/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #include "lgrp.h" #include <mdb/mdb_modapi.h> #include <sys/cpuvar.h> #include <sys/lgrp.h> #include <sys/cpupart.h> int print_range(int start, int end, int separator) { int count; char tmp; char *format; if (start == end) { /* Unfortunately, mdb_printf returns void */ format = separator ? ", %d" : "%d"; mdb_printf(format, start); count = mdb_snprintf(&tmp, 1, format, start); } else { format = separator ? ", %d-%d" : "%d-%d"; mdb_printf(format, start, end); count = mdb_snprintf(&tmp, 1, format, start, end); } return (count); } void print_cpuset_range(ulong_t *cs, int words, int width) { int i, j; ulong_t m; int in = 0; int start; int end; int count = 0; int sep = 0; for (i = 0; i < words; i++) for (j = 0, m = 1; j < BT_NBIPUL; j++, m <<= 1) if (cs[i] & m) { if (in == 0) { start = i * BT_NBIPUL + j; in = 1; } } else { if (in == 1) { end = i * BT_NBIPUL + j - 1; count += print_range(start, end, sep); sep = 1; in = 0; } } if (in == 1) { end = i * BT_NBIPUL - 1; count += print_range(start, end, sep); } /* * print width - count spaces */ if (width > count) mdb_printf("%*s", width - count, ""); } typedef struct lgrp_cpu_walk { uintptr_t lcw_firstcpu; int lcw_cpusleft; } lgrp_cpu_walk_t; int lgrp_cpulist_walk_init(mdb_walk_state_t *wsp) { lgrp_cpu_walk_t *lcw; lgrp_t lgrp; lcw = mdb_alloc(sizeof (lgrp_cpu_walk_t), UM_SLEEP | UM_GC); if (mdb_vread(&lgrp, sizeof (struct lgrp), wsp->walk_addr) == -1) { mdb_warn("couldn't read 'lgrp' at %p", wsp->walk_addr); return (WALK_ERR); } lcw->lcw_firstcpu = (uintptr_t)lgrp.lgrp_cpu; lcw->lcw_cpusleft = lgrp.lgrp_cpucnt; wsp->walk_data = lcw; wsp->walk_addr = lcw->lcw_firstcpu; return (WALK_NEXT); } int lgrp_cpulist_walk_step(mdb_walk_state_t *wsp) { lgrp_cpu_walk_t *lcw = (lgrp_cpu_walk_t *)wsp->walk_data; uintptr_t addr = (uintptr_t)wsp->walk_addr; cpu_t cpu; int status; if (lcw->lcw_cpusleft-- == 0) return (WALK_DONE); if (mdb_vread(&cpu, sizeof (cpu_t), addr) == -1) { mdb_warn("couldn't read 'cpu' at %p", addr); return (WALK_ERR); } status = wsp->walk_callback(addr, &cpu, wsp->walk_cbdata); if (status != WALK_NEXT) return (status); addr = (uintptr_t)cpu.cpu_next_lgrp; wsp->walk_addr = addr; if (lcw->lcw_cpusleft == NULL && addr != lcw->lcw_firstcpu) { mdb_warn("number of cpus in lgroup cpu != lgroup cpucnt\n"); return (WALK_ERR); } return (WALK_NEXT); } typedef struct lgrp_cpuwalk_cbdata { uint_t lcc_opt_p; uint_t lcc_count; uint_t lcc_used; uint_t *lcc_psrsetid; ulong_t **lcc_cpuset; uint_t *lcc_cpucnt; int *lcc_loadavg; } lgrp_cpuwalk_cbdata_t; /* ARGSUSED */ static int lgrp_cpuwalk_callback(uintptr_t addr, const void *arg, void *cb_data) { cpu_t *cpu = (cpu_t *)arg; lgrp_cpuwalk_cbdata_t *lcc = (lgrp_cpuwalk_cbdata_t *)cb_data; uint_t opt_p = lcc->lcc_opt_p; int offset = 0; /* * if opt_p is set, we're going to break up info for * each lgrp by processor set. */ if (opt_p != 0) { cpupartid_t cp_id; cpupart_t cpupart; lpl_t lpl; if (mdb_vread(&cpupart, sizeof (cpupart_t), (uintptr_t)cpu->cpu_part) == -1) { mdb_warn("cannot read cpu partition at %p", cpu->cpu_part); return (WALK_ERR); } cp_id = cpupart.cp_id; for (offset = 0; offset < lcc->lcc_used; offset++) if (cp_id == lcc->lcc_psrsetid[offset]) { goto found; } if (offset >= lcc->lcc_count) { mdb_warn( "number of cpu partitions changed during walk"); return (WALK_ERR); } lcc->lcc_psrsetid[offset] = cp_id; lcc->lcc_used++; if (mdb_vread(&lpl, sizeof (lpl_t), (uintptr_t)cpu->cpu_lpl) == -1) { mdb_warn("Cannot read lpl at %p", cpu->cpu_lpl); return (WALK_ERR); } lcc->lcc_loadavg[offset] = lpl.lpl_loadavg; } found: lcc->lcc_cpucnt[offset]++; BT_SET(lcc->lcc_cpuset[offset], cpu->cpu_id); return (WALK_NEXT); } /* ARGSUSED */ int lgrp(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { lgrp_t lgrp; lgrp_cpuwalk_cbdata_t lcc; int cpusetsize; int lcpu; /* cpus in lgrp */ int _ncpu; int opt_p = 0; /* display partition fraction loads */ int opt_q = 0; /* display only address. */ int i; const char *s_index = NULL, *s_handle = NULL, *s_parent = NULL; uintptr_t index; uintptr_t handle; uintptr_t parent; int filters = 0; if (!(flags & DCMD_ADDRSPEC)) { if (mdb_walk_dcmd("lgrptbl", "lgrp", argc, argv) == -1) { mdb_warn("can't walk 'lgrps'"); return (DCMD_ERR); } return (DCMD_OK); } if (mdb_getopts(argc, argv, 'p', MDB_OPT_SETBITS, TRUE, &opt_p, 'q', MDB_OPT_SETBITS, TRUE, &opt_q, 'P', MDB_OPT_STR, &s_parent, 'i', MDB_OPT_STR, &s_index, 'h', MDB_OPT_STR, &s_handle, NULL) != argc) return (DCMD_USAGE); if (s_index != NULL) filters++; if (s_handle != NULL) filters++; if (s_parent != NULL) filters++; if (flags & DCMD_PIPE_OUT) opt_q = B_TRUE; if (s_index != NULL) index = mdb_strtoull(s_index); if (s_parent != NULL) parent = mdb_strtoull(s_parent); if (s_handle != NULL) { if (strcmp(s_handle, "NULL") == 0) handle = (uintptr_t)LGRP_NULL_HANDLE; else if (strcmp(s_handle, "DEFAULT") == 0) handle = (uintptr_t)LGRP_DEFAULT_HANDLE; else handle = mdb_strtoull(s_handle); } if (DCMD_HDRSPEC(flags) && !opt_q) { if (opt_p == 0) mdb_printf("%9s %?s %?s %?s %9s %9s\n", "LGRPID", "ADDR", "PARENT", "PLATHAND", "#CPU", "CPUS"); else mdb_printf("%9s %9s %9s %9s %9s\n", "LGRPID", "PSRSETID", "LOAD", "#CPU", "CPUS"); } if (mdb_vread(&lgrp, sizeof (struct lgrp), addr) == -1) { mdb_warn("unable to read 'lgrp' at %p", addr); return (DCMD_ERR); } /* * Do not report free lgrp unless specifically asked for. */ if ((lgrp.lgrp_id == LGRP_NONE) && ((s_index == NULL) || ((int)index != LGRP_NONE))) return (DCMD_OK); /* * If lgrp doesn't pass filtering criteria, don't print anything and * just return. */ if (filters) { if ((s_parent != NULL) && parent != (uintptr_t)lgrp.lgrp_parent) return (DCMD_OK); if ((s_index != NULL) && index != (uintptr_t)lgrp.lgrp_id) return (DCMD_OK); if ((s_handle != NULL) && handle != (uintptr_t)lgrp.lgrp_plathand) return (DCMD_OK); } if (opt_q) { mdb_printf("%0?p\n", addr); return (DCMD_OK); } /* * figure out what cpus we've got */ if (mdb_readsym(&_ncpu, sizeof (int), "_ncpu") == -1) { mdb_warn("symbol '_ncpu' not found"); return (DCMD_ERR); } /* * allocate enough space for set of longs to hold cpuid bitfield */ if (opt_p) lcpu = lgrp.lgrp_cpucnt; else lcpu = 1; cpusetsize = BT_BITOUL(_ncpu) * sizeof (uintptr_t); lcc.lcc_used = 0; lcc.lcc_cpucnt = mdb_zalloc(sizeof (uint_t) * lcpu, UM_SLEEP | UM_GC); lcc.lcc_psrsetid = mdb_zalloc(sizeof (uint_t) * lcpu, UM_SLEEP | UM_GC); lcc.lcc_cpuset = mdb_zalloc(sizeof (uintptr_t) * lcpu, UM_SLEEP | UM_GC); for (i = 0; i < lcpu; i++) lcc.lcc_cpuset[i] = mdb_zalloc(cpusetsize, UM_SLEEP | UM_GC); lcc.lcc_loadavg = mdb_zalloc(sizeof (int) * lcpu, UM_SLEEP | UM_GC); lcc.lcc_count = lcpu; lcc.lcc_opt_p = opt_p; if (mdb_pwalk("lgrp_cpulist", lgrp_cpuwalk_callback, &lcc, addr) == -1) { mdb_warn("unable to walk lgrp_cpulist"); } if (opt_p == 0) { if (lgrp.lgrp_plathand == LGRP_NULL_HANDLE) { mdb_printf("%9d %?p %?p %?s %9d ", lgrp.lgrp_id, addr, lgrp.lgrp_parent, "NULL", lgrp.lgrp_cpucnt); } else if (lgrp.lgrp_plathand == LGRP_DEFAULT_HANDLE) { mdb_printf("%9d %?p %?p %?s %9d ", lgrp.lgrp_id, addr, lgrp.lgrp_parent, "DEFAULT", lgrp.lgrp_cpucnt); } else { mdb_printf("%9d %?p %?p %?p %9d ", lgrp.lgrp_id, addr, lgrp.lgrp_parent, lgrp.lgrp_plathand, lgrp.lgrp_cpucnt); } if (lgrp.lgrp_cpucnt != 0) { print_cpuset_range(lcc.lcc_cpuset[0], cpusetsize/sizeof (ulong_t), 0); } mdb_printf("\n"); } else { for (i = 0; i < lcc.lcc_used; i++) { mdb_printf("%9d %9d %9d %9d ", lgrp.lgrp_id, lcc.lcc_psrsetid[i], lcc.lcc_loadavg[i], lcc.lcc_cpucnt[i]); if (lcc.lcc_cpucnt[i]) print_cpuset_range(lcc.lcc_cpuset[i], cpusetsize/sizeof (ulong_t), 0); mdb_printf("\n"); } } return (DCMD_OK); } typedef struct lgrp_walk_data { int lwd_nlgrps; uintptr_t *lwd_lgrp_tbl; int lwd_iter; } lgrp_walk_data_t; int lgrp_walk_init(mdb_walk_state_t *wsp) { lgrp_walk_data_t *lwd; GElf_Sym sym; lwd = mdb_zalloc(sizeof (lgrp_walk_data_t), UM_SLEEP | UM_GC); if (mdb_readsym(&lwd->lwd_nlgrps, sizeof (int), "lgrp_alloc_max") == -1) { mdb_warn("symbol 'lgrp_alloc_max' not found"); return (WALK_ERR); } if (lwd->lwd_nlgrps < 0) { mdb_warn("lgrp_alloc_max of bounds (%d)\n", lwd->lwd_nlgrps); return (WALK_ERR); } lwd->lwd_nlgrps++; if (mdb_lookup_by_name("lgrp_table", &sym) == -1) { mdb_warn("failed to find 'lgrp_table'"); return (WALK_ERR); } /* Get number of valid entries in lgrp_table */ if (sym.st_size < lwd->lwd_nlgrps * sizeof (lgrp_t *)) { mdb_warn("lgrp_table size inconsistent with lgrp_alloc_max"); return (WALK_ERR); } lwd->lwd_lgrp_tbl = mdb_alloc(sym.st_size, UM_SLEEP | UM_GC); if (mdb_readsym(lwd->lwd_lgrp_tbl, lwd->lwd_nlgrps * sizeof (lgrp_t *), "lgrp_table") == -1) { mdb_warn("unable to read lgrp_table"); return (WALK_ERR); } wsp->walk_data = lwd; wsp->walk_addr = lwd->lwd_lgrp_tbl[0]; return (WALK_NEXT); } /* * Common routine for several walkers. * Read lgroup from wsp->walk_addr and call wsp->walk_callback for it. * Normally returns the result of the callback. * Returns WALK_DONE if walk_addr is NULL and WALK_ERR if cannot read the * lgroup. */ static int lgrp_walk_step_common(mdb_walk_state_t *wsp) { lgrp_t lgrp; if (wsp->walk_addr == NULL) return (WALK_DONE); if (mdb_vread(&lgrp, sizeof (lgrp_t), wsp->walk_addr) == -1) { mdb_warn("unable to read lgrp at %p", wsp->walk_addr); return (WALK_ERR); } return (wsp->walk_callback(wsp->walk_addr, &lgrp, wsp->walk_cbdata)); } /* * Get one lgroup from the lgroup table and adjust lwd_iter to point to the next * one. */ int lgrp_walk_step(mdb_walk_state_t *wsp) { lgrp_walk_data_t *lwd = wsp->walk_data; int status = lgrp_walk_step_common(wsp); if (status == WALK_NEXT) { lwd->lwd_iter++; if (lwd->lwd_iter >= lwd->lwd_nlgrps) { status = WALK_DONE; } else { wsp->walk_addr = lwd->lwd_lgrp_tbl[lwd->lwd_iter]; if (wsp->walk_addr == NULL) { mdb_warn("NULL lgrp pointer in lgrp_table[%d]", lwd->lwd_iter); return (WALK_ERR); } } } return (status); } /* * Initialize walker to traverse parents of lgroups. Nothing to do here. */ /* ARGSUSED */ int lgrp_parents_walk_init(mdb_walk_state_t *wsp) { return (WALK_NEXT); } /* * Call wsp callback on current lgroup in wsp and replace the lgroup with its * parent. */ int lgrp_parents_walk_step(mdb_walk_state_t *wsp) { lgrp_t lgrp; int status; if (wsp->walk_addr == NULL) return (WALK_DONE); if (mdb_vread(&lgrp, sizeof (struct lgrp), wsp->walk_addr) == -1) { mdb_warn("couldn't read 'lgrp' at %p", wsp->walk_addr); return (WALK_ERR); } status = wsp->walk_callback(wsp->walk_addr, &lgrp, wsp->walk_cbdata); if (status == WALK_NEXT) wsp->walk_addr = (uintptr_t)lgrp.lgrp_parent; return (status); } /* * Given the set return the ID of the first member of the set. * Returns LGRP_NONE if the set has no elements smaller than max_lgrp. */ static lgrp_id_t lgrp_set_get_first(klgrpset_t set, int max_lgrp) { lgrp_id_t id; klgrpset_t bit = 1; if (set == (klgrpset_t)0) return (LGRP_NONE); for (id = 0; (id < max_lgrp) && !(set & bit); id++, bit <<= 1) ; if (id >= max_lgrp) id = LGRP_NONE; return (id); } /* * lgrp_set_walk_data is used to walk lgroups specified by a set. * On every iteration one element is removed from the set. */ typedef struct lgrp_set_walk_data { int lswd_nlgrps; /* Number of lgroups */ uintptr_t *lwsd_lgrp_tbl; /* Full lgroup table */ klgrpset_t lwsd_set; /* Set of lgroups to walk */ } lgrp_set_walk_data_t; /* * Initialize iterator for walkers over a set of lgroups */ static int lgrp_set_walk_init(mdb_walk_state_t *wsp, klgrpset_t set) { lgrp_set_walk_data_t *lwsd; int nlgrps; lgrp_id_t id; GElf_Sym sym; /* Nothing to do if the set is empty */ if (set == (klgrpset_t)0) return (WALK_DONE); lwsd = mdb_zalloc(sizeof (lgrp_set_walk_data_t), UM_SLEEP | UM_GC); /* Get the total number of lgroups */ if (mdb_readsym(&nlgrps, sizeof (int), "lgrp_alloc_max") == -1) { mdb_warn("symbol 'lgrp_alloc_max' not found"); return (WALK_ERR); } if (nlgrps < 0) { mdb_warn("lgrp_alloc_max of bounds (%d)\n", nlgrps); return (WALK_ERR); } nlgrps++; /* Find ID of the first lgroup in the set */ if ((id = lgrp_set_get_first(set, nlgrps)) == LGRP_NONE) { mdb_warn("No set elements within %d lgroups\n", nlgrps); return (WALK_ERR); } /* Read lgroup_table and copy it to lwsd_lgrp_tbl */ if (mdb_lookup_by_name("lgrp_table", &sym) == -1) { mdb_warn("failed to find 'lgrp_table'"); return (WALK_ERR); } /* Get number of valid entries in lgrp_table */ if (sym.st_size < nlgrps * sizeof (lgrp_t *)) { mdb_warn("lgrp_table size inconsistent with lgrp_alloc_max"); return (WALK_ERR); } lwsd->lwsd_lgrp_tbl = mdb_alloc(sym.st_size, UM_SLEEP | UM_GC); lwsd->lswd_nlgrps = nlgrps; if (mdb_readsym(lwsd->lwsd_lgrp_tbl, nlgrps * sizeof (lgrp_t *), "lgrp_table") == -1) { mdb_warn("unable to read lgrp_table"); return (WALK_ERR); } wsp->walk_data = lwsd; /* Save the first lgroup from the set and remove it from the set */ wsp->walk_addr = lwsd->lwsd_lgrp_tbl[id]; lwsd->lwsd_set = set & ~(1 << id); return (WALK_NEXT); } /* * Get current lgroup and advance the lgroup to the next one in the lwsd_set. */ int lgrp_set_walk_step(mdb_walk_state_t *wsp) { lgrp_id_t id = 0; lgrp_set_walk_data_t *lwsd = wsp->walk_data; int status = lgrp_walk_step_common(wsp); if (status == WALK_NEXT) { id = lgrp_set_get_first(lwsd->lwsd_set, lwsd->lswd_nlgrps); if (id == LGRP_NONE) { status = WALK_DONE; } else { /* Move to the next lgroup in the set */ wsp->walk_addr = lwsd->lwsd_lgrp_tbl[id]; /* Remove id from the set */ lwsd->lwsd_set = lwsd->lwsd_set & ~(1 << id); } } return (status); } /* * Initialize resource walker for a given lgroup and resource. The lgroup * address is specified in walk_addr. */ static int lgrp_rsrc_walk_init(mdb_walk_state_t *wsp, int resource) { lgrp_t lgrp; if (mdb_vread(&lgrp, sizeof (struct lgrp), wsp->walk_addr) == -1) { mdb_warn("couldn't read 'lgrp' at %p", wsp->walk_addr); return (WALK_ERR); } return (lgrp_set_walk_init(wsp, lgrp.lgrp_set[resource])); } /* * Initialize CPU resource walker */ int lgrp_rsrc_cpu_walk_init(mdb_walk_state_t *wsp) { return (lgrp_rsrc_walk_init(wsp, LGRP_RSRC_CPU)); } /* * Initialize memory resource walker */ int lgrp_rsrc_mem_walk_init(mdb_walk_state_t *wsp) { return (lgrp_rsrc_walk_init(wsp, LGRP_RSRC_MEM)); } /* * Display bitmap as a list of integers */ /* ARGSUSED */ int lgrp_set(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { uint64_t set = (uint64_t)addr; uint64_t mask = 1; int i = 0; if (!(flags & DCMD_ADDRSPEC)) { return (DCMD_USAGE); } if (set == 0) return (DCMD_OK); for (; set != (uint64_t)0; i++, mask <<= 1) { if (set & mask) { mdb_printf("%d ", i); set &= ~mask; } } mdb_printf("\n"); return (DCMD_OK); }