/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ /* All Rights Reserved */ /* * Portions of this source code were derived from Berkeley 4.3 BSD * under license from the Regents of the University of California. */ /* * UNIX machine dependent virtual memory support. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include uint_t page_colors = 0; uint_t page_colors_mask = 0; uint_t page_coloring_shift = 0; int consistent_coloring; int update_proc_pgcolorbase_after_fork = 1; uint_t mmu_page_sizes = MMU_PAGE_SIZES; uint_t max_mmu_page_sizes = MMU_PAGE_SIZES; uint_t mmu_hashcnt = MAX_HASHCNT; uint_t max_mmu_hashcnt = MAX_HASHCNT; size_t mmu_ism_pagesize = DEFAULT_ISM_PAGESIZE; /* * A bitmask of the page sizes supported by hardware based upon szc. * The base pagesize (p_szc == 0) must always be supported by the hardware. */ int mmu_exported_pagesize_mask; uint_t mmu_exported_page_sizes; uint_t szc_2_userszc[MMU_PAGE_SIZES]; uint_t userszc_2_szc[MMU_PAGE_SIZES]; extern uint_t vac_colors_mask; extern int vac_shift; hw_pagesize_t hw_page_array[] = { {MMU_PAGESIZE, MMU_PAGESHIFT, 0, MMU_PAGESIZE >> MMU_PAGESHIFT}, {MMU_PAGESIZE64K, MMU_PAGESHIFT64K, 0, MMU_PAGESIZE64K >> MMU_PAGESHIFT}, {MMU_PAGESIZE512K, MMU_PAGESHIFT512K, 0, MMU_PAGESIZE512K >> MMU_PAGESHIFT}, {MMU_PAGESIZE4M, MMU_PAGESHIFT4M, 0, MMU_PAGESIZE4M >> MMU_PAGESHIFT}, {MMU_PAGESIZE32M, MMU_PAGESHIFT32M, 0, MMU_PAGESIZE32M >> MMU_PAGESHIFT}, {MMU_PAGESIZE256M, MMU_PAGESHIFT256M, 0, MMU_PAGESIZE256M >> MMU_PAGESHIFT}, {0, 0, 0, 0} }; /* * Maximum page size used to map 64-bit memory segment kmem64_base..kmem64_end */ int max_bootlp_tteszc = TTE256M; /* * Maximum and default segment size tunables for user heap, stack, private * and shared anonymous memory, and user text and initialized data. */ size_t max_uheap_lpsize = MMU_PAGESIZE64K; size_t default_uheap_lpsize = MMU_PAGESIZE64K; size_t max_ustack_lpsize = MMU_PAGESIZE64K; size_t default_ustack_lpsize = MMU_PAGESIZE64K; size_t max_privmap_lpsize = MMU_PAGESIZE64K; size_t max_uidata_lpsize = MMU_PAGESIZE64K; size_t max_utext_lpsize = MMU_PAGESIZE4M; size_t max_shm_lpsize = MMU_PAGESIZE4M; /* * Contiguous memory allocator data structures and variables. * * The sun4v kernel must provide a means to allocate physically * contiguous, non-relocatable memory. The contig_mem_arena * and contig_mem_slab_arena exist for this purpose. Allocations * that require physically contiguous non-relocatable memory should * be made using contig_mem_alloc() or contig_mem_alloc_align() * which return memory from contig_mem_arena or contig_mem_reloc_arena. * These arenas import memory from the contig_mem_slab_arena one * contiguous chunk at a time. * * When importing slabs, an attempt is made to allocate a large page * to use as backing. As a result of the non-relocatable requirement, * slabs are allocated from the kernel cage freelists. If the cage does * not contain any free contiguous chunks large enough to satisfy the * slab allocation, the slab size will be downsized and the operation * retried. Large slab sizes are tried first to minimize cage * fragmentation. If the slab allocation is unsuccessful still, the slab * is allocated from outside the kernel cage. This is undesirable because, * until slabs are freed, it results in non-relocatable chunks scattered * throughout physical memory. * * Allocations from the contig_mem_arena are backed by slabs from the * cage. Allocations from the contig_mem_reloc_arena are backed by * slabs allocated outside the cage. Slabs are left share locked while * in use to prevent non-cage slabs from being relocated. * * Since there is no guarantee that large pages will be available in * the kernel cage, contiguous memory is reserved and added to the * contig_mem_arena at boot time, making it available for later * contiguous memory allocations. This reserve will be used to satisfy * contig_mem allocations first and it is only when the reserve is * completely allocated that new slabs will need to be imported. */ static vmem_t *contig_mem_slab_arena; static vmem_t *contig_mem_arena; static vmem_t *contig_mem_reloc_arena; static kmutex_t contig_mem_lock; static kmutex_t contig_mem_sleep_lock; #define CONTIG_MEM_ARENA_QUANTUM 64 #define CONTIG_MEM_SLAB_ARENA_QUANTUM MMU_PAGESIZE64K /* contig_mem_arena import slab sizes, in decreasing size order */ static size_t contig_mem_import_sizes[] = { MMU_PAGESIZE4M, MMU_PAGESIZE512K, MMU_PAGESIZE64K }; #define NUM_IMPORT_SIZES \ (sizeof (contig_mem_import_sizes) / sizeof (size_t)) static size_t contig_mem_import_size_max = MMU_PAGESIZE4M; size_t contig_mem_slab_size = MMU_PAGESIZE4M; /* Boot-time allocated buffer to pre-populate the contig_mem_arena */ static size_t contig_mem_prealloc_size; static void *contig_mem_prealloc_buf; /* * map_addr_proc() is the routine called when the system is to * choose an address for the user. We will pick an address * range which is just below the current stack limit. The * algorithm used for cache consistency on machines with virtual * address caches is such that offset 0 in the vnode is always * on a shm_alignment'ed aligned address. Unfortunately, this * means that vnodes which are demand paged will not be mapped * cache consistently with the executable images. When the * cache alignment for a given object is inconsistent, the * lower level code must manage the translations so that this * is not seen here (at the cost of efficiency, of course). * * Every mapping will have a redzone of a single page on either side of * the request. This is done to leave one page unmapped between segments. * This is not required, but it's useful for the user because if their * program strays across a segment boundary, it will catch a fault * immediately making debugging a little easier. Currently the redzone * is mandatory. * * addrp is a value/result parameter. * On input it is a hint from the user to be used in a completely * machine dependent fashion. For MAP_ALIGN, addrp contains the * minimal alignment, which must be some "power of two" multiple of * pagesize. * * On output it is NULL if no address can be found in the current * processes address space or else an address that is currently * not mapped for len bytes with a page of red zone on either side. * If vacalign is true, then the selected address will obey the alignment * constraints of a vac machine based on the given off value. */ /*ARGSUSED3*/ void map_addr_proc(caddr_t *addrp, size_t len, offset_t off, int vacalign, caddr_t userlimit, struct proc *p, uint_t flags) { struct as *as = p->p_as; caddr_t addr; caddr_t base; size_t slen; uintptr_t align_amount; int allow_largepage_alignment = 1; base = p->p_brkbase; if (userlimit < as->a_userlimit) { /* * This happens when a program wants to map something in * a range that's accessible to a program in a smaller * address space. For example, a 64-bit program might * be calling mmap32(2) to guarantee that the returned * address is below 4Gbytes. */ ASSERT(userlimit > base); slen = userlimit - base; } else { slen = p->p_usrstack - base - (((size_t)rctl_enforced_value( rctlproc_legacy[RLIMIT_STACK], p->p_rctls, p) + PAGEOFFSET) & PAGEMASK); } /* Make len be a multiple of PAGESIZE */ len = (len + PAGEOFFSET) & PAGEMASK; /* * If the request is larger than the size of a particular * mmu level, then we use that level to map the request. * But this requires that both the virtual and the physical * addresses be aligned with respect to that level, so we * do the virtual bit of nastiness here. * * For 32-bit processes, only those which have specified * MAP_ALIGN or an addr will be aligned on a page size > 4MB. Otherwise * we can potentially waste up to 256MB of the 4G process address * space just for alignment. * * XXXQ Should iterate trough hw_page_array here to catch * all supported pagesizes */ if (p->p_model == DATAMODEL_ILP32 && ((flags & MAP_ALIGN) == 0 || ((uintptr_t)*addrp) != 0)) { allow_largepage_alignment = 0; } if ((mmu_page_sizes == max_mmu_page_sizes) && allow_largepage_alignment && (len >= MMU_PAGESIZE256M)) { /* 256MB mappings */ align_amount = MMU_PAGESIZE256M; } else if ((mmu_page_sizes == max_mmu_page_sizes) && allow_largepage_alignment && (len >= MMU_PAGESIZE32M)) { /* 32MB mappings */ align_amount = MMU_PAGESIZE32M; } else if (len >= MMU_PAGESIZE4M) { /* 4MB mappings */ align_amount = MMU_PAGESIZE4M; } else if (len >= MMU_PAGESIZE512K) { /* 512KB mappings */ align_amount = MMU_PAGESIZE512K; } else if (len >= MMU_PAGESIZE64K) { /* 64KB mappings */ align_amount = MMU_PAGESIZE64K; } else { /* * Align virtual addresses on a 64K boundary to ensure * that ELF shared libraries are mapped with the appropriate * alignment constraints by the run-time linker. */ align_amount = ELF_SPARC_MAXPGSZ; if ((flags & MAP_ALIGN) && ((uintptr_t)*addrp != 0) && ((uintptr_t)*addrp < align_amount)) align_amount = (uintptr_t)*addrp; } /* * 64-bit processes require 1024K alignment of ELF shared libraries. */ if (p->p_model == DATAMODEL_LP64) align_amount = MAX(align_amount, ELF_SPARCV9_MAXPGSZ); #ifdef VAC if (vac && vacalign && (align_amount < shm_alignment)) align_amount = shm_alignment; #endif if ((flags & MAP_ALIGN) && ((uintptr_t)*addrp > align_amount)) { align_amount = (uintptr_t)*addrp; } ASSERT(ISP2(align_amount)); ASSERT(align_amount == 0 || align_amount >= PAGESIZE); /* * Look for a large enough hole starting below the stack limit. * After finding it, use the upper part. */ as_purge(as); off = off & (align_amount - 1); if (as_gap_aligned(as, len, &base, &slen, AH_HI, NULL, align_amount, PAGESIZE, off) == 0) { caddr_t as_addr; /* * addr is the highest possible address to use since we have * a PAGESIZE redzone at the beginning and end. */ addr = base + slen - (PAGESIZE + len); as_addr = addr; /* * Round address DOWN to the alignment amount and * add the offset in. * If addr is greater than as_addr, len would not be large * enough to include the redzone, so we must adjust down * by the alignment amount. */ addr = (caddr_t)((uintptr_t)addr & (~(align_amount - 1l))); addr += (long)off; if (addr > as_addr) { addr -= align_amount; } ASSERT(addr > base); ASSERT(addr + len < base + slen); ASSERT(((uintptr_t)addr & (align_amount - 1l)) == ((uintptr_t)(off))); *addrp = addr; } else { *addrp = NULL; /* no more virtual space */ } } /* * Platform-dependent page scrub call. * We call hypervisor to scrub the page. */ void pagescrub(page_t *pp, uint_t off, uint_t len) { uint64_t pa, length; pa = (uint64_t)(pp->p_pagenum << MMU_PAGESHIFT + off); length = (uint64_t)len; (void) mem_scrub(pa, length); } void sync_data_memory(caddr_t va, size_t len) { /* Call memory sync function */ (void) mem_sync(va, len); } size_t mmu_get_kernel_lpsize(size_t lpsize) { extern int mmu_exported_pagesize_mask; uint_t tte; if (lpsize == 0) { /* no setting for segkmem_lpsize in /etc/system: use default */ if (mmu_exported_pagesize_mask & (1 << TTE256M)) { lpsize = MMU_PAGESIZE256M; } else if (mmu_exported_pagesize_mask & (1 << TTE4M)) { lpsize = MMU_PAGESIZE4M; } else if (mmu_exported_pagesize_mask & (1 << TTE64K)) { lpsize = MMU_PAGESIZE64K; } else { lpsize = MMU_PAGESIZE; } return (lpsize); } for (tte = TTE8K; tte <= TTE256M; tte++) { if ((mmu_exported_pagesize_mask & (1 << tte)) == 0) continue; if (lpsize == TTEBYTES(tte)) return (lpsize); } lpsize = TTEBYTES(TTE8K); return (lpsize); } void mmu_init_kcontext() { } /*ARGSUSED*/ void mmu_init_kernel_pgsz(struct hat *hat) { } static void * contig_mem_span_alloc(vmem_t *vmp, size_t size, int vmflag) { page_t *ppl; page_t *rootpp; caddr_t addr = NULL; pgcnt_t npages = btopr(size); page_t **ppa; int pgflags; spgcnt_t i = 0; ASSERT(size <= contig_mem_import_size_max); ASSERT((size & (size - 1)) == 0); if ((addr = vmem_xalloc(vmp, size, size, 0, 0, NULL, NULL, vmflag)) == NULL) { return (NULL); } /* The address should be slab-size aligned. */ ASSERT(((uintptr_t)addr & (size - 1)) == 0); if (page_resv(npages, vmflag & VM_KMFLAGS) == 0) { vmem_xfree(vmp, addr, size); return (NULL); } pgflags = PG_EXCL; if (vmflag & VM_NORELOC) pgflags |= PG_NORELOC; ppl = page_create_va_large(&kvp, (u_offset_t)(uintptr_t)addr, size, pgflags, &kvseg, addr, NULL); if (ppl == NULL) { vmem_xfree(vmp, addr, size); page_unresv(npages); return (NULL); } rootpp = ppl; ppa = kmem_zalloc(npages * sizeof (page_t *), KM_SLEEP); while (ppl != NULL) { page_t *pp = ppl; ppa[i++] = pp; page_sub(&ppl, pp); ASSERT(page_iolock_assert(pp)); ASSERT(PAGE_EXCL(pp)); page_io_unlock(pp); } /* * Load the locked entry. It's OK to preload the entry into * the TSB since we now support large mappings in the kernel TSB. */ hat_memload_array(kas.a_hat, (caddr_t)rootpp->p_offset, size, ppa, (PROT_ALL & ~PROT_USER) | HAT_NOSYNC, HAT_LOAD_LOCK); ASSERT(i == page_get_pagecnt(ppa[0]->p_szc)); for (--i; i >= 0; --i) { ASSERT(ppa[i]->p_szc == ppa[0]->p_szc); ASSERT(page_pptonum(ppa[i]) == page_pptonum(ppa[0]) + i); (void) page_pp_lock(ppa[i], 0, 1); /* * Leave the page share locked. For non-cage pages, * this would prevent memory DR if it were supported * on sun4v. */ page_downgrade(ppa[i]); } kmem_free(ppa, npages * sizeof (page_t *)); return (addr); } /* * Allocates a slab by first trying to use the largest slab size * in contig_mem_import_sizes and then falling back to smaller slab * sizes still large enough for the allocation. The sizep argument * is a pointer to the requested size. When a slab is successfully * allocated, the slab size, which must be >= *sizep and <= * contig_mem_import_size_max, is returned in the *sizep argument. * Returns the virtual address of the new slab. */ static void * span_alloc_downsize(vmem_t *vmp, size_t *sizep, size_t align, int vmflag) { int i; ASSERT(*sizep <= contig_mem_import_size_max); for (i = 0; i < NUM_IMPORT_SIZES; i++) { size_t page_size = contig_mem_import_sizes[i]; /* * Check that the alignment is also less than the * import (large page) size. In the case where the * alignment is larger than the size, a large page * large enough for the allocation is not necessarily * physical-address aligned to satisfy the requested * alignment. Since alignment is required to be a * power-of-2, any large page >= size && >= align will * suffice. */ if (*sizep <= page_size && align <= page_size) { void *addr; addr = contig_mem_span_alloc(vmp, page_size, vmflag); if (addr == NULL) continue; *sizep = page_size; return (addr); } return (NULL); } return (NULL); } static void * contig_mem_span_xalloc(vmem_t *vmp, size_t *sizep, size_t align, int vmflag) { return (span_alloc_downsize(vmp, sizep, align, vmflag | VM_NORELOC)); } static void * contig_mem_reloc_span_xalloc(vmem_t *vmp, size_t *sizep, size_t align, int vmflag) { ASSERT((vmflag & VM_NORELOC) == 0); return (span_alloc_downsize(vmp, sizep, align, vmflag)); } /* * Free a span, which is always exactly one large page. */ static void contig_mem_span_free(vmem_t *vmp, void *inaddr, size_t size) { page_t *pp; caddr_t addr = inaddr; caddr_t eaddr; pgcnt_t npages = btopr(size); page_t *rootpp = NULL; ASSERT(size <= contig_mem_import_size_max); /* All slabs should be size aligned */ ASSERT(((uintptr_t)addr & (size - 1)) == 0); hat_unload(kas.a_hat, addr, size, HAT_UNLOAD_UNLOCK); for (eaddr = addr + size; addr < eaddr; addr += PAGESIZE) { pp = page_find(&kvp, (u_offset_t)(uintptr_t)addr); if (pp == NULL) { panic("contig_mem_span_free: page not found"); } if (!page_tryupgrade(pp)) { page_unlock(pp); pp = page_lookup(&kvp, (u_offset_t)(uintptr_t)addr, SE_EXCL); if (pp == NULL) panic("contig_mem_span_free: page not found"); } ASSERT(PAGE_EXCL(pp)); ASSERT(size == page_get_pagesize(pp->p_szc)); ASSERT(rootpp == NULL || rootpp->p_szc == pp->p_szc); ASSERT(rootpp == NULL || (page_pptonum(rootpp) + (pgcnt_t)btop(addr - (caddr_t)inaddr) == page_pptonum(pp))); page_pp_unlock(pp, 0, 1); if (rootpp == NULL) rootpp = pp; } page_destroy_pages(rootpp); page_unresv(npages); if (vmp != NULL) vmem_xfree(vmp, inaddr, size); } static void * contig_vmem_xalloc_aligned_wrapper(vmem_t *vmp, size_t *sizep, size_t align, int vmflag) { ASSERT((align & (align - 1)) == 0); return (vmem_xalloc(vmp, *sizep, align, 0, 0, NULL, NULL, vmflag)); } /* * contig_mem_alloc, contig_mem_alloc_align * * Caution: contig_mem_alloc and contig_mem_alloc_align should be * used only when physically contiguous non-relocatable memory is * required. Furthermore, use of these allocation routines should be * minimized as well as should the allocation size. As described in the * contig_mem_arena comment block above, slab allocations fall back to * being outside of the cage. Therefore, overuse of these allocation * routines can lead to non-relocatable large pages being allocated * outside the cage. Such pages prevent the allocation of a larger page * occupying overlapping pages. This can impact performance for * applications that utilize e.g. 256M large pages. */ /* * Allocates size aligned contiguous memory up to contig_mem_import_size_max. * Size must be a power of 2. */ void * contig_mem_alloc(size_t size) { ASSERT((size & (size - 1)) == 0); return (contig_mem_alloc_align(size, size)); } /* * contig_mem_alloc_align_flag allocates real contiguous memory with the * specified alignment up to contig_mem_import_size_max. The alignment must * be a power of 2 and no greater than contig_mem_import_size_max. We assert * the aligment is a power of 2. For non-debug, vmem_xalloc will panic * for non power of 2 alignments. */ static void * contig_mem_alloc_align_flag(size_t size, size_t align, int flag, kmutex_t *lockp) { void *buf; ASSERT(size <= contig_mem_import_size_max); ASSERT(align <= contig_mem_import_size_max); ASSERT((align & (align - 1)) == 0); if (align < CONTIG_MEM_ARENA_QUANTUM) align = CONTIG_MEM_ARENA_QUANTUM; /* * We take the lock here to serialize span allocations. * We do not lose concurrency for the common case, since * allocations that don't require new span allocations * are serialized by vmem_xalloc. Serializing span * allocations also prevents us from trying to allocate * more spans than necessary. */ mutex_enter(lockp); buf = vmem_xalloc(contig_mem_arena, size, align, 0, 0, NULL, NULL, flag | VM_NORELOC); if ((buf == NULL) && (size <= MMU_PAGESIZE)) { mutex_exit(lockp); return (vmem_xalloc(static_alloc_arena, size, align, 0, 0, NULL, NULL, flag)); } if (buf == NULL) { buf = vmem_xalloc(contig_mem_reloc_arena, size, align, 0, 0, NULL, NULL, flag); } mutex_exit(lockp); return (buf); } void * contig_mem_alloc_align(size_t size, size_t align) { return (contig_mem_alloc_align_flag (size, align, VM_NOSLEEP, &contig_mem_lock)); } /* * This function is provided for callers that need physically contiguous * allocations but can sleep. We use the contig_mem_sleep_lock so that we * don't interfere with contig_mem_alloc_align calls that should never sleep. * Similarly to contig_mem_alloc_align, we use a lock to prevent allocating * unnecessary spans when called in parallel. */ void * contig_mem_alloc_align_sleep(size_t size, size_t align) { return (contig_mem_alloc_align_flag (size, align, VM_SLEEP, &contig_mem_sleep_lock)); } void contig_mem_free(void *vaddr, size_t size) { if (vmem_contains(contig_mem_arena, vaddr, size)) { vmem_xfree(contig_mem_arena, vaddr, size); } else if (size > MMU_PAGESIZE) { vmem_xfree(contig_mem_reloc_arena, vaddr, size); } else { vmem_xfree(static_alloc_arena, vaddr, size); } } /* * We create a set of stacked vmem arenas to enable us to * allocate large >PAGESIZE chucks of contiguous Real Address space. * The vmem_xcreate interface is used to create the contig_mem_arena * allowing the import routine to downsize the requested slab size * and return a smaller slab. */ void contig_mem_init(void) { mutex_init(&contig_mem_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&contig_mem_sleep_lock, NULL, MUTEX_DEFAULT, NULL); contig_mem_slab_arena = vmem_xcreate("contig_mem_slab_arena", NULL, 0, CONTIG_MEM_SLAB_ARENA_QUANTUM, contig_vmem_xalloc_aligned_wrapper, vmem_xfree, heap_arena, 0, VM_SLEEP | VMC_XALIGN); contig_mem_arena = vmem_xcreate("contig_mem_arena", NULL, 0, CONTIG_MEM_ARENA_QUANTUM, contig_mem_span_xalloc, contig_mem_span_free, contig_mem_slab_arena, 0, VM_SLEEP | VM_BESTFIT | VMC_XALIGN); contig_mem_reloc_arena = vmem_xcreate("contig_mem_reloc_arena", NULL, 0, CONTIG_MEM_ARENA_QUANTUM, contig_mem_reloc_span_xalloc, contig_mem_span_free, contig_mem_slab_arena, 0, VM_SLEEP | VM_BESTFIT | VMC_XALIGN); if (contig_mem_prealloc_buf == NULL || vmem_add(contig_mem_arena, contig_mem_prealloc_buf, contig_mem_prealloc_size, VM_SLEEP) == NULL) { cmn_err(CE_WARN, "Failed to pre-populate contig_mem_arena"); } } /* * In calculating how much memory to pre-allocate, we include a small * amount per-CPU to account for per-CPU buffers in line with measured * values for different size systems. contig_mem_prealloc_base_size is * a cpu specific amount to be pre-allocated before considering per-CPU * requirements and memory size. We always pre-allocate a minimum amount * of memory determined by PREALLOC_MIN. Beyond that, we take the minimum * of contig_mem_prealloc_base_size and a small percentage of physical * memory to prevent allocating too much on smaller systems. * contig_mem_prealloc_base_size is global, allowing for the CPU module * to increase its value if necessary. */ #define PREALLOC_PER_CPU (256 * 1024) /* 256K */ #define PREALLOC_PERCENT (4) /* 4% */ #define PREALLOC_MIN (16 * 1024 * 1024) /* 16M */ size_t contig_mem_prealloc_base_size = 0; /* * Called at boot-time allowing pre-allocation of contiguous memory. * The argument 'alloc_base' is the requested base address for the * allocation and originates in startup_memlist. */ caddr_t contig_mem_prealloc(caddr_t alloc_base, pgcnt_t npages) { caddr_t chunkp; contig_mem_prealloc_size = MIN((PREALLOC_PER_CPU * ncpu_guest_max) + contig_mem_prealloc_base_size, (ptob(npages) * PREALLOC_PERCENT) / 100); contig_mem_prealloc_size = MAX(contig_mem_prealloc_size, PREALLOC_MIN); contig_mem_prealloc_size = P2ROUNDUP(contig_mem_prealloc_size, MMU_PAGESIZE4M); alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, MMU_PAGESIZE4M); if (prom_alloc(alloc_base, contig_mem_prealloc_size, MMU_PAGESIZE4M) != alloc_base) { /* * Failed. This may mean the physical memory has holes in it * and it will be more difficult to get large contiguous * pieces of memory. Since we only guarantee contiguous * pieces of memory contig_mem_import_size_max or smaller, * loop, getting contig_mem_import_size_max at a time, until * failure or contig_mem_prealloc_size is reached. */ for (chunkp = alloc_base; (chunkp - alloc_base) < contig_mem_prealloc_size; chunkp += contig_mem_import_size_max) { if (prom_alloc(chunkp, contig_mem_import_size_max, MMU_PAGESIZE4M) != chunkp) { break; } } contig_mem_prealloc_size = chunkp - alloc_base; ASSERT(contig_mem_prealloc_size != 0); } if (contig_mem_prealloc_size != 0) { contig_mem_prealloc_buf = alloc_base; } else { contig_mem_prealloc_buf = NULL; } alloc_base += contig_mem_prealloc_size; return (alloc_base); } static uint_t sp_color_stride = 16; static uint_t sp_color_mask = 0x1f; static uint_t sp_current_color = (uint_t)-1; size_t exec_get_spslew(void) { uint_t spcolor = atomic_inc_32_nv(&sp_current_color); return ((size_t)((spcolor & sp_color_mask) * SA(sp_color_stride))); } /* * This flag may be set via /etc/system to force the synchronization * of I-cache with memory after every bcopy. The default is 0, meaning * that there is no need for an I-cache flush after each bcopy. This * flag is relevant only on platforms that have non-coherent I-caches. */ uint_t force_sync_icache_after_bcopy = 0; /* * This flag may be set via /etc/system to force the synchronization * of I-cache to memory after every DMA. The default is 0, meaning * that there is no need for an I-cache flush after each dma write to * memory. This flag is relevant only on platforms that have * non-coherent I-caches. */ uint_t force_sync_icache_after_dma = 0; /* * This internal flag enables mach_sync_icache_pa, which is always * called from common code if it is defined. However, not all * platforms support the hv_mem_iflush firmware call. */ static uint_t do_mach_sync_icache_pa = 0; int hsvc_kdi_mem_iflush_negotiated = B_FALSE; #define MEM_IFLUSH_MAJOR 1 #define MEM_IFLUSH_MINOR 0 static hsvc_info_t kdi_mem_iflush_hsvc = { HSVC_REV_1, /* HSVC rev num */ NULL, /* Private */ HSVC_GROUP_MEM_IFLUSH, /* Requested API Group */ MEM_IFLUSH_MAJOR, /* Requested Major */ MEM_IFLUSH_MINOR, /* Requested Minor */ "kdi" /* Module name */ }; /* * Setup soft exec mode. * Since /etc/system is read later on init, it * may be used to override these flags. */ void mach_setup_icache(uint_t coherency) { int status; uint64_t sup_minor; if (coherency == 0 && icache_is_coherent) { extern void kdi_flush_caches(void); status = hsvc_register(&kdi_mem_iflush_hsvc, &sup_minor); if (status != 0) cmn_err(CE_PANIC, "I$ flush not implemented on " "I$ incoherent system"); hsvc_kdi_mem_iflush_negotiated = B_TRUE; kdi_flush_caches(); icache_is_coherent = 0; do_mach_sync_icache_pa = 1; } } /* * Flush specified physical address range from I$ via hv_mem_iflush interface */ /*ARGSUSED*/ void mach_sync_icache_pa(caddr_t paddr, size_t size) { if (do_mach_sync_icache_pa) { uint64_t pa = (uint64_t)paddr; uint64_t sz = (uint64_t)size; uint64_t i, flushed; for (i = 0; i < sz; i += flushed) { if (hv_mem_iflush(pa + i, sz - i, &flushed) != H_EOK) { cmn_err(CE_PANIC, "Flushing the Icache failed"); break; } } } } /* * Flush the page if it has been marked as executed */ /*ARGSUSED*/ void mach_sync_icache_pp(page_t *pp) { if (PP_ISEXEC(pp)) mach_sync_icache_pa((caddr_t)ptob(pp->p_pagenum), PAGESIZE); }