/****************************************************************************** * * Module Name: tbutils - table utilities * *****************************************************************************/ /****************************************************************************** * * 1. Copyright Notice * * Some or all of this work - Copyright (c) 1999 - 2009, Intel Corp. * All rights reserved. * * 2. License * * 2.1. This is your license from Intel Corp. under its intellectual property * rights. You may have additional license terms from the party that provided * you this software, covering your right to use that party's intellectual * property rights. * * 2.2. Intel grants, free of charge, to any person ("Licensee") obtaining a * copy of the source code appearing in this file ("Covered Code") an * irrevocable, perpetual, worldwide license under Intel's copyrights in the * base code distributed originally by Intel ("Original Intel Code") to copy, * make derivatives, distribute, use and display any portion of the Covered * Code in any form, with the right to sublicense such rights; and * * 2.3. Intel grants Licensee a non-exclusive and non-transferable patent * license (with the right to sublicense), under only those claims of Intel * patents that are infringed by the Original Intel Code, to make, use, sell, * offer to sell, and import the Covered Code and derivative works thereof * solely to the minimum extent necessary to exercise the above copyright * license, and in no event shall the patent license extend to any additions * to or modifications of the Original Intel Code. No other license or right * is granted directly or by implication, estoppel or otherwise; * * The above copyright and patent license is granted only if the following * conditions are met: * * 3. Conditions * * 3.1. Redistribution of Source with Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification with rights to further distribute source must include * the above Copyright Notice, the above License, this list of Conditions, * and the following Disclaimer and Export Compliance provision. In addition, * Licensee must cause all Covered Code to which Licensee contributes to * contain a file documenting the changes Licensee made to create that Covered * Code and the date of any change. Licensee must include in that file the * documentation of any changes made by any predecessor Licensee. Licensee * must include a prominent statement that the modification is derived, * directly or indirectly, from Original Intel Code. * * 3.2. Redistribution of Source with no Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification without rights to further distribute source must * include the following Disclaimer and Export Compliance provision in the * documentation and/or other materials provided with distribution. In * addition, Licensee may not authorize further sublicense of source of any * portion of the Covered Code, and must include terms to the effect that the * license from Licensee to its licensee is limited to the intellectual * property embodied in the software Licensee provides to its licensee, and * not to intellectual property embodied in modifications its licensee may * make. * * 3.3. Redistribution of Executable. Redistribution in executable form of any * substantial portion of the Covered Code or modification must reproduce the * above Copyright Notice, and the following Disclaimer and Export Compliance * provision in the documentation and/or other materials provided with the * distribution. * * 3.4. Intel retains all right, title, and interest in and to the Original * Intel Code. * * 3.5. Neither the name Intel nor any other trademark owned or controlled by * Intel shall be used in advertising or otherwise to promote the sale, use or * other dealings in products derived from or relating to the Covered Code * without prior written authorization from Intel. * * 4. Disclaimer and Export Compliance * * 4.1. INTEL MAKES NO WARRANTY OF ANY KIND REGARDING ANY SOFTWARE PROVIDED * HERE. ANY SOFTWARE ORIGINATING FROM INTEL OR DERIVED FROM INTEL SOFTWARE * IS PROVIDED "AS IS," AND INTEL WILL NOT PROVIDE ANY SUPPORT, ASSISTANCE, * INSTALLATION, TRAINING OR OTHER SERVICES. INTEL WILL NOT PROVIDE ANY * UPDATES, ENHANCEMENTS OR EXTENSIONS. INTEL SPECIFICALLY DISCLAIMS ANY * IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND FITNESS FOR A * PARTICULAR PURPOSE. * * 4.2. IN NO EVENT SHALL INTEL HAVE ANY LIABILITY TO LICENSEE, ITS LICENSEES * OR ANY OTHER THIRD PARTY, FOR ANY LOST PROFITS, LOST DATA, LOSS OF USE OR * COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, OR FOR ANY INDIRECT, * SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THIS AGREEMENT, UNDER ANY * CAUSE OF ACTION OR THEORY OF LIABILITY, AND IRRESPECTIVE OF WHETHER INTEL * HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS * SHALL APPLY NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY * LIMITED REMEDY. * * 4.3. Licensee shall not export, either directly or indirectly, any of this * software or system incorporating such software without first obtaining any * required license or other approval from the U. S. Department of Commerce or * any other agency or department of the United States Government. In the * event Licensee exports any such software from the United States or * re-exports any such software from a foreign destination, Licensee shall * ensure that the distribution and export/re-export of the software is in * compliance with all laws, regulations, orders, or other restrictions of the * U.S. Export Administration Regulations. Licensee agrees that neither it nor * any of its subsidiaries will export/re-export any technical data, process, * software, or service, directly or indirectly, to any country for which the * United States government or any agency thereof requires an export license, * other governmental approval, or letter of assurance, without first obtaining * such license, approval or letter. * *****************************************************************************/ #define __TBUTILS_C__ #include "acpi.h" #include "accommon.h" #include "actables.h" #define _COMPONENT ACPI_TABLES ACPI_MODULE_NAME ("tbutils") /* Local prototypes */ static ACPI_PHYSICAL_ADDRESS AcpiTbGetRootTableEntry ( UINT8 *TableEntry, UINT32 TableEntrySize); /******************************************************************************* * * FUNCTION: AcpiTbInitializeFacs * * PARAMETERS: None * * RETURN: Status * * DESCRIPTION: Create a permanent mapping for the FADT and save it in a global * for accessing the Global Lock and Firmware Waking Vector * ******************************************************************************/ ACPI_STATUS AcpiTbInitializeFacs ( void) { ACPI_STATUS Status; Status = AcpiGetTableByIndex (ACPI_TABLE_INDEX_FACS, ACPI_CAST_INDIRECT_PTR (ACPI_TABLE_HEADER, &AcpiGbl_FACS)); return (Status); } /******************************************************************************* * * FUNCTION: AcpiTbTablesLoaded * * PARAMETERS: None * * RETURN: TRUE if required ACPI tables are loaded * * DESCRIPTION: Determine if the minimum required ACPI tables are present * (FADT, FACS, DSDT) * ******************************************************************************/ BOOLEAN AcpiTbTablesLoaded ( void) { if (AcpiGbl_RootTableList.Count >= 3) { return (TRUE); } return (FALSE); } /******************************************************************************* * * FUNCTION: AcpiTbPrintTableHeader * * PARAMETERS: Address - Table physical address * Header - Table header * * RETURN: None * * DESCRIPTION: Print an ACPI table header. Special cases for FACS and RSDP. * ******************************************************************************/ void AcpiTbPrintTableHeader ( ACPI_PHYSICAL_ADDRESS Address, ACPI_TABLE_HEADER *Header) { /* * The reason that the Address is cast to a void pointer is so that we * can use %p which will work properly on both 32-bit and 64-bit hosts. */ if (ACPI_COMPARE_NAME (Header->Signature, ACPI_SIG_FACS)) { /* FACS only has signature and length fields */ ACPI_INFO ((AE_INFO, "%4.4s %p %05X", Header->Signature, ACPI_CAST_PTR (void, Address), Header->Length)); } else if (ACPI_COMPARE_NAME (Header->Signature, ACPI_SIG_RSDP)) { /* RSDP has no common fields */ ACPI_INFO ((AE_INFO, "RSDP %p %05X (v%.2d %6.6s)", ACPI_CAST_PTR (void, Address), (ACPI_CAST_PTR (ACPI_TABLE_RSDP, Header)->Revision > 0) ? ACPI_CAST_PTR (ACPI_TABLE_RSDP, Header)->Length : 20, ACPI_CAST_PTR (ACPI_TABLE_RSDP, Header)->Revision, ACPI_CAST_PTR (ACPI_TABLE_RSDP, Header)->OemId)); } else { /* Standard ACPI table with full common header */ ACPI_INFO ((AE_INFO, "%4.4s %p %05X (v%.2d %6.6s %8.8s %08X %4.4s %08X)", Header->Signature, ACPI_CAST_PTR (void, Address), Header->Length, Header->Revision, Header->OemId, Header->OemTableId, Header->OemRevision, Header->AslCompilerId, Header->AslCompilerRevision)); } } /******************************************************************************* * * FUNCTION: AcpiTbValidateChecksum * * PARAMETERS: Table - ACPI table to verify * Length - Length of entire table * * RETURN: Status * * DESCRIPTION: Verifies that the table checksums to zero. Optionally returns * exception on bad checksum. * ******************************************************************************/ ACPI_STATUS AcpiTbVerifyChecksum ( ACPI_TABLE_HEADER *Table, UINT32 Length) { UINT8 Checksum; /* Compute the checksum on the table */ Checksum = AcpiTbChecksum (ACPI_CAST_PTR (UINT8, Table), Length); /* Checksum ok? (should be zero) */ if (Checksum) { ACPI_WARNING ((AE_INFO, "Incorrect checksum in table [%4.4s] - %2.2X, should be %2.2X", Table->Signature, Table->Checksum, (UINT8) (Table->Checksum - Checksum))); #if (ACPI_CHECKSUM_ABORT) return (AE_BAD_CHECKSUM); #endif } return (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiTbChecksum * * PARAMETERS: Buffer - Pointer to memory region to be checked * Length - Length of this memory region * * RETURN: Checksum (UINT8) * * DESCRIPTION: Calculates circular checksum of memory region. * ******************************************************************************/ UINT8 AcpiTbChecksum ( UINT8 *Buffer, UINT32 Length) { UINT8 Sum = 0; UINT8 *End = Buffer + Length; while (Buffer < End) { Sum = (UINT8) (Sum + *(Buffer++)); } return Sum; } /******************************************************************************* * * FUNCTION: AcpiTbInstallTable * * PARAMETERS: Address - Physical address of DSDT or FACS * Signature - Table signature, NULL if no need to * match * TableIndex - Index into root table array * * RETURN: None * * DESCRIPTION: Install an ACPI table into the global data structure. The * table override mechanism is implemented here to allow the host * OS to replace any table before it is installed in the root * table array. * ******************************************************************************/ void AcpiTbInstallTable ( ACPI_PHYSICAL_ADDRESS Address, char *Signature, UINT32 TableIndex) { UINT8 Flags; ACPI_STATUS Status; ACPI_TABLE_HEADER *TableToInstall; ACPI_TABLE_HEADER *MappedTable; ACPI_TABLE_HEADER *OverrideTable = NULL; if (!Address) { ACPI_ERROR ((AE_INFO, "Null physical address for ACPI table [%s]", Signature)); return; } /* Map just the table header */ MappedTable = AcpiOsMapMemory (Address, sizeof (ACPI_TABLE_HEADER)); if (!MappedTable) { return; } /* If a particular signature is expected (DSDT/FACS), it must match */ if (Signature && !ACPI_COMPARE_NAME (MappedTable->Signature, Signature)) { ACPI_ERROR ((AE_INFO, "Invalid signature 0x%X for ACPI table, expected [%s]", *ACPI_CAST_PTR (UINT32, MappedTable->Signature), Signature)); goto UnmapAndExit; } /* * ACPI Table Override: * * Before we install the table, let the host OS override it with a new * one if desired. Any table within the RSDT/XSDT can be replaced, * including the DSDT which is pointed to by the FADT. */ Status = AcpiOsTableOverride (MappedTable, &OverrideTable); if (ACPI_SUCCESS (Status) && OverrideTable) { ACPI_INFO ((AE_INFO, "%4.4s @ 0x%p Table override, replaced with:", MappedTable->Signature, ACPI_CAST_PTR (void, Address))); AcpiGbl_RootTableList.Tables[TableIndex].Pointer = OverrideTable; Address = ACPI_PTR_TO_PHYSADDR (OverrideTable); TableToInstall = OverrideTable; Flags = ACPI_TABLE_ORIGIN_OVERRIDE; } else { TableToInstall = MappedTable; Flags = ACPI_TABLE_ORIGIN_MAPPED; } /* Initialize the table entry */ AcpiGbl_RootTableList.Tables[TableIndex].Address = Address; AcpiGbl_RootTableList.Tables[TableIndex].Length = TableToInstall->Length; AcpiGbl_RootTableList.Tables[TableIndex].Flags = Flags; ACPI_MOVE_32_TO_32 ( &(AcpiGbl_RootTableList.Tables[TableIndex].Signature), TableToInstall->Signature); AcpiTbPrintTableHeader (Address, TableToInstall); if (TableIndex == ACPI_TABLE_INDEX_DSDT) { /* Global integer width is based upon revision of the DSDT */ AcpiUtSetIntegerWidth (TableToInstall->Revision); } UnmapAndExit: AcpiOsUnmapMemory (MappedTable, sizeof (ACPI_TABLE_HEADER)); } /******************************************************************************* * * FUNCTION: AcpiTbGetRootTableEntry * * PARAMETERS: TableEntry - Pointer to the RSDT/XSDT table entry * TableEntrySize - sizeof 32 or 64 (RSDT or XSDT) * * RETURN: Physical address extracted from the root table * * DESCRIPTION: Get one root table entry. Handles 32-bit and 64-bit cases on * both 32-bit and 64-bit platforms * * NOTE: ACPI_PHYSICAL_ADDRESS is 32-bit on 32-bit platforms, 64-bit on * 64-bit platforms. * ******************************************************************************/ static ACPI_PHYSICAL_ADDRESS AcpiTbGetRootTableEntry ( UINT8 *TableEntry, UINT32 TableEntrySize) { UINT64 Address64; /* * Get the table physical address (32-bit for RSDT, 64-bit for XSDT): * Note: Addresses are 32-bit aligned (not 64) in both RSDT and XSDT */ if (TableEntrySize == sizeof (UINT32)) { /* * 32-bit platform, RSDT: Return 32-bit table entry * 64-bit platform, RSDT: Expand 32-bit to 64-bit and return */ return ((ACPI_PHYSICAL_ADDRESS) (*ACPI_CAST_PTR (UINT32, TableEntry))); } else { /* * 32-bit platform, XSDT: Truncate 64-bit to 32-bit and return * 64-bit platform, XSDT: Move (unaligned) 64-bit to local, * return 64-bit */ ACPI_MOVE_64_TO_64 (&Address64, TableEntry); #if ACPI_MACHINE_WIDTH == 32 if (Address64 > ACPI_UINT32_MAX) { /* Will truncate 64-bit address to 32 bits, issue warning */ ACPI_WARNING ((AE_INFO, "64-bit Physical Address in XSDT is too large (%8.8X%8.8X)," " truncating", ACPI_FORMAT_UINT64 (Address64))); } #endif return ((ACPI_PHYSICAL_ADDRESS) (Address64)); } } /******************************************************************************* * * FUNCTION: AcpiTbParseRootTable * * PARAMETERS: Rsdp - Pointer to the RSDP * * RETURN: Status * * DESCRIPTION: This function is called to parse the Root System Description * Table (RSDT or XSDT) * * NOTE: Tables are mapped (not copied) for efficiency. The FACS must * be mapped and cannot be copied because it contains the actual * memory location of the ACPI Global Lock. * ******************************************************************************/ ACPI_STATUS AcpiTbParseRootTable ( ACPI_PHYSICAL_ADDRESS RsdpAddress) { ACPI_TABLE_RSDP *Rsdp; UINT32 TableEntrySize; UINT32 i; UINT32 TableCount; ACPI_TABLE_HEADER *Table; ACPI_PHYSICAL_ADDRESS Address; UINT32 Length; UINT8 *TableEntry; ACPI_STATUS Status; ACPI_FUNCTION_TRACE (TbParseRootTable); /* * Map the entire RSDP and extract the address of the RSDT or XSDT */ Rsdp = AcpiOsMapMemory (RsdpAddress, sizeof (ACPI_TABLE_RSDP)); if (!Rsdp) { return_ACPI_STATUS (AE_NO_MEMORY); } AcpiTbPrintTableHeader (RsdpAddress, ACPI_CAST_PTR (ACPI_TABLE_HEADER, Rsdp)); /* Differentiate between RSDT and XSDT root tables */ if (Rsdp->Revision > 1 && Rsdp->XsdtPhysicalAddress) { /* * Root table is an XSDT (64-bit physical addresses). We must use the * XSDT if the revision is > 1 and the XSDT pointer is present, as per * the ACPI specification. */ Address = (ACPI_PHYSICAL_ADDRESS) Rsdp->XsdtPhysicalAddress; TableEntrySize = sizeof (UINT64); } else { /* Root table is an RSDT (32-bit physical addresses) */ Address = (ACPI_PHYSICAL_ADDRESS) Rsdp->RsdtPhysicalAddress; TableEntrySize = sizeof (UINT32); } /* * It is not possible to map more than one entry in some environments, * so unmap the RSDP here before mapping other tables */ AcpiOsUnmapMemory (Rsdp, sizeof (ACPI_TABLE_RSDP)); /* Map the RSDT/XSDT table header to get the full table length */ Table = AcpiOsMapMemory (Address, sizeof (ACPI_TABLE_HEADER)); if (!Table) { return_ACPI_STATUS (AE_NO_MEMORY); } AcpiTbPrintTableHeader (Address, Table); /* Get the length of the full table, verify length and map entire table */ Length = Table->Length; AcpiOsUnmapMemory (Table, sizeof (ACPI_TABLE_HEADER)); if (Length < sizeof (ACPI_TABLE_HEADER)) { ACPI_ERROR ((AE_INFO, "Invalid length 0x%X in RSDT/XSDT", Length)); return_ACPI_STATUS (AE_INVALID_TABLE_LENGTH); } Table = AcpiOsMapMemory (Address, Length); if (!Table) { return_ACPI_STATUS (AE_NO_MEMORY); } /* Validate the root table checksum */ Status = AcpiTbVerifyChecksum (Table, Length); if (ACPI_FAILURE (Status)) { AcpiOsUnmapMemory (Table, Length); return_ACPI_STATUS (Status); } /* Calculate the number of tables described in the root table */ TableCount = (UINT32) ((Table->Length - sizeof (ACPI_TABLE_HEADER)) / TableEntrySize); /* * First two entries in the table array are reserved for the DSDT * and FACS, which are not actually present in the RSDT/XSDT - they * come from the FADT */ TableEntry = ACPI_CAST_PTR (UINT8, Table) + sizeof (ACPI_TABLE_HEADER); AcpiGbl_RootTableList.Count = 2; /* * Initialize the root table array from the RSDT/XSDT */ for (i = 0; i < TableCount; i++) { if (AcpiGbl_RootTableList.Count >= AcpiGbl_RootTableList.Size) { /* There is no more room in the root table array, attempt resize */ Status = AcpiTbResizeRootTableList (); if (ACPI_FAILURE (Status)) { ACPI_WARNING ((AE_INFO, "Truncating %u table entries!", (unsigned) (TableCount - (AcpiGbl_RootTableList.Count - 2)))); break; } } /* Get the table physical address (32-bit for RSDT, 64-bit for XSDT) */ AcpiGbl_RootTableList.Tables[AcpiGbl_RootTableList.Count].Address = AcpiTbGetRootTableEntry (TableEntry, TableEntrySize); TableEntry += TableEntrySize; AcpiGbl_RootTableList.Count++; } /* * It is not possible to map more than one entry in some environments, * so unmap the root table here before mapping other tables */ AcpiOsUnmapMemory (Table, Length); /* * Complete the initialization of the root table array by examining * the header of each table */ for (i = 2; i < AcpiGbl_RootTableList.Count; i++) { AcpiTbInstallTable (AcpiGbl_RootTableList.Tables[i].Address, NULL, i); /* Special case for FADT - get the DSDT and FACS */ if (ACPI_COMPARE_NAME ( &AcpiGbl_RootTableList.Tables[i].Signature, ACPI_SIG_FADT)) { AcpiTbParseFadt (i); } } return_ACPI_STATUS (AE_OK); }