n"), cmdname, zfs_get_name(zhp)); return (1); } else if (!zoned && getzoneid() != GLOBAL_ZONEID) { if (!cbp->cb_explicit) return (0); (void) fprintf(stderr, gettext("cannot %s '%s': permission " "denied\n"), cmdname, zfs_get_name(zhp)); return (1); } /* * Inore any filesystems which don't apply to us. This includes those * with a legacy mountpoint, or those with legacy share options. */ verify(zfs_prop_get(zhp, ZFS_PROP_MOUNTPOINT, mountpoint, sizeof (mountpoint), NULL, NULL, 0, B_FALSE) == 0); verify(zfs_prop_get(zhp, ZFS_PROP_SHARENFS, shareopts, sizeof (shareopts), NULL, NULL, 0, B_FALSE) == 0); canmount = zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT); if (cbp->cb_type == OP_SHARE) { if (strcmp(shareopts, "off") == 0) { if (!cbp->cb_explicit) return (0); (void) fprintf(stderr, gettext("cannot share '%s': " "legacy share\n"), zfs_get_name(zhp)); (void) fprintf(stderr, gettext("use share(1M) to " "share this filesystem\n")); return (1); } } /* * We cannot share or mount legacy filesystems. If the shareopts is * non-legacy but the mountpoint is legacy, we treat it as a legacy * share. */ if (strcmp(mountpoint, "legacy") == 0) { if (!cbp->cb_explicit) return (0); (void) fprintf(stderr, gettext("cannot %s '%s': " "legacy mountpoint\n"), cmdname, zfs_get_name(zhp)); (void) fprintf(stderr, gettext("use %s to " "%s this filesystem\n"), cbp->cb_type == OP_SHARE ? "share(1M)" : "mount(1M)", cmdname); return (1); } if (strcmp(mountpoint, "none") == 0) { if (!cbp->cb_explicit) return (0); (void) fprintf(stderr, gettext("cannot %s '%s': no " "mountpoint set\n"), cmdname, zfs_get_name(zhp)); return (1); } if (!canmount) { if (!cbp->cb_explicit) return (0); (void) fprintf(stderr, gettext("cannot %s '%s': 'canmount' " "property is set to 'off'\n"), cmdname, zfs_get_name(zhp)); return (1); } /* * At this point, we have verified that the mountpoint and/or shareopts * are appropriate for auto management. Determine if the filesystem is * currently mounted or shared, and abort if this is an explicit * request. */ switch (cbp->cb_type) { case OP_SHARE: if (zfs_is_shared(zhp, NULL)) { if (cbp->cb_explicit) { (void) fprintf(stderr, gettext("cannot share " "'%s': filesystem already shared\n"), zfs_get_name(zhp)); return (1); } else { return (0); } } break; case OP_MOUNT: if (!hasmntopt(&mnt, MNTOPT_REMOUNT) && zfs_is_mounted(zhp, NULL)) { if (cbp->cb_explicit) { (void) fprintf(stderr, gettext("cannot mount " "'%s': filesystem already mounted\n"), zfs_get_name(zhp)); return (1); } else { return (0); } } break; } /* * Mount and optionally share the filesystem. */ switch (cbp->cb_type) { case OP_SHARE: { if (!zfs_is_mounted(zhp, NULL) && zfs_mount(zhp, NULL, 0) != 0) return (1); if (zfs_share(zhp) != 0) return (1); } break; case OP_MOUNT: if (zfs_mount(zhp, cbp->cb_options, cbp->cb_flags) != 0) return (1); break; } return (0); } static int share_or_mount(int type, int argc, char **argv) { int do_all = 0; int c, ret = 0; share_mount_cbdata_t cb = { 0 }; cb.cb_type = type; /* check options */ while ((c = getopt(argc, argv, type == OP_MOUNT ? ":ao:O" : "a")) != -1) { switch (c) { case 'a': do_all = 1; break; case 'o': cb.cb_options = optarg; break; case 'O': cb.cb_flags |= MS_OVERLAY; break; case ':': (void) fprintf(stderr, gettext("missing argument for " "'%c' option\n"), optopt); usage(B_FALSE); break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; /* check number of arguments */ if (do_all) { zfs_handle_t **fslist = NULL; size_t i, count = 0; if (argc != 0) { (void) fprintf(stderr, gettext("too many arguments\n")); usage(B_FALSE); } get_all_filesystems(&fslist, &count); if (count == 0) return (0); qsort(fslist, count, sizeof (void *), mountpoint_compare); for (i = 0; i < count; i++) { if (share_mount_callback(fslist[i], &cb) != 0) ret = 1; } for (i = 0; i < count; i++) zfs_close(fslist[i]); free(fslist); } else if (argc == 0) { struct mnttab entry; if (type == OP_SHARE) { (void) fprintf(stderr, gettext("missing filesystem " "argument\n")); usage(B_FALSE); } /* * When mount is given no arguments, go through /etc/mnttab and * display any active ZFS mounts. We hide any snapshots, since * they are controlled automatically. */ rewind(mnttab_file); while (getmntent(mnttab_file, &entry) == 0) { if (strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0 || strchr(entry.mnt_special, '@') != NULL) continue; (void) printf("%-30s %s\n", entry.mnt_special, entry.mnt_mountp); } } else { zfs_handle_t *zhp; if (argc > 1) { (void) fprintf(stderr, gettext("too many arguments\n")); usage(B_FALSE); } if ((zhp = zfs_open(g_zfs, argv[0], ZFS_TYPE_FILESYSTEM)) == NULL) ret = 1; else { cb.cb_explicit = B_TRUE; ret = share_mount_callback(zhp, &cb); zfs_close(zhp); } } return (ret); } /* * zfs mount -a * zfs mount filesystem * * Mount all filesystems, or mount the given filesystem. */ static int zfs_do_mount(int argc, char **argv) { return (share_or_mount(OP_MOUNT, argc, argv)); } /* * zfs share -a * zfs share filesystem * * Share all filesystems, or share the given filesystem. */ static int zfs_do_share(int argc, char **argv) { return (share_or_mount(OP_SHARE, argc, argv)); } typedef struct unshare_unmount_node { zfs_handle_t *un_zhp; char *un_mountp; uu_avl_node_t un_avlnode; } unshare_unmount_node_t; /* ARGSUSED */ static int unshare_unmount_compare(const void *larg, const void *rarg, void *unused) { const unshare_unmount_node_t *l = larg; const unshare_unmount_node_t *r = rarg; return (strcmp(l->un_mountp, r->un_mountp)); } /* * Convenience routine used by zfs_do_umount() and manual_unmount(). Given an * absolute path, find the entry /etc/mnttab, verify that its a ZFS filesystem, * and unmount it appropriately. */ static int unshare_unmount_path(int type, char *path, int flags, boolean_t is_manual) { zfs_handle_t *zhp; int ret; struct stat64 statbuf; struct extmnttab entry; const char *cmdname = (type == OP_SHARE) ? "unshare" : "unmount"; char property[ZFS_MAXPROPLEN]; /* * Search for the path in /etc/mnttab. Rather than looking for the * specific path, which can be fooled by non-standard paths (i.e. ".." * or "//"), we stat() the path and search for the corresponding * (major,minor) device pair. */ if (stat64(path, &statbuf) != 0) { (void) fprintf(stderr, gettext("cannot %s '%s': %s\n"), cmdname, path, strerror(errno)); return (1); } /* * Search for the given (major,minor) pair in the mount table. */ rewind(mnttab_file); while ((ret = getextmntent(mnttab_file, &entry, 0)) == 0) { if (entry.mnt_major == major(statbuf.st_dev) && entry.mnt_minor == minor(statbuf.st_dev)) break; } if (ret != 0) { (void) fprintf(stderr, gettext("cannot %s '%s': not " "currently mounted\n"), cmdname, path); return (1); } if (strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0) { (void) fprintf(stderr, gettext("cannot %s '%s': not a ZFS " "filesystem\n"), cmdname, path); return (1); } if ((zhp = zfs_open(g_zfs, entry.mnt_special, ZFS_TYPE_FILESYSTEM)) == NULL) return (1); verify(zfs_prop_get(zhp, type == OP_SHARE ? ZFS_PROP_SHARENFS : ZFS_PROP_MOUNTPOINT, property, sizeof (property), NULL, NULL, 0, B_FALSE) == 0); if (type == OP_SHARE) { if (strcmp(property, "off") == 0) { (void) fprintf(stderr, gettext("cannot unshare " "'%s': legacy share\n"), path); (void) fprintf(stderr, gettext("use " "unshare(1M) to unshare this filesystem\n")); ret = 1; } else if (!zfs_is_shared(zhp, NULL)) { (void) fprintf(stderr, gettext("cannot unshare '%s': " "not currently shared\n"), path); ret = 1; } else { ret = zfs_unshareall(zhp); } } else { if (is_manual) { ret = zfs_unmount(zhp, NULL, flags); } else if (strcmp(property, "legacy") == 0) { (void) fprintf(stderr, gettext("cannot unmount " "'%s': legacy mountpoint\n"), zfs_get_name(zhp)); (void) fprintf(stderr, gettext("use umount(1M) " "to unmount this filesystem\n")); ret = 1; } else { ret = zfs_unmountall(zhp, flags); } } zfs_close(zhp); return (ret != 0); } /* * Generic callback for unsharing or unmounting a filesystem. */ static int unshare_unmount(int type, int argc, char **argv) { int do_all = 0; int flags = 0; int ret = 0; int c; zfs_handle_t *zhp; char property[ZFS_MAXPROPLEN]; /* check options */ while ((c = getopt(argc, argv, type == OP_SHARE ? "a" : "af")) != -1) { switch (c) { case 'a': do_all = 1; break; case 'f': flags = MS_FORCE; break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; /* ensure correct number of arguments */ if (do_all) { if (argc != 0) { (void) fprintf(stderr, gettext("too many arguments\n")); usage(B_FALSE); } } else if (argc != 1) { if (argc == 0) (void) fprintf(stderr, gettext("missing filesystem argument\n")); else (void) fprintf(stderr, gettext("too many arguments\n")); usage(B_FALSE); } if (do_all) { /* * We could make use of zfs_for_each() to walk all datasets in * the system, but this would be very inefficient, especially * since we would have to linearly search /etc/mnttab for each * one. Instead, do one pass through /etc/mnttab looking for * zfs entries and call zfs_unmount() for each one. * * Things get a little tricky if the administrator has created * mountpoints beneath other ZFS filesystems. In this case, we * have to unmount the deepest filesystems first. To accomplish * this, we place all the mountpoints in an AVL tree sorted by * the special type (dataset name), and walk the result in * reverse to make sure to get any snapshots first. */ struct mnttab entry; uu_avl_pool_t *pool; uu_avl_t *tree; unshare_unmount_node_t *node; uu_avl_index_t idx; uu_avl_walk_t *walk; if ((pool = uu_avl_pool_create("unmount_pool", sizeof (unshare_unmount_node_t), offsetof(unshare_unmount_node_t, un_avlnode), unshare_unmount_compare, UU_DEFAULT)) == NULL) { (void) fprintf(stderr, gettext("internal error: " "out of memory\n")); exit(1); } if ((tree = uu_avl_create(pool, NULL, UU_DEFAULT)) == NULL) { (void) fprintf(stderr, gettext("internal error: " "out of memory\n")); exit(1); } rewind(mnttab_file); while (getmntent(mnttab_file, &entry) == 0) { /* ignore non-ZFS entries */ if (strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0) continue; /* ignore snapshots */ if (strchr(entry.mnt_special, '@') != NULL) continue; if ((zhp = zfs_open(g_zfs, entry.mnt_special, ZFS_TYPE_FILESYSTEM)) == NULL) { ret = 1; continue; } verify(zfs_prop_get(zhp, type == OP_SHARE ? ZFS_PROP_SHARENFS : ZFS_PROP_MOUNTPOINT, property, sizeof (property), NULL, NULL, 0, B_FALSE) == 0); /* Ignore legacy mounts and shares */ if ((type == OP_SHARE && strcmp(property, "off") == 0) || (type == OP_MOUNT && strcmp(property, "legacy") == 0)) { zfs_close(zhp); continue; } node = safe_malloc(sizeof (unshare_unmount_node_t)); node->un_zhp = zhp; if ((node->un_mountp = strdup(entry.mnt_mountp)) == NULL) { (void) fprintf(stderr, gettext("internal error:" " out of memory\n")); exit(1); } uu_avl_node_init(node, &node->un_avlnode, pool); if (uu_avl_find(tree, node, NULL, &idx) == NULL) { uu_avl_insert(tree, node, idx); } else { zfs_close(node->un_zhp); free(node->un_mountp); free(node); } } /* * Walk the AVL tree in reverse, unmounting each filesystem and * removing it from the AVL tree in the process. */ if ((walk = uu_avl_walk_start(tree, UU_WALK_REVERSE | UU_WALK_ROBUST)) == NULL) { (void) fprintf(stderr, gettext("internal error: out of memory")); exit(1); } while ((node = uu_avl_walk_next(walk)) != NULL) { uu_avl_remove(tree, node); switch (type) { case OP_SHARE: if (zfs_unshare(node->un_zhp, node->un_mountp) != 0) ret = 1; break; case OP_MOUNT: if (zfs_unmount(node->un_zhp, node->un_mountp, flags) != 0) ret = 1; break; } zfs_close(node->un_zhp); free(node->un_mountp); free(node); } uu_avl_walk_end(walk); uu_avl_destroy(tree); uu_avl_pool_destroy(pool); } else { /* * We have an argument, but it may be a full path or a ZFS * filesystem. Pass full paths off to unmount_path() (shared by * manual_unmount), otherwise open the filesystem and pass to * zfs_unmount(). */ if (argv[0][0] == '/') return (unshare_unmount_path(type, argv[0], flags, B_FALSE)); if ((zhp = zfs_open(g_zfs, argv[0], ZFS_TYPE_FILESYSTEM)) == NULL) return (1); verify(zfs_prop_get(zhp, type == OP_SHARE ? ZFS_PROP_SHARENFS : ZFS_PROP_MOUNTPOINT, property, sizeof (property), NULL, NULL, 0, B_FALSE) == 0); switch (type) { case OP_SHARE: if (strcmp(property, "off") == 0) { (void) fprintf(stderr, gettext("cannot unshare " "'%s': legacy share\n"), zfs_get_name(zhp)); (void) fprintf(stderr, gettext("use unshare(1M)" " to unshare this filesystem\n")); ret = 1; } else if (!zfs_is_shared(zhp, NULL)) { (void) fprintf(stderr, gettext("cannot unshare " "'%s': not currently shared\n"), zfs_get_name(zhp)); ret = 1; } else if (zfs_unshareall(zhp) != 0) { ret = 1; } break; case OP_MOUNT: if (strcmp(property, "legacy") == 0) { (void) fprintf(stderr, gettext("cannot unmount " "'%s': legacy mountpoint\n"), zfs_get_name(zhp)); (void) fprintf(stderr, gettext("use umount(1M) " "to unmount this filesystem\n")); ret = 1; } else if (!zfs_is_mounted(zhp, NULL)) { (void) fprintf(stderr, gettext("cannot unmount " "'%s': not currently mounted\n"), zfs_get_name(zhp)); ret = 1; } else if (zfs_unmountall(zhp, flags) != 0) { ret = 1; } } zfs_close(zhp); } return (ret); } /* * zfs unmount -a * zfs unmount filesystem * * Unmount all filesystems, or a specific ZFS filesystem. */ static int zfs_do_unmount(int argc, char **argv) { return (unshare_unmount(OP_MOUNT, argc, argv)); } /* * zfs unshare -a * zfs unshare filesystem * * Unshare all filesystems, or a specific ZFS filesystem. */ static int zfs_do_unshare(int argc, char **argv) { return (unshare_unmount(OP_SHARE, argc, argv)); } /* * Called when invoked as /etc/fs/zfs/mount. Do the mount if the mountpoint is * 'legacy'. Otherwise, complain that use should be using 'zfs mount'. */ static int manual_mount(int argc, char **argv) { zfs_handle_t *zhp; char mountpoint[ZFS_MAXPROPLEN]; char mntopts[MNT_LINE_MAX] = { '\0' }; int ret; int c; int flags = 0; char *dataset, *path; /* check options */ while ((c = getopt(argc, argv, ":mo:O")) != -1) { switch (c) { case 'o': (void) strlcpy(mntopts, optarg, sizeof (mntopts)); break; case 'O': flags |= MS_OVERLAY; break; case 'm': flags |= MS_NOMNTTAB; break; case ':': (void) fprintf(stderr, gettext("missing argument for " "'%c' option\n"), optopt); usage(B_FALSE); break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); (void) fprintf(stderr, gettext("usage: mount [-o opts] " "\n")); return (2); } } argc -= optind; argv += optind; /* check that we only have two arguments */ if (argc != 2) { if (argc == 0) (void) fprintf(stderr, gettext("missing dataset " "argument\n")); else if (argc == 1) (void) fprintf(stderr, gettext("missing mountpoint argument\n")); else (void) fprintf(stderr, gettext("too many arguments\n")); (void) fprintf(stderr, "usage: mount \n"); return (2); } dataset = argv[0]; path = argv[1]; /* try to open the dataset */ if ((zhp = zfs_open(g_zfs, dataset, ZFS_TYPE_FILESYSTEM)) == NULL) return (1); (void) zfs_prop_get(zhp, ZFS_PROP_MOUNTPOINT, mountpoint, sizeof (mountpoint), NULL, NULL, 0, B_FALSE); /* check for legacy mountpoint and complain appropriately */ ret = 0; if (strcmp(mountpoint, ZFS_MOUNTPOINT_LEGACY) == 0) { if (mount(dataset, path, MS_OPTIONSTR | flags, MNTTYPE_ZFS, NULL, 0, mntopts, sizeof (mntopts)) != 0) { (void) fprintf(stderr, gettext("mount failed: %s\n"), strerror(errno)); ret = 1; } } else { (void) fprintf(stderr, gettext("filesystem '%s' cannot be " "mounted using 'mount -F zfs'\n"), dataset); (void) fprintf(stderr, gettext("Use 'zfs set mountpoint=%s' " "instead.\n"), path); (void) fprintf(stderr, gettext("If you must use 'mount -F zfs' " "or /etc/vfstab, use 'zfs set mountpoint=legacy'.\n")); (void) fprintf(stderr, gettext("See zfs(1M) for more " "information.\n")); ret = 1; } return (ret); } /* * Called when invoked as /etc/fs/zfs/umount. Unlike a manual mount, we allow * unmounts of non-legacy filesystems, as this is the dominant administrative * interface. */ static int manual_unmount(int argc, char **argv) { int flags = 0; int c; /* check options */ while ((c = getopt(argc, argv, "f")) != -1) { switch (c) { case 'f': flags = MS_FORCE; break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); (void) fprintf(stderr, gettext("usage: unmount [-f] " "\n")); return (2); } } argc -= optind; argv += optind; /* check arguments */ if (argc != 1) { if (argc == 0) (void) fprintf(stderr, gettext("missing path " "argument\n")); else (void) fprintf(stderr, gettext("too many arguments\n")); (void) fprintf(stderr, gettext("usage: unmount [-f] \n")); return (2); } return (unshare_unmount_path(OP_MOUNT, argv[0], flags, B_TRUE)); } static int volcheck(zpool_handle_t *zhp, void *data) { int isinit = (int)data; if (isinit) return (zpool_create_zvol_links(zhp)); else return (zpool_remove_zvol_links(zhp)); } /* * Iterate over all pools in the system and either create or destroy /dev/zvol * links, depending on the value of 'isinit'. */ static int do_volcheck(boolean_t isinit) { return (zpool_iter(g_zfs, volcheck, (void *)isinit) ? 1 : 0); } int main(int argc, char **argv) { int ret; int i; char *progname; char *cmdname; (void) setlocale(LC_ALL, ""); (void) textdomain(TEXT_DOMAIN); opterr = 0; if ((g_zfs = libzfs_init()) == NULL) { (void) fprintf(stderr, gettext("internal error: failed to " "initialize ZFS library\n")); return (1); } libzfs_print_on_error(g_zfs, B_TRUE); if ((mnttab_file = fopen(MNTTAB, "r")) == NULL) { (void) fprintf(stderr, gettext("internal error: unable to " "open %s\n"), MNTTAB); return (1); } /* * This command also doubles as the /etc/fs mount and unmount program. * Determine if we should take this behavior based on argv[0]. */ progname = basename(argv[0]); if (strcmp(progname, "mount") == 0) { ret = manual_mount(argc, argv); } else if (strcmp(progname, "umount") == 0) { ret = manual_unmount(argc, argv); } else { /* * Make sure the user has specified some command. */ if (argc < 2) { (void) fprintf(stderr, gettext("missing command\n")); usage(B_FALSE); } cmdname = argv[1]; /* * The 'umount' command is an alias for 'unmount' */ if (strcmp(cmdname, "umount") == 0) cmdname = "unmount"; /* * The 'recv' command is an alias for 'receive' */ if (strcmp(cmdname, "recv") == 0) cmdname = "receive"; /* * Special case '-?' */ if (strcmp(cmdname, "-?") == 0) usage(B_TRUE); /* * 'volinit' and 'volfini' do not appear in the usage message, * so we have to special case them here. */ if (strcmp(cmdname, "volinit") == 0) return (do_volcheck(B_TRUE)); else if (strcmp(cmdname, "volfini") == 0) return (do_volcheck(B_FALSE)); /* * Run the appropriate command. */ for (i = 0; i < NCOMMAND; i++) { if (command_table[i].name == NULL) continue; if (strcmp(cmdname, command_table[i].name) == 0) { current_command = &command_table[i]; ret = command_table[i].func(argc - 1, argv + 1); break; } } if (i == NCOMMAND) { (void) fprintf(stderr, gettext("unrecognized " "command '%s'\n"), cmdname); usage(B_FALSE); } } (void) fclose(mnttab_file); libzfs_fini(g_zfs); /* * The 'ZFS_ABORT' environment variable causes us to dump core on exit * for the purposes of running ::findleaks. */ if (getenv("ZFS_ABORT") != NULL) { (void) printf("dumping core by request\n"); abort(); } return (ret); }