/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2007 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define MAX_CE_FLTS 10 #define MAX_ASYNC_FLTS 6 errorq_t *ue_queue; /* queue of uncorrectable errors */ errorq_t *ce_queue; /* queue of correctable errors */ /* * Being used by memory test driver. * ce_verbose_memory - covers CEs in DIMMs * ce_verbose_other - covers "others" (ecache, IO, etc.) * * If the value is 0, nothing is logged. * If the value is 1, the error is logged to the log file, but not console. * If the value is 2, the error is logged to the log file and console. */ int ce_verbose_memory = 1; int ce_verbose_other = 1; int ce_show_data = 0; int ce_debug = 0; int ue_debug = 0; int reset_debug = 0; /* * Tunables for controlling the handling of asynchronous faults (AFTs). Setting * these to non-default values on a non-DEBUG kernel is NOT supported. */ int aft_verbose = 0; /* log AFT messages > 1 to log only */ int aft_panic = 0; /* panic (not reboot) on fatal usermode AFLT */ int aft_testfatal = 0; /* force all AFTs to panic immediately */ /* * Used for vbsc hostshutdown (power-off buton) */ int err_shutdown_triggered = 0; /* only once */ uint64_t err_shutdown_inum = 0; /* used to pull the trigger */ /* * Defined in bus_func.c but initialised in error_init */ extern kmutex_t bfd_lock; static uint32_t rq_overflow_count = 0; /* counter for rq overflow */ static void cpu_queue_one_event(errh_async_flt_t *); static uint32_t count_entries_on_queue(uint64_t, uint64_t, uint32_t); static void errh_page_retire(errh_async_flt_t *, uchar_t); static int errh_error_protected(struct regs *, struct async_flt *, int *); static void errh_rq_full(struct async_flt *); static void ue_drain(void *, struct async_flt *, errorq_elem_t *); static void ce_drain(void *, struct async_flt *, errorq_elem_t *); static void errh_handle_attr(errh_async_flt_t *); static void errh_handle_asr(errh_async_flt_t *); /*ARGSUSED*/ void process_resumable_error(struct regs *rp, uint32_t head_offset, uint32_t tail_offset) { struct machcpu *mcpup; struct async_flt *aflt; errh_async_flt_t errh_flt; errh_er_t *head_va; mcpup = &(CPU->cpu_m); while (head_offset != tail_offset) { /* kernel buffer starts right after the resumable queue */ head_va = (errh_er_t *)(mcpup->cpu_rq_va + head_offset + CPU_RQ_SIZE); /* Copy the error report to local buffer */ bzero(&errh_flt, sizeof (errh_async_flt_t)); bcopy((char *)head_va, &(errh_flt.errh_er), sizeof (errh_er_t)); /* Increment the queue head */ head_offset += Q_ENTRY_SIZE; /* Wrap around */ head_offset &= (CPU_RQ_SIZE - 1); /* set error handle to zero so it can hold new error report */ head_va->ehdl = 0; switch (errh_flt.errh_er.desc) { case ERRH_DESC_UCOR_RE: /* * Check error attribute, handle individual error * if it is needed. */ errh_handle_attr(&errh_flt); break; case ERRH_DESC_WARN_RE: /* * Power-off requested, but handle it one time only. */ if (!err_shutdown_triggered) { setsoftint(err_shutdown_inum); ++err_shutdown_triggered; } continue; default: cmn_err(CE_WARN, "Error Descriptor 0x%llx " " invalid in resumable error handler", (long long) errh_flt.errh_er.desc); continue; } aflt = (struct async_flt *)&(errh_flt.cmn_asyncflt); aflt->flt_id = gethrtime(); aflt->flt_bus_id = getprocessorid(); aflt->flt_class = CPU_FAULT; aflt->flt_prot = AFLT_PROT_NONE; aflt->flt_priv = (((errh_flt.errh_er.attr & ERRH_MODE_MASK) >> ERRH_MODE_SHIFT) == ERRH_MODE_PRIV); if (errh_flt.errh_er.attr & ERRH_ATTR_CPU) /* If it is an error on other cpu */ aflt->flt_panic = 1; else aflt->flt_panic = 0; /* * Handle resumable queue full case. */ if (errh_flt.errh_er.attr & ERRH_ATTR_RQF) { (void) errh_rq_full(aflt); } /* * Queue the error on ce or ue queue depend on flt_panic. * Even if flt_panic is set, the code still keep processing * the rest element on rq until the panic starts. */ (void) cpu_queue_one_event(&errh_flt); /* * Panic here if aflt->flt_panic has been set. * Enqueued errors will be logged as part of the panic flow. */ if (aflt->flt_panic) { fm_panic("Unrecoverable error on another CPU"); } } } void process_nonresumable_error(struct regs *rp, uint64_t flags, uint32_t head_offset, uint32_t tail_offset) { struct machcpu *mcpup; struct async_flt *aflt; errh_async_flt_t errh_flt; errh_er_t *head_va; int trampolined = 0; int expected = DDI_FM_ERR_UNEXPECTED; uint64_t exec_mode; uint8_t u_spill_fill; mcpup = &(CPU->cpu_m); while (head_offset != tail_offset) { /* kernel buffer starts right after the nonresumable queue */ head_va = (errh_er_t *)(mcpup->cpu_nrq_va + head_offset + CPU_NRQ_SIZE); /* Copy the error report to local buffer */ bzero(&errh_flt, sizeof (errh_async_flt_t)); bcopy((char *)head_va, &(errh_flt.errh_er), sizeof (errh_er_t)); /* Increment the queue head */ head_offset += Q_ENTRY_SIZE; /* Wrap around */ head_offset &= (CPU_NRQ_SIZE - 1); /* set error handle to zero so it can hold new error report */ head_va->ehdl = 0; aflt = (struct async_flt *)&(errh_flt.cmn_asyncflt); trampolined = 0; if (errh_flt.errh_er.attr & ERRH_ATTR_PIO) aflt->flt_class = BUS_FAULT; else aflt->flt_class = CPU_FAULT; aflt->flt_id = gethrtime(); aflt->flt_bus_id = getprocessorid(); aflt->flt_pc = (caddr_t)rp->r_pc; exec_mode = (errh_flt.errh_er.attr & ERRH_MODE_MASK) >> ERRH_MODE_SHIFT; aflt->flt_priv = (exec_mode == ERRH_MODE_PRIV || exec_mode == ERRH_MODE_UNKNOWN); aflt->flt_prot = AFLT_PROT_NONE; aflt->flt_tl = (uchar_t)(flags & ERRH_TL_MASK); aflt->flt_panic = ((aflt->flt_tl != 0) || (aft_testfatal != 0)); /* * For the first error packet on the queue, check if it * happened in user fill/spill trap. */ if (flags & ERRH_U_SPILL_FILL) { u_spill_fill = 1; /* clear the user fill/spill flag in flags */ flags = (uint64_t)aflt->flt_tl; } else u_spill_fill = 0; switch (errh_flt.errh_er.desc) { case ERRH_DESC_PR_NRE: if (u_spill_fill) { aflt->flt_panic = 0; break; } /* * Fall through, precise fault also need to check * to see if it was protected. */ /*FALLTHRU*/ case ERRH_DESC_DEF_NRE: /* * If the trap occurred in privileged mode at TL=0, * we need to check to see if we were executing * in kernel under on_trap() or t_lofault * protection. If so, and if it was a PIO or MEM * error, then modify the saved registers so that * we return from the trap to the appropriate * trampoline routine. */ if (aflt->flt_priv == 1 && aflt->flt_tl == 0 && ((errh_flt.errh_er.attr & ERRH_ATTR_PIO) || (errh_flt.errh_er.attr & ERRH_ATTR_MEM))) { trampolined = errh_error_protected(rp, aflt, &expected); } if (!aflt->flt_priv || aflt->flt_prot == AFLT_PROT_COPY) { aflt->flt_panic |= aft_panic; } else if (!trampolined && (aflt->flt_class != BUS_FAULT)) { aflt->flt_panic = 1; } /* * Check error attribute, handle individual error * if it is needed. */ errh_handle_attr(&errh_flt); /* * If PIO error, we need to query the bus nexus * for fatal errors. */ if (aflt->flt_class == BUS_FAULT) { aflt->flt_addr = errh_flt.errh_er.ra; errh_cpu_run_bus_error_handlers(aflt, expected); } break; case ERRH_DESC_USER_DCORE: /* * User generated panic. Call panic directly * since there are no FMA e-reports to * display. */ panic("Panic - Generated at user request"); break; default: cmn_err(CE_WARN, "Panic - Error Descriptor 0x%llx " " invalid in non-resumable error handler", (long long) errh_flt.errh_er.desc); aflt->flt_panic = 1; break; } /* * Queue the error report for further processing. If * flt_panic is set, code still process other errors * in the queue until the panic routine stops the * kernel. */ (void) cpu_queue_one_event(&errh_flt); /* * Panic here if aflt->flt_panic has been set. * Enqueued errors will be logged as part of the panic flow. */ if (aflt->flt_panic) { fm_panic("Unrecoverable hardware error"); } /* * Call page_retire() to handle memory errors. */ if (errh_flt.errh_er.attr & ERRH_ATTR_MEM) errh_page_retire(&errh_flt, PR_UE); /* * If we queued an error and the it was in user mode, or * protected by t_lofault, or user_spill_fill is set, we * set AST flag so the queue will be drained before * returning to user mode. */ if (!aflt->flt_priv || aflt->flt_prot == AFLT_PROT_COPY || u_spill_fill) { int pcb_flag = 0; if (aflt->flt_class == CPU_FAULT) pcb_flag |= ASYNC_HWERR; else if (aflt->flt_class == BUS_FAULT) pcb_flag |= ASYNC_BERR; ttolwp(curthread)->lwp_pcb.pcb_flags |= pcb_flag; aston(curthread); } } } /* * For PIO errors, this routine calls nexus driver's error * callback routines. If the callback routine returns fatal, and * we are in kernel or unknow mode without any error protection, * we need to turn on the panic flag. */ void errh_cpu_run_bus_error_handlers(struct async_flt *aflt, int expected) { int status; ddi_fm_error_t de; bzero(&de, sizeof (ddi_fm_error_t)); de.fme_version = DDI_FME_VERSION; de.fme_ena = fm_ena_generate(aflt->flt_id, FM_ENA_FMT1); de.fme_flag = expected; de.fme_bus_specific = (void *)aflt->flt_addr; status = ndi_fm_handler_dispatch(ddi_root_node(), NULL, &de); /* * If error is protected, it will jump to proper routine * to handle the handle; if it is in user level, we just * kill the user process; if the driver thinks the error is * not fatal, we can drive on. If none of above are true, * we panic */ if ((aflt->flt_prot == AFLT_PROT_NONE) && (aflt->flt_priv == 1) && (status == DDI_FM_FATAL)) aflt->flt_panic = 1; } /* * This routine checks to see if we are under any error protection when * the error happens. If we are under error protection, we unwind to * the protection and indicate fault. */ static int errh_error_protected(struct regs *rp, struct async_flt *aflt, int *expected) { int trampolined = 0; ddi_acc_hdl_t *hp; if (curthread->t_ontrap != NULL) { on_trap_data_t *otp = curthread->t_ontrap; if (otp->ot_prot & OT_DATA_EC) { aflt->flt_prot = AFLT_PROT_EC; otp->ot_trap |= OT_DATA_EC; rp->r_pc = otp->ot_trampoline; rp->r_npc = rp->r_pc +4; trampolined = 1; } if (otp->ot_prot & OT_DATA_ACCESS) { aflt->flt_prot = AFLT_PROT_ACCESS; otp->ot_trap |= OT_DATA_ACCESS; rp->r_pc = otp->ot_trampoline; rp->r_npc = rp->r_pc + 4; trampolined = 1; /* * for peek and caut_gets * errors are expected */ hp = (ddi_acc_hdl_t *)otp->ot_handle; if (!hp) *expected = DDI_FM_ERR_PEEK; else if (hp->ah_acc.devacc_attr_access == DDI_CAUTIOUS_ACC) *expected = DDI_FM_ERR_EXPECTED; } } else if (curthread->t_lofault) { aflt->flt_prot = AFLT_PROT_COPY; rp->r_g1 = EFAULT; rp->r_pc = curthread->t_lofault; rp->r_npc = rp->r_pc + 4; trampolined = 1; } return (trampolined); } /* * Queue one event. */ static void cpu_queue_one_event(errh_async_flt_t *errh_fltp) { struct async_flt *aflt = (struct async_flt *)errh_fltp; errorq_t *eqp; if (aflt->flt_panic) eqp = ue_queue; else eqp = ce_queue; errorq_dispatch(eqp, errh_fltp, sizeof (errh_async_flt_t), aflt->flt_panic); } /* * The cpu_async_log_err() function is called by the ce/ue_drain() function to * handle logging for CPU events that are dequeued. As such, it can be invoked * from softint context, from AST processing in the trap() flow, or from the * panic flow. We decode the CPU-specific data, and log appropriate messages. */ void cpu_async_log_err(void *flt) { errh_async_flt_t *errh_fltp = (errh_async_flt_t *)flt; errh_er_t *errh_erp = (errh_er_t *)&errh_fltp->errh_er; switch (errh_erp->desc) { case ERRH_DESC_UCOR_RE: if (errh_erp->attr & ERRH_ATTR_MEM) { /* * Turn on the PR_UE flag. The page will be * scrubbed when it is freed. */ errh_page_retire(errh_fltp, PR_UE); } break; case ERRH_DESC_PR_NRE: case ERRH_DESC_DEF_NRE: if (errh_erp->attr & ERRH_ATTR_MEM) { /* * For non-resumable memory error, retire * the page here. */ errh_page_retire(errh_fltp, PR_UE); /* * If we are going to panic, scrub the page first */ if (errh_fltp->cmn_asyncflt.flt_panic) mem_scrub(errh_fltp->errh_er.ra, errh_fltp->errh_er.sz); } break; default: break; } } /* * Called from ce_drain(). */ void cpu_ce_log_err(struct async_flt *aflt) { switch (aflt->flt_class) { case CPU_FAULT: cpu_async_log_err(aflt); break; case BUS_FAULT: cpu_async_log_err(aflt); break; default: break; } } /* * Called from ue_drain(). */ void cpu_ue_log_err(struct async_flt *aflt) { switch (aflt->flt_class) { case CPU_FAULT: cpu_async_log_err(aflt); break; case BUS_FAULT: cpu_async_log_err(aflt); break; default: break; } } /* * Turn on flag on the error memory region. */ static void errh_page_retire(errh_async_flt_t *errh_fltp, uchar_t flag) { uint64_t flt_real_addr_start = errh_fltp->errh_er.ra; uint64_t flt_real_addr_end = flt_real_addr_start + errh_fltp->errh_er.sz - 1; int64_t current_addr; if (errh_fltp->errh_er.sz == 0) return; for (current_addr = flt_real_addr_start; current_addr < flt_real_addr_end; current_addr += MMU_PAGESIZE) { (void) page_retire(current_addr, flag); } } void mem_scrub(uint64_t paddr, uint64_t len) { uint64_t pa, length, scrubbed_len; pa = paddr; length = len; scrubbed_len = 0; while (length > 0) { if (hv_mem_scrub(pa, length, &scrubbed_len) != H_EOK) break; pa += scrubbed_len; length -= scrubbed_len; } } /* * Call hypervisor to flush the memory region. * Both va and len must be MMU_PAGESIZE aligned. * Returns the total number of bytes flushed. */ uint64_t mem_sync(caddr_t orig_va, size_t orig_len) { uint64_t pa, length, flushed; uint64_t chunk_len = MMU_PAGESIZE; uint64_t total_flushed = 0; uint64_t va, len; if (orig_len == 0) return (total_flushed); /* align va */ va = P2ALIGN_TYPED(orig_va, MMU_PAGESIZE, uint64_t); /* round up len to MMU_PAGESIZE aligned */ len = P2ROUNDUP_TYPED(orig_va + orig_len, MMU_PAGESIZE, uint64_t) - va; while (len > 0) { pa = va_to_pa((caddr_t)va); if (pa == (uint64_t)-1) return (total_flushed); length = chunk_len; flushed = 0; while (length > 0) { if (hv_mem_sync(pa, length, &flushed) != H_EOK) return (total_flushed); pa += flushed; length -= flushed; total_flushed += flushed; } va += chunk_len; len -= chunk_len; } return (total_flushed); } /* * If resumable queue is full, we need to check if any cpu is in * error state. If not, we drive on. If yes, we need to panic. The * hypervisor call hv_cpu_state() is being used for checking the * cpu state. */ static void errh_rq_full(struct async_flt *afltp) { processorid_t who; uint64_t cpu_state; uint64_t retval; for (who = 0; who < NCPU; who++) if (CPU_IN_SET(cpu_ready_set, who)) { retval = hv_cpu_state(who, &cpu_state); if (retval != H_EOK || cpu_state == CPU_STATE_ERROR) { afltp->flt_panic = 1; break; } } } /* * Return processor specific async error structure * size used. */ int cpu_aflt_size(void) { return (sizeof (errh_async_flt_t)); } #define SZ_TO_ETRS_SHIFT 6 /* * Message print out when resumable queue is overflown */ /*ARGSUSED*/ void rq_overflow(struct regs *rp, uint64_t head_offset, uint64_t tail_offset) { rq_overflow_count++; } /* * Handler to process a fatal error. This routine can be called from a * softint, called from trap()'s AST handling, or called from the panic flow. */ /*ARGSUSED*/ static void ue_drain(void *ignored, struct async_flt *aflt, errorq_elem_t *eqep) { cpu_ue_log_err(aflt); } /* * Handler to process a correctable error. This routine can be called from a * softint. We just call the CPU module's logging routine. */ /*ARGSUSED*/ static void ce_drain(void *ignored, struct async_flt *aflt, errorq_elem_t *eqep) { cpu_ce_log_err(aflt); } /* * Handler to process vbsc hostshutdown (power-off button). */ static int err_shutdown_softintr() { cmn_err(CE_WARN, "Power-off requested, system will now shutdown."); do_shutdown(); /* * just in case do_shutdown() fails */ (void) timeout((void(*)(void *))power_down, NULL, 100 * hz); return (DDI_INTR_CLAIMED); } /* * Allocate error queue sizes based on max_ncpus. max_ncpus is set just * after ncpunode has been determined. ncpus is set in start_other_cpus * which is called after error_init() but may change dynamically. */ void error_init(void) { char tmp_name[MAXSYSNAME]; pnode_t node; size_t size = cpu_aflt_size(); /* * Initialize the correctable and uncorrectable error queues. */ ue_queue = errorq_create("ue_queue", (errorq_func_t)ue_drain, NULL, MAX_ASYNC_FLTS * (max_ncpus + 1), size, PIL_2, ERRORQ_VITAL); ce_queue = errorq_create("ce_queue", (errorq_func_t)ce_drain, NULL, MAX_CE_FLTS * (max_ncpus + 1), size, PIL_1, 0); if (ue_queue == NULL || ce_queue == NULL) panic("failed to create required system error queue"); /* * Setup interrupt handler for power-off button. */ err_shutdown_inum = add_softintr(PIL_9, (softintrfunc)err_shutdown_softintr, NULL, SOFTINT_ST); /* * Initialize the busfunc list mutex. This must be a PIL_15 spin lock * because we will need to acquire it from cpu_async_error(). */ mutex_init(&bfd_lock, NULL, MUTEX_SPIN, (void *)PIL_15); node = prom_rootnode(); if ((node == OBP_NONODE) || (node == OBP_BADNODE)) { cmn_err(CE_CONT, "error_init: node 0x%x\n", (uint_t)node); return; } if (((size = prom_getproplen(node, "reset-reason")) != -1) && (size <= MAXSYSNAME) && (prom_getprop(node, "reset-reason", tmp_name) != -1)) { if (reset_debug) { cmn_err(CE_CONT, "System booting after %s\n", tmp_name); } else if (strncmp(tmp_name, "FATAL", 5) == 0) { cmn_err(CE_CONT, "System booting after fatal error %s\n", tmp_name); } } } /* * Nonresumable queue is full, panic here */ /*ARGSUSED*/ void nrq_overflow(struct regs *rp) { fm_panic("Nonresumable queue full"); } /* * This is the place for special error handling for individual errors. */ static void errh_handle_attr(errh_async_flt_t *errh_fltp) { switch (errh_fltp->errh_er.attr & ~ERRH_MODE_MASK) { case ERRH_ATTR_CPU: case ERRH_ATTR_MEM: case ERRH_ATTR_PIO: case ERRH_ATTR_IRF: case ERRH_ATTR_FRF: case ERRH_ATTR_SHUT: break; case ERRH_ATTR_ASR: errh_handle_asr(errh_fltp); break; case ERRH_ATTR_ASI: case ERRH_ATTR_PREG: case ERRH_ATTR_RQF: break; default: break; } } /* * Handle ASR bit set in ATTR */ static void errh_handle_asr(errh_async_flt_t *errh_fltp) { uint64_t current_tick; switch (errh_fltp->errh_er.reg) { case ASR_REG_VALID | ASR_REG_TICK: /* * For Tick Compare Register error, it only happens when * the register is being read or compared with the %tick * register. Since we lost the contents of the register, * we set the %tick_compr in the future. An interrupt will * happen when %tick matches the value field of %tick_compr. */ current_tick = (uint64_t)gettick(); tickcmpr_set(current_tick); /* Do not panic */ errh_fltp->cmn_asyncflt.flt_panic = 0; break; default: break; } }