/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2005 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" /* * VM - Hardware Address Translation management for i386 and amd64 * * Implementation of the interfaces described in <common/vm/hat.h> * * Nearly all the details of how the hardware is managed should not be * visible outside this layer except for misc. machine specific functions * that work in conjunction with this code. * * Routines used only inside of i86pc/vm start with hati_ for HAT Internal. */ #include <sys/machparam.h> #include <sys/machsystm.h> #include <sys/mman.h> #include <sys/types.h> #include <sys/systm.h> #include <sys/cpuvar.h> #include <sys/thread.h> #include <sys/proc.h> #include <sys/cpu.h> #include <sys/kmem.h> #include <sys/disp.h> #include <sys/shm.h> #include <sys/sysmacros.h> #include <sys/machparam.h> #include <sys/vmem.h> #include <sys/vmsystm.h> #include <sys/promif.h> #include <sys/var.h> #include <sys/x86_archext.h> #include <sys/atomic.h> #include <sys/bitmap.h> #include <vm/seg_kmem.h> #include <vm/hat_i86.h> #include <vm/as.h> #include <vm/seg.h> #include <vm/page.h> #include <vm/seg_kp.h> #include <vm/seg_kpm.h> #include <vm/vm_dep.h> #include <sys/cmn_err.h> /* * Basic parameters for hat operation. */ struct hat_mmu_info mmu; uint_t force_pae_off = 0; /* for testing, change with kernel debugger */ uint_t force_pae_on = 0; /* for testing, change with kernel debugger */ /* * The page that is the kernel's top level pagetable. * * For 32 bit VLP support, the kernel hat will use the 1st 4 entries * on this 4K page for its top level page table. The remaining groups of * 4 entries are used for per processor copies of user VLP pagetables for * running threads. See hat_switch() and reload_pae32() for details. * * vlp_page[0] - 0th level==2 PTE for kernel HAT (will be zero) * vlp_page[1] - 1st level==2 PTE for kernel HAT (will be zero) * vlp_page[2] - 2nd level==2 PTE for kernel HAT (zero for small memory) * vlp_page[3] - 3rd level==2 PTE for kernel * * vlp_page[4] - 0th level==2 PTE for user thread on cpu 0 * vlp_page[5] - 1st level==2 PTE for user thread on cpu 0 * vlp_page[6] - 2nd level==2 PTE for user thread on cpu 0 * vlp_page[7] - probably copy of kernel PTE * * vlp_page[8] - 0th level==2 PTE for user thread on cpu 1 * vlp_page[9] - 1st level==2 PTE for user thread on cpu 1 * vlp_page[10] - 2nd level==2 PTE for user thread on cpu 1 * vlp_page[11] - probably copy of kernel PTE * ... * * when / where the kernel PTE's are (entry 2 or 3 or none) depends * on kernelbase. */ static x86pte_t *vlp_page; /* * forward declaration of internal utility routines */ static x86pte_t hati_update_pte(htable_t *ht, uint_t entry, x86pte_t expected, x86pte_t new); /* * The kernel address space exists in all HATs. To implement this the * kernel reserves a fixed number of entries in every topmost level page * table. The values are setup in hat_init() and then copied to every hat * created by hat_alloc(). This means that kernelbase must be: * * 4Meg aligned for 32 bit kernels * 512Gig aligned for x86_64 64 bit kernel * * The PAE 32 bit hat is handled as a special case. Otherwise requiring 1Gig * alignment would use too much VA for the kernel. * */ static uint_t khat_start; /* index of 1st entry in kernel's top ptable */ static uint_t khat_entries; /* number of entries in kernel's top ptable */ #if defined(__i386) static htable_t *khat_pae32_htable = NULL; static uint_t khat_pae32_start; static uint_t khat_pae32_entries; #endif /* * Locks, etc. to control use of the hat reserves when recursively * allocating pagetables for the hat data structures. */ static kmutex_t hat_reserves_lock; static kcondvar_t hat_reserves_cv; kthread_t *hat_reserves_thread; uint_t use_boot_reserve = 1; /* cleared after early boot process */ uint_t can_steal_post_boot = 0; /* set late in boot to enable stealing */ /* * A cpuset for all cpus. This is used for kernel address cross calls, since * the kernel addresses apply to all cpus. */ cpuset_t khat_cpuset; /* * management stuff for hat structures */ kmutex_t hat_list_lock; kcondvar_t hat_list_cv; kmem_cache_t *hat_cache; kmem_cache_t *hat_hash_cache; kmem_cache_t *vlp_hash_cache; /* * Simple statistics */ struct hatstats hatstat; /* * macros to detect addresses in use by kernel only during boot */ #if defined(__amd64) #define BOOT_VA(va) ((va) < kernelbase || \ ((va) >= BOOT_DOUBLEMAP_BASE && \ (va) < BOOT_DOUBLEMAP_BASE + BOOT_DOUBLEMAP_SIZE)) #elif defined(__i386) #define BOOT_VA(va) ((va) < kernelbase) #endif /* __i386 */ /* * useful stuff for atomic access/clearing/setting REF/MOD/RO bits in page_t's. */ extern void atomic_orb(uchar_t *addr, uchar_t val); extern void atomic_andb(uchar_t *addr, uchar_t val); #define PP_GETRM(pp, rmmask) (pp->p_nrm & rmmask) #define PP_ISMOD(pp) PP_GETRM(pp, P_MOD) #define PP_ISREF(pp) PP_GETRM(pp, P_REF) #define PP_ISRO(pp) PP_GETRM(pp, P_RO) #define PP_SETRM(pp, rm) atomic_orb(&(pp->p_nrm), rm) #define PP_SETMOD(pp) PP_SETRM(pp, P_MOD) #define PP_SETREF(pp) PP_SETRM(pp, P_REF) #define PP_SETRO(pp) PP_SETRM(pp, P_RO) #define PP_CLRRM(pp, rm) atomic_andb(&(pp->p_nrm), ~(rm)) #define PP_CLRMOD(pp) PP_CLRRM(pp, P_MOD) #define PP_CLRREF(pp) PP_CLRRM(pp, P_REF) #define PP_CLRRO(pp) PP_CLRRM(pp, P_RO) #define PP_CLRALL(pp) PP_CLRRM(pp, P_MOD | P_REF | P_RO) /* * some useful tracing macros */ int hattrace = 0; #ifdef DEBUG #define HATIN(r, h, a, l) \ if (hattrace) prom_printf("->%s hat=%p, adr=%p, len=%lx\n", #r, h, a, l) #define HATOUT(r, h, a) \ if (hattrace) prom_printf("<-%s hat=%p, adr=%p\n", #r, h, a) #else #define HATIN(r, h, a, l) #define HATOUT(r, h, a) #endif /* * kmem cache constructor for struct hat */ /*ARGSUSED*/ static int hati_constructor(void *buf, void *handle, int kmflags) { hat_t *hat = buf; mutex_init(&hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL); bzero(hat->hat_pages_mapped, sizeof (pgcnt_t) * (mmu.max_page_level + 1)); hat->hat_stats = 0; hat->hat_flags = 0; mutex_init(&hat->hat_switch_mutex, NULL, MUTEX_DRIVER, (void *)ipltospl(DISP_LEVEL)); CPUSET_ZERO(hat->hat_cpus); hat->hat_htable = NULL; hat->hat_ht_hash = NULL; return (0); } /* * Allocate a hat structure for as. We also create the top level * htable and initialize it to contain the kernel hat entries. */ hat_t * hat_alloc(struct as *as) { hat_t *hat; htable_t *ht; /* top level htable */ uint_t use_vlp; /* * Once we start creating user process HATs we can enable * the htable_steal() code. */ if (can_steal_post_boot == 0) can_steal_post_boot = 1; ASSERT(AS_WRITE_HELD(as, &as->a_lock)); hat = kmem_cache_alloc(hat_cache, KM_SLEEP); hat->hat_as = as; mutex_init(&hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL); ASSERT(hat->hat_flags == 0); /* * a 32 bit process uses a VLP style hat when using PAE */ #if defined(__amd64) use_vlp = (ttoproc(curthread)->p_model == DATAMODEL_ILP32); #elif defined(__i386) use_vlp = mmu.pae_hat; #endif if (use_vlp) { hat->hat_flags = HAT_VLP; bzero(hat->hat_vlp_ptes, VLP_SIZE); } /* * Allocate the htable hash */ if ((hat->hat_flags & HAT_VLP)) { hat->hat_num_hash = mmu.vlp_hash_cnt; hat->hat_ht_hash = kmem_cache_alloc(vlp_hash_cache, KM_SLEEP); } else { hat->hat_num_hash = mmu.hash_cnt; hat->hat_ht_hash = kmem_cache_alloc(hat_hash_cache, KM_SLEEP); } bzero(hat->hat_ht_hash, hat->hat_num_hash * sizeof (htable_t *)); /* * Initialize Kernel HAT entries at the top of the top level page * table for the new hat. * * Note that we don't call htable_release() for the top level, that * happens when the hat is destroyed in hat_free_end() */ hat->hat_htable = NULL; hat->hat_ht_cached = NULL; ht = htable_create(hat, (uintptr_t)0, TOP_LEVEL(hat), NULL); if (!(hat->hat_flags & HAT_VLP)) x86pte_copy(kas.a_hat->hat_htable, ht, khat_start, khat_entries); #if defined(__i386) else if (khat_entries > 0) bcopy(vlp_page + khat_start, hat->hat_vlp_ptes + khat_start, khat_entries * sizeof (x86pte_t)); #endif hat->hat_htable = ht; #if defined(__i386) /* * PAE32 HAT alignment is less restrictive than the others to keep * the kernel from using too much VA. Because of this we may need * one layer further down when kernelbase isn't 1Gig aligned. * See hat_free_end() for the htable_release() that goes with this * htable_create() */ if (khat_pae32_htable != NULL) { ht = htable_create(hat, kernelbase, khat_pae32_htable->ht_level, NULL); x86pte_copy(khat_pae32_htable, ht, khat_pae32_start, khat_pae32_entries); ht->ht_valid_cnt = khat_pae32_entries; } #endif /* * Put it in the global list of all hats (used by stealing, etc.) */ mutex_enter(&hat_list_lock); if (kas.a_hat->hat_next != NULL) { hat->hat_next = kas.a_hat->hat_next; hat->hat_prev = kas.a_hat->hat_next->hat_prev; kas.a_hat->hat_next->hat_prev->hat_next = hat; kas.a_hat->hat_next->hat_prev = hat; } else { hat->hat_next = hat; hat->hat_prev = hat; } kas.a_hat->hat_next = hat; mutex_exit(&hat_list_lock); return (hat); } /* * process has finished executing but as has not been cleaned up yet. */ /*ARGSUSED*/ void hat_free_start(hat_t *hat) { ASSERT(AS_WRITE_HELD(hat->hat_as, &hat->hat_as->a_lock)); mutex_enter(&hat_list_lock); hat->hat_flags |= HAT_FREEING; mutex_exit(&hat_list_lock); } /* * An address space is being destroyed, so we destroy the associated hat. */ void hat_free_end(hat_t *hat) { int i; kmem_cache_t *cache; #ifdef DEBUG for (i = 0; i <= mmu.max_page_level; i++) ASSERT(hat->hat_pages_mapped[i] == 0); #endif ASSERT(hat->hat_flags & HAT_FREEING); /* * must not be running on the given hat */ ASSERT(CPU->cpu_current_hat != hat); /* * If the hat is currently a stealing victim, wait for the stealing * to finish. Once we've removed it from the list, nobody can * find these htables anymore. */ mutex_enter(&hat_list_lock); while (hat->hat_flags & HAT_VICTIM) cv_wait(&hat_list_cv, &hat_list_lock); hat->hat_next->hat_prev = hat->hat_prev; hat->hat_prev->hat_next = hat->hat_next; if (kas.a_hat->hat_next == hat) { kas.a_hat->hat_next = hat->hat_next; if (kas.a_hat->hat_next == hat) kas.a_hat->hat_next = NULL; } mutex_exit(&hat_list_lock); /* * Make a pass through the htables freeing them all up. */ htable_purge_hat(hat); /* * Decide which kmem cache the hash table came from, then free it. */ if (hat->hat_flags & HAT_VLP) cache = vlp_hash_cache; else cache = hat_hash_cache; kmem_cache_free(cache, hat->hat_ht_hash); hat->hat_ht_hash = NULL; hat->hat_flags = 0; kmem_cache_free(hat_cache, hat); } /* * round kernelbase down to a supported value to use for _userlimit * * userlimit must be aligned down to an entry in the top level htable. * The one exception is for 32 bit HAT's running PAE. */ uintptr_t hat_kernelbase(uintptr_t va) { #if defined(__i386) va &= LEVEL_MASK(1); #endif if (IN_VA_HOLE(va)) panic("_userlimit %p will fall in VA hole\n", (void *)va); return (va); } /* * Initialize hat data structures based on processor MMU information. */ void mmu_init(void) { uint_t max_htables; uint_t pa_bits; uint_t va_bits; int i; /* * if CPU enabled the page table global bit, use it for the kernel * This is bit 7 in CR4 (PGE - Page Global Enable) */ if ((x86_feature & X86_PGE) != 0 && (getcr4() & 0x80) != 0) mmu.pt_global = PT_GLOBAL; /* * We use PAE except when we aren't on an AMD64 and this is * a 32 bit kernel with all physical addresses less than 4 Gig. */ mmu.pae_hat = 1; if (x86_feature & X86_NX) { mmu.pt_nx = PT_NX; } else { mmu.pt_nx = 0; #if defined(__i386) if (!PFN_ABOVE4G(physmax)) mmu.pae_hat = 0; #endif } #if defined(__i386) /* * Setting one of these two lets you force testing of the different * hat modes for 32 bit, regardless of the hardware setup. */ if (force_pae_on) { mmu.pae_hat = 1; } else if (force_pae_off) { mmu.pae_hat = 0; mmu.pt_nx = 0; } #endif /* * Use CPU info to set various MMU parameters */ cpuid_get_addrsize(CPU, &pa_bits, &va_bits); if (va_bits < sizeof (void *) * NBBY) { mmu.hole_start = (1ul << (va_bits - 1)); mmu.hole_end = 0ul - mmu.hole_start - 1; } else { mmu.hole_end = 0; mmu.hole_start = mmu.hole_end - 1; } #if defined(OPTERON_ERRATUM_121) /* * If erratum 121 has already been detected at this time, hole_start * contains the value to be subtracted from mmu.hole_start. */ ASSERT(hole_start == 0 || opteron_erratum_121 != 0); hole_start = mmu.hole_start - hole_start; #else hole_start = mmu.hole_start; #endif hole_end = mmu.hole_end; mmu.highest_pfn = mmu_btop((1ull << pa_bits) - 1); if (mmu.pae_hat == 0 && pa_bits > 32) mmu.highest_pfn = PFN_4G - 1; if (mmu.pae_hat) { mmu.pte_size = 8; /* 8 byte PTEs */ mmu.pte_size_shift = 3; } else { mmu.pte_size = 4; /* 4 byte PTEs */ mmu.pte_size_shift = 2; } if (mmu.pae_hat && (x86_feature & X86_PAE) == 0) panic("Processor does not support PAE"); if ((x86_feature & X86_CX8) == 0) panic("Processor does not support cmpxchg8b instruction"); /* * Initialize parameters based on the 64 or 32 bit kernels and * for the 32 bit kernel decide if we should use PAE. */ if (x86_feature & X86_LARGEPAGE) mmu.max_page_level = 1; else mmu.max_page_level = 0; mmu_page_sizes = mmu.max_page_level + 1; mmu_exported_page_sizes = mmu_page_sizes; #if defined(__amd64) mmu.num_level = 4; mmu.max_level = 3; mmu.ptes_per_table = 512; mmu.top_level_count = 512; mmu.level_shift[0] = 12; mmu.level_shift[1] = 21; mmu.level_shift[2] = 30; mmu.level_shift[3] = 39; #elif defined(__i386) if (mmu.pae_hat) { mmu.num_level = 3; mmu.max_level = 2; mmu.ptes_per_table = 512; mmu.top_level_count = 4; mmu.level_shift[0] = 12; mmu.level_shift[1] = 21; mmu.level_shift[2] = 30; } else { mmu.num_level = 2; mmu.max_level = 1; mmu.ptes_per_table = 1024; mmu.top_level_count = 1024; mmu.level_shift[0] = 12; mmu.level_shift[1] = 22; } #endif /* __i386 */ for (i = 0; i < mmu.num_level; ++i) { mmu.level_size[i] = 1UL << mmu.level_shift[i]; mmu.level_offset[i] = mmu.level_size[i] - 1; mmu.level_mask[i] = ~mmu.level_offset[i]; } mmu.pte_bits[0] = PT_VALID; for (i = 1; i <= mmu.max_page_level; ++i) mmu.pte_bits[i] = PT_VALID | PT_PAGESIZE; /* * NOTE Legacy 32 bit PAE mode only has the P_VALID bit at top level. */ for (i = 1; i < mmu.num_level; ++i) mmu.ptp_bits[i] = PT_PTPBITS; #if defined(__i386) mmu.ptp_bits[2] = PT_VALID; #endif /* * Compute how many hash table entries to have per process for htables. * We start with 1 page's worth of entries. * * If physical memory is small, reduce the amount need to cover it. */ max_htables = physmax / mmu.ptes_per_table; mmu.hash_cnt = MMU_PAGESIZE / sizeof (htable_t *); while (mmu.hash_cnt > 16 && mmu.hash_cnt >= max_htables) mmu.hash_cnt >>= 1; mmu.vlp_hash_cnt = mmu.hash_cnt; #if defined(__amd64) /* * If running in 64 bits and physical memory is large, * increase the size of the cache to cover all of memory for * a 64 bit process. */ #define HASH_MAX_LENGTH 4 while (mmu.hash_cnt * HASH_MAX_LENGTH < max_htables) mmu.hash_cnt <<= 1; #endif /* * This code knows that there are only 2 pagesizes. * We ignore 4MB (non-PAE) for now. The value is only used * for optimizing demaps across large ranges. * These return zero if no information is known. */ mmu.tlb_entries[0] = cpuid_get_dtlb_nent(NULL, MMU_PAGESIZE); mmu.tlb_entries[1] = cpuid_get_dtlb_nent(NULL, 2 * 1024 * 1024); } /* * initialize hat data structures */ void hat_init() { #if defined(__i386) /* * _userlimit must be aligned correctly */ if ((_userlimit & LEVEL_MASK(1)) != _userlimit) { prom_printf("hat_init(): _userlimit=%p, not aligned at %p\n", (void *)_userlimit, (void *)LEVEL_SIZE(1)); halt("hat_init(): Unable to continue"); } #endif cv_init(&hat_list_cv, NULL, CV_DEFAULT, NULL); /* * initialize kmem caches */ htable_init(); hment_init(); hat_cache = kmem_cache_create("hat_t", sizeof (hat_t), 0, hati_constructor, NULL, NULL, NULL, 0, 0); hat_hash_cache = kmem_cache_create("HatHash", mmu.hash_cnt * sizeof (htable_t *), 0, NULL, NULL, NULL, NULL, 0, 0); /* * VLP hats can use a smaller hash table size on large memroy machines */ if (mmu.hash_cnt == mmu.vlp_hash_cnt) { vlp_hash_cache = hat_hash_cache; } else { vlp_hash_cache = kmem_cache_create("HatVlpHash", mmu.vlp_hash_cnt * sizeof (htable_t *), 0, NULL, NULL, NULL, NULL, 0, 0); } /* * Set up the kernel's hat */ AS_LOCK_ENTER(&kas, &kas.a_lock, RW_WRITER); kas.a_hat = kmem_cache_alloc(hat_cache, KM_NOSLEEP); mutex_init(&kas.a_hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL); kas.a_hat->hat_as = &kas; kas.a_hat->hat_flags = 0; AS_LOCK_EXIT(&kas, &kas.a_lock); CPUSET_ZERO(khat_cpuset); CPUSET_ADD(khat_cpuset, CPU->cpu_id); /* * The kernel hat's next pointer serves as the head of the hat list . */ kas.a_hat->hat_next = NULL; /* * Allocate an htable hash bucket for the kernel * XX64 - tune for 64 bit procs */ kas.a_hat->hat_num_hash = mmu.hash_cnt; kas.a_hat->hat_ht_hash = kmem_cache_alloc(hat_hash_cache, KM_NOSLEEP); bzero(kas.a_hat->hat_ht_hash, mmu.hash_cnt * sizeof (htable_t *)); /* * zero out the top level and cached htable pointers */ kas.a_hat->hat_ht_cached = NULL; kas.a_hat->hat_htable = NULL; } /* * Prepare CPU specific pagetables for VLP processes on 64 bit kernels. * * Each CPU has a set of 2 pagetables that are reused for any 32 bit * process it runs. They are the top level pagetable, hci_vlp_l3ptes, and * the next to top level table for the bottom 512 Gig, hci_vlp_l2ptes. */ /*ARGSUSED*/ static void hat_vlp_setup(struct cpu *cpu) { #if defined(__amd64) struct hat_cpu_info *hci = cpu->cpu_hat_info; pfn_t pfn; /* * allocate the level==2 page table for the bottom most * 512Gig of address space (this is where 32 bit apps live) */ ASSERT(hci != NULL); hci->hci_vlp_l2ptes = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP); /* * Allocate a top level pagetable and copy the kernel's * entries into it. Then link in hci_vlp_l2ptes in the 1st entry. */ hci->hci_vlp_l3ptes = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP); hci->hci_vlp_pfn = hat_getpfnum(kas.a_hat, (caddr_t)hci->hci_vlp_l3ptes); ASSERT(hci->hci_vlp_pfn != PFN_INVALID); bcopy(vlp_page + khat_start, hci->hci_vlp_l3ptes + khat_start, khat_entries * sizeof (x86pte_t)); pfn = hat_getpfnum(kas.a_hat, (caddr_t)hci->hci_vlp_l2ptes); ASSERT(pfn != PFN_INVALID); hci->hci_vlp_l3ptes[0] = MAKEPTP(pfn, 2); #endif /* __amd64 */ } /* * Finish filling in the kernel hat. * Pre fill in all top level kernel page table entries for the kernel's * part of the address range. From this point on we can't use any new * kernel large pages if they need PTE's at max_level */ void hat_init_finish(void) { htable_t *top = kas.a_hat->hat_htable; htable_t *ht; uint_t e; x86pte_t pte; uintptr_t va = kernelbase; #if defined(__i386) ASSERT((va & LEVEL_MASK(1)) == va); /* * Deal with kernelbase not 1Gig aligned for 32 bit PAE hats. */ if (!mmu.pae_hat || (va & LEVEL_OFFSET(mmu.max_level)) == 0) { khat_pae32_htable = NULL; } else { ASSERT(mmu.max_level == 2); ASSERT((va & LEVEL_OFFSET(mmu.max_level - 1)) == 0); khat_pae32_htable = htable_create(kas.a_hat, va, mmu.max_level - 1, NULL); khat_pae32_start = htable_va2entry(va, khat_pae32_htable); khat_pae32_entries = mmu.ptes_per_table - khat_pae32_start; for (e = khat_pae32_start; e < mmu.ptes_per_table; ++e, va += LEVEL_SIZE(mmu.max_level - 1)) { pte = x86pte_get(khat_pae32_htable, e); if (PTE_ISVALID(pte)) continue; ht = htable_create(kas.a_hat, va, mmu.max_level - 2, NULL); ASSERT(ht != NULL); } } #endif /* * The kernel hat will need fixed values in the highest level * ptable for copying to all other hat's. This implies * alignment restrictions on _userlimit. * * Note we don't htable_release() these htables. This keeps them * from ever being stolen or free'd. * * top_level_count is used instead of ptes_per_table, since * on 32-bit PAE we only have 4 usable entries at the top level ptable. */ if (va == 0) khat_start = mmu.top_level_count; else khat_start = htable_va2entry(va, kas.a_hat->hat_htable); khat_entries = mmu.top_level_count - khat_start; for (e = khat_start; e < mmu.top_level_count; ++e, va += LEVEL_SIZE(mmu.max_level)) { pte = x86pte_get(top, e); if (PTE_ISVALID(pte)) continue; ht = htable_create(kas.a_hat, va, mmu.max_level - 1, NULL); ASSERT(ht != NULL); } /* * We are now effectively running on the kernel hat. * Clearing use_boot_reserve shuts off using the pre-allocated boot * reserve for all HAT allocations. From here on, the reserves are * only used when mapping in memory for the hat's own allocations. */ use_boot_reserve = 0; htable_adjust_reserve(); /* * 32 bit kernels use only 4 of the 512 entries in its top level * pagetable. We'll use the remainder for the "per CPU" page tables * for VLP processes. * * We map the top level kernel pagetable into the kernel's AS to make * it easy to use bcopy for kernel entry PTEs. * * We were guaranteed to get a physical address < 4Gig, since the 32 bit * boot loader uses non-PAE page tables. */ if (mmu.pae_hat) { vlp_page = vmem_alloc(heap_arena, MMU_PAGESIZE, VM_SLEEP); hat_devload(kas.a_hat, (caddr_t)vlp_page, MMU_PAGESIZE, kas.a_hat->hat_htable->ht_pfn, PROT_READ | PROT_WRITE | HAT_NOSYNC | HAT_UNORDERED_OK, HAT_LOAD | HAT_LOAD_NOCONSIST); } hat_vlp_setup(CPU); } /* * On 32 bit PAE mode, PTE's are 64 bits, but ordinary atomic memory references * are 32 bit, so for safety we must use cas64() to install these. */ #ifdef __i386 static void reload_pae32(hat_t *hat, cpu_t *cpu) { x86pte_t *src; x86pte_t *dest; x86pte_t pte; int i; /* * Load the 4 entries of the level 2 page table into this * cpu's range of the vlp_page and point cr3 at them. */ ASSERT(mmu.pae_hat); src = hat->hat_vlp_ptes; dest = vlp_page + (cpu->cpu_id + 1) * VLP_NUM_PTES; for (i = 0; i < VLP_NUM_PTES; ++i) { for (;;) { pte = dest[i]; if (pte == src[i]) break; if (cas64(dest + i, pte, src[i]) != src[i]) break; } } } #endif /* * Switch to a new active hat, maintaining bit masks to track active CPUs. */ void hat_switch(hat_t *hat) { uintptr_t newcr3; cpu_t *cpu = CPU; hat_t *old = cpu->cpu_current_hat; /* * set up this information first, so we don't miss any cross calls */ if (old != NULL) { if (old == hat) return; if (old != kas.a_hat) CPUSET_ATOMIC_DEL(old->hat_cpus, cpu->cpu_id); } /* * Wait for any in flight pagetable invalidates on this hat to finish. * This is a spin lock at DISP_LEVEL */ if (hat != kas.a_hat) { mutex_enter(&hat->hat_switch_mutex); CPUSET_ATOMIC_ADD(hat->hat_cpus, cpu->cpu_id); mutex_exit(&hat->hat_switch_mutex); } cpu->cpu_current_hat = hat; /* * now go ahead and load cr3 */ if (hat->hat_flags & HAT_VLP) { #if defined(__amd64) x86pte_t *vlpptep = cpu->cpu_hat_info->hci_vlp_l2ptes; VLP_COPY(hat->hat_vlp_ptes, vlpptep); newcr3 = MAKECR3(cpu->cpu_hat_info->hci_vlp_pfn); #elif defined(__i386) reload_pae32(hat, cpu); newcr3 = MAKECR3(kas.a_hat->hat_htable->ht_pfn) + (cpu->cpu_id + 1) * VLP_SIZE; #endif } else { newcr3 = MAKECR3(hat->hat_htable->ht_pfn); } setcr3(newcr3); ASSERT(cpu == CPU); } /* * Utility to return a valid x86pte_t from protections, pfn, and level number */ static x86pte_t hati_mkpte(pfn_t pfn, uint_t attr, level_t level, uint_t flags) { x86pte_t pte; uint_t cache_attr = attr & HAT_ORDER_MASK; pte = MAKEPTE(pfn, level); if (attr & PROT_WRITE) PTE_SET(pte, PT_WRITABLE); if (attr & PROT_USER) PTE_SET(pte, PT_USER); if (!(attr & PROT_EXEC)) PTE_SET(pte, mmu.pt_nx); /* * set the software bits used track ref/mod sync's and hments */ if (attr & HAT_NOSYNC) PTE_SET(pte, PT_NOSYNC); if (flags & HAT_LOAD_NOCONSIST) PTE_SET(pte, PT_NOCONSIST | PT_NOSYNC); /* * Set the caching attributes in the PTE. The combination * of attributes are poorly defined, so we pay attention * to them in the given order. * * The test for HAT_STRICTORDER is different because it's defined * as "0" - which was a stupid thing to do, but is too late to change! */ if (cache_attr == HAT_STRICTORDER) { PTE_SET(pte, PT_NOCACHE); /*LINTED [Lint hates empty ifs, but it's the obvious way to do this] */ } else if (cache_attr & (HAT_UNORDERED_OK | HAT_STORECACHING_OK)) { /* nothing to set */; } else if (cache_attr & (HAT_MERGING_OK | HAT_LOADCACHING_OK)) { PTE_SET(pte, PT_NOCACHE); if (x86_feature & X86_PAT) PTE_SET(pte, (level == 0) ? PT_PAT_4K : PT_PAT_LARGE); else PTE_SET(pte, PT_WRITETHRU); } else { panic("hati_mkpte(): bad caching attributes: %x\n", cache_attr); } return (pte); } /* * Duplicate address translations of the parent to the child. * This function really isn't used anymore. */ /*ARGSUSED*/ int hat_dup(hat_t *old, hat_t *new, caddr_t addr, size_t len, uint_t flag) { ASSERT((uintptr_t)addr < kernelbase); ASSERT(new != kas.a_hat); ASSERT(old != kas.a_hat); return (0); } /* * Allocate any hat resources required for a process being swapped in. */ /*ARGSUSED*/ void hat_swapin(hat_t *hat) { /* do nothing - we let everything fault back in */ } /* * Unload all translations associated with an address space of a process * that is being swapped out. */ void hat_swapout(hat_t *hat) { uintptr_t vaddr = (uintptr_t)0; uintptr_t eaddr = _userlimit; htable_t *ht = NULL; level_t l; /* * We can't just call hat_unload(hat, 0, _userlimit...) here, because * seg_spt and shared pagetables can't be swapped out. * Take a look at segspt_shmswapout() - it's a big no-op. * * Instead we'll walk through all the address space and unload * any mappings which we are sure are not shared, not locked. */ ASSERT(IS_PAGEALIGNED(vaddr)); ASSERT(IS_PAGEALIGNED(eaddr)); ASSERT(AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); if ((uintptr_t)hat->hat_as->a_userlimit < eaddr) eaddr = (uintptr_t)hat->hat_as->a_userlimit; while (vaddr < eaddr) { (void) htable_walk(hat, &ht, &vaddr, eaddr); if (ht == NULL) break; ASSERT(!IN_VA_HOLE(vaddr)); /* * If the page table is shared skip its entire range. * This code knows that only level 0 page tables are shared */ l = ht->ht_level; if (ht->ht_flags & HTABLE_SHARED_PFN) { ASSERT(l == 0); vaddr = ht->ht_vaddr + LEVEL_SIZE(1); htable_release(ht); ht = NULL; continue; } /* * If the page table has no locked entries, unload this one. */ if (ht->ht_lock_cnt == 0) hat_unload(hat, (caddr_t)vaddr, LEVEL_SIZE(l), HAT_UNLOAD_UNMAP); /* * If we have a level 0 page table with locked entries, * skip the entire page table, otherwise skip just one entry. */ if (ht->ht_lock_cnt > 0 && l == 0) vaddr = ht->ht_vaddr + LEVEL_SIZE(1); else vaddr += LEVEL_SIZE(l); } if (ht) htable_release(ht); /* * We're in swapout because the system is low on memory, so * go back and flush all the htables off the cached list. */ htable_purge_hat(hat); } /* * returns number of bytes that have valid mappings in hat. */ size_t hat_get_mapped_size(hat_t *hat) { size_t total = 0; int l; for (l = 0; l <= mmu.max_page_level; l++) total += (hat->hat_pages_mapped[l] << LEVEL_SHIFT(l)); return (total); } /* * enable/disable collection of stats for hat. */ int hat_stats_enable(hat_t *hat) { atomic_add_32(&hat->hat_stats, 1); return (1); } void hat_stats_disable(hat_t *hat) { atomic_add_32(&hat->hat_stats, -1); } /* * Utility to sync the ref/mod bits from a page table entry to the page_t * We must be holding the mapping list lock when this is called. */ static void hati_sync_pte_to_page(page_t *pp, x86pte_t pte, level_t level) { uint_t rm = 0; pgcnt_t pgcnt; if (PTE_GET(pte, PT_NOSYNC)) return; if (PTE_GET(pte, PT_REF)) rm |= P_REF; if (PTE_GET(pte, PT_MOD)) rm |= P_MOD; if (rm == 0) return; /* * sync to all constituent pages of a large page */ ASSERT(x86_hm_held(pp)); pgcnt = page_get_pagecnt(level); ASSERT(IS_P2ALIGNED(pp->p_pagenum, pgcnt)); for (; pgcnt > 0; --pgcnt) { /* * hat_page_demote() can't decrease * pszc below this mapping size * since this large mapping existed after we * took mlist lock. */ ASSERT(pp->p_szc >= level); hat_page_setattr(pp, rm); ++pp; } } /* * This the set of PTE bits for PFN, permissions and caching * that require a TLB flush (hat_demap) if changed on a HAT_LOAD_REMAP */ #define PT_REMAP_BITS \ (PT_PADDR | PT_NX | PT_WRITABLE | PT_WRITETHRU | \ PT_NOCACHE | PT_PAT_4K | PT_PAT_LARGE) #define REMAPASSERT(EX) if (!(EX)) panic("hati_pte_map: " #EX) /* * Do the low-level work to get a mapping entered into a HAT's pagetables * and in the mapping list of the associated page_t. */ static void hati_pte_map( htable_t *ht, uint_t entry, page_t *pp, x86pte_t pte, int flags, void *pte_ptr) { hat_t *hat = ht->ht_hat; x86pte_t old_pte; level_t l = ht->ht_level; hment_t *hm; uint_t is_consist; /* * Is this a consistant (ie. need mapping list lock) mapping? */ is_consist = (pp != NULL && (flags & HAT_LOAD_NOCONSIST) == 0); /* * Track locked mapping count in the htable. Do this first, * as we track locking even if there already is a mapping present. */ if ((flags & HAT_LOAD_LOCK) != 0 && hat != kas.a_hat) HTABLE_LOCK_INC(ht); /* * Acquire the page's mapping list lock and get an hment to use. * Note that hment_prepare() might return NULL. */ if (is_consist) { x86_hm_enter(pp); hm = hment_prepare(ht, entry, pp); } /* * Set the new pte, retrieving the old one at the same time. */ old_pte = x86pte_set(ht, entry, pte, pte_ptr); /* * If the mapping didn't change there is nothing more to do. */ if (PTE_EQUIV(pte, old_pte)) { if (is_consist) { x86_hm_exit(pp); if (hm != NULL) hment_free(hm); } return; } /* * Install a new mapping in the page's mapping list */ if (!PTE_ISVALID(old_pte)) { if (is_consist) { hment_assign(ht, entry, pp, hm); x86_hm_exit(pp); } else { ASSERT(flags & HAT_LOAD_NOCONSIST); } HTABLE_INC(ht->ht_valid_cnt); PGCNT_INC(hat, l); return; } /* * Remap's are more complicated: * - HAT_LOAD_REMAP must be specified if changing the pfn. * We also require that NOCONSIST be specified. * - Otherwise only permission or caching bits may change. */ if (!PTE_ISPAGE(old_pte, l)) panic("non-null/page mapping pte=" FMT_PTE, old_pte); if (PTE2PFN(old_pte, l) != PTE2PFN(pte, l)) { REMAPASSERT(flags & HAT_LOAD_REMAP); REMAPASSERT(flags & HAT_LOAD_NOCONSIST); REMAPASSERT(PTE_GET(old_pte, PT_NOCONSIST)); REMAPASSERT(pf_is_memory(PTE2PFN(old_pte, l)) == pf_is_memory(PTE2PFN(pte, l))); REMAPASSERT(!is_consist); } /* * We only let remaps change the bits for PFNs, permissions * or caching type. */ ASSERT(PTE_GET(old_pte, ~(PT_REMAP_BITS | PT_REF | PT_MOD)) == PTE_GET(pte, ~PT_REMAP_BITS)); /* * A remap requires invalidating the TLBs, since remapping the * same PFN requires NOCONSIST, we don't have to sync R/M bits. */ hat_demap(hat, htable_e2va(ht, entry)); /* * We don't create any mapping list entries on a remap, so release * any allocated hment after we drop the mapping list lock. */ if (is_consist) { x86_hm_exit(pp); if (hm != NULL) hment_free(hm); } } /* * The t_hatdepth field is an 8-bit counter. We use the lower seven bits * to track exactly how deep we are in the memload->kmem_alloc recursion. * If the depth is greater than 1, that indicates that we are performing a * hat operation to satisfy another hat operation. To prevent infinite * recursion, we switch over to using pre-allocated "reserves" of htables * and hments. * * The uppermost bit is used to indicate that we are transitioning away * from being the reserves thread. See hati_reserves_exit() for the * details. */ #define EXITING_FLAG (1 << 7) #define DEPTH_MASK (~EXITING_FLAG) #define HAT_DEPTH(t) ((t)->t_hatdepth & DEPTH_MASK) #define EXITING_RESERVES(t) ((t)->t_hatdepth & EXITING_FLAG) /* * Access to reserves for HAT_NO_KALLOC is single threaded. * If someone else is in the reserves, we'll politely wait for them * to finish. This keeps normal hat_memload()s from eating up * the mappings needed to replenish the reserve. */ static void hati_reserves_enter(uint_t kmem_for_hat) { /* * 64 is an arbitrary number to catch serious problems. I'm not * sure what the absolute maximum depth is, but it should be * substantially less than this. */ ASSERT(HAT_DEPTH(curthread) < 64); /* * If we are doing a memload to satisfy a kmem operation, we enter * the reserves immediately; we don't wait to recurse to a second * level of memload. */ ASSERT(kmem_for_hat < 2); curthread->t_hatdepth += (1 + kmem_for_hat); if (hat_reserves_thread == curthread || use_boot_reserve) return; if (HAT_DEPTH(curthread) > 1 || hat_reserves_thread != NULL) { mutex_enter(&hat_reserves_lock); while (hat_reserves_thread != NULL) cv_wait(&hat_reserves_cv, &hat_reserves_lock); if (HAT_DEPTH(curthread) > 1) hat_reserves_thread = curthread; mutex_exit(&hat_reserves_lock); } } /* * If we are the reserves_thread and we've finally finished with all our * memloads (ie. no longer doing hat slabs), we can release our use of the * reserve. */ static void hati_reserves_exit(uint_t kmem_for_hat) { ASSERT(kmem_for_hat < 2); curthread->t_hatdepth -= (1 + kmem_for_hat); /* * Simple case: either we are not the reserves thread, or we are * the reserves thread and we are nested deeply enough that we * should still be the reserves thread. * * Note: we may not become the reserves thread after we recursively * enter our second HAT routine, but we don't stop being the * reserves thread until we exit the toplevel HAT routine. This is * to work around vmem's inability to determine when an allocation * should be satisfied from the hat_memload arena, which can lead * to an infinite loop of memload->vmem_populate->memload->. */ if (curthread != hat_reserves_thread || HAT_DEPTH(curthread) > 0 || use_boot_reserve) return; mutex_enter(&hat_reserves_lock); ASSERT(hat_reserves_thread == curthread); hat_reserves_thread = NULL; cv_broadcast(&hat_reserves_cv); mutex_exit(&hat_reserves_lock); /* * As we leave the reserves, we want to be sure the reserve lists * aren't overstocked. Freeing excess reserves requires that we * call kmem_free(), which may require additional allocations, * causing us to re-enter the reserves. To avoid infinite * recursion, we only try to adjust reserves at the very top level. */ if (!kmem_for_hat && !EXITING_RESERVES(curthread)) { curthread->t_hatdepth |= EXITING_FLAG; htable_adjust_reserve(); hment_adjust_reserve(); curthread->t_hatdepth &= (~EXITING_FLAG); } /* * just in case something went wrong in doing adjust reserves */ ASSERT(hat_reserves_thread != curthread); } /* * Internal routine to load a single page table entry. */ static void hati_load_common( hat_t *hat, uintptr_t va, page_t *pp, uint_t attr, uint_t flags, level_t level, pfn_t pfn) { htable_t *ht; uint_t entry; x86pte_t pte; uint_t kmem_for_hat = (flags & HAT_NO_KALLOC) ? 1 : 0; ASSERT(hat == kas.a_hat || AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); if (flags & HAT_LOAD_SHARE) hat->hat_flags |= HAT_SHARED; /* * Find the page table that maps this page if it already exists. */ ht = htable_lookup(hat, va, level); /* * All threads go through hati_reserves_enter() to at least wait * for any existing reserves user to finish. This helps reduce * pressure on the reserves. In addition, if this thread needs * to become the new reserve user it will. */ hati_reserves_enter(kmem_for_hat); ASSERT(HAT_DEPTH(curthread) == 1 || va >= kernelbase); /* * Kernel memloads for HAT data should never use hments! * If it did that would seriously complicate the reserves system, since * hment_alloc() would need to know about HAT_NO_KALLOC. * * We also must have HAT_LOAD_NOCONSIST if page_t is NULL. */ if (HAT_DEPTH(curthread) > 1 || pp == NULL) flags |= HAT_LOAD_NOCONSIST; if (ht == NULL) { ht = htable_create(hat, va, level, NULL); ASSERT(ht != NULL); } entry = htable_va2entry(va, ht); /* * a bunch of paranoid error checking */ ASSERT(ht->ht_busy > 0); if (ht->ht_vaddr > va || va > HTABLE_LAST_PAGE(ht)) panic("hati_load_common: bad htable %p, va %p", ht, (void *)va); ASSERT(ht->ht_level == level); /* * construct the new PTE */ if (hat == kas.a_hat) attr &= ~PROT_USER; pte = hati_mkpte(pfn, attr, level, flags); if (hat == kas.a_hat && va >= kernelbase) PTE_SET(pte, mmu.pt_global); /* * establish the mapping */ hati_pte_map(ht, entry, pp, pte, flags, NULL); /* * release the htable and any reserves */ htable_release(ht); hati_reserves_exit(kmem_for_hat); } /* * special case of hat_memload to deal with some kernel addrs for performance */ static void hat_kmap_load( caddr_t addr, page_t *pp, uint_t attr, uint_t flags) { uintptr_t va = (uintptr_t)addr; x86pte_t pte; pfn_t pfn = page_pptonum(pp); pgcnt_t pg_off = mmu_btop(va - mmu.kmap_addr); htable_t *ht; uint_t entry; void *pte_ptr; /* * construct the requested PTE */ attr &= ~PROT_USER; attr |= HAT_STORECACHING_OK; pte = hati_mkpte(pfn, attr, 0, flags); PTE_SET(pte, mmu.pt_global); /* * Figure out the pte_ptr and htable and use common code to finish up */ if (mmu.pae_hat) pte_ptr = mmu.kmap_ptes + pg_off; else pte_ptr = (x86pte32_t *)mmu.kmap_ptes + pg_off; ht = mmu.kmap_htables[(va - mmu.kmap_htables[0]->ht_vaddr) >> LEVEL_SHIFT(1)]; entry = htable_va2entry(va, ht); hati_pte_map(ht, entry, pp, pte, flags, pte_ptr); } /* * hat_memload() - load a translation to the given page struct * * Flags for hat_memload/hat_devload/hat_*attr. * * HAT_LOAD Default flags to load a translation to the page. * * HAT_LOAD_LOCK Lock down mapping resources; hat_map(), hat_memload(), * and hat_devload(). * * HAT_LOAD_NOCONSIST Do not add mapping to page_t mapping list. * sets PT_NOCONSIST (soft bit) * * HAT_LOAD_SHARE A flag to hat_memload() to indicate h/w page tables * that map some user pages (not kas) is shared by more * than one process (eg. ISM). * * HAT_LOAD_REMAP Reload a valid pte with a different page frame. * * HAT_NO_KALLOC Do not kmem_alloc while creating the mapping; at this * point, it's setting up mapping to allocate internal * hat layer data structures. This flag forces hat layer * to tap its reserves in order to prevent infinite * recursion. * * The following is a protection attribute (like PROT_READ, etc.) * * HAT_NOSYNC set PT_NOSYNC (soft bit) - this mapping's ref/mod bits * are never cleared. * * Installing new valid PTE's and creation of the mapping list * entry are controlled under the same lock. It's derived from the * page_t being mapped. */ static uint_t supported_memload_flags = HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_ADV | HAT_LOAD_NOCONSIST | HAT_LOAD_SHARE | HAT_NO_KALLOC | HAT_LOAD_REMAP | HAT_LOAD_TEXT; void hat_memload( hat_t *hat, caddr_t addr, page_t *pp, uint_t attr, uint_t flags) { uintptr_t va = (uintptr_t)addr; level_t level = 0; pfn_t pfn = page_pptonum(pp); HATIN(hat_memload, hat, addr, (size_t)MMU_PAGESIZE); ASSERT(IS_PAGEALIGNED(va)); ASSERT(hat == kas.a_hat || va <= kernelbase); ASSERT(hat == kas.a_hat || AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); ASSERT((flags & supported_memload_flags) == flags); ASSERT(!IN_VA_HOLE(va)); ASSERT(!PP_ISFREE(pp)); /* * kernel address special case for performance. */ if (mmu.kmap_addr <= va && va < mmu.kmap_eaddr) { ASSERT(hat == kas.a_hat); hat_kmap_load(addr, pp, attr, flags); return; } /* * This is used for memory with normal caching enabled, so * always set HAT_STORECACHING_OK. */ attr |= HAT_STORECACHING_OK; hati_load_common(hat, va, pp, attr, flags, level, pfn); HATOUT(hat_memload, hat, addr); } /* * Load the given array of page structs using large pages when possible */ void hat_memload_array( hat_t *hat, caddr_t addr, size_t len, page_t **pages, uint_t attr, uint_t flags) { uintptr_t va = (uintptr_t)addr; uintptr_t eaddr = va + len; level_t level; size_t pgsize; pgcnt_t pgindx = 0; pfn_t pfn; pgcnt_t i; HATIN(hat_memload_array, hat, addr, len); ASSERT(IS_PAGEALIGNED(va)); ASSERT(hat == kas.a_hat || va + len <= kernelbase); ASSERT(hat == kas.a_hat || AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); ASSERT((flags & supported_memload_flags) == flags); /* * memload is used for memory with full caching enabled, so * set HAT_STORECACHING_OK. */ attr |= HAT_STORECACHING_OK; /* * handle all pages using largest possible pagesize */ while (va < eaddr) { /* * decide what level mapping to use (ie. pagesize) */ pfn = page_pptonum(pages[pgindx]); for (level = mmu.max_page_level; ; --level) { pgsize = LEVEL_SIZE(level); if (level == 0) break; if (!IS_P2ALIGNED(va, pgsize) || (eaddr - va) < pgsize || !IS_P2ALIGNED(pfn << MMU_PAGESHIFT, pgsize)) continue; /* * To use a large mapping of this size, all the * pages we are passed must be sequential subpages * of the large page. * hat_page_demote() can't change p_szc because * all pages are locked. */ if (pages[pgindx]->p_szc >= level) { for (i = 0; i < mmu_btop(pgsize); ++i) { if (pfn + i != page_pptonum(pages[pgindx + i])) break; ASSERT(pages[pgindx + i]->p_szc >= level); ASSERT(pages[pgindx] + i == pages[pgindx + i]); } if (i == mmu_btop(pgsize)) break; } } /* * Shared page tables for DISM might have a pre-existing * level 0 page table that wasn't unlinked from all the * sharing hats. If we hit this for a large page, back off * to using level 0 pages. * * This can't be made better (ie. use large pages) until we * track all the htable's sharing and rewrite hat_pageunload(). * Note that would cost a pointer in htable_t for a rare case. * * Since the 32 bit kernel caches empty page tables, check * the kernel too. */ if ((hat == kas.a_hat || (hat->hat_flags & HAT_SHARED)) && level > 0) { htable_t *lower; lower = htable_getpte(hat, va, NULL, NULL, level - 1); if (lower != NULL) { level = 0; pgsize = LEVEL_SIZE(0); htable_release(lower); } } /* * load this page mapping */ ASSERT(!IN_VA_HOLE(va)); hati_load_common(hat, va, pages[pgindx], attr, flags, level, pfn); /* * move to next page */ va += pgsize; pgindx += mmu_btop(pgsize); } HATOUT(hat_memload_array, hat, addr); } /* * void hat_devload(hat, addr, len, pf, attr, flags) * load/lock the given page frame number * * Advisory ordering attributes. Apply only to device mappings. * * HAT_STRICTORDER: the CPU must issue the references in order, as the * programmer specified. This is the default. * HAT_UNORDERED_OK: the CPU may reorder the references (this is all kinds * of reordering; store or load with store or load). * HAT_MERGING_OK: merging and batching: the CPU may merge individual stores * to consecutive locations (for example, turn two consecutive byte * stores into one halfword store), and it may batch individual loads * (for example, turn two consecutive byte loads into one halfword load). * This also implies re-ordering. * HAT_LOADCACHING_OK: the CPU may cache the data it fetches and reuse it * until another store occurs. The default is to fetch new data * on every load. This also implies merging. * HAT_STORECACHING_OK: the CPU may keep the data in the cache and push it to * the device (perhaps with other data) at a later time. The default is * to push the data right away. This also implies load caching. * * Equivalent of hat_memload(), but can be used for device memory where * there are no page_t's and we support additional flags (write merging, etc). * Note that we can have large page mappings with this interface. */ int supported_devload_flags = HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST | HAT_STRICTORDER | HAT_UNORDERED_OK | HAT_MERGING_OK | HAT_LOADCACHING_OK | HAT_STORECACHING_OK; void hat_devload( hat_t *hat, caddr_t addr, size_t len, pfn_t pfn, uint_t attr, int flags) { uintptr_t va = ALIGN2PAGE(addr); uintptr_t eva = va + len; level_t level; size_t pgsize; page_t *pp; int f; /* per PTE copy of flags - maybe modified */ uint_t a; /* per PTE copy of attr */ HATIN(hat_devload, hat, addr, len); ASSERT(IS_PAGEALIGNED(va)); ASSERT(hat == kas.a_hat || eva <= kernelbase); ASSERT(hat == kas.a_hat || AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); ASSERT((flags & supported_devload_flags) == flags); /* * handle all pages */ while (va < eva) { /* * decide what level mapping to use (ie. pagesize) */ for (level = mmu.max_page_level; ; --level) { pgsize = LEVEL_SIZE(level); if (level == 0) break; if (IS_P2ALIGNED(va, pgsize) && (eva - va) >= pgsize && IS_P2ALIGNED(pfn, mmu_btop(pgsize))) break; } /* * Some kernel addresses have permanently existing page tables, * so be sure to use a compatible pagesize. */ if (hat == kas.a_hat && level > 0) { htable_t *lower; lower = htable_getpte(hat, va, NULL, NULL, level - 1); if (lower != NULL) { level = 0; pgsize = LEVEL_SIZE(0); htable_release(lower); } } /* * If it is memory get page_t and allow caching (this happens * for the nucleus pages) - though HAT_PLAT_NOCACHE can be used * to override that. If we don't have a page_t, make sure * NOCONSIST is set. */ a = attr; f = flags; if (pf_is_memory(pfn)) { if (!(a & HAT_PLAT_NOCACHE)) a |= HAT_STORECACHING_OK; if (f & HAT_LOAD_NOCONSIST) pp = NULL; else pp = page_numtopp_nolock(pfn); } else { pp = NULL; f |= HAT_LOAD_NOCONSIST; } /* * load this page mapping */ ASSERT(!IN_VA_HOLE(va)); hati_load_common(hat, va, pp, a, f, level, pfn); /* * move to next page */ va += pgsize; pfn += mmu_btop(pgsize); } HATOUT(hat_devload, hat, addr); } /* * void hat_unlock(hat, addr, len) * unlock the mappings to a given range of addresses * * Locks are tracked by ht_lock_cnt in the htable. */ void hat_unlock(hat_t *hat, caddr_t addr, size_t len) { uintptr_t vaddr = (uintptr_t)addr; uintptr_t eaddr = vaddr + len; htable_t *ht = NULL; /* * kernel entries are always locked, we don't track lock counts */ ASSERT(hat == kas.a_hat || eaddr <= kernelbase); ASSERT(IS_PAGEALIGNED(vaddr)); ASSERT(IS_PAGEALIGNED(eaddr)); if (hat == kas.a_hat) return; if (eaddr > _userlimit) panic("hat_unlock() address out of range - above _userlimit"); ASSERT(AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); while (vaddr < eaddr) { (void) htable_walk(hat, &ht, &vaddr, eaddr); if (ht == NULL) break; ASSERT(!IN_VA_HOLE(vaddr)); if (ht->ht_lock_cnt < 1) panic("hat_unlock(): lock_cnt < 1, " "htable=%p, vaddr=%p\n", ht, (caddr_t)vaddr); HTABLE_LOCK_DEC(ht); vaddr += LEVEL_SIZE(ht->ht_level); } if (ht) htable_release(ht); } /* * Cross call service routine to demap a virtual page on * the current CPU or flush all mappings in TLB. */ /*ARGSUSED*/ static int hati_demap_func(xc_arg_t a1, xc_arg_t a2, xc_arg_t a3) { hat_t *hat = (hat_t *)a1; caddr_t addr = (caddr_t)a2; /* * If the target hat isn't the kernel and this CPU isn't operating * in the target hat, we can ignore the cross call. */ if (hat != kas.a_hat && hat != CPU->cpu_current_hat) return (0); /* * For a normal address, we just flush one page mapping */ if ((uintptr_t)addr != DEMAP_ALL_ADDR) { mmu_tlbflush_entry((caddr_t)addr); return (0); } /* * Otherwise we reload cr3 to effect a complete TLB flush. * * A reload of cr3 on a VLP process also means we must also recopy in * the pte values from the struct hat */ if (hat->hat_flags & HAT_VLP) { #if defined(__amd64) x86pte_t *vlpptep = CPU->cpu_hat_info->hci_vlp_l2ptes; VLP_COPY(hat->hat_vlp_ptes, vlpptep); #elif defined(__i386) reload_pae32(hat, CPU); #endif } reload_cr3(); return (0); } /* * Internal routine to do cross calls to invalidate a range of pages on * all CPUs using a given hat. */ void hat_demap(hat_t *hat, uintptr_t va) { extern int flushes_require_xcalls; /* from mp_startup.c */ cpuset_t justme; /* * If the hat is being destroyed, there are no more users, so * demap need not do anything. */ if (hat->hat_flags & HAT_FREEING) return; /* * If demapping from a shared pagetable, we best demap the * entire set of user TLBs, since we don't know what addresses * these were shared at. */ if (hat->hat_flags & HAT_SHARED) { hat = kas.a_hat; va = DEMAP_ALL_ADDR; } /* * if not running with multiple CPUs, don't use cross calls */ if (panicstr || !flushes_require_xcalls) { (void) hati_demap_func((xc_arg_t)hat, (xc_arg_t)va, NULL); return; } /* * All CPUs must see kernel hat changes. */ if (hat == kas.a_hat) { kpreempt_disable(); xc_call((xc_arg_t)hat, (xc_arg_t)va, NULL, X_CALL_HIPRI, khat_cpuset, hati_demap_func); kpreempt_enable(); return; } /* * Otherwise we notify CPUs currently running in this HAT */ hat_enter(hat); kpreempt_disable(); CPUSET_ONLY(justme, CPU->cpu_id); if (CPUSET_ISEQUAL(hat->hat_cpus, justme)) (void) hati_demap_func((xc_arg_t)hat, (xc_arg_t)va, NULL); else xc_call((xc_arg_t)hat, (xc_arg_t)va, NULL, X_CALL_HIPRI, hat->hat_cpus, hati_demap_func); kpreempt_enable(); hat_exit(hat); } /* * Interior routine for HAT_UNLOADs from hat_unload_callback(), * hat_kmap_unload() OR from hat_steal() code. This routine doesn't * handle releasing of the htables. */ void hat_pte_unmap( htable_t *ht, uint_t entry, uint_t flags, x86pte_t old_pte, void *pte_ptr) { hat_t *hat = ht->ht_hat; hment_t *hm = NULL; page_t *pp = NULL; level_t l = ht->ht_level; pfn_t pfn; /* * We always track the locking counts, even if nothing is unmapped */ if ((flags & HAT_UNLOAD_UNLOCK) != 0 && hat != kas.a_hat) { ASSERT(ht->ht_lock_cnt > 0); HTABLE_LOCK_DEC(ht); } /* * Figure out which page's mapping list lock to acquire using the PFN * passed in "old" PTE. We then attempt to invalidate the PTE. * If another thread, probably a hat_pageunload, has asynchronously * unmapped/remapped this address we'll loop here. */ ASSERT(ht->ht_busy > 0); while (PTE_ISVALID(old_pte)) { pfn = PTE2PFN(old_pte, l); if (PTE_GET(old_pte, PT_NOCONSIST)) { pp = NULL; } else { pp = page_numtopp_nolock(pfn); if (pp == NULL) { panic("no page_t, not NOCONSIST: old_pte=" FMT_PTE " ht=%lx entry=0x%x pte_ptr=%lx", old_pte, (uintptr_t)ht, entry, (uintptr_t)pte_ptr); } x86_hm_enter(pp); } /* * If freeing the address space, check that the PTE * hasn't changed, as the mappings are no longer in use by * any thread, invalidation is unnecessary. * If not freeing, do a full invalidate. */ if (hat->hat_flags & HAT_FREEING) old_pte = x86pte_get(ht, entry); else old_pte = x86pte_invalidate_pfn(ht, entry, pfn, pte_ptr); /* * If the page hadn't changed we've unmapped it and can proceed */ if (PTE_ISVALID(old_pte) && PTE2PFN(old_pte, l) == pfn) break; /* * Otherwise, we'll have to retry with the current old_pte. * Drop the hment lock, since the pfn may have changed. */ if (pp != NULL) { x86_hm_exit(pp); pp = NULL; } else { ASSERT(PTE_GET(old_pte, PT_NOCONSIST)); } } /* * If the old mapping wasn't valid, there's nothing more to do */ if (!PTE_ISVALID(old_pte)) { if (pp != NULL) x86_hm_exit(pp); return; } /* * Take care of syncing any MOD/REF bits and removing the hment. */ if (pp != NULL) { if (!(flags & HAT_UNLOAD_NOSYNC)) hati_sync_pte_to_page(pp, old_pte, l); hm = hment_remove(pp, ht, entry); x86_hm_exit(pp); if (hm != NULL) hment_free(hm); } /* * Handle book keeping in the htable and hat */ ASSERT(ht->ht_valid_cnt > 0); HTABLE_DEC(ht->ht_valid_cnt); PGCNT_DEC(hat, l); } /* * very cheap unload implementation to special case some kernel addresses */ static void hat_kmap_unload(caddr_t addr, size_t len, uint_t flags) { uintptr_t va = (uintptr_t)addr; uintptr_t eva = va + len; pgcnt_t pg_off; htable_t *ht; uint_t entry; void *pte_ptr; x86pte_t old_pte; for (; va < eva; va += MMU_PAGESIZE) { /* * Get the PTE */ pg_off = mmu_btop(va - mmu.kmap_addr); if (mmu.pae_hat) { pte_ptr = mmu.kmap_ptes + pg_off; ATOMIC_LOAD64((x86pte_t *)pte_ptr, old_pte); } else { pte_ptr = (x86pte32_t *)mmu.kmap_ptes + pg_off; old_pte = *(x86pte32_t *)pte_ptr; } /* * get the htable / entry */ ht = mmu.kmap_htables[(va - mmu.kmap_htables[0]->ht_vaddr) >> LEVEL_SHIFT(1)]; entry = htable_va2entry(va, ht); /* * use mostly common code to unmap it. */ hat_pte_unmap(ht, entry, flags, old_pte, pte_ptr); } } /* * unload a range of virtual address space (no callback) */ void hat_unload(hat_t *hat, caddr_t addr, size_t len, uint_t flags) { uintptr_t va = (uintptr_t)addr; ASSERT(hat == kas.a_hat || va + len <= kernelbase); /* * special case for performance. */ if (mmu.kmap_addr <= va && va < mmu.kmap_eaddr) { ASSERT(hat == kas.a_hat); hat_kmap_unload(addr, len, flags); return; } hat_unload_callback(hat, addr, len, flags, NULL); } /* * Do the callbacks for ranges being unloaded. */ typedef struct range_info { uintptr_t rng_va; ulong_t rng_cnt; level_t rng_level; } range_info_t; static void handle_ranges(hat_callback_t *cb, uint_t cnt, range_info_t *range) { /* * do callbacks to upper level VM system */ while (cb != NULL && cnt > 0) { --cnt; cb->hcb_start_addr = (caddr_t)range[cnt].rng_va; cb->hcb_end_addr = cb->hcb_start_addr; cb->hcb_end_addr += range[cnt].rng_cnt << LEVEL_SIZE(range[cnt].rng_level); cb->hcb_function(cb); } } /* * Unload a given range of addresses (has optional callback) * * Flags: * define HAT_UNLOAD 0x00 * define HAT_UNLOAD_NOSYNC 0x02 * define HAT_UNLOAD_UNLOCK 0x04 * define HAT_UNLOAD_OTHER 0x08 - not used * define HAT_UNLOAD_UNMAP 0x10 - same as HAT_UNLOAD */ #define MAX_UNLOAD_CNT (8) void hat_unload_callback( hat_t *hat, caddr_t addr, size_t len, uint_t flags, hat_callback_t *cb) { uintptr_t vaddr = (uintptr_t)addr; uintptr_t eaddr = vaddr + len; htable_t *ht = NULL; uint_t entry; uintptr_t contig_va = (uintptr_t)-1L; range_info_t r[MAX_UNLOAD_CNT]; uint_t r_cnt = 0; x86pte_t old_pte; HATIN(hat_unload_callback, hat, addr, len); ASSERT(hat == kas.a_hat || eaddr <= kernelbase); ASSERT(IS_PAGEALIGNED(vaddr)); ASSERT(IS_PAGEALIGNED(eaddr)); while (vaddr < eaddr) { old_pte = htable_walk(hat, &ht, &vaddr, eaddr); if (ht == NULL) break; ASSERT(!IN_VA_HOLE(vaddr)); if (vaddr < (uintptr_t)addr) panic("hat_unload_callback(): unmap inside large page"); /* * We'll do the call backs for contiguous ranges */ if (vaddr != contig_va || (r_cnt > 0 && r[r_cnt - 1].rng_level != ht->ht_level)) { if (r_cnt == MAX_UNLOAD_CNT) { handle_ranges(cb, r_cnt, r); r_cnt = 0; } r[r_cnt].rng_va = vaddr; r[r_cnt].rng_cnt = 0; r[r_cnt].rng_level = ht->ht_level; ++r_cnt; } /* * Unload one mapping from the page tables. */ entry = htable_va2entry(vaddr, ht); hat_pte_unmap(ht, entry, flags, old_pte, NULL); ASSERT(ht->ht_level <= mmu.max_page_level); vaddr += LEVEL_SIZE(ht->ht_level); contig_va = vaddr; ++r[r_cnt - 1].rng_cnt; } if (ht) htable_release(ht); /* * handle last range for callbacks */ if (r_cnt > 0) handle_ranges(cb, r_cnt, r); HATOUT(hat_unload_callback, hat, addr); } /* * synchronize mapping with software data structures * * This interface is currently only used by the working set monitor * driver. */ /*ARGSUSED*/ void hat_sync(hat_t *hat, caddr_t addr, size_t len, uint_t flags) { uintptr_t vaddr = (uintptr_t)addr; uintptr_t eaddr = vaddr + len; htable_t *ht = NULL; uint_t entry; x86pte_t pte; x86pte_t save_pte; x86pte_t new; page_t *pp; ASSERT(!IN_VA_HOLE(vaddr)); ASSERT(IS_PAGEALIGNED(vaddr)); ASSERT(IS_PAGEALIGNED(eaddr)); ASSERT(hat == kas.a_hat || eaddr <= kernelbase); for (; vaddr < eaddr; vaddr += LEVEL_SIZE(ht->ht_level)) { try_again: pte = htable_walk(hat, &ht, &vaddr, eaddr); if (ht == NULL) break; entry = htable_va2entry(vaddr, ht); if (PTE_GET(pte, PT_NOSYNC) || PTE_GET(pte, PT_REF | PT_MOD) == 0) continue; /* * We need to acquire the mapping list lock to protect * against hat_pageunload(), hat_unload(), etc. */ pp = page_numtopp_nolock(PTE2PFN(pte, ht->ht_level)); if (pp == NULL) break; x86_hm_enter(pp); save_pte = pte; pte = x86pte_get(ht, entry); if (pte != save_pte) { x86_hm_exit(pp); goto try_again; } if (PTE_GET(pte, PT_NOSYNC) || PTE_GET(pte, PT_REF | PT_MOD) == 0) { x86_hm_exit(pp); continue; } /* * Need to clear ref or mod bits. We may compete with * hardware updating the R/M bits and have to try again. */ if (flags == HAT_SYNC_ZERORM) { new = pte; PTE_CLR(new, PT_REF | PT_MOD); pte = hati_update_pte(ht, entry, pte, new); if (pte != 0) { x86_hm_exit(pp); goto try_again; } } else { /* * sync the PTE to the page_t */ hati_sync_pte_to_page(pp, save_pte, ht->ht_level); } x86_hm_exit(pp); } if (ht) htable_release(ht); } /* * void hat_map(hat, addr, len, flags) */ /*ARGSUSED*/ void hat_map(hat_t *hat, caddr_t addr, size_t len, uint_t flags) { /* does nothing */ } /* * uint_t hat_getattr(hat, addr, *attr) * returns attr for <hat,addr> in *attr. returns 0 if there was a * mapping and *attr is valid, nonzero if there was no mapping and * *attr is not valid. */ uint_t hat_getattr(hat_t *hat, caddr_t addr, uint_t *attr) { uintptr_t vaddr = ALIGN2PAGE(addr); htable_t *ht = NULL; x86pte_t pte; ASSERT(hat == kas.a_hat || vaddr < kernelbase); if (IN_VA_HOLE(vaddr)) return ((uint_t)-1); ht = htable_getpte(hat, vaddr, NULL, &pte, MAX_PAGE_LEVEL); if (ht == NULL) return ((uint_t)-1); if (!PTE_ISVALID(pte) || !PTE_ISPAGE(pte, ht->ht_level)) { htable_release(ht); return ((uint_t)-1); } *attr = PROT_READ; if (PTE_GET(pte, PT_WRITABLE)) *attr |= PROT_WRITE; if (PTE_GET(pte, PT_USER)) *attr |= PROT_USER; if (!PTE_GET(pte, mmu.pt_nx)) *attr |= PROT_EXEC; if (PTE_GET(pte, PT_NOSYNC)) *attr |= HAT_NOSYNC; htable_release(ht); return (0); } /* * hat_updateattr() applies the given attribute change to an existing mapping */ #define HAT_LOAD_ATTR 1 #define HAT_SET_ATTR 2 #define HAT_CLR_ATTR 3 static void hat_updateattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr, int what) { uintptr_t vaddr = (uintptr_t)addr; uintptr_t eaddr = (uintptr_t)addr + len; htable_t *ht = NULL; uint_t entry; x86pte_t oldpte, newpte; page_t *pp; ASSERT(IS_PAGEALIGNED(vaddr)); ASSERT(IS_PAGEALIGNED(eaddr)); ASSERT(hat == kas.a_hat || AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); for (; vaddr < eaddr; vaddr += LEVEL_SIZE(ht->ht_level)) { try_again: oldpte = htable_walk(hat, &ht, &vaddr, eaddr); if (ht == NULL) break; if (PTE_GET(oldpte, PT_NOCONSIST)) continue; pp = page_numtopp_nolock(PTE2PFN(oldpte, ht->ht_level)); if (pp == NULL) continue; x86_hm_enter(pp); newpte = oldpte; /* * We found a page table entry in the desired range, * figure out the new attributes. */ if (what == HAT_SET_ATTR || what == HAT_LOAD_ATTR) { if ((attr & PROT_WRITE) && !PTE_GET(oldpte, PT_WRITABLE)) newpte |= PT_WRITABLE; if ((attr & HAT_NOSYNC) && !PTE_GET(oldpte, PT_NOSYNC)) newpte |= PT_NOSYNC; if ((attr & PROT_EXEC) && PTE_GET(oldpte, mmu.pt_nx)) newpte &= ~mmu.pt_nx; } if (what == HAT_LOAD_ATTR) { if (!(attr & PROT_WRITE) && PTE_GET(oldpte, PT_WRITABLE)) newpte &= ~PT_WRITABLE; if (!(attr & HAT_NOSYNC) && PTE_GET(oldpte, PT_NOSYNC)) newpte &= ~PT_NOSYNC; if (!(attr & PROT_EXEC) && !PTE_GET(oldpte, mmu.pt_nx)) newpte |= mmu.pt_nx; } if (what == HAT_CLR_ATTR) { if ((attr & PROT_WRITE) && PTE_GET(oldpte, PT_WRITABLE)) newpte &= ~PT_WRITABLE; if ((attr & HAT_NOSYNC) && PTE_GET(oldpte, PT_NOSYNC)) newpte &= ~PT_NOSYNC; if ((attr & PROT_EXEC) && !PTE_GET(oldpte, mmu.pt_nx)) newpte |= mmu.pt_nx; } /* * what about PROT_READ or others? this code only handles: * EXEC, WRITE, NOSYNC */ /* * If new PTE really changed, update the table. */ if (newpte != oldpte) { entry = htable_va2entry(vaddr, ht); oldpte = hati_update_pte(ht, entry, oldpte, newpte); if (oldpte != 0) { x86_hm_exit(pp); goto try_again; } } x86_hm_exit(pp); } if (ht) htable_release(ht); } /* * Various wrappers for hat_updateattr() */ void hat_setattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr) { ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= kernelbase); hat_updateattr(hat, addr, len, attr, HAT_SET_ATTR); } void hat_clrattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr) { ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= kernelbase); hat_updateattr(hat, addr, len, attr, HAT_CLR_ATTR); } void hat_chgattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr) { ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= kernelbase); hat_updateattr(hat, addr, len, attr, HAT_LOAD_ATTR); } void hat_chgprot(hat_t *hat, caddr_t addr, size_t len, uint_t vprot) { ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= kernelbase); hat_updateattr(hat, addr, len, vprot & HAT_PROT_MASK, HAT_LOAD_ATTR); } /*ARGSUSED*/ void hat_chgattr_pagedir(hat_t *hat, caddr_t addr, size_t len, uint_t attr) { panic("hat_chgattr_pgdir() not supported - used by 80387 emulation"); } /* * size_t hat_getpagesize(hat, addr) * returns pagesize in bytes for <hat, addr>. returns -1 of there is * no mapping. This is an advisory call. */ ssize_t hat_getpagesize(hat_t *hat, caddr_t addr) { uintptr_t vaddr = ALIGN2PAGE(addr); htable_t *ht; size_t pagesize; ASSERT(hat == kas.a_hat || vaddr < kernelbase); if (IN_VA_HOLE(vaddr)) return (-1); ht = htable_getpage(hat, vaddr, NULL); if (ht == NULL) return (-1); pagesize = LEVEL_SIZE(ht->ht_level); htable_release(ht); return (pagesize); } /* * pfn_t hat_getpfnum(hat, addr) * returns pfn for <hat, addr> or PFN_INVALID if mapping is invalid. */ pfn_t hat_getpfnum(hat_t *hat, caddr_t addr) { uintptr_t vaddr = ALIGN2PAGE(addr); htable_t *ht; uint_t entry; pfn_t pfn = PFN_INVALID; ASSERT(hat == kas.a_hat || vaddr < kernelbase); if (khat_running == 0) panic("hat_getpfnum(): called too early\n"); if (IN_VA_HOLE(vaddr)) return (PFN_INVALID); /* * A very common use of hat_getpfnum() is from the DDI for kernel pages. * Use the kmap_ptes (which also covers the 32 bit heap) to speed * this up. */ if (mmu.kmap_addr <= vaddr && vaddr < mmu.kmap_eaddr) { x86pte_t pte; pgcnt_t pg_off; pg_off = mmu_btop(vaddr - mmu.kmap_addr); if (mmu.pae_hat) { ATOMIC_LOAD64(mmu.kmap_ptes + pg_off, pte); } else { pte = ((x86pte32_t *)mmu.kmap_ptes)[pg_off]; } if (!PTE_ISVALID(pte)) return (PFN_INVALID); /*LINTED [use of constant 0 causes a silly lint warning] */ return (PTE2PFN(pte, 0)); } ht = htable_getpage(hat, vaddr, &entry); if (ht == NULL) return (PFN_INVALID); ASSERT(vaddr >= ht->ht_vaddr); ASSERT(vaddr <= HTABLE_LAST_PAGE(ht)); pfn = PTE2PFN(x86pte_get(ht, entry), ht->ht_level); if (ht->ht_level > 0) pfn += mmu_btop(vaddr & LEVEL_OFFSET(ht->ht_level)); htable_release(ht); return (pfn); } /* * hat_getkpfnum() is an obsolete DDI routine, and its use is discouraged. * Use hat_getpfnum(kas.a_hat, ...) instead. * * We'd like to return PFN_INVALID if the mappings have underlying page_t's * but can't right now due to the fact that some software has grown to use * this interface incorrectly. So for now when the interface is misused, * return a warning to the user that in the future it won't work in the * way they're abusing it, and carry on. * * Note that hat_getkpfnum() is never supported on amd64. */ #if !defined(__amd64) pfn_t hat_getkpfnum(caddr_t addr) { pfn_t pfn; int badcaller = 0; if (khat_running == 0) panic("hat_getkpfnum(): called too early\n"); if ((uintptr_t)addr < kernelbase) return (PFN_INVALID); if (segkpm && IS_KPM_ADDR(addr)) { badcaller = 1; pfn = hat_kpm_va2pfn(addr); } else { pfn = hat_getpfnum(kas.a_hat, addr); badcaller = pf_is_memory(pfn); } if (badcaller) hat_getkpfnum_badcall(caller()); return (pfn); } #endif /* __amd64 */ /* * int hat_probe(hat, addr) * return 0 if no valid mapping is present. Faster version * of hat_getattr in certain architectures. */ int hat_probe(hat_t *hat, caddr_t addr) { uintptr_t vaddr = ALIGN2PAGE(addr); uint_t entry; htable_t *ht; pgcnt_t pg_off; ASSERT(hat == kas.a_hat || vaddr < kernelbase); ASSERT(hat == kas.a_hat || AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock)); if (IN_VA_HOLE(vaddr)) return (0); /* * Most common use of hat_probe is from segmap. We special case it * for performance. */ if (mmu.kmap_addr <= vaddr && vaddr < mmu.kmap_eaddr) { pg_off = mmu_btop(vaddr - mmu.kmap_addr); if (mmu.pae_hat) return (PTE_ISVALID(mmu.kmap_ptes[pg_off])); else return (PTE_ISVALID( ((x86pte32_t *)mmu.kmap_ptes)[pg_off])); } ht = htable_getpage(hat, vaddr, &entry); if (ht == NULL) return (0); htable_release(ht); return (1); } /* * Simple implementation of ISM. hat_share() is just like hat_memload_array(), * except that we use the ism_hat's existing mappings to determine the pages * and protections to use for this hat. In case we find a properly aligned * and sized pagetable of 4K mappings, we will attempt to share the pagetable * itself. */ /*ARGSUSED*/ int hat_share( hat_t *hat, caddr_t addr, hat_t *ism_hat, caddr_t src_addr, size_t len, /* almost useless value, see below.. */ uint_t ismszc) { uintptr_t vaddr_start = (uintptr_t)addr; uintptr_t vaddr; uintptr_t pt_vaddr; uintptr_t eaddr = vaddr_start + len; uintptr_t ism_addr_start = (uintptr_t)src_addr; uintptr_t ism_addr = ism_addr_start; uintptr_t e_ism_addr = ism_addr + len; htable_t *ism_ht = NULL; htable_t *ht; x86pte_t pte; page_t *pp; pfn_t pfn; level_t l; pgcnt_t pgcnt; uint_t prot; uint_t valid_cnt; /* * We might be asked to share an empty DISM hat by as_dup() */ ASSERT(hat != kas.a_hat); ASSERT(eaddr <= kernelbase); if (!(ism_hat->hat_flags & HAT_SHARED)) { ASSERT(hat_get_mapped_size(ism_hat) == 0); return (0); } /* * The SPT segment driver often passes us a size larger than there are * valid mappings. That's because it rounds the segment size up to a * large pagesize, even if the actual memory mapped by ism_hat is less. */ HATIN(hat_share, hat, addr, len); ASSERT(IS_PAGEALIGNED(vaddr_start)); ASSERT(IS_PAGEALIGNED(ism_addr_start)); ASSERT(ism_hat->hat_flags & HAT_SHARED); while (ism_addr < e_ism_addr) { /* * use htable_walk to get the next valid ISM mapping */ pte = htable_walk(ism_hat, &ism_ht, &ism_addr, e_ism_addr); if (ism_ht == NULL) break; /* * Find the largest page size we can use, based on the * ISM mapping size, our address alignment and the remaining * map length. */ vaddr = vaddr_start + (ism_addr - ism_addr_start); for (l = ism_ht->ht_level; l > 0; --l) { if (LEVEL_SIZE(l) <= eaddr - vaddr && (vaddr & LEVEL_OFFSET(l)) == 0) break; } /* * attempt to share the pagetable * * - only 4K pagetables are shared (ie. level == 0) * - the hat_share() length must cover the whole pagetable * - the shared address must align at level 1 * - a shared PTE for this address already exists OR * - no page table for this address exists yet */ pt_vaddr = vaddr_start + (ism_ht->ht_vaddr - ism_addr_start); if (ism_ht->ht_level == 0 && ism_ht->ht_vaddr + LEVEL_SIZE(1) <= e_ism_addr && (pt_vaddr & LEVEL_OFFSET(1)) == 0) { ht = htable_lookup(hat, pt_vaddr, 0); if (ht == NULL) ht = htable_create(hat, pt_vaddr, 0, ism_ht); if (ht->ht_level > 0 || !(ht->ht_flags & HTABLE_SHARED_PFN)) { htable_release(ht); } else { /* * share the page table */ ASSERT(ht->ht_level == 0); ASSERT(ht->ht_shares == ism_ht); valid_cnt = ism_ht->ht_valid_cnt; atomic_add_long(&hat->hat_pages_mapped[0], valid_cnt - ht->ht_valid_cnt); ht->ht_valid_cnt = valid_cnt; htable_release(ht); ism_addr = ism_ht->ht_vaddr + LEVEL_SIZE(1); htable_release(ism_ht); ism_ht = NULL; continue; } } /* * Unable to share the page table. Instead we will * create new mappings from the values in the ISM mappings. * * The ISM mapping might be larger than the share area, * be careful to trunctate it if needed. */ if (eaddr - vaddr >= LEVEL_SIZE(ism_ht->ht_level)) { pgcnt = mmu_btop(LEVEL_SIZE(ism_ht->ht_level)); } else { pgcnt = mmu_btop(eaddr - vaddr); l = 0; } pfn = PTE2PFN(pte, ism_ht->ht_level); ASSERT(pfn != PFN_INVALID); while (pgcnt > 0) { /* * Make a new pte for the PFN for this level. * Copy protections for the pte from the ISM pte. */ pp = page_numtopp_nolock(pfn); ASSERT(pp != NULL); prot = PROT_USER | PROT_READ | HAT_UNORDERED_OK; if (PTE_GET(pte, PT_WRITABLE)) prot |= PROT_WRITE; if (!PTE_GET(pte, PT_NX)) prot |= PROT_EXEC; /* * XX64 -- can shm ever be written to swap? * if not we could use HAT_NOSYNC here. */ hati_load_common(hat, vaddr, pp, prot, HAT_LOAD, l, pfn); vaddr += LEVEL_SIZE(l); ism_addr += LEVEL_SIZE(l); pfn += mmu_btop(LEVEL_SIZE(l)); pgcnt -= mmu_btop(LEVEL_SIZE(l)); } } if (ism_ht != NULL) htable_release(ism_ht); HATOUT(hat_share, hat, addr); return (0); } /* * hat_unshare() is similar to hat_unload_callback(), but * we have to look for empty shared pagetables. Note that * hat_unshare() is always invoked against an entire segment. */ /*ARGSUSED*/ void hat_unshare(hat_t *hat, caddr_t addr, size_t len, uint_t ismszc) { uintptr_t vaddr = (uintptr_t)addr; uintptr_t eaddr = vaddr + len; htable_t *ht = NULL; uint_t need_demaps = 0; ASSERT(hat != kas.a_hat); ASSERT(eaddr <= kernelbase); HATIN(hat_unshare, hat, addr, len); ASSERT(IS_PAGEALIGNED(vaddr)); ASSERT(IS_PAGEALIGNED(eaddr)); /* * First go through and remove any shared pagetables. * * Note that it's ok to delay the demap until the entire range is * finished, because if hat_pageunload() were to unload a shared * pagetable page, its hat_demap() will do a global user TLB invalidate. */ while (vaddr < eaddr) { ASSERT(!IN_VA_HOLE(vaddr)); /* * find the pagetable that would map the current address */ ht = htable_lookup(hat, vaddr, 0); if (ht != NULL) { if (ht->ht_flags & HTABLE_SHARED_PFN) { /* * clear mapped pages count, set valid_cnt to 0 * and let htable_release() finish the job */ atomic_add_long(&hat->hat_pages_mapped[0], -ht->ht_valid_cnt); ht->ht_valid_cnt = 0; need_demaps = 1; } htable_release(ht); } vaddr = (vaddr & LEVEL_MASK(1)) + LEVEL_SIZE(1); } /* * flush the TLBs - since we're probably dealing with MANY mappings * we do just one CR3 reload. */ if (!(hat->hat_flags & HAT_FREEING) && need_demaps) hat_demap(hat, DEMAP_ALL_ADDR); /* * Now go back and clean up any unaligned mappings that * couldn't share pagetables. */ hat_unload(hat, addr, len, HAT_UNLOAD_UNMAP); HATOUT(hat_unshare, hat, addr); } /* * hat_reserve() does nothing */ /*ARGSUSED*/ void hat_reserve(struct as *as, caddr_t addr, size_t len) { } /* * Called when all mappings to a page should have write permission removed. * Mostly stolem from hat_pagesync() */ static void hati_page_clrwrt(struct page *pp) { hment_t *hm = NULL; htable_t *ht; uint_t entry; x86pte_t old; x86pte_t new; uint_t pszc = 0; next_size: /* * walk thru the mapping list clearing write permission */ x86_hm_enter(pp); while ((hm = hment_walk(pp, &ht, &entry, hm)) != NULL) { if (ht->ht_level < pszc) continue; old = x86pte_get(ht, entry); for (;;) { /* * Is this mapping of interest? */ if (PTE2PFN(old, ht->ht_level) != pp->p_pagenum || PTE_GET(old, PT_WRITABLE) == 0) break; /* * Clear ref/mod writable bits. This requires cross * calls to ensure any executing TLBs see cleared bits. */ new = old; PTE_CLR(new, PT_REF | PT_MOD | PT_WRITABLE); old = hati_update_pte(ht, entry, old, new); if (old != 0) continue; break; } } x86_hm_exit(pp); while (pszc < pp->p_szc) { page_t *tpp; pszc++; tpp = PP_GROUPLEADER(pp, pszc); if (pp != tpp) { pp = tpp; goto next_size; } } } /* * void hat_page_setattr(pp, flag) * void hat_page_clrattr(pp, flag) * used to set/clr ref/mod bits. */ void hat_page_setattr(struct page *pp, uint_t flag) { vnode_t *vp = pp->p_vnode; kmutex_t *vphm = NULL; page_t **listp; if (PP_GETRM(pp, flag) == flag) return; if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) { vphm = page_vnode_mutex(vp); mutex_enter(vphm); } PP_SETRM(pp, flag); if (vphm != NULL) { /* * Some File Systems examine v_pages for NULL w/o * grabbing the vphm mutex. Must not let it become NULL when * pp is the only page on the list. */ if (pp->p_vpnext != pp) { page_vpsub(&vp->v_pages, pp); if (vp->v_pages != NULL) listp = &vp->v_pages->p_vpprev->p_vpnext; else listp = &vp->v_pages; page_vpadd(listp, pp); } mutex_exit(vphm); } } void hat_page_clrattr(struct page *pp, uint_t flag) { vnode_t *vp = pp->p_vnode; kmutex_t *vphm = NULL; ASSERT(!(flag & ~(P_MOD | P_REF | P_RO))); /* * for vnode with a sorted v_pages list, we need to change * the attributes and the v_pages list together under page_vnode_mutex. */ if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) { vphm = page_vnode_mutex(vp); mutex_enter(vphm); } PP_CLRRM(pp, flag); if (vphm != NULL) { /* * Some File Systems examine v_pages for NULL w/o * grabbing the vphm mutex. Must not let it become NULL when * pp is the only page on the list. */ if (pp->p_vpnext != pp) { page_vpsub(&vp->v_pages, pp); page_vpadd(&vp->v_pages, pp); } mutex_exit(vphm); /* * VMODSORT works by removing write permissions and getting * a fault when a page is made dirty. At this point * we need to remove write permission from all mappings * to this page. */ hati_page_clrwrt(pp); } } /* * If flag is specified, returns 0 if attribute is disabled * and non zero if enabled. If flag specifes multiple attributs * then returns 0 if ALL atriibutes are disabled. This is an advisory * call. */ uint_t hat_page_getattr(struct page *pp, uint_t flag) { return (PP_GETRM(pp, flag)); } /* * common code used by hat_pageunload() and hment_steal() */ hment_t * hati_page_unmap(page_t *pp, htable_t *ht, uint_t entry) { x86pte_t old_pte; pfn_t pfn = pp->p_pagenum; hment_t *hm; /* * We need to acquire a hold on the htable in order to * do the invalidate. We know the htable must exist, since * unmap's don't release the htable until after removing any * hment. Having x86_hm_enter() keeps that from proceeding. */ htable_acquire(ht); /* * Invalidate the PTE and remove the hment. */ old_pte = x86pte_invalidate_pfn(ht, entry, pfn, NULL); if (PTE2PFN(old_pte, ht->ht_level) != pfn) { panic("x86pte_invalidate_pfn() failure found PTE = " FMT_PTE " pfn being unmapped is %lx ht=0x%lx entry=0x%x", old_pte, pfn, (uintptr_t)ht, entry); } /* * Clean up all the htable information for this mapping */ ASSERT(ht->ht_valid_cnt > 0); HTABLE_DEC(ht->ht_valid_cnt); PGCNT_DEC(ht->ht_hat, ht->ht_level); /* * sync ref/mod bits to the page_t */ if (PTE_GET(old_pte, PT_NOSYNC) == 0) hati_sync_pte_to_page(pp, old_pte, ht->ht_level); /* * Remove the mapping list entry for this page. */ hm = hment_remove(pp, ht, entry); /* * drop the mapping list lock so that we might free the * hment and htable. */ x86_hm_exit(pp); htable_release(ht); return (hm); } /* * Unload all translations to a page. If the page is a subpage of a large * page, the large page mappings are also removed. * * The forceflags are unused. */ /*ARGSUSED*/ static int hati_pageunload(struct page *pp, uint_t pg_szcd, uint_t forceflag) { page_t *cur_pp = pp; hment_t *hm; hment_t *prev; htable_t *ht; uint_t entry; level_t level; /* * The loop with next_size handles pages with multiple pagesize mappings */ next_size: for (;;) { /* * Get a mapping list entry */ x86_hm_enter(cur_pp); for (prev = NULL; ; prev = hm) { hm = hment_walk(cur_pp, &ht, &entry, prev); if (hm == NULL) { x86_hm_exit(cur_pp); /* * If not part of a larger page, we're done. */ if (cur_pp->p_szc <= pg_szcd) return (0); /* * Else check the next larger page size. * hat_page_demote() may decrease p_szc * but that's ok we'll just take an extra * trip discover there're no larger mappings * and return. */ ++pg_szcd; cur_pp = PP_GROUPLEADER(cur_pp, pg_szcd); goto next_size; } /* * If this mapping size matches, remove it. */ level = ht->ht_level; if (level == pg_szcd) break; } /* * Remove the mapping list entry for this page. * Note this does the x86_hm_exit() for us. */ hm = hati_page_unmap(cur_pp, ht, entry); if (hm != NULL) hment_free(hm); } } int hat_pageunload(struct page *pp, uint_t forceflag) { ASSERT(PAGE_EXCL(pp)); return (hati_pageunload(pp, 0, forceflag)); } /* * Unload all large mappings to pp and reduce by 1 p_szc field of every large * page level that included pp. * * pp must be locked EXCL. Even though no other constituent pages are locked * it's legal to unload large mappings to pp because all constituent pages of * large locked mappings have to be locked SHARED. therefore if we have EXCL * lock on one of constituent pages none of the large mappings to pp are * locked. * * Change (always decrease) p_szc field starting from the last constituent * page and ending with root constituent page so that root's pszc always shows * the area where hat_page_demote() may be active. * * This mechanism is only used for file system pages where it's not always * possible to get EXCL locks on all constituent pages to demote the size code * (as is done for anonymous or kernel large pages). */ void hat_page_demote(page_t *pp) { uint_t pszc; uint_t rszc; uint_t szc; page_t *rootpp; page_t *firstpp; page_t *lastpp; pgcnt_t pgcnt; ASSERT(PAGE_EXCL(pp)); ASSERT(!PP_ISFREE(pp)); ASSERT(page_szc_lock_assert(pp)); if (pp->p_szc == 0) return; rootpp = PP_GROUPLEADER(pp, 1); (void) hati_pageunload(rootpp, 1, HAT_FORCE_PGUNLOAD); /* * all large mappings to pp are gone * and no new can be setup since pp is locked exclusively. * * Lock the root to make sure there's only one hat_page_demote() * outstanding within the area of this root's pszc. * * Second potential hat_page_demote() is already eliminated by upper * VM layer via page_szc_lock() but we don't rely on it and use our * own locking (so that upper layer locking can be changed without * assumptions that hat depends on upper layer VM to prevent multiple * hat_page_demote() to be issued simultaneously to the same large * page). */ again: pszc = pp->p_szc; if (pszc == 0) return; rootpp = PP_GROUPLEADER(pp, pszc); x86_hm_enter(rootpp); /* * If root's p_szc is different from pszc we raced with another * hat_page_demote(). Drop the lock and try to find the root again. * If root's p_szc is greater than pszc previous hat_page_demote() is * not done yet. Take and release mlist lock of root's root to wait * for previous hat_page_demote() to complete. */ if ((rszc = rootpp->p_szc) != pszc) { x86_hm_exit(rootpp); if (rszc > pszc) { /* p_szc of a locked non free page can't increase */ ASSERT(pp != rootpp); rootpp = PP_GROUPLEADER(rootpp, rszc); x86_hm_enter(rootpp); x86_hm_exit(rootpp); } goto again; } ASSERT(pp->p_szc == pszc); /* * Decrement by 1 p_szc of every constituent page of a region that * covered pp. For example if original szc is 3 it gets changed to 2 * everywhere except in region 2 that covered pp. Region 2 that * covered pp gets demoted to 1 everywhere except in region 1 that * covered pp. The region 1 that covered pp is demoted to region * 0. It's done this way because from region 3 we removed level 3 * mappings, from region 2 that covered pp we removed level 2 mappings * and from region 1 that covered pp we removed level 1 mappings. All * changes are done from from high pfn's to low pfn's so that roots * are changed last allowing one to know the largest region where * hat_page_demote() is stil active by only looking at the root page. * * This algorithm is implemented in 2 while loops. First loop changes * p_szc of pages to the right of pp's level 1 region and second * loop changes p_szc of pages of level 1 region that covers pp * and all pages to the left of level 1 region that covers pp. * In the first loop p_szc keeps dropping with every iteration * and in the second loop it keeps increasing with every iteration. * * First loop description: Demote pages to the right of pp outside of * level 1 region that covers pp. In every iteration of the while * loop below find the last page of szc region and the first page of * (szc - 1) region that is immediately to the right of (szc - 1) * region that covers pp. From last such page to first such page * change every page's szc to szc - 1. Decrement szc and continue * looping until szc is 1. If pp belongs to the last (szc - 1) region * of szc region skip to the next iteration. */ szc = pszc; while (szc > 1) { lastpp = PP_GROUPLEADER(pp, szc); pgcnt = page_get_pagecnt(szc); lastpp += pgcnt - 1; firstpp = PP_GROUPLEADER(pp, (szc - 1)); pgcnt = page_get_pagecnt(szc - 1); if (lastpp - firstpp < pgcnt) { szc--; continue; } firstpp += pgcnt; while (lastpp != firstpp) { ASSERT(lastpp->p_szc == pszc); lastpp->p_szc = szc - 1; lastpp--; } firstpp->p_szc = szc - 1; szc--; } /* * Second loop description: * First iteration changes p_szc to 0 of every * page of level 1 region that covers pp. * Subsequent iterations find last page of szc region * immediately to the left of szc region that covered pp * and first page of (szc + 1) region that covers pp. * From last to first page change p_szc of every page to szc. * Increment szc and continue looping until szc is pszc. * If pp belongs to the fist szc region of (szc + 1) region * skip to the next iteration. * */ szc = 0; while (szc < pszc) { firstpp = PP_GROUPLEADER(pp, (szc + 1)); if (szc == 0) { pgcnt = page_get_pagecnt(1); lastpp = firstpp + (pgcnt - 1); } else { lastpp = PP_GROUPLEADER(pp, szc); if (firstpp == lastpp) { szc++; continue; } lastpp--; pgcnt = page_get_pagecnt(szc); } while (lastpp != firstpp) { ASSERT(lastpp->p_szc == pszc); lastpp->p_szc = szc; lastpp--; } firstpp->p_szc = szc; if (firstpp == rootpp) break; szc++; } x86_hm_exit(rootpp); } /* * get hw stats from hardware into page struct and reset hw stats * returns attributes of page * Flags for hat_pagesync, hat_getstat, hat_sync * * define HAT_SYNC_ZERORM 0x01 * * Additional flags for hat_pagesync * * define HAT_SYNC_STOPON_REF 0x02 * define HAT_SYNC_STOPON_MOD 0x04 * define HAT_SYNC_STOPON_RM 0x06 * define HAT_SYNC_STOPON_SHARED 0x08 */ uint_t hat_pagesync(struct page *pp, uint_t flags) { hment_t *hm = NULL; htable_t *ht; uint_t entry; x86pte_t old, save_old; x86pte_t new; uchar_t nrmbits = P_REF|P_MOD|P_RO; extern ulong_t po_share; page_t *save_pp = pp; uint_t pszc = 0; ASSERT(PAGE_LOCKED(pp) || panicstr); if (PP_ISRO(pp) && (flags & HAT_SYNC_STOPON_MOD)) return (pp->p_nrm & nrmbits); if ((flags & HAT_SYNC_ZERORM) == 0) { if ((flags & HAT_SYNC_STOPON_REF) != 0 && PP_ISREF(pp)) return (pp->p_nrm & nrmbits); if ((flags & HAT_SYNC_STOPON_MOD) != 0 && PP_ISMOD(pp)) return (pp->p_nrm & nrmbits); if ((flags & HAT_SYNC_STOPON_SHARED) != 0 && hat_page_getshare(pp) > po_share) { if (PP_ISRO(pp)) PP_SETREF(pp); return (pp->p_nrm & nrmbits); } } next_size: /* * walk thru the mapping list syncing (and clearing) ref/mod bits. */ x86_hm_enter(pp); while ((hm = hment_walk(pp, &ht, &entry, hm)) != NULL) { if (ht->ht_level < pszc) continue; old = x86pte_get(ht, entry); try_again: ASSERT(PTE2PFN(old, ht->ht_level) == pp->p_pagenum); if (PTE_GET(old, PT_REF | PT_MOD) == 0) continue; save_old = old; if ((flags & HAT_SYNC_ZERORM) != 0) { /* * Need to clear ref or mod bits. Need to demap * to make sure any executing TLBs see cleared bits. */ new = old; PTE_CLR(new, PT_REF | PT_MOD); old = hati_update_pte(ht, entry, old, new); if (old != 0) goto try_again; old = save_old; } /* * Sync the PTE */ if (!(flags & HAT_SYNC_ZERORM) && PTE_GET(old, PT_NOSYNC) == 0) hati_sync_pte_to_page(pp, old, ht->ht_level); /* * can stop short if we found a ref'd or mod'd page */ if ((flags & HAT_SYNC_STOPON_MOD) && PP_ISMOD(save_pp) || (flags & HAT_SYNC_STOPON_REF) && PP_ISREF(save_pp)) { x86_hm_exit(pp); return (save_pp->p_nrm & nrmbits); } } x86_hm_exit(pp); while (pszc < pp->p_szc) { page_t *tpp; pszc++; tpp = PP_GROUPLEADER(pp, pszc); if (pp != tpp) { pp = tpp; goto next_size; } } return (save_pp->p_nrm & nrmbits); } /* * returns approx number of mappings to this pp. A return of 0 implies * there are no mappings to the page. */ ulong_t hat_page_getshare(page_t *pp) { uint_t cnt; cnt = hment_mapcnt(pp); return (cnt); } /* * hat_softlock isn't supported anymore */ /*ARGSUSED*/ faultcode_t hat_softlock( hat_t *hat, caddr_t addr, size_t *len, struct page **page_array, uint_t flags) { return (FC_NOSUPPORT); } /* * Routine to expose supported HAT features to platform independent code. */ /*ARGSUSED*/ int hat_supported(enum hat_features feature, void *arg) { switch (feature) { case HAT_SHARED_PT: /* this is really ISM */ return (1); case HAT_DYNAMIC_ISM_UNMAP: return (0); case HAT_VMODSORT: return (1); default: panic("hat_supported() - unknown feature"); } return (0); } /* * Called when a thread is exiting and has been switched to the kernel AS */ void hat_thread_exit(kthread_t *thd) { ASSERT(thd->t_procp->p_as == &kas); hat_switch(thd->t_procp->p_as->a_hat); } /* * Setup the given brand new hat structure as the new HAT on this cpu's mmu. */ /*ARGSUSED*/ void hat_setup(hat_t *hat, int flags) { kpreempt_disable(); hat_switch(hat); kpreempt_enable(); } /* * Prepare for a CPU private mapping for the given address. * * The address can only be used from a single CPU and can be remapped * using hat_mempte_remap(). Return the address of the PTE. * * We do the htable_create() if necessary and increment the valid count so * the htable can't disappear. We also hat_devload() the page table into * kernel so that the PTE is quickly accessed. */ void * hat_mempte_kern_setup(caddr_t addr, void *pt) { uintptr_t va = (uintptr_t)addr; htable_t *ht; uint_t entry; x86pte_t oldpte; caddr_t p = (caddr_t)pt; ASSERT(IS_PAGEALIGNED(va)); ASSERT(!IN_VA_HOLE(va)); ht = htable_getpte(kas.a_hat, va, &entry, &oldpte, 0); if (ht == NULL) { /* * Note that we don't need a hat_reserves_exit() check * for this htable_create(), since that'll be done by the * hat_devload() just below. */ ht = htable_create(kas.a_hat, va, 0, NULL); entry = htable_va2entry(va, ht); ASSERT(ht->ht_level == 0); oldpte = x86pte_get(ht, entry); } if (PTE_ISVALID(oldpte)) panic("hat_mempte_setup(): address already mapped" "ht=%p, entry=%d, pte=" FMT_PTE, ht, entry, oldpte); /* * increment ht_valid_cnt so that the pagetable can't disappear */ HTABLE_INC(ht->ht_valid_cnt); /* * now we need to map the page holding the pagetable for va into * the kernel's address space. */ hat_devload(kas.a_hat, p, MMU_PAGESIZE, ht->ht_pfn, PROT_READ | PROT_WRITE | HAT_NOSYNC | HAT_UNORDERED_OK, HAT_LOAD | HAT_LOAD_NOCONSIST); /* * return the PTE address to the caller. */ htable_release(ht); p += entry << mmu.pte_size_shift; return ((void *)p); } /* * Prepare for a CPU private mapping for the given address. */ void * hat_mempte_setup(caddr_t addr) { x86pte_t *p; p = vmem_alloc(heap_arena, MMU_PAGESIZE, VM_SLEEP); return (hat_mempte_kern_setup(addr, p)); } /* * Release a CPU private mapping for the given address. * We decrement the htable valid count so it might be destroyed. */ void hat_mempte_release(caddr_t addr, void *pteptr) { htable_t *ht; uintptr_t va = ALIGN2PAGE(pteptr); /* * first invalidate any left over mapping and decrement the * htable's mapping count */ if (mmu.pae_hat) *(x86pte_t *)pteptr = 0; else *(x86pte32_t *)pteptr = 0; mmu_tlbflush_entry(addr); ht = htable_getpte(kas.a_hat, ALIGN2PAGE(addr), NULL, NULL, 0); if (ht == NULL) panic("hat_mempte_release(): invalid address"); ASSERT(ht->ht_level == 0); HTABLE_DEC(ht->ht_valid_cnt); htable_release(ht); /* * now blow away the kernel mapping to the page table page * XX64 -- see comment in hat_mempte_setup() */ hat_unload_callback(kas.a_hat, (caddr_t)va, MMU_PAGESIZE, HAT_UNLOAD, NULL); } /* * Apply a temporary CPU private mapping to a page. We flush the TLB only * on this CPU, so this ought to have been called with preemption disabled. */ void hat_mempte_remap( pfn_t pfn, caddr_t addr, void *pteptr, uint_t attr, uint_t flags) { uintptr_t va = (uintptr_t)addr; x86pte_t pte; /* * Remap the given PTE to the new page's PFN. Invalidate only * on this CPU. */ #ifdef DEBUG htable_t *ht; uint_t entry; ASSERT(IS_PAGEALIGNED(va)); ASSERT(!IN_VA_HOLE(va)); ht = htable_getpte(kas.a_hat, va, &entry, NULL, 0); ASSERT(ht != NULL); ASSERT(ht->ht_level == 0); ASSERT(ht->ht_valid_cnt > 0); htable_release(ht); #endif pte = hati_mkpte(pfn, attr, 0, flags); if (mmu.pae_hat) *(x86pte_t *)pteptr = pte; else *(x86pte32_t *)pteptr = (x86pte32_t)pte; mmu_tlbflush_entry(addr); } /* * Hat locking functions * XXX - these two functions are currently being used by hatstats * they can be removed by using a per-as mutex for hatstats. */ void hat_enter(hat_t *hat) { mutex_enter(&hat->hat_mutex); } void hat_exit(hat_t *hat) { mutex_exit(&hat->hat_mutex); } /* * Used by hat_kern_setup() to create initial kernel HAT mappings from * the boot loader's mappings. * * - size is either PAGESIZE or some multiple of a level one pagesize * - there may not be page_t's for every pfn. (ie. the nucleus pages) * - pfn's are continguous for the given va range (va to va + size * cnt) */ void hati_kern_setup_load( uintptr_t va, /* starting va of range to map */ size_t size, /* either PAGESIZE or multiple of large page size */ pfn_t pfn, /* starting PFN */ pgcnt_t cnt, /* number of mappings, (cnt * size) == total size */ uint_t prot) /* protections (PROT_READ, PROT_WRITE, PROT_EXEC) */ { level_t level = (size == MMU_PAGESIZE ? 0 : 1); size_t bytes = size * cnt; size_t pgsize = LEVEL_SIZE(level); page_t *pp; uint_t flags = HAT_LOAD; /* * We're only going to throw away mappings below kernelbase or in * boot's special double-mapping region, so set noconsist to avoid * using hments */ if (BOOT_VA(va)) flags |= HAT_LOAD_NOCONSIST; prot |= HAT_STORECACHING_OK; while (bytes != 0) { ASSERT(bytes >= pgsize); pp = NULL; if (pf_is_memory(pfn) && !BOOT_VA(va) && level == 0) pp = page_numtopp_nolock(pfn); hati_load_common(kas.a_hat, va, pp, prot, flags, level, pfn); va += pgsize; pfn += mmu_btop(pgsize); bytes -= pgsize; } } /* * HAT part of cpu intialization. */ void hat_cpu_online(struct cpu *cpup) { if (cpup != CPU) { x86pte_cpu_init(cpup, NULL); hat_vlp_setup(cpup); } CPUSET_ATOMIC_ADD(khat_cpuset, cpup->cpu_id); } /* * Function called after all CPUs are brought online. * Used to remove low address boot mappings. */ void clear_boot_mappings(uintptr_t low, uintptr_t high) { uintptr_t vaddr = low; htable_t *ht = NULL; level_t level; uint_t entry; x86pte_t pte; /* * On 1st CPU we can unload the prom mappings, basically we blow away * all virtual mappings under kernelbase. */ while (vaddr < high) { pte = htable_walk(kas.a_hat, &ht, &vaddr, high); if (ht == NULL) break; level = ht->ht_level; entry = htable_va2entry(vaddr, ht); ASSERT(level <= mmu.max_page_level); ASSERT(PTE_ISPAGE(pte, level)); /* * Unload the mapping from the page tables. */ (void) x86pte_set(ht, entry, 0, NULL); ASSERT(ht->ht_valid_cnt > 0); HTABLE_DEC(ht->ht_valid_cnt); PGCNT_DEC(ht->ht_hat, ht->ht_level); vaddr += LEVEL_SIZE(ht->ht_level); } if (ht) htable_release(ht); /* * cross call for a complete invalidate. */ hat_demap(kas.a_hat, DEMAP_ALL_ADDR); } /* * Initialize a special area in the kernel that always holds some PTEs for * faster performance. This always holds segmap's PTEs. * In the 32 bit kernel this maps the kernel heap too. */ void hat_kmap_init(uintptr_t base, size_t len) { uintptr_t map_addr; /* base rounded down to large page size */ uintptr_t map_eaddr; /* base + len rounded up */ size_t map_len; caddr_t ptes; /* mapping area in kernel as for ptes */ size_t window_size; /* size of mapping area for ptes */ ulong_t htable_cnt; /* # of page tables to cover map_len */ ulong_t i; htable_t *ht; /* * we have to map in an area that matches an entire page table */ map_addr = base & LEVEL_MASK(1); map_eaddr = (base + len + LEVEL_SIZE(1) - 1) & LEVEL_MASK(1); map_len = map_eaddr - map_addr; window_size = mmu_btop(map_len) * mmu.pte_size; htable_cnt = mmu_btop(map_len) / mmu.ptes_per_table; /* * allocate vmem for the kmap_ptes */ ptes = vmem_xalloc(heap_arena, window_size, MMU_PAGESIZE, 0, 0, NULL, NULL, VM_SLEEP); mmu.kmap_htables = kmem_alloc(htable_cnt * sizeof (htable_t *), KM_SLEEP); /* * Map the page tables that cover kmap into the allocated range. * Note we don't ever htable_release() the kmap page tables - they * can't ever be stolen, freed, etc. */ for (i = 0; i < htable_cnt; ++i) { ht = htable_create(kas.a_hat, map_addr + i * LEVEL_SIZE(1), 0, NULL); mmu.kmap_htables[i] = ht; hat_devload(kas.a_hat, ptes + i * MMU_PAGESIZE, MMU_PAGESIZE, ht->ht_pfn, PROT_READ | PROT_WRITE | HAT_NOSYNC | HAT_UNORDERED_OK, HAT_LOAD | HAT_LOAD_NOCONSIST); } /* * set information in mmu to activate handling of kmap */ mmu.kmap_addr = base; mmu.kmap_eaddr = base + len; mmu.kmap_ptes = (x86pte_t *)(ptes + mmu.pte_size * mmu_btop(base - map_addr)); } /* * Atomically update a new translation for a single page. If the * currently installed PTE doesn't match the value we expect to find, * it's not updated and we return the PTE we found. * * If activating nosync or NOWRITE and the page was modified we need to sync * with the page_t. Also sync with page_t if clearing ref/mod bits. */ static x86pte_t hati_update_pte(htable_t *ht, uint_t entry, x86pte_t expected, x86pte_t new) { page_t *pp; uint_t rm = 0; x86pte_t replaced; if (!PTE_GET(expected, PT_NOSYNC | PT_NOCONSIST) && PTE_GET(expected, PT_MOD | PT_REF) && (PTE_GET(new, PT_NOSYNC) || !PTE_GET(new, PT_WRITABLE) || !PTE_GET(new, PT_MOD | PT_REF))) { pp = page_numtopp_nolock(PTE2PFN(expected, ht->ht_level)); ASSERT(pp != NULL); if (PTE_GET(expected, PT_MOD)) rm |= P_MOD; if (PTE_GET(expected, PT_REF)) rm |= P_REF; PTE_CLR(new, PT_MOD | PT_REF); } replaced = x86pte_update(ht, entry, expected, new); if (replaced != expected) return (replaced); if (rm) { /* * sync to all constituent pages of a large page */ pgcnt_t pgcnt = page_get_pagecnt(ht->ht_level); ASSERT(IS_P2ALIGNED(pp->p_pagenum, pgcnt)); while (pgcnt-- > 0) { /* * hat_page_demote() can't decrease * pszc below this mapping size * since large mapping existed after we * took mlist lock. */ ASSERT(pp->p_szc >= ht->ht_level); hat_page_setattr(pp, rm); ++pp; } } return (0); } /* * Kernel Physical Mapping (kpm) facility * * Most of the routines needed to support segkpm are almost no-ops on the * x86 platform. We map in the entire segment when it is created and leave * it mapped in, so there is no additional work required to set up and tear * down individual mappings. All of these routines were created to support * SPARC platforms that have to avoid aliasing in their virtually indexed * caches. * * Most of the routines have sanity checks in them (e.g. verifying that the * passed-in page is locked). We don't actually care about most of these * checks on x86, but we leave them in place to identify problems in the * upper levels. */ /* * Map in a locked page and return the vaddr. */ /*ARGSUSED*/ caddr_t hat_kpm_mapin(struct page *pp, struct kpme *kpme) { caddr_t vaddr; #ifdef DEBUG if (kpm_enable == 0) { cmn_err(CE_WARN, "hat_kpm_mapin: kpm_enable not set\n"); return ((caddr_t)NULL); } if (pp == NULL || PAGE_LOCKED(pp) == 0) { cmn_err(CE_WARN, "hat_kpm_mapin: pp zero or not locked\n"); return ((caddr_t)NULL); } #endif vaddr = hat_kpm_page2va(pp, 1); return (vaddr); } /* * Mapout a locked page. */ /*ARGSUSED*/ void hat_kpm_mapout(struct page *pp, struct kpme *kpme, caddr_t vaddr) { #ifdef DEBUG if (kpm_enable == 0) { cmn_err(CE_WARN, "hat_kpm_mapout: kpm_enable not set\n"); return; } if (IS_KPM_ADDR(vaddr) == 0) { cmn_err(CE_WARN, "hat_kpm_mapout: no kpm address\n"); return; } if (pp == NULL || PAGE_LOCKED(pp) == 0) { cmn_err(CE_WARN, "hat_kpm_mapout: page zero or not locked\n"); return; } #endif } /* * Return the kpm virtual address for a specific pfn */ caddr_t hat_kpm_pfn2va(pfn_t pfn) { uintptr_t vaddr; ASSERT(kpm_enable); vaddr = (uintptr_t)kpm_vbase + mmu_ptob(pfn); return ((caddr_t)vaddr); } /* * Return the kpm virtual address for the page at pp. */ /*ARGSUSED*/ caddr_t hat_kpm_page2va(struct page *pp, int checkswap) { return (hat_kpm_pfn2va(pp->p_pagenum)); } /* * Return the page frame number for the kpm virtual address vaddr. */ pfn_t hat_kpm_va2pfn(caddr_t vaddr) { pfn_t pfn; ASSERT(IS_KPM_ADDR(vaddr)); pfn = (pfn_t)btop(vaddr - kpm_vbase); return (pfn); } /* * Return the page for the kpm virtual address vaddr. */ page_t * hat_kpm_vaddr2page(caddr_t vaddr) { pfn_t pfn; ASSERT(IS_KPM_ADDR(vaddr)); pfn = hat_kpm_va2pfn(vaddr); return (page_numtopp_nolock(pfn)); } /* * hat_kpm_fault is called from segkpm_fault when we take a page fault on a * KPM page. This should never happen on x86 */ int hat_kpm_fault(hat_t *hat, caddr_t vaddr) { panic("pagefault in seg_kpm. hat: 0x%p vaddr: 0x%p", hat, vaddr); return (0); } /*ARGSUSED*/ void hat_kpm_mseghash_clear(int nentries) {} /*ARGSUSED*/ void hat_kpm_mseghash_update(pgcnt_t inx, struct memseg *msp) {}