/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2016 Toomas Soome * Copyright 2010 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * Copyright (c) 2013, Joyent, Inc. All rights reserved. * Copyright (c) 2015 by Delphix. All rights reserved. */ /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ /* All Rights Reserved */ /* * University Copyright- Copyright (c) 1982, 1986, 1988 * The Regents of the University of California * All Rights Reserved * * University Acknowledgment- Portions of this document are derived from * software developed by the University of California, Berkeley, and its * contributors. * Portions contributed by Juergen Keil, . */ /* * Common code for halt(1M), poweroff(1M), and reboot(1M). We use * argv[0] to determine which behavior to exhibit. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(__x86) #include #endif #if !defined(TEXT_DOMAIN) #define TEXT_DOMAIN "SYS_TEST" #endif #if defined(__sparc) #define CUR_ELFDATA ELFDATA2MSB #elif defined(__x86) #define CUR_ELFDATA ELFDATA2LSB #endif static libzfs_handle_t *g_zfs; extern int audit_halt_setup(int, char **); extern int audit_halt_success(void); extern int audit_halt_fail(void); extern int audit_reboot_setup(void); extern int audit_reboot_success(void); extern int audit_reboot_fail(void); static char *cmdname; /* basename(argv[0]), the name of the command */ typedef struct ctidlist_struct { ctid_t ctid; struct ctidlist_struct *next; } ctidlist_t; static ctidlist_t *ctidlist = NULL; static ctid_t startdct = -1; #define FMRI_STARTD_CONTRACT \ "svc:/system/svc/restarter:default/:properties/restarter/contract" #define BEADM_PROG "/usr/sbin/beadm" #define BOOTADM_PROG "/sbin/bootadm" #define ZONEADM_PROG "/usr/sbin/zoneadm" /* * The length of FASTBOOT_MOUNTPOINT must be less than MAXPATHLEN. */ #define FASTBOOT_MOUNTPOINT "/tmp/.fastboot.root" /* * Fast Reboot related variables */ static char fastboot_mounted[MAXPATHLEN]; #if defined(__x86) static char *fbarg; static char *fbarg_used; static int fbarg_entnum = BE_ENTRY_DEFAULT; #endif /* __x86 */ static int validate_ufs_disk(char *, char *); static int validate_zfs_pool(char *, char *); static pid_t get_initpid() { static int init_pid = -1; if (init_pid == -1) { if (zone_getattr(getzoneid(), ZONE_ATTR_INITPID, &init_pid, sizeof (init_pid)) != sizeof (init_pid)) { assert(errno == ESRCH); init_pid = -1; } } return (init_pid); } /* * Quiesce or resume init using /proc. When stopping init, we can't send * SIGTSTP (since init ignores it) or SIGSTOP (since the kernel won't permit * it). */ static int direct_init(long command) { char ctlfile[MAXPATHLEN]; pid_t pid; int ctlfd; assert(command == PCDSTOP || command == PCRUN); if ((pid = get_initpid()) == -1) { return (-1); } (void) snprintf(ctlfile, sizeof (ctlfile), "/proc/%d/ctl", pid); if ((ctlfd = open(ctlfile, O_WRONLY)) == -1) return (-1); if (command == PCDSTOP) { if (write(ctlfd, &command, sizeof (long)) == -1) { (void) close(ctlfd); return (-1); } } else { /* command == PCRUN */ long cmds[2]; cmds[0] = command; cmds[1] = 0; if (write(ctlfd, cmds, sizeof (cmds)) == -1) { (void) close(ctlfd); return (-1); } } (void) close(ctlfd); return (0); } static void stop_startd() { scf_handle_t *h; scf_property_t *prop = NULL; scf_value_t *val = NULL; uint64_t uint64; if ((h = scf_handle_create(SCF_VERSION)) == NULL) return; if ((scf_handle_bind(h) != 0) || ((prop = scf_property_create(h)) == NULL) || ((val = scf_value_create(h)) == NULL)) goto out; if (scf_handle_decode_fmri(h, FMRI_STARTD_CONTRACT, NULL, NULL, NULL, NULL, prop, SCF_DECODE_FMRI_EXACT) != 0) goto out; if (scf_property_is_type(prop, SCF_TYPE_COUNT) != 0 || scf_property_get_value(prop, val) != 0 || scf_value_get_count(val, &uint64) != 0) goto out; startdct = (ctid_t)uint64; (void) sigsend(P_CTID, startdct, SIGSTOP); out: scf_property_destroy(prop); scf_value_destroy(val); scf_handle_destroy(h); } static void continue_startd() { if (startdct != -1) (void) sigsend(P_CTID, startdct, SIGCONT); } #define FMRI_RESTARTER_PROP "/:properties/general/restarter" #define FMRI_CONTRACT_PROP "/:properties/restarter/contract" static int save_ctid(ctid_t ctid) { ctidlist_t *next; for (next = ctidlist; next != NULL; next = next->next) if (next->ctid == ctid) return (-1); next = (ctidlist_t *)malloc(sizeof (ctidlist_t)); if (next == NULL) return (-1); next->ctid = ctid; next->next = ctidlist; ctidlist = next; return (0); } static void stop_delegates() { ctid_t ctid; scf_handle_t *h; scf_scope_t *sc = NULL; scf_service_t *svc = NULL; scf_instance_t *inst = NULL; scf_snapshot_t *snap = NULL; scf_snapshot_t *isnap = NULL; scf_propertygroup_t *pg = NULL; scf_property_t *prop = NULL; scf_value_t *val = NULL; scf_iter_t *siter = NULL; scf_iter_t *iiter = NULL; char *fmri; ssize_t length; uint64_t uint64; ssize_t bytes; length = scf_limit(SCF_LIMIT_MAX_FMRI_LENGTH); if (length <= 0) return; length++; fmri = alloca(length * sizeof (char)); if ((h = scf_handle_create(SCF_VERSION)) == NULL) return; if (scf_handle_bind(h) != 0) { scf_handle_destroy(h); return; } if ((sc = scf_scope_create(h)) == NULL || (svc = scf_service_create(h)) == NULL || (inst = scf_instance_create(h)) == NULL || (snap = scf_snapshot_create(h)) == NULL || (pg = scf_pg_create(h)) == NULL || (prop = scf_property_create(h)) == NULL || (val = scf_value_create(h)) == NULL || (siter = scf_iter_create(h)) == NULL || (iiter = scf_iter_create(h)) == NULL) goto out; if (scf_handle_get_scope(h, SCF_SCOPE_LOCAL, sc) != 0) goto out; if (scf_iter_scope_services(siter, sc) != 0) goto out; while (scf_iter_next_service(siter, svc) == 1) { if (scf_iter_service_instances(iiter, svc) != 0) continue; while (scf_iter_next_instance(iiter, inst) == 1) { if ((scf_instance_get_snapshot(inst, "running", snap)) != 0) isnap = NULL; else isnap = snap; if (scf_instance_get_pg_composed(inst, isnap, SCF_PG_GENERAL, pg) != 0) continue; if (scf_pg_get_property(pg, SCF_PROPERTY_RESTARTER, prop) != 0 || scf_property_get_value(prop, val) != 0) continue; bytes = scf_value_get_astring(val, fmri, length); if (bytes <= 0 || bytes >= length) continue; if (strlcat(fmri, FMRI_CONTRACT_PROP, length) >= length) continue; if (scf_handle_decode_fmri(h, fmri, NULL, NULL, NULL, NULL, prop, SCF_DECODE_FMRI_EXACT) != 0) continue; if (scf_property_is_type(prop, SCF_TYPE_COUNT) != 0 || scf_property_get_value(prop, val) != 0 || scf_value_get_count(val, &uint64) != 0) continue; ctid = (ctid_t)uint64; if (save_ctid(ctid) == 0) { (void) sigsend(P_CTID, ctid, SIGSTOP); } } } out: scf_scope_destroy(sc); scf_service_destroy(svc); scf_instance_destroy(inst); scf_snapshot_destroy(snap); scf_pg_destroy(pg); scf_property_destroy(prop); scf_value_destroy(val); scf_iter_destroy(siter); scf_iter_destroy(iiter); (void) scf_handle_unbind(h); scf_handle_destroy(h); } static void continue_delegates() { ctidlist_t *next; for (next = ctidlist; next != NULL; next = next->next) (void) sigsend(P_CTID, next->ctid, SIGCONT); } #define FMRI_GDM "svc:/application/graphical-login/gdm:default" #define GDM_STOP_TIMEOUT 10 /* Give gdm 10 seconds to shut down */ /* * If gdm is running, try to stop gdm. * Returns 0 on success, -1 on failure. */ static int stop_gdm() { char *gdm_state = NULL; int retry = 0; /* * If gdm is running, try to stop gdm. */ while ((gdm_state = smf_get_state(FMRI_GDM)) != NULL && strcmp(gdm_state, SCF_STATE_STRING_ONLINE) == 0 && retry++ < GDM_STOP_TIMEOUT) { free(gdm_state); /* * Only need to disable once. */ if (retry == 1 && smf_disable_instance(FMRI_GDM, SMF_TEMPORARY) != 0) { (void) fprintf(stderr, gettext("%s: Failed to stop %s: %s.\n"), cmdname, FMRI_GDM, scf_strerror(scf_error())); return (-1); } (void) sleep(1); } if (retry >= GDM_STOP_TIMEOUT) { (void) fprintf(stderr, gettext("%s: Failed to stop %s.\n"), cmdname, FMRI_GDM); return (-1); } return (0); } static void stop_restarters() { stop_startd(); stop_delegates(); } static void continue_restarters() { continue_startd(); continue_delegates(); } /* * Copy an array of strings into buf, separated by spaces. Returns 0 on * success. */ static int gather_args(char **args, char *buf, size_t buf_sz) { if (strlcpy(buf, *args, buf_sz) >= buf_sz) return (-1); for (++args; *args != NULL; ++args) { if (strlcat(buf, " ", buf_sz) >= buf_sz) return (-1); if (strlcat(buf, *args, buf_sz) >= buf_sz) return (-1); } return (0); } /* * Halt every zone on the system. We are committed to doing a shutdown * even if something goes wrong here. If something goes wrong, we just * continue with the shutdown. Return non-zero if we need to wait for zones to * halt later on. */ static int halt_zones() { pid_t pid; zoneid_t *zones; size_t nz = 0, old_nz; int i; char zname[ZONENAME_MAX]; /* * Get a list of zones. If the number of zones changes in between the * two zone_list calls, try again. */ for (;;) { (void) zone_list(NULL, &nz); if (nz == 1) return (0); old_nz = nz; zones = calloc(sizeof (zoneid_t), nz); if (zones == NULL) { (void) fprintf(stderr, gettext("%s: Could not halt zones" " (out of memory).\n"), cmdname); return (0); } (void) zone_list(zones, &nz); if (old_nz == nz) break; free(zones); } if (nz == 2) { (void) fprintf(stderr, gettext("%s: Halting 1 zone.\n"), cmdname); } else { (void) fprintf(stderr, gettext("%s: Halting %i zones.\n"), cmdname, nz - 1); } for (i = 0; i < nz; i++) { if (zones[i] == GLOBAL_ZONEID) continue; if (getzonenamebyid(zones[i], zname, sizeof (zname)) < 0) { /* * getzonenamebyid should only fail if we raced with * another process trying to shut down the zone. * We assume this happened and ignore the error. */ if (errno != EINVAL) { (void) fprintf(stderr, gettext("%s: Unexpected error while " "looking up zone %ul: %s.\n"), cmdname, zones[i], strerror(errno)); } continue; } pid = fork(); if (pid < 0) { (void) fprintf(stderr, gettext("%s: Zone \"%s\" could not be" " halted (could not fork(): %s).\n"), cmdname, zname, strerror(errno)); continue; } if (pid == 0) { (void) execl(ZONEADM_PROG, ZONEADM_PROG, "-z", zname, "halt", NULL); (void) fprintf(stderr, gettext("%s: Zone \"%s\" could not be halted" " (cannot exec(" ZONEADM_PROG "): %s).\n"), cmdname, zname, strerror(errno)); exit(0); } } return (1); } /* * This function tries to wait for all non-global zones to go away. * It will timeout if no progress is made for 5 seconds, or a total of * 30 seconds elapses. */ static void check_zones_haltedness() { int t = 0, t_prog = 0; size_t nz = 0, last_nz; do { last_nz = nz; (void) zone_list(NULL, &nz); if (nz == 1) return; (void) sleep(1); if (last_nz > nz) t_prog = 0; t++; t_prog++; if (t == 10) { if (nz == 2) { (void) fprintf(stderr, gettext("%s: Still waiting for 1 zone to " "halt. Will wait up to 20 seconds.\n"), cmdname); } else { (void) fprintf(stderr, gettext("%s: Still waiting for %i zones " "to halt. Will wait up to 20 seconds.\n"), cmdname, nz - 1); } } } while ((t < 30) && (t_prog < 5)); } /* * Validate that this is a root disk or dataset * Returns 0 if it is a root disk or dataset; * returns 1 if it is a disk argument or dataset, but not valid or not root; * returns -1 if it is not a valid argument or a disk argument. */ static int validate_disk(char *arg, char *mountpoint) { static char root_dev_path[] = "/dev/dsk"; char kernpath[MAXPATHLEN]; struct stat64 statbuf; int rc = 0; if (strlen(arg) > MAXPATHLEN) { (void) fprintf(stderr, gettext("%s: Argument is too long\n"), cmdname); return (-1); } bcopy(FASTBOOT_MOUNTPOINT, mountpoint, sizeof (FASTBOOT_MOUNTPOINT)); if (strstr(arg, mountpoint) == NULL) { /* * Do a force umount just in case some other filesystem has * been mounted there. */ (void) umount2(mountpoint, MS_FORCE); } /* Create the directory if it doesn't already exist */ if (lstat64(mountpoint, &statbuf) != 0) { if (mkdirp(mountpoint, 0755) != 0) { (void) fprintf(stderr, gettext("Failed to create mountpoint %s\n"), mountpoint); return (-1); } } if (strncmp(arg, root_dev_path, strlen(root_dev_path)) == 0) { /* ufs root disk argument */ rc = validate_ufs_disk(arg, mountpoint); } else { /* zfs root pool argument */ rc = validate_zfs_pool(arg, mountpoint); } if (rc != 0) return (rc); /* * Check for the usual case: 64-bit kernel */ (void) snprintf(kernpath, MAXPATHLEN, "%s/platform/i86pc/kernel/amd64/unix", mountpoint); if (stat64(kernpath, &statbuf) == 0) return (0); /* * We no longer build 32-bit kernel but in a case we are trying to boot * some ancient filesystem with 32-bit only kernel we should be able to * proceed too */ (void) snprintf(kernpath, MAXPATHLEN, "%s/platform/i86pc/kernel/unix", mountpoint); if (stat64(kernpath, &statbuf) != 0) { (void) fprintf(stderr, gettext("%s: %s is not a root disk or dataset\n"), cmdname, arg); return (1); } return (0); } static int validate_ufs_disk(char *arg, char *mountpoint) { struct ufs_args ufs_args = { 0 }; char mntopts[MNT_LINE_MAX] = MNTOPT_LARGEFILES; /* perform the mount */ ufs_args.flags = UFSMNT_LARGEFILES; if (mount(arg, mountpoint, MS_DATA|MS_OPTIONSTR, MNTTYPE_UFS, &ufs_args, sizeof (ufs_args), mntopts, sizeof (mntopts)) != 0) { perror(cmdname); (void) fprintf(stderr, gettext("%s: Failed to mount %s\n"), cmdname, arg); return (-1); } return (0); } static int validate_zfs_pool(char *arg, char *mountpoint) { zfs_handle_t *zhp = NULL; char mntopts[MNT_LINE_MAX] = { '\0' }; int rc = 0; if ((g_zfs = libzfs_init()) == NULL) { (void) fprintf(stderr, gettext("Internal error: failed to " "initialize ZFS library\n")); return (-1); } /* Try to open the dataset */ if ((zhp = zfs_open(g_zfs, arg, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_DATASET)) == NULL) return (-1); /* perform the mount */ if (mount(zfs_get_name(zhp), mountpoint, MS_DATA|MS_OPTIONSTR|MS_RDONLY, MNTTYPE_ZFS, NULL, 0, mntopts, sizeof (mntopts)) != 0) { perror(cmdname); (void) fprintf(stderr, gettext("%s: Failed to mount %s\n"), cmdname, arg); rc = -1; } validate_zfs_err_out: if (zhp != NULL) zfs_close(zhp); libzfs_fini(g_zfs); return (rc); } /* * Return 0 if not zfs, or is zfs and have successfully constructed the * boot argument; returns non-zero otherwise. * At successful completion fpth contains pointer where mount point ends. * NOTE: arg is supposed to be the resolved path */ static int get_zfs_bootfs_arg(const char *arg, const char ** fpth, int *is_zfs, char *bootfs_arg) { zfs_handle_t *zhp = NULL; zpool_handle_t *zpoolp = NULL; FILE *mtabp = NULL; struct mnttab mnt; char *poolname = NULL; char physpath[MAXPATHLEN]; char mntsp[ZFS_MAX_DATASET_NAME_LEN]; char bootfs[ZFS_MAX_DATASET_NAME_LEN]; int rc = 0; size_t mntlen = 0; size_t msz; static char fmt[] = "-B zfs-bootfs=%s,bootpath=\"%s\""; *fpth = arg; *is_zfs = 0; bzero(physpath, sizeof (physpath)); bzero(bootfs, sizeof (bootfs)); if ((mtabp = fopen(MNTTAB, "r")) == NULL) { return (-1); } while (getmntent(mtabp, &mnt) == 0) { if (strstr(arg, mnt.mnt_mountp) == arg && (msz = strlen(mnt.mnt_mountp)) > mntlen) { mntlen = msz; *is_zfs = strcmp(MNTTYPE_ZFS, mnt.mnt_fstype) == 0; (void) strlcpy(mntsp, mnt.mnt_special, sizeof (mntsp)); } } (void) fclose(mtabp); if (mntlen > 1) *fpth += mntlen; if (!*is_zfs) return (0); if ((g_zfs = libzfs_init()) == NULL) return (-1); /* Try to open the dataset */ if ((zhp = zfs_open(g_zfs, mntsp, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_DATASET)) == NULL) { (void) fprintf(stderr, gettext("Cannot open %s\n"), mntsp); rc = -1; goto validate_zfs_err_out; } (void) strlcpy(bootfs, mntsp, sizeof (bootfs)); if ((poolname = strtok(mntsp, "/")) == NULL) { rc = -1; goto validate_zfs_err_out; } if ((zpoolp = zpool_open(g_zfs, poolname)) == NULL) { (void) fprintf(stderr, gettext("Cannot open %s\n"), poolname); rc = -1; goto validate_zfs_err_out; } if (zpool_get_physpath(zpoolp, physpath, sizeof (physpath)) != 0) { (void) fprintf(stderr, gettext("Cannot find phys_path\n")); rc = -1; goto validate_zfs_err_out; } /* * For the mirror physpath would contain the list of all * bootable devices, pick up the first one. */ (void) strtok(physpath, " "); if (snprintf(bootfs_arg, BOOTARGS_MAX, fmt, bootfs, physpath) >= BOOTARGS_MAX) { rc = E2BIG; (void) fprintf(stderr, gettext("Boot arguments are too long\n")); } validate_zfs_err_out: if (zhp != NULL) zfs_close(zhp); if (zpoolp != NULL) zpool_close(zpoolp); libzfs_fini(g_zfs); return (rc); } /* * Validate that the file exists, and is an ELF file. * Returns 0 on success, -1 on failure. */ static int validate_unix(char *arg, int *mplen, int *is_zfs, char *bootfs_arg) { const char *location; int class, format; unsigned char ident[EI_NIDENT]; char physpath[MAXPATHLEN]; int elffd = -1; size_t sz; if ((sz = resolvepath(arg, physpath, sizeof (physpath) - 1)) == (size_t)-1) { (void) fprintf(stderr, gettext("Cannot resolve path for %s: %s\n"), arg, strerror(errno)); return (-1); } (void) strlcpy(arg, physpath, sz + 1); if (strlen(arg) > MAXPATHLEN) { (void) fprintf(stderr, gettext("%s: New kernel name is too long\n"), cmdname); return (-1); } if (strncmp(basename(arg), "unix", 4) != 0) { (void) fprintf(stderr, gettext("%s: %s: Kernel name must be unix\n"), cmdname, arg); return (-1); } if (get_zfs_bootfs_arg(arg, &location, is_zfs, bootfs_arg) != 0) goto err_out; *mplen = location - arg; if (strstr(location, "/boot/platform") == location) { /* * Rebooting to failsafe. * Clear bootfs_arg and is_zfs flag. */ bootfs_arg[0] = 0; *is_zfs = 0; } else if (strstr(location, "/platform") != location) { (void) fprintf(stderr, gettext("%s: %s: No /platform in file name\n"), cmdname, arg); goto err_out; } if ((elffd = open64(arg, O_RDONLY)) < 0 || (pread64(elffd, ident, EI_NIDENT, 0) != EI_NIDENT)) { (void) fprintf(stderr, "%s: %s: %s\n", cmdname, arg, strerror(errno)); goto err_out; } class = ident[EI_CLASS]; if ((class != ELFCLASS32 && class != ELFCLASS64) || memcmp(&ident[EI_MAG0], ELFMAG, 4) != 0) { (void) fprintf(stderr, gettext("%s: %s: Not a valid ELF file\n"), cmdname, arg); goto err_out; } format = ident[EI_DATA]; if (format != CUR_ELFDATA) { (void) fprintf(stderr, gettext("%s: %s: Invalid data format\n"), cmdname, arg); goto err_out; } return (0); err_out: if (elffd >= 0) { (void) close(elffd); elffd = -1; } return (-1); } static int halt_exec(const char *path, ...) { pid_t pid; int i; int st; const char *arg; va_list vp; const char *argv[256]; if ((pid = fork()) == -1) { return (errno); } else if (pid == 0) { (void) fclose(stdout); (void) fclose(stderr); argv[0] = path; i = 1; va_start(vp, path); do { arg = va_arg(vp, const char *); argv[i] = arg; } while (arg != NULL && ++i != sizeof (argv) / sizeof (argv[0])); va_end(vp); (void) execve(path, (char * const *)argv, NULL); (void) fprintf(stderr, gettext("Cannot execute %s: %s\n"), path, strerror(errno)); exit(-1); } else { if (waitpid(pid, &st, 0) == pid && !WIFSIGNALED(st) && WIFEXITED(st)) st = WEXITSTATUS(st); else st = -1; } return (st); } /* * Mount the specified BE. * * Upon success returns zero and copies bename string to mountpoint[] */ static int fastboot_bename(const char *bename, char *mountpoint, size_t mpsz) { int rc; /* * Attempt to unmount the BE first in case it's already mounted * elsewhere. */ (void) halt_exec(BEADM_PROG, "umount", bename, NULL); if ((rc = halt_exec(BEADM_PROG, "mount", bename, FASTBOOT_MOUNTPOINT, NULL)) != 0) (void) fprintf(stderr, gettext("%s: Unable to mount BE \"%s\" at %s\n"), cmdname, bename, FASTBOOT_MOUNTPOINT); else (void) strlcpy(mountpoint, FASTBOOT_MOUNTPOINT, mpsz); return (rc); } /* * Returns 0 on successful parsing of the arguments; * returns EINVAL on parsing failures that should abort the reboot attempt; * returns other error code to fall back to regular reboot. */ static int parse_fastboot_args(char *bootargs_buf, size_t buf_size, int *is_dryrun, const char *bename) { char mountpoint[MAXPATHLEN]; char bootargs_saved[BOOTARGS_MAX]; char bootargs_scratch[BOOTARGS_MAX]; char bootfs_arg[BOOTARGS_MAX]; char unixfile[BOOTARGS_MAX]; char *head, *newarg; int buflen; /* length of the bootargs_buf */ int mplen; /* length of the mount point */ int rootlen = 0; /* length of the root argument */ int unixlen = 0; /* length of the unix argument */ int off = 0; /* offset into the new boot argument */ int is_zfs = 0; int rc = 0; bzero(mountpoint, sizeof (mountpoint)); /* * If argc is not 0, buflen is length of the argument being passed in; * else it is 0 as bootargs_buf has been initialized to all 0's. */ buflen = strlen(bootargs_buf); /* Save a copy of the original argument */ bcopy(bootargs_buf, bootargs_saved, buflen); bzero(&bootargs_saved[buflen], sizeof (bootargs_saved) - buflen); /* Save another copy to be used by strtok */ bcopy(bootargs_buf, bootargs_scratch, buflen); bzero(&bootargs_scratch[buflen], sizeof (bootargs_scratch) - buflen); head = &bootargs_scratch[0]; /* Get the first argument */ newarg = strtok(bootargs_scratch, " "); /* * If this is a dry run request, verify that the drivers can handle * fast reboot. */ if (newarg && strncasecmp(newarg, "dryrun", strlen("dryrun")) == 0) { *is_dryrun = 1; (void) system("/usr/sbin/devfsadm"); } /* * Always perform a dry run to identify all the drivers that * need to implement devo_reset(). */ if (uadmin(A_SHUTDOWN, AD_FASTREBOOT_DRYRUN, (uintptr_t)bootargs_saved) != 0) { (void) fprintf(stderr, gettext("%s: Not all drivers " "have implemented quiesce(9E)\n" "\tPlease see /var/adm/messages for drivers that haven't\n" "\timplemented quiesce(9E).\n"), cmdname); } else if (*is_dryrun) { (void) fprintf(stderr, gettext("%s: All drivers have " "implemented quiesce(9E)\n"), cmdname); } /* Return if it is a true dry run. */ if (*is_dryrun) return (rc); #if defined(__x86) /* Read boot args from Boot Environment */ if ((bootargs_buf[0] == 0 || isdigit(bootargs_buf[0])) && bename == NULL) { /* * If no boot arguments are given, or a BE entry * number is provided, process the boot arguments from BE. */ int entnum; if (bootargs_buf[0] == 0) entnum = BE_ENTRY_DEFAULT; else { errno = 0; entnum = strtoul(bootargs_buf, NULL, 10); rc = errno; } if (rc == 0 && (rc = be_get_boot_args(&fbarg, entnum)) == 0) { if (strlcpy(bootargs_buf, fbarg, buf_size) >= buf_size) { free(fbarg); bcopy(bootargs_saved, bootargs_buf, buf_size); rc = E2BIG; } } /* Failed to read FB args, fall back to normal reboot */ if (rc != 0) { (void) fprintf(stderr, gettext("%s: Failed to process boot " "arguments from Boot Environment.\n"), cmdname); (void) fprintf(stderr, gettext("%s: Falling back to regular reboot.\n"), cmdname); return (-1); } /* No need to process further */ fbarg_used = fbarg; fbarg_entnum = entnum; return (0); } #endif /* __x86 */ /* Zero out the boot argument buffer as we will reconstruct it */ bzero(bootargs_buf, buf_size); bzero(bootfs_arg, sizeof (bootfs_arg)); bzero(unixfile, sizeof (unixfile)); if (bename && (rc = fastboot_bename(bename, mountpoint, sizeof (mountpoint))) != 0) return (EINVAL); /* * If BE is not specified, look for disk argument to construct * mountpoint; if BE has been specified, mountpoint has already been * constructed. */ if (newarg && newarg[0] != '-' && !bename) { int tmprc; if ((tmprc = validate_disk(newarg, mountpoint)) == 0) { /* * The first argument is a valid root argument. * Get the next argument. */ newarg = strtok(NULL, " "); rootlen = (newarg) ? (newarg - head) : buflen; (void) strlcpy(fastboot_mounted, mountpoint, sizeof (fastboot_mounted)); } else if (tmprc == -1) { /* * Not a disk argument. Use / as default root. */ bcopy("/", mountpoint, 1); bzero(&mountpoint[1], sizeof (mountpoint) - 1); } else { /* * Disk argument, but not valid or not root. * Return failure. */ return (EINVAL); } } /* * Make mountpoint the first part of unixfile. * If there is not disk argument, and BE has not been specified, * mountpoint could be empty. */ mplen = strlen(mountpoint); bcopy(mountpoint, unixfile, mplen); /* * Look for unix argument */ if (newarg && newarg[0] != '-') { bcopy(newarg, &unixfile[mplen], strlen(newarg)); newarg = strtok(NULL, " "); rootlen = (newarg) ? (newarg - head) : buflen; } else if (mplen != 0) { /* * No unix argument, but mountpoint is not empty, use * /platform/i86pc/kernel/$ISADIR/unix as default. */ char isa[20]; if (sysinfo(SI_ARCHITECTURE_64, isa, sizeof (isa)) != -1) (void) snprintf(&unixfile[mplen], sizeof (unixfile) - mplen, "/platform/i86pc/kernel/%s/unix", isa); else if (sysinfo(SI_ARCHITECTURE_32, isa, sizeof (isa)) != -1) { (void) snprintf(&unixfile[mplen], sizeof (unixfile) - mplen, "/platform/i86pc/kernel/unix"); } else { (void) fprintf(stderr, gettext("%s: Unknown architecture"), cmdname); return (EINVAL); } } /* * We now have the complete unix argument. Verify that it exists and * is an ELF file. Split the argument up into mountpoint and unix * portions again. This is necessary to handle cases where mountpoint * is specified on the command line as part of the unix argument, * such as this: * # reboot -f /.alt/platform/i86pc/kernel/amd64/unix */ unixlen = strlen(unixfile); if (unixlen > 0) { if (validate_unix(unixfile, &mplen, &is_zfs, bootfs_arg) != 0) { /* Not a valid unix file */ return (EINVAL); } else { int space = 0; /* * Construct boot argument. */ unixlen = strlen(unixfile); /* * mdep cannot start with space because bootadm * creates bogus menu entries if it does. */ if (mplen > 0) { bcopy(unixfile, bootargs_buf, mplen); (void) strcat(bootargs_buf, " "); space = 1; } bcopy(&unixfile[mplen], &bootargs_buf[mplen + space], unixlen - mplen); (void) strcat(bootargs_buf, " "); off += unixlen + space + 1; } } else { /* Check to see if root is zfs */ const char *dp; (void) get_zfs_bootfs_arg("/", &dp, &is_zfs, bootfs_arg); } if (is_zfs && (buflen != 0 || bename != NULL)) { /* do not copy existing zfs boot args */ if (strstr(&bootargs_saved[rootlen], "-B") == NULL || strstr(&bootargs_saved[rootlen], "zfs-bootfs=") == NULL || (strstr(&bootargs_saved[rootlen], "bootpath=") == NULL && strstr(&bootargs_saved[rootlen], "diskdevid=") == NULL)) /* LINTED E_SEC_SPRINTF_UNBOUNDED_COPY */ off += sprintf(bootargs_buf + off, "%s ", bootfs_arg); } /* * Copy the rest of the arguments */ bcopy(&bootargs_saved[rootlen], &bootargs_buf[off], buflen - rootlen); return (rc); } #define MAXARGS 5 static void do_archives_update(int do_fast_reboot) { int r, i = 0; pid_t pid; char *cmd_argv[MAXARGS]; cmd_argv[i++] = "/sbin/bootadm"; cmd_argv[i++] = "-ea"; cmd_argv[i++] = "update_all"; if (do_fast_reboot) cmd_argv[i++] = "fastboot"; cmd_argv[i] = NULL; r = posix_spawn(&pid, cmd_argv[0], NULL, NULL, cmd_argv, NULL); /* if posix_spawn fails we emit a warning and continue */ if (r != 0) (void) fprintf(stderr, gettext("%s: WARNING, unable to start " "boot archive update\n"), cmdname); else while (waitpid(pid, NULL, 0) == -1 && errno == EINTR) ; } int main(int argc, char *argv[]) { int qflag = 0, needlog = 1, nosync = 0; int fast_reboot = 0; int prom_reboot = 0; uintptr_t mdep = NULL; int cmd, fcn, c, aval, r; const char *usage; const char *optstring; zoneid_t zoneid = getzoneid(); int need_check_zones = 0; char bootargs_buf[BOOTARGS_MAX]; char *bootargs_orig = NULL; char *bename = NULL; const char * const resetting = "/etc/svc/volatile/resetting"; (void) setlocale(LC_ALL, ""); (void) textdomain(TEXT_DOMAIN); cmdname = basename(argv[0]); if (strcmp(cmdname, "halt") == 0) { (void) audit_halt_setup(argc, argv); optstring = "dlnqy"; usage = gettext("usage: %s [ -dlnqy ]\n"); cmd = A_SHUTDOWN; fcn = AD_HALT; } else if (strcmp(cmdname, "poweroff") == 0) { (void) audit_halt_setup(argc, argv); optstring = "dlnqy"; usage = gettext("usage: %s [ -dlnqy ]\n"); cmd = A_SHUTDOWN; fcn = AD_POWEROFF; } else if (strcmp(cmdname, "reboot") == 0) { (void) audit_reboot_setup(); #if defined(__x86) optstring = "dlnqpfe:"; usage = gettext("usage: %s [ -dlnq(p|fe:) ] [ boot args ]\n"); #else optstring = "dlnqfp"; usage = gettext("usage: %s [ -dlnq(p|f) ] [ boot args ]\n"); #endif cmd = A_SHUTDOWN; fcn = AD_BOOT; } else { (void) fprintf(stderr, gettext("%s: not installed properly\n"), cmdname); return (1); } while ((c = getopt(argc, argv, optstring)) != EOF) { switch (c) { case 'd': if (zoneid == GLOBAL_ZONEID) cmd = A_DUMP; else { (void) fprintf(stderr, gettext("%s: -d only valid from global" " zone\n"), cmdname); return (1); } break; case 'l': needlog = 0; break; case 'n': nosync = 1; break; case 'q': qflag = 1; break; case 'y': /* * Option ignored for backwards compatibility. */ break; case 'f': fast_reboot = 1; break; case 'p': prom_reboot = 1; break; #if defined(__x86) case 'e': bename = optarg; break; #endif default: /* * TRANSLATION_NOTE * Don't translate the words "halt" or "reboot" */ (void) fprintf(stderr, usage, cmdname); return (1); } } argc -= optind; argv += optind; if (argc != 0) { if (fcn != AD_BOOT) { (void) fprintf(stderr, usage, cmdname); return (1); } /* Gather the arguments into bootargs_buf. */ if (gather_args(argv, bootargs_buf, sizeof (bootargs_buf)) != 0) { (void) fprintf(stderr, gettext("%s: Boot arguments too long.\n"), cmdname); return (1); } bootargs_orig = strdup(bootargs_buf); mdep = (uintptr_t)bootargs_buf; } else { /* * Initialize it to 0 in case of fastboot, the buffer * will be used. */ bzero(bootargs_buf, sizeof (bootargs_buf)); } if (geteuid() != 0) { (void) fprintf(stderr, gettext("%s: permission denied\n"), cmdname); goto fail; } if (fast_reboot && prom_reboot) { (void) fprintf(stderr, gettext("%s: -p and -f are mutually exclusive\n"), cmdname); return (EINVAL); } /* * Check whether fast reboot is the default operating mode */ if (fcn == AD_BOOT && !fast_reboot && !prom_reboot && zoneid == GLOBAL_ZONEID) { fast_reboot = scf_is_fastboot_default(); } if (bename && !fast_reboot) { (void) fprintf(stderr, gettext("%s: -e only valid with -f\n"), cmdname); return (EINVAL); } #if defined(__sparc) if (fast_reboot) { fast_reboot = 2; /* need to distinguish each case */ } #endif /* * If fast reboot, do some sanity check on the argument */ if (fast_reboot == 1) { int rc; int is_dryrun = 0; if (zoneid != GLOBAL_ZONEID) { (void) fprintf(stderr, gettext("%s: Fast reboot only valid from global" " zone\n"), cmdname); return (EINVAL); } rc = parse_fastboot_args(bootargs_buf, sizeof (bootargs_buf), &is_dryrun, bename); /* * If dry run, or if arguments are invalid, return. */ if (is_dryrun) return (rc); else if (rc == EINVAL) goto fail; else if (rc != 0) fast_reboot = 0; /* * For all the other errors, we continue on in case user * user want to force fast reboot, or fall back to regular * reboot. */ if (strlen(bootargs_buf) != 0) mdep = (uintptr_t)bootargs_buf; } #if 0 /* For debugging */ if (mdep != NULL) (void) fprintf(stderr, "mdep = %s\n", (char *)mdep); #endif if (needlog) { char *user = getlogin(); struct passwd *pw; char *tty; openlog(cmdname, 0, LOG_AUTH); if (user == NULL && (pw = getpwuid(getuid())) != NULL) user = pw->pw_name; if (user == NULL) user = "root"; tty = ttyname(1); if (tty == NULL) syslog(LOG_CRIT, "initiated by %s", user); else syslog(LOG_CRIT, "initiated by %s on %s", user, tty); } /* * We must assume success and log it before auditd is terminated. */ if (fcn == AD_BOOT) aval = audit_reboot_success(); else aval = audit_halt_success(); if (aval == -1) { (void) fprintf(stderr, gettext("%s: can't turn off auditd\n"), cmdname); if (needlog) (void) sleep(5); /* Give syslogd time to record this */ } (void) signal(SIGHUP, SIG_IGN); /* for remote connections */ /* * We start to fork a bunch of zoneadms to halt any active zones. * This will proceed with halt in parallel until we call * check_zone_haltedness later on. */ if (zoneid == GLOBAL_ZONEID && cmd != A_DUMP) { need_check_zones = halt_zones(); } #if defined(__x86) /* set new default entry in the GRUB entry */ if (fbarg_entnum != BE_ENTRY_DEFAULT) { char buf[32]; (void) snprintf(buf, sizeof (buf), "default=%u", fbarg_entnum); (void) halt_exec(BOOTADM_PROG, "set-menu", buf, NULL); } #endif /* __x86 */ /* if we're dumping, do the archive update here and don't defer it */ if (cmd == A_DUMP && zoneid == GLOBAL_ZONEID && !nosync) do_archives_update(fast_reboot); /* * If we're not forcing a crash dump, mark the system as quiescing for * smf(5)'s benefit, and idle the init process. */ if (cmd != A_DUMP) { if (direct_init(PCDSTOP) == -1) { /* * TRANSLATION_NOTE * Don't translate the word "init" */ (void) fprintf(stderr, gettext("%s: can't idle init\n"), cmdname); goto fail; } if (creat(resetting, 0755) == -1) (void) fprintf(stderr, gettext("%s: could not create %s.\n"), cmdname, resetting); } /* * Make sure we don't get stopped by a jobcontrol shell * once we start killing everybody. */ (void) signal(SIGTSTP, SIG_IGN); (void) signal(SIGTTIN, SIG_IGN); (void) signal(SIGTTOU, SIG_IGN); (void) signal(SIGPIPE, SIG_IGN); (void) signal(SIGTERM, SIG_IGN); /* * Try to stop gdm so X has a chance to return the screen and * keyboard to a sane state. */ if (fast_reboot == 1 && stop_gdm() != 0) { (void) fprintf(stderr, gettext("%s: Falling back to regular reboot.\n"), cmdname); fast_reboot = 0; mdep = (uintptr_t)bootargs_orig; } else if (bootargs_orig) { free(bootargs_orig); } if (cmd != A_DUMP) { /* * Stop all restarters so they do not try to restart services * that are terminated. */ stop_restarters(); /* * Wait a little while for zones to shutdown. */ if (need_check_zones) { check_zones_haltedness(); (void) fprintf(stderr, gettext("%s: Completing system halt.\n"), cmdname); } } /* * If we're not forcing a crash dump, give everyone 5 seconds to * handle a SIGTERM and clean up properly. */ if (cmd != A_DUMP) { int start, end, delta; (void) kill(-1, SIGTERM); start = time(NULL); if (zoneid == GLOBAL_ZONEID && !nosync) do_archives_update(fast_reboot); end = time(NULL); delta = end - start; if (delta < 5) (void) sleep(5 - delta); } (void) signal(SIGINT, SIG_IGN); if (!qflag && !nosync) { struct utmpx wtmpx; bzero(&wtmpx, sizeof (struct utmpx)); (void) strcpy(wtmpx.ut_line, "~"); (void) time(&wtmpx.ut_tv.tv_sec); if (cmd == A_DUMP) (void) strcpy(wtmpx.ut_name, "crash dump"); else (void) strcpy(wtmpx.ut_name, "shutdown"); (void) updwtmpx(WTMPX_FILE, &wtmpx); sync(); } if (cmd == A_DUMP && nosync != 0) (void) uadmin(A_DUMP, AD_NOSYNC, NULL); if (fast_reboot) fcn = AD_FASTREBOOT; if (uadmin(cmd, fcn, mdep) == -1) (void) fprintf(stderr, "%s: uadmin failed: %s\n", cmdname, strerror(errno)); else (void) fprintf(stderr, "%s: uadmin unexpectedly returned 0\n", cmdname); do { r = remove(resetting); } while (r != 0 && errno == EINTR); if (r != 0 && errno != ENOENT) (void) fprintf(stderr, gettext("%s: could not remove %s.\n"), cmdname, resetting); if (direct_init(PCRUN) == -1) { /* * TRANSLATION_NOTE * Don't translate the word "init" */ (void) fprintf(stderr, gettext("%s: can't resume init\n"), cmdname); } continue_restarters(); if (get_initpid() != -1) /* tell init to restate current level */ (void) kill(get_initpid(), SIGHUP); fail: if (fcn == AD_BOOT) (void) audit_reboot_fail(); else (void) audit_halt_fail(); if (fast_reboot == 1) { if (bename) { (void) halt_exec(BEADM_PROG, "umount", bename, NULL); } else if (strlen(fastboot_mounted) != 0) { (void) umount(fastboot_mounted); #if defined(__x86) } else { free(fbarg_used); #endif /* __x86 */ } } return (1); }