/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #include #include #include #include #include #include #include #include "zfs_util.h" #include "zfs_iter.h" /* * This is a private interface used to gather up all the datasets specified on * the command line so that we can iterate over them in order. * * First, we iterate over all filesystems, gathering them together into an * AVL tree. We report errors for any explicitly specified datasets * that we couldn't open. * * When finished, we have an AVL tree of ZFS handles. We go through and execute * the provided callback for each one, passing whatever data the user supplied. */ typedef struct zfs_node { zfs_handle_t *zn_handle; uu_avl_node_t zn_avlnode; } zfs_node_t; typedef struct callback_data { uu_avl_t *cb_avl; int cb_recurse; zfs_type_t cb_types; zfs_sort_column_t *cb_sortcol; zfs_proplist_t **cb_proplist; } callback_data_t; uu_avl_pool_t *avl_pool; /* * Called for each dataset. If the object the object is of an appropriate type, * add it to the avl tree and recurse over any children as necessary. */ int zfs_callback(zfs_handle_t *zhp, void *data) { callback_data_t *cb = data; int dontclose = 0; /* * If this object is of the appropriate type, add it to the AVL tree. */ if (zfs_get_type(zhp) & cb->cb_types) { uu_avl_index_t idx; zfs_node_t *node = safe_malloc(sizeof (zfs_node_t)); node->zn_handle = zhp; uu_avl_node_init(node, &node->zn_avlnode, avl_pool); if (uu_avl_find(cb->cb_avl, node, cb->cb_sortcol, &idx) == NULL) { if (cb->cb_proplist && zfs_expand_proplist(zhp, cb->cb_proplist) != 0) { free(node); return (-1); } uu_avl_insert(cb->cb_avl, node, idx); dontclose = 1; } else { free(node); } } /* * Recurse if necessary. */ if (cb->cb_recurse && (zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM || (zfs_get_type(zhp) == ZFS_TYPE_VOLUME && (cb->cb_types & ZFS_TYPE_SNAPSHOT)))) (void) zfs_iter_children(zhp, zfs_callback, data); if (!dontclose) zfs_close(zhp); return (0); } int zfs_add_sort_column(zfs_sort_column_t **sc, const char *name, boolean_t reverse) { zfs_sort_column_t *col; zfs_prop_t prop; if ((prop = zfs_name_to_prop(name)) == ZFS_PROP_INVAL && !zfs_prop_user(name)) return (-1); col = safe_malloc(sizeof (zfs_sort_column_t)); col->sc_prop = prop; col->sc_reverse = reverse; if (prop == ZFS_PROP_INVAL) { col->sc_user_prop = safe_malloc(strlen(name) + 1); (void) strcpy(col->sc_user_prop, name); } if (*sc == NULL) { col->sc_last = col; *sc = col; } else { (*sc)->sc_last->sc_next = col; (*sc)->sc_last = col; } return (0); } void zfs_free_sort_columns(zfs_sort_column_t *sc) { zfs_sort_column_t *col; while (sc != NULL) { col = sc->sc_next; free(sc->sc_user_prop); free(sc); sc = col; } } /* ARGSUSED */ static int zfs_compare(const void *larg, const void *rarg, void *unused) { zfs_handle_t *l = ((zfs_node_t *)larg)->zn_handle; zfs_handle_t *r = ((zfs_node_t *)rarg)->zn_handle; const char *lname = zfs_get_name(l); const char *rname = zfs_get_name(r); char *lat, *rat; uint64_t lcreate, rcreate; int ret; lat = (char *)strchr(lname, '@'); rat = (char *)strchr(rname, '@'); if (lat != NULL) *lat = '\0'; if (rat != NULL) *rat = '\0'; ret = strcmp(lname, rname); if (ret == 0) { /* * If we're comparing a dataset to one of its snapshots, we * always make the full dataset first. */ if (lat == NULL) { ret = -1; } else if (rat == NULL) { ret = 1; } else { /* * If we have two snapshots from the same dataset, then * we want to sort them according to creation time. We * use the hidden CREATETXG property to get an absolute * ordering of snapshots. */ lcreate = zfs_prop_get_int(l, ZFS_PROP_CREATETXG); rcreate = zfs_prop_get_int(r, ZFS_PROP_CREATETXG); if (lcreate < rcreate) ret = -1; else if (lcreate > rcreate) ret = 1; } } if (lat != NULL) *lat = '@'; if (rat != NULL) *rat = '@'; return (ret); } /* * Sort datasets by specified columns. * * o Numeric types sort in ascending order. * o String types sort in alphabetical order. * o Types inappropriate for a row sort that row to the literal * bottom, regardless of the specified ordering. * * If no sort columns are specified, or two datasets compare equally * across all specified columns, they are sorted alphabetically by name * with snapshots grouped under their parents. */ static int zfs_sort(const void *larg, const void *rarg, void *data) { zfs_handle_t *l = ((zfs_node_t *)larg)->zn_handle; zfs_handle_t *r = ((zfs_node_t *)rarg)->zn_handle; zfs_sort_column_t *sc = (zfs_sort_column_t *)data; zfs_sort_column_t *psc; for (psc = sc; psc != NULL; psc = psc->sc_next) { char lbuf[ZFS_MAXPROPLEN], rbuf[ZFS_MAXPROPLEN]; char *lstr, *rstr; uint64_t lnum, rnum; boolean_t lvalid, rvalid; int ret = 0; /* * We group the checks below the generic code. If 'lstr' and * 'rstr' are non-NULL, then we do a string based comparison. * Otherwise, we compare 'lnum' and 'rnum'. */ lstr = rstr = NULL; if (psc->sc_prop == ZFS_PROP_INVAL) { nvlist_t *luser, *ruser; nvlist_t *lval, *rval; luser = zfs_get_user_props(l); ruser = zfs_get_user_props(r); lvalid = (nvlist_lookup_nvlist(luser, psc->sc_user_prop, &lval) == 0); rvalid = (nvlist_lookup_nvlist(ruser, psc->sc_user_prop, &rval) == 0); if (lvalid) verify(nvlist_lookup_string(lval, ZFS_PROP_VALUE, &lstr) == 0); if (rvalid) verify(nvlist_lookup_string(rval, ZFS_PROP_VALUE, &rstr) == 0); } else if (zfs_prop_is_string(psc->sc_prop)) { lvalid = (zfs_prop_get(l, psc->sc_prop, lbuf, sizeof (lbuf), NULL, NULL, 0, B_TRUE) == 0); rvalid = (zfs_prop_get(r, psc->sc_prop, rbuf, sizeof (rbuf), NULL, NULL, 0, B_TRUE) == 0); lstr = lbuf; rstr = rbuf; } else { lvalid = zfs_prop_valid_for_type(psc->sc_prop, zfs_get_type(l)); rvalid = zfs_prop_valid_for_type(psc->sc_prop, zfs_get_type(r)); if (lvalid) (void) zfs_prop_get_numeric(l, psc->sc_prop, &lnum, NULL, NULL, 0); if (rvalid) (void) zfs_prop_get_numeric(r, psc->sc_prop, &rnum, NULL, NULL, 0); } if (!lvalid && !rvalid) continue; else if (!lvalid) return (1); else if (!rvalid) return (-1); if (lstr) ret = strcmp(lstr, rstr); if (lnum < rnum) ret = -1; else if (lnum > rnum) ret = 1; if (ret != 0) { if (psc->sc_reverse == B_TRUE) ret = (ret < 0) ? 1 : -1; return (ret); } } return (zfs_compare(larg, rarg, NULL)); } int zfs_for_each(int argc, char **argv, boolean_t recurse, zfs_type_t types, zfs_sort_column_t *sortcol, zfs_proplist_t **proplist, zfs_iter_f callback, void *data) { callback_data_t cb; int ret = 0; zfs_node_t *node; uu_avl_walk_t *walk; avl_pool = uu_avl_pool_create("zfs_pool", sizeof (zfs_node_t), offsetof(zfs_node_t, zn_avlnode), zfs_sort, UU_DEFAULT); if (avl_pool == NULL) { (void) fprintf(stderr, gettext("internal error: out of memory\n")); exit(1); } cb.cb_sortcol = sortcol; cb.cb_recurse = recurse; cb.cb_proplist = proplist; cb.cb_types = types; if ((cb.cb_avl = uu_avl_create(avl_pool, NULL, UU_DEFAULT)) == NULL) { (void) fprintf(stderr, gettext("internal error: out of memory\n")); exit(1); } if (argc == 0) { /* * If given no arguments, iterate over all datasets. */ cb.cb_recurse = 1; ret = zfs_iter_root(g_zfs, zfs_callback, &cb); } else { int i; zfs_handle_t *zhp; zfs_type_t argtype; /* * If we're recursive, then we always allow filesystems as * arguments. If we also are interested in snapshots, then we * can take volumes as well. */ argtype = types; if (recurse) { argtype |= ZFS_TYPE_FILESYSTEM; if (types & ZFS_TYPE_SNAPSHOT) argtype |= ZFS_TYPE_VOLUME; } for (i = 0; i < argc; i++) { if ((zhp = zfs_open(g_zfs, argv[i], argtype)) != NULL) ret |= zfs_callback(zhp, &cb); else ret = 1; } } /* * At this point we've got our AVL tree full of zfs handles, so iterate * over each one and execute the real user callback. */ for (node = uu_avl_first(cb.cb_avl); node != NULL; node = uu_avl_next(cb.cb_avl, node)) ret |= callback(node->zn_handle, data); /* * Finally, clean up the AVL tree. */ if ((walk = uu_avl_walk_start(cb.cb_avl, UU_WALK_ROBUST)) == NULL) { (void) fprintf(stderr, gettext("internal error: out of memory")); exit(1); } while ((node = uu_avl_walk_next(walk)) != NULL) { uu_avl_remove(cb.cb_avl, node); zfs_close(node->zn_handle); free(node); } uu_avl_walk_end(walk); uu_avl_destroy(cb.cb_avl); uu_avl_pool_destroy(avl_pool); return (ret); }