/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * Copyright (c) 2010, Intel Corporation. * All rights reserved. */ #include <sys/types.h> #include <sys/thread.h> #include <sys/cpuvar.h> #include <sys/cpu.h> #include <sys/t_lock.h> #include <sys/param.h> #include <sys/proc.h> #include <sys/disp.h> #include <sys/class.h> #include <sys/cmn_err.h> #include <sys/debug.h> #include <sys/note.h> #include <sys/asm_linkage.h> #include <sys/x_call.h> #include <sys/systm.h> #include <sys/var.h> #include <sys/vtrace.h> #include <vm/hat.h> #include <vm/as.h> #include <vm/seg_kmem.h> #include <vm/seg_kp.h> #include <sys/segments.h> #include <sys/kmem.h> #include <sys/stack.h> #include <sys/smp_impldefs.h> #include <sys/x86_archext.h> #include <sys/machsystm.h> #include <sys/traptrace.h> #include <sys/clock.h> #include <sys/cpc_impl.h> #include <sys/pg.h> #include <sys/cmt.h> #include <sys/dtrace.h> #include <sys/archsystm.h> #include <sys/fp.h> #include <sys/reboot.h> #include <sys/kdi_machimpl.h> #include <vm/hat_i86.h> #include <vm/vm_dep.h> #include <sys/memnode.h> #include <sys/pci_cfgspace.h> #include <sys/mach_mmu.h> #include <sys/sysmacros.h> #if defined(__xpv) #include <sys/hypervisor.h> #endif #include <sys/cpu_module.h> struct cpu cpus[1]; /* CPU data */ struct cpu *cpu[NCPU] = {&cpus[0]}; /* pointers to all CPUs */ struct cpu *cpu_free_list; /* list for released CPUs */ cpu_core_t cpu_core[NCPU]; /* cpu_core structures */ #define cpu_next_free cpu_prev /* * Useful for disabling MP bring-up on a MP capable system. */ int use_mp = 1; /* * to be set by a PSM to indicate what cpus * are sitting around on the system. */ cpuset_t mp_cpus; /* * This variable is used by the hat layer to decide whether or not * critical sections are needed to prevent race conditions. For sun4m, * this variable is set once enough MP initialization has been done in * order to allow cross calls. */ int flushes_require_xcalls; cpuset_t cpu_ready_set; /* initialized in startup() */ static void mp_startup_boot(void); static void mp_startup_hotplug(void); static void cpu_sep_enable(void); static void cpu_sep_disable(void); static void cpu_asysc_enable(void); static void cpu_asysc_disable(void); /* * Init CPU info - get CPU type info for processor_info system call. */ void init_cpu_info(struct cpu *cp) { processor_info_t *pi = &cp->cpu_type_info; /* * Get clock-frequency property for the CPU. */ pi->pi_clock = cpu_freq; /* * Current frequency in Hz. */ cp->cpu_curr_clock = cpu_freq_hz; /* * Supported frequencies. */ if (cp->cpu_supp_freqs == NULL) { cpu_set_supp_freqs(cp, NULL); } (void) strcpy(pi->pi_processor_type, "i386"); if (fpu_exists) (void) strcpy(pi->pi_fputypes, "i387 compatible"); cp->cpu_idstr = kmem_zalloc(CPU_IDSTRLEN, KM_SLEEP); cp->cpu_brandstr = kmem_zalloc(CPU_IDSTRLEN, KM_SLEEP); /* * If called for the BSP, cp is equal to current CPU. * For non-BSPs, cpuid info of cp is not ready yet, so use cpuid info * of current CPU as default values for cpu_idstr and cpu_brandstr. * They will be corrected in mp_startup_common() after cpuid_pass1() * has been invoked on target CPU. */ (void) cpuid_getidstr(CPU, cp->cpu_idstr, CPU_IDSTRLEN); (void) cpuid_getbrandstr(CPU, cp->cpu_brandstr, CPU_IDSTRLEN); } /* * Configure syscall support on this CPU. */ /*ARGSUSED*/ void init_cpu_syscall(struct cpu *cp) { kpreempt_disable(); #if defined(__amd64) if ((x86_feature & (X86_MSR | X86_ASYSC)) == (X86_MSR | X86_ASYSC)) { #if !defined(__lint) /* * The syscall instruction imposes a certain ordering on * segment selectors, so we double-check that ordering * here. */ ASSERT(KDS_SEL == KCS_SEL + 8); ASSERT(UDS_SEL == U32CS_SEL + 8); ASSERT(UCS_SEL == U32CS_SEL + 16); #endif /* * Turn syscall/sysret extensions on. */ cpu_asysc_enable(); /* * Program the magic registers .. */ wrmsr(MSR_AMD_STAR, ((uint64_t)(U32CS_SEL << 16 | KCS_SEL)) << 32); wrmsr(MSR_AMD_LSTAR, (uint64_t)(uintptr_t)sys_syscall); wrmsr(MSR_AMD_CSTAR, (uint64_t)(uintptr_t)sys_syscall32); /* * This list of flags is masked off the incoming * %rfl when we enter the kernel. */ wrmsr(MSR_AMD_SFMASK, (uint64_t)(uintptr_t)(PS_IE | PS_T)); } #endif /* * On 32-bit kernels, we use sysenter/sysexit because it's too * hard to use syscall/sysret, and it is more portable anyway. * * On 64-bit kernels on Nocona machines, the 32-bit syscall * variant isn't available to 32-bit applications, but sysenter is. */ if ((x86_feature & (X86_MSR | X86_SEP)) == (X86_MSR | X86_SEP)) { #if !defined(__lint) /* * The sysenter instruction imposes a certain ordering on * segment selectors, so we double-check that ordering * here. See "sysenter" in Intel document 245471-012, "IA-32 * Intel Architecture Software Developer's Manual Volume 2: * Instruction Set Reference" */ ASSERT(KDS_SEL == KCS_SEL + 8); ASSERT32(UCS_SEL == ((KCS_SEL + 16) | 3)); ASSERT32(UDS_SEL == UCS_SEL + 8); ASSERT64(U32CS_SEL == ((KCS_SEL + 16) | 3)); ASSERT64(UDS_SEL == U32CS_SEL + 8); #endif cpu_sep_enable(); /* * resume() sets this value to the base of the threads stack * via a context handler. */ wrmsr(MSR_INTC_SEP_ESP, 0); wrmsr(MSR_INTC_SEP_EIP, (uint64_t)(uintptr_t)sys_sysenter); } kpreempt_enable(); } /* * Multiprocessor initialization. * * Allocate and initialize the cpu structure, TRAPTRACE buffer, and the * startup and idle threads for the specified CPU. * Parameter boot is true for boot time operations and is false for CPU * DR operations. */ static struct cpu * mp_cpu_configure_common(int cpun, boolean_t boot) { struct cpu *cp; kthread_id_t tp; caddr_t sp; proc_t *procp; #if !defined(__xpv) extern int idle_cpu_prefer_mwait; extern void cpu_idle_mwait(); #endif extern void idle(); extern void cpu_idle(); #ifdef TRAPTRACE trap_trace_ctl_t *ttc = &trap_trace_ctl[cpun]; #endif ASSERT(MUTEX_HELD(&cpu_lock)); ASSERT(cpun < NCPU && cpu[cpun] == NULL); if (cpu_free_list == NULL) { cp = kmem_zalloc(sizeof (*cp), KM_SLEEP); } else { cp = cpu_free_list; cpu_free_list = cp->cpu_next_free; } cp->cpu_m.mcpu_istamp = cpun << 16; /* Create per CPU specific threads in the process p0. */ procp = &p0; /* * Initialize the dispatcher first. */ disp_cpu_init(cp); cpu_vm_data_init(cp); /* * Allocate and initialize the startup thread for this CPU. * Interrupt and process switch stacks get allocated later * when the CPU starts running. */ tp = thread_create(NULL, 0, NULL, NULL, 0, procp, TS_STOPPED, maxclsyspri); /* * Set state to TS_ONPROC since this thread will start running * as soon as the CPU comes online. * * All the other fields of the thread structure are setup by * thread_create(). */ THREAD_ONPROC(tp, cp); tp->t_preempt = 1; tp->t_bound_cpu = cp; tp->t_affinitycnt = 1; tp->t_cpu = cp; tp->t_disp_queue = cp->cpu_disp; /* * Setup thread to start in mp_startup_common. */ sp = tp->t_stk; tp->t_sp = (uintptr_t)(sp - MINFRAME); #if defined(__amd64) tp->t_sp -= STACK_ENTRY_ALIGN; /* fake a call */ #endif /* * Setup thread start entry point for boot or hotplug. */ if (boot) { tp->t_pc = (uintptr_t)mp_startup_boot; } else { tp->t_pc = (uintptr_t)mp_startup_hotplug; } cp->cpu_id = cpun; cp->cpu_self = cp; cp->cpu_thread = tp; cp->cpu_lwp = NULL; cp->cpu_dispthread = tp; cp->cpu_dispatch_pri = DISP_PRIO(tp); /* * cpu_base_spl must be set explicitly here to prevent any blocking * operations in mp_startup_common from causing the spl of the cpu * to drop to 0 (allowing device interrupts before we're ready) in * resume(). * cpu_base_spl MUST remain at LOCK_LEVEL until the cpu is CPU_READY. * As an extra bit of security on DEBUG kernels, this is enforced with * an assertion in mp_startup_common() -- before cpu_base_spl is set * to its proper value. */ cp->cpu_base_spl = ipltospl(LOCK_LEVEL); /* * Now, initialize per-CPU idle thread for this CPU. */ tp = thread_create(NULL, PAGESIZE, idle, NULL, 0, procp, TS_ONPROC, -1); cp->cpu_idle_thread = tp; tp->t_preempt = 1; tp->t_bound_cpu = cp; tp->t_affinitycnt = 1; tp->t_cpu = cp; tp->t_disp_queue = cp->cpu_disp; /* * Bootstrap the CPU's PG data */ pg_cpu_bootstrap(cp); /* * Perform CPC initialization on the new CPU. */ kcpc_hw_init(cp); /* * Allocate virtual addresses for cpu_caddr1 and cpu_caddr2 * for each CPU. */ setup_vaddr_for_ppcopy(cp); /* * Allocate page for new GDT and initialize from current GDT. */ #if !defined(__lint) ASSERT((sizeof (*cp->cpu_gdt) * NGDT) <= PAGESIZE); #endif cp->cpu_gdt = kmem_zalloc(PAGESIZE, KM_SLEEP); bcopy(CPU->cpu_gdt, cp->cpu_gdt, (sizeof (*cp->cpu_gdt) * NGDT)); #if defined(__i386) /* * setup kernel %gs. */ set_usegd(&cp->cpu_gdt[GDT_GS], cp, sizeof (struct cpu) -1, SDT_MEMRWA, SEL_KPL, 0, 1); #endif /* * If we have more than one node, each cpu gets a copy of IDT * local to its node. If this is a Pentium box, we use cpu 0's * IDT. cpu 0's IDT has been made read-only to workaround the * cmpxchgl register bug */ if (system_hardware.hd_nodes && x86_type != X86_TYPE_P5) { #if !defined(__lint) ASSERT((sizeof (*CPU->cpu_idt) * NIDT) <= PAGESIZE); #endif cp->cpu_idt = kmem_zalloc(PAGESIZE, KM_SLEEP); bcopy(CPU->cpu_idt, cp->cpu_idt, PAGESIZE); } else { cp->cpu_idt = CPU->cpu_idt; } /* * Get interrupt priority data from cpu 0. */ cp->cpu_pri_data = CPU->cpu_pri_data; /* * alloc space for cpuid info */ cpuid_alloc_space(cp); #if !defined(__xpv) if ((x86_feature & X86_MWAIT) && idle_cpu_prefer_mwait) { cp->cpu_m.mcpu_mwait = cpuid_mwait_alloc(cp); cp->cpu_m.mcpu_idle_cpu = cpu_idle_mwait; } else #endif cp->cpu_m.mcpu_idle_cpu = cpu_idle; init_cpu_info(cp); /* * alloc space for ucode_info */ ucode_alloc_space(cp); xc_init_cpu(cp); hat_cpu_online(cp); #ifdef TRAPTRACE /* * If this is a TRAPTRACE kernel, allocate TRAPTRACE buffers */ ttc->ttc_first = (uintptr_t)kmem_zalloc(trap_trace_bufsize, KM_SLEEP); ttc->ttc_next = ttc->ttc_first; ttc->ttc_limit = ttc->ttc_first + trap_trace_bufsize; #endif /* * Record that we have another CPU. */ /* * Initialize the interrupt threads for this CPU */ cpu_intr_alloc(cp, NINTR_THREADS); cp->cpu_flags = CPU_OFFLINE | CPU_QUIESCED | CPU_POWEROFF; cpu_set_state(cp); /* * Add CPU to list of available CPUs. It'll be on the active list * after mp_startup_common(). */ cpu_add_unit(cp); return (cp); } /* * Undo what was done in mp_cpu_configure_common */ static void mp_cpu_unconfigure_common(struct cpu *cp, int error) { ASSERT(MUTEX_HELD(&cpu_lock)); /* * Remove the CPU from the list of available CPUs. */ cpu_del_unit(cp->cpu_id); if (error == ETIMEDOUT) { /* * The cpu was started, but never *seemed* to run any * code in the kernel; it's probably off spinning in its * own private world, though with potential references to * our kmem-allocated IDTs and GDTs (for example). * * Worse still, it may actually wake up some time later, * so rather than guess what it might or might not do, we * leave the fundamental data structures intact. */ cp->cpu_flags = 0; return; } /* * At this point, the only threads bound to this CPU should * special per-cpu threads: it's idle thread, it's pause threads, * and it's interrupt threads. Clean these up. */ cpu_destroy_bound_threads(cp); cp->cpu_idle_thread = NULL; /* * Free the interrupt stack. */ segkp_release(segkp, cp->cpu_intr_stack - (INTR_STACK_SIZE - SA(MINFRAME))); cp->cpu_intr_stack = NULL; #ifdef TRAPTRACE /* * Discard the trap trace buffer */ { trap_trace_ctl_t *ttc = &trap_trace_ctl[cp->cpu_id]; kmem_free((void *)ttc->ttc_first, trap_trace_bufsize); ttc->ttc_first = NULL; } #endif hat_cpu_offline(cp); ucode_free_space(cp); /* Free CPU ID string and brand string. */ if (cp->cpu_idstr) { kmem_free(cp->cpu_idstr, CPU_IDSTRLEN); cp->cpu_idstr = NULL; } if (cp->cpu_brandstr) { kmem_free(cp->cpu_brandstr, CPU_IDSTRLEN); cp->cpu_brandstr = NULL; } #if !defined(__xpv) if (cp->cpu_m.mcpu_mwait != NULL) { cpuid_mwait_free(cp); cp->cpu_m.mcpu_mwait = NULL; } #endif cpuid_free_space(cp); if (cp->cpu_idt != CPU->cpu_idt) kmem_free(cp->cpu_idt, PAGESIZE); cp->cpu_idt = NULL; kmem_free(cp->cpu_gdt, PAGESIZE); cp->cpu_gdt = NULL; if (cp->cpu_supp_freqs != NULL) { size_t len = strlen(cp->cpu_supp_freqs) + 1; kmem_free(cp->cpu_supp_freqs, len); cp->cpu_supp_freqs = NULL; } teardown_vaddr_for_ppcopy(cp); kcpc_hw_fini(cp); cp->cpu_dispthread = NULL; cp->cpu_thread = NULL; /* discarded by cpu_destroy_bound_threads() */ cpu_vm_data_destroy(cp); xc_fini_cpu(cp); disp_cpu_fini(cp); ASSERT(cp != CPU0); bzero(cp, sizeof (*cp)); cp->cpu_next_free = cpu_free_list; cpu_free_list = cp; } /* * Apply workarounds for known errata, and warn about those that are absent. * * System vendors occasionally create configurations which contain different * revisions of the CPUs that are almost but not exactly the same. At the * time of writing, this meant that their clock rates were the same, their * feature sets were the same, but the required workaround were -not- * necessarily the same. So, this routine is invoked on -every- CPU soon * after starting to make sure that the resulting system contains the most * pessimal set of workarounds needed to cope with *any* of the CPUs in the * system. * * workaround_errata is invoked early in mlsetup() for CPU 0, and in * mp_startup_common() for all slave CPUs. Slaves process workaround_errata * prior to acknowledging their readiness to the master, so this routine will * never be executed by multiple CPUs in parallel, thus making updates to * global data safe. * * These workarounds are based on Rev 3.57 of the Revision Guide for * AMD Athlon(tm) 64 and AMD Opteron(tm) Processors, August 2005. */ #if defined(OPTERON_ERRATUM_88) int opteron_erratum_88; /* if non-zero -> at least one cpu has it */ #endif #if defined(OPTERON_ERRATUM_91) int opteron_erratum_91; /* if non-zero -> at least one cpu has it */ #endif #if defined(OPTERON_ERRATUM_93) int opteron_erratum_93; /* if non-zero -> at least one cpu has it */ #endif #if defined(OPTERON_ERRATUM_95) int opteron_erratum_95; /* if non-zero -> at least one cpu has it */ #endif #if defined(OPTERON_ERRATUM_100) int opteron_erratum_100; /* if non-zero -> at least one cpu has it */ #endif #if defined(OPTERON_ERRATUM_108) int opteron_erratum_108; /* if non-zero -> at least one cpu has it */ #endif #if defined(OPTERON_ERRATUM_109) int opteron_erratum_109; /* if non-zero -> at least one cpu has it */ #endif #if defined(OPTERON_ERRATUM_121) int opteron_erratum_121; /* if non-zero -> at least one cpu has it */ #endif #if defined(OPTERON_ERRATUM_122) int opteron_erratum_122; /* if non-zero -> at least one cpu has it */ #endif #if defined(OPTERON_ERRATUM_123) int opteron_erratum_123; /* if non-zero -> at least one cpu has it */ #endif #if defined(OPTERON_ERRATUM_131) int opteron_erratum_131; /* if non-zero -> at least one cpu has it */ #endif #if defined(OPTERON_WORKAROUND_6336786) int opteron_workaround_6336786; /* non-zero -> WA relevant and applied */ int opteron_workaround_6336786_UP = 0; /* Not needed for UP */ #endif #if defined(OPTERON_WORKAROUND_6323525) int opteron_workaround_6323525; /* if non-zero -> at least one cpu has it */ #endif #if defined(OPTERON_ERRATUM_298) int opteron_erratum_298; #endif static void workaround_warning(cpu_t *cp, uint_t erratum) { cmn_err(CE_WARN, "cpu%d: no workaround for erratum %u", cp->cpu_id, erratum); } static void workaround_applied(uint_t erratum) { if (erratum > 1000000) cmn_err(CE_CONT, "?workaround applied for cpu issue #%d\n", erratum); else cmn_err(CE_CONT, "?workaround applied for cpu erratum #%d\n", erratum); } static void msr_warning(cpu_t *cp, const char *rw, uint_t msr, int error) { cmn_err(CE_WARN, "cpu%d: couldn't %smsr 0x%x, error %d", cp->cpu_id, rw, msr, error); } /* * Determine the number of nodes in a Hammer / Greyhound / Griffin family * system. */ static uint_t opteron_get_nnodes(void) { static uint_t nnodes = 0; if (nnodes == 0) { #ifdef DEBUG uint_t family; /* * This routine uses a PCI config space based mechanism * for retrieving the number of nodes in the system. * Device 24, function 0, offset 0x60 as used here is not * AMD processor architectural, and may not work on processor * families other than those listed below. * * Callers of this routine must ensure that we're running on * a processor which supports this mechanism. * The assertion below is meant to catch calls on unsupported * processors. */ family = cpuid_getfamily(CPU); ASSERT(family == 0xf || family == 0x10 || family == 0x11); #endif /* DEBUG */ /* * Obtain the number of nodes in the system from * bits [6:4] of the Node ID register on node 0. * * The actual node count is NodeID[6:4] + 1 * * The Node ID register is accessed via function 0, * offset 0x60. Node 0 is device 24. */ nnodes = ((pci_getl_func(0, 24, 0, 0x60) & 0x70) >> 4) + 1; } return (nnodes); } uint_t do_erratum_298(struct cpu *cpu) { static int osvwrc = -3; extern int osvw_opteron_erratum(cpu_t *, uint_t); /* * L2 Eviction May Occur During Processor Operation To Set * Accessed or Dirty Bit. */ if (osvwrc == -3) { osvwrc = osvw_opteron_erratum(cpu, 298); } else { /* osvw return codes should be consistent for all cpus */ ASSERT(osvwrc == osvw_opteron_erratum(cpu, 298)); } switch (osvwrc) { case 0: /* erratum is not present: do nothing */ break; case 1: /* erratum is present: BIOS workaround applied */ /* * check if workaround is actually in place and issue warning * if not. */ if (((rdmsr(MSR_AMD_HWCR) & AMD_HWCR_TLBCACHEDIS) == 0) || ((rdmsr(MSR_AMD_BU_CFG) & AMD_BU_CFG_E298) == 0)) { #if defined(OPTERON_ERRATUM_298) opteron_erratum_298++; #else workaround_warning(cpu, 298); return (1); #endif } break; case -1: /* cannot determine via osvw: check cpuid */ if ((cpuid_opteron_erratum(cpu, 298) > 0) && (((rdmsr(MSR_AMD_HWCR) & AMD_HWCR_TLBCACHEDIS) == 0) || ((rdmsr(MSR_AMD_BU_CFG) & AMD_BU_CFG_E298) == 0))) { #if defined(OPTERON_ERRATUM_298) opteron_erratum_298++; #else workaround_warning(cpu, 298); return (1); #endif } break; } return (0); } uint_t workaround_errata(struct cpu *cpu) { uint_t missing = 0; ASSERT(cpu == CPU); /*LINTED*/ if (cpuid_opteron_erratum(cpu, 88) > 0) { /* * SWAPGS May Fail To Read Correct GS Base */ #if defined(OPTERON_ERRATUM_88) /* * The workaround is an mfence in the relevant assembler code */ opteron_erratum_88++; #else workaround_warning(cpu, 88); missing++; #endif } if (cpuid_opteron_erratum(cpu, 91) > 0) { /* * Software Prefetches May Report A Page Fault */ #if defined(OPTERON_ERRATUM_91) /* * fix is in trap.c */ opteron_erratum_91++; #else workaround_warning(cpu, 91); missing++; #endif } if (cpuid_opteron_erratum(cpu, 93) > 0) { /* * RSM Auto-Halt Restart Returns to Incorrect RIP */ #if defined(OPTERON_ERRATUM_93) /* * fix is in trap.c */ opteron_erratum_93++; #else workaround_warning(cpu, 93); missing++; #endif } /*LINTED*/ if (cpuid_opteron_erratum(cpu, 95) > 0) { /* * RET Instruction May Return to Incorrect EIP */ #if defined(OPTERON_ERRATUM_95) #if defined(_LP64) /* * Workaround this by ensuring that 32-bit user code and * 64-bit kernel code never occupy the same address * range mod 4G. */ if (_userlimit32 > 0xc0000000ul) *(uintptr_t *)&_userlimit32 = 0xc0000000ul; /*LINTED*/ ASSERT((uint32_t)COREHEAP_BASE == 0xc0000000u); opteron_erratum_95++; #endif /* _LP64 */ #else workaround_warning(cpu, 95); missing++; #endif } if (cpuid_opteron_erratum(cpu, 100) > 0) { /* * Compatibility Mode Branches Transfer to Illegal Address */ #if defined(OPTERON_ERRATUM_100) /* * fix is in trap.c */ opteron_erratum_100++; #else workaround_warning(cpu, 100); missing++; #endif } /*LINTED*/ if (cpuid_opteron_erratum(cpu, 108) > 0) { /* * CPUID Instruction May Return Incorrect Model Number In * Some Processors */ #if defined(OPTERON_ERRATUM_108) /* * (Our cpuid-handling code corrects the model number on * those processors) */ #else workaround_warning(cpu, 108); missing++; #endif } /*LINTED*/ if (cpuid_opteron_erratum(cpu, 109) > 0) do { /* * Certain Reverse REP MOVS May Produce Unpredictable Behavior */ #if defined(OPTERON_ERRATUM_109) /* * The "workaround" is to print a warning to upgrade the BIOS */ uint64_t value; const uint_t msr = MSR_AMD_PATCHLEVEL; int err; if ((err = checked_rdmsr(msr, &value)) != 0) { msr_warning(cpu, "rd", msr, err); workaround_warning(cpu, 109); missing++; } if (value == 0) opteron_erratum_109++; #else workaround_warning(cpu, 109); missing++; #endif /*CONSTANTCONDITION*/ } while (0); /*LINTED*/ if (cpuid_opteron_erratum(cpu, 121) > 0) { /* * Sequential Execution Across Non_Canonical Boundary Caused * Processor Hang */ #if defined(OPTERON_ERRATUM_121) #if defined(_LP64) /* * Erratum 121 is only present in long (64 bit) mode. * Workaround is to include the page immediately before the * va hole to eliminate the possibility of system hangs due to * sequential execution across the va hole boundary. */ if (opteron_erratum_121) opteron_erratum_121++; else { if (hole_start) { hole_start -= PAGESIZE; } else { /* * hole_start not yet initialized by * mmu_init. Initialize hole_start * with value to be subtracted. */ hole_start = PAGESIZE; } opteron_erratum_121++; } #endif /* _LP64 */ #else workaround_warning(cpu, 121); missing++; #endif } /*LINTED*/ if (cpuid_opteron_erratum(cpu, 122) > 0) do { /* * TLB Flush Filter May Cause Coherency Problem in * Multiprocessor Systems */ #if defined(OPTERON_ERRATUM_122) uint64_t value; const uint_t msr = MSR_AMD_HWCR; int error; /* * Erratum 122 is only present in MP configurations (multi-core * or multi-processor). */ #if defined(__xpv) if (!DOMAIN_IS_INITDOMAIN(xen_info)) break; if (!opteron_erratum_122 && xpv_nr_phys_cpus() == 1) break; #else if (!opteron_erratum_122 && opteron_get_nnodes() == 1 && cpuid_get_ncpu_per_chip(cpu) == 1) break; #endif /* disable TLB Flush Filter */ if ((error = checked_rdmsr(msr, &value)) != 0) { msr_warning(cpu, "rd", msr, error); workaround_warning(cpu, 122); missing++; } else { value |= (uint64_t)AMD_HWCR_FFDIS; if ((error = checked_wrmsr(msr, value)) != 0) { msr_warning(cpu, "wr", msr, error); workaround_warning(cpu, 122); missing++; } } opteron_erratum_122++; #else workaround_warning(cpu, 122); missing++; #endif /*CONSTANTCONDITION*/ } while (0); /*LINTED*/ if (cpuid_opteron_erratum(cpu, 123) > 0) do { /* * Bypassed Reads May Cause Data Corruption of System Hang in * Dual Core Processors */ #if defined(OPTERON_ERRATUM_123) uint64_t value; const uint_t msr = MSR_AMD_PATCHLEVEL; int err; /* * Erratum 123 applies only to multi-core cpus. */ if (cpuid_get_ncpu_per_chip(cpu) < 2) break; #if defined(__xpv) if (!DOMAIN_IS_INITDOMAIN(xen_info)) break; #endif /* * The "workaround" is to print a warning to upgrade the BIOS */ if ((err = checked_rdmsr(msr, &value)) != 0) { msr_warning(cpu, "rd", msr, err); workaround_warning(cpu, 123); missing++; } if (value == 0) opteron_erratum_123++; #else workaround_warning(cpu, 123); missing++; #endif /*CONSTANTCONDITION*/ } while (0); /*LINTED*/ if (cpuid_opteron_erratum(cpu, 131) > 0) do { /* * Multiprocessor Systems with Four or More Cores May Deadlock * Waiting for a Probe Response */ #if defined(OPTERON_ERRATUM_131) uint64_t nbcfg; const uint_t msr = MSR_AMD_NB_CFG; const uint64_t wabits = AMD_NB_CFG_SRQ_HEARTBEAT | AMD_NB_CFG_SRQ_SPR; int error; /* * Erratum 131 applies to any system with four or more cores. */ if (opteron_erratum_131) break; #if defined(__xpv) if (!DOMAIN_IS_INITDOMAIN(xen_info)) break; if (xpv_nr_phys_cpus() < 4) break; #else if (opteron_get_nnodes() * cpuid_get_ncpu_per_chip(cpu) < 4) break; #endif /* * Print a warning if neither of the workarounds for * erratum 131 is present. */ if ((error = checked_rdmsr(msr, &nbcfg)) != 0) { msr_warning(cpu, "rd", msr, error); workaround_warning(cpu, 131); missing++; } else if ((nbcfg & wabits) == 0) { opteron_erratum_131++; } else { /* cannot have both workarounds set */ ASSERT((nbcfg & wabits) != wabits); } #else workaround_warning(cpu, 131); missing++; #endif /*CONSTANTCONDITION*/ } while (0); /* * This isn't really an erratum, but for convenience the * detection/workaround code lives here and in cpuid_opteron_erratum. */ if (cpuid_opteron_erratum(cpu, 6336786) > 0) { #if defined(OPTERON_WORKAROUND_6336786) /* * Disable C1-Clock ramping on multi-core/multi-processor * K8 platforms to guard against TSC drift. */ if (opteron_workaround_6336786) { opteron_workaround_6336786++; #if defined(__xpv) } else if ((DOMAIN_IS_INITDOMAIN(xen_info) && xpv_nr_phys_cpus() > 1) || opteron_workaround_6336786_UP) { /* * XXPV Hmm. We can't walk the Northbridges on * the hypervisor; so just complain and drive * on. This probably needs to be fixed in * the hypervisor itself. */ opteron_workaround_6336786++; workaround_warning(cpu, 6336786); #else /* __xpv */ } else if ((opteron_get_nnodes() * cpuid_get_ncpu_per_chip(cpu) > 1) || opteron_workaround_6336786_UP) { uint_t node, nnodes; uint8_t data; nnodes = opteron_get_nnodes(); for (node = 0; node < nnodes; node++) { /* * Clear PMM7[1:0] (function 3, offset 0x87) * Northbridge device is the node id + 24. */ data = pci_getb_func(0, node + 24, 3, 0x87); data &= 0xFC; pci_putb_func(0, node + 24, 3, 0x87, data); } opteron_workaround_6336786++; #endif /* __xpv */ } #else workaround_warning(cpu, 6336786); missing++; #endif } /*LINTED*/ /* * Mutex primitives don't work as expected. */ if (cpuid_opteron_erratum(cpu, 6323525) > 0) { #if defined(OPTERON_WORKAROUND_6323525) /* * This problem only occurs with 2 or more cores. If bit in * MSR_AMD_BU_CFG set, then not applicable. The workaround * is to patch the semaphone routines with the lfence * instruction to provide necessary load memory barrier with * possible subsequent read-modify-write ops. * * It is too early in boot to call the patch routine so * set erratum variable to be done in startup_end(). */ if (opteron_workaround_6323525) { opteron_workaround_6323525++; #if defined(__xpv) } else if (x86_feature & X86_SSE2) { if (DOMAIN_IS_INITDOMAIN(xen_info)) { /* * XXPV Use dom0_msr here when extended * operations are supported? */ if (xpv_nr_phys_cpus() > 1) opteron_workaround_6323525++; } else { /* * We have no way to tell how many physical * cpus there are, or even if this processor * has the problem, so enable the workaround * unconditionally (at some performance cost). */ opteron_workaround_6323525++; } #else /* __xpv */ } else if ((x86_feature & X86_SSE2) && ((opteron_get_nnodes() * cpuid_get_ncpu_per_chip(cpu)) > 1)) { if ((xrdmsr(MSR_AMD_BU_CFG) & (UINT64_C(1) << 33)) == 0) opteron_workaround_6323525++; #endif /* __xpv */ } #else workaround_warning(cpu, 6323525); missing++; #endif } missing += do_erratum_298(cpu); #ifdef __xpv return (0); #else return (missing); #endif } void workaround_errata_end() { #if defined(OPTERON_ERRATUM_88) if (opteron_erratum_88) workaround_applied(88); #endif #if defined(OPTERON_ERRATUM_91) if (opteron_erratum_91) workaround_applied(91); #endif #if defined(OPTERON_ERRATUM_93) if (opteron_erratum_93) workaround_applied(93); #endif #if defined(OPTERON_ERRATUM_95) if (opteron_erratum_95) workaround_applied(95); #endif #if defined(OPTERON_ERRATUM_100) if (opteron_erratum_100) workaround_applied(100); #endif #if defined(OPTERON_ERRATUM_108) if (opteron_erratum_108) workaround_applied(108); #endif #if defined(OPTERON_ERRATUM_109) if (opteron_erratum_109) { cmn_err(CE_WARN, "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)" " processor\nerratum 109 was not detected; updating your" " system's BIOS to a version\ncontaining this" " microcode patch is HIGHLY recommended or erroneous" " system\noperation may occur.\n"); } #endif #if defined(OPTERON_ERRATUM_121) if (opteron_erratum_121) workaround_applied(121); #endif #if defined(OPTERON_ERRATUM_122) if (opteron_erratum_122) workaround_applied(122); #endif #if defined(OPTERON_ERRATUM_123) if (opteron_erratum_123) { cmn_err(CE_WARN, "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)" " processor\nerratum 123 was not detected; updating your" " system's BIOS to a version\ncontaining this" " microcode patch is HIGHLY recommended or erroneous" " system\noperation may occur.\n"); } #endif #if defined(OPTERON_ERRATUM_131) if (opteron_erratum_131) { cmn_err(CE_WARN, "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)" " processor\nerratum 131 was not detected; updating your" " system's BIOS to a version\ncontaining this" " microcode patch is HIGHLY recommended or erroneous" " system\noperation may occur.\n"); } #endif #if defined(OPTERON_WORKAROUND_6336786) if (opteron_workaround_6336786) workaround_applied(6336786); #endif #if defined(OPTERON_WORKAROUND_6323525) if (opteron_workaround_6323525) workaround_applied(6323525); #endif #if defined(OPTERON_ERRATUM_298) if (opteron_erratum_298) { cmn_err(CE_WARN, "BIOS microcode patch for AMD 64/Opteron(tm)" " processor\nerratum 298 was not detected; updating your" " system's BIOS to a version\ncontaining this" " microcode patch is HIGHLY recommended or erroneous" " system\noperation may occur.\n"); } #endif } /* * The procset_slave and procset_master are used to synchronize * between the control CPU and the target CPU when starting CPUs. */ static cpuset_t procset_slave, procset_master; static void mp_startup_wait(cpuset_t *sp, processorid_t cpuid) { cpuset_t tempset; for (tempset = *sp; !CPU_IN_SET(tempset, cpuid); tempset = *(volatile cpuset_t *)sp) { SMT_PAUSE(); } CPUSET_ATOMIC_DEL(*(cpuset_t *)sp, cpuid); } static void mp_startup_signal(cpuset_t *sp, processorid_t cpuid) { cpuset_t tempset; CPUSET_ATOMIC_ADD(*(cpuset_t *)sp, cpuid); for (tempset = *sp; CPU_IN_SET(tempset, cpuid); tempset = *(volatile cpuset_t *)sp) { SMT_PAUSE(); } } int mp_start_cpu_common(cpu_t *cp, boolean_t boot) { _NOTE(ARGUNUSED(boot)); void *ctx; int delays; int error = 0; cpuset_t tempset; processorid_t cpuid; #ifndef __xpv extern void cpupm_init(cpu_t *); #endif ASSERT(cp != NULL); cpuid = cp->cpu_id; ctx = mach_cpucontext_alloc(cp); if (ctx == NULL) { cmn_err(CE_WARN, "cpu%d: failed to allocate context", cp->cpu_id); return (EAGAIN); } error = mach_cpu_start(cp, ctx); if (error != 0) { cmn_err(CE_WARN, "cpu%d: failed to start, error %d", cp->cpu_id, error); mach_cpucontext_free(cp, ctx, error); return (error); } for (delays = 0, tempset = procset_slave; !CPU_IN_SET(tempset, cpuid); delays++) { if (delays == 500) { /* * After five seconds, things are probably looking * a bit bleak - explain the hang. */ cmn_err(CE_NOTE, "cpu%d: started, " "but not running in the kernel yet", cpuid); } else if (delays > 2000) { /* * We waited at least 20 seconds, bail .. */ error = ETIMEDOUT; cmn_err(CE_WARN, "cpu%d: timed out", cpuid); mach_cpucontext_free(cp, ctx, error); return (error); } /* * wait at least 10ms, then check again.. */ delay(USEC_TO_TICK_ROUNDUP(10000)); tempset = *((volatile cpuset_t *)&procset_slave); } CPUSET_ATOMIC_DEL(procset_slave, cpuid); mach_cpucontext_free(cp, ctx, 0); #ifndef __xpv if (tsc_gethrtime_enable) tsc_sync_master(cpuid); #endif if (dtrace_cpu_init != NULL) { (*dtrace_cpu_init)(cpuid); } /* * During CPU DR operations, the cpu_lock is held by current * (the control) thread. We can't release the cpu_lock here * because that will break the CPU DR logic. * On the other hand, CPUPM and processor group initialization * routines need to access the cpu_lock. So we invoke those * routines here on behalf of mp_startup_common(). * * CPUPM and processor group initialization routines depend * on the cpuid probing results. Wait for mp_startup_common() * to signal that cpuid probing is done. */ mp_startup_wait(&procset_slave, cpuid); #ifndef __xpv cpupm_init(cp); #endif (void) pg_cpu_init(cp, B_FALSE); cpu_set_state(cp); mp_startup_signal(&procset_master, cpuid); return (0); } /* * Start a single cpu, assuming that the kernel context is available * to successfully start another cpu. * * (For example, real mode code is mapped into the right place * in memory and is ready to be run.) */ int start_cpu(processorid_t who) { cpu_t *cp; int error = 0; cpuset_t tempset; ASSERT(who != 0); /* * Check if there's at least a Mbyte of kmem available * before attempting to start the cpu. */ if (kmem_avail() < 1024 * 1024) { /* * Kick off a reap in case that helps us with * later attempts .. */ kmem_reap(); return (ENOMEM); } /* * First configure cpu. */ cp = mp_cpu_configure_common(who, B_TRUE); ASSERT(cp != NULL); /* * Then start cpu. */ error = mp_start_cpu_common(cp, B_TRUE); if (error != 0) { mp_cpu_unconfigure_common(cp, error); return (error); } mutex_exit(&cpu_lock); tempset = cpu_ready_set; while (!CPU_IN_SET(tempset, who)) { drv_usecwait(1); tempset = *((volatile cpuset_t *)&cpu_ready_set); } mutex_enter(&cpu_lock); return (0); } void start_other_cpus(int cprboot) { _NOTE(ARGUNUSED(cprboot)); uint_t who; uint_t bootcpuid = 0; /* * Initialize our own cpu_info. */ init_cpu_info(CPU); cmn_err(CE_CONT, "?cpu%d: %s\n", CPU->cpu_id, CPU->cpu_idstr); cmn_err(CE_CONT, "?cpu%d: %s\n", CPU->cpu_id, CPU->cpu_brandstr); /* * Initialize our syscall handlers */ init_cpu_syscall(CPU); /* * Take the boot cpu out of the mp_cpus set because we know * it's already running. Add it to the cpu_ready_set for * precisely the same reason. */ CPUSET_DEL(mp_cpus, bootcpuid); CPUSET_ADD(cpu_ready_set, bootcpuid); /* * skip the rest of this if * . only 1 cpu dectected and system isn't hotplug-capable * . not using MP */ if ((CPUSET_ISNULL(mp_cpus) && plat_dr_support_cpu() == 0) || use_mp == 0) { if (use_mp == 0) cmn_err(CE_CONT, "?***** Not in MP mode\n"); goto done; } /* * perform such initialization as is needed * to be able to take CPUs on- and off-line. */ cpu_pause_init(); xc_init_cpu(CPU); /* initialize processor crosscalls */ if (mach_cpucontext_init() != 0) goto done; flushes_require_xcalls = 1; /* * We lock our affinity to the master CPU to ensure that all slave CPUs * do their TSC syncs with the same CPU. */ affinity_set(CPU_CURRENT); for (who = 0; who < NCPU; who++) { if (!CPU_IN_SET(mp_cpus, who)) continue; ASSERT(who != bootcpuid); mutex_enter(&cpu_lock); if (start_cpu(who) != 0) CPUSET_DEL(mp_cpus, who); cpu_state_change_notify(who, CPU_SETUP); mutex_exit(&cpu_lock); } /* Free the space allocated to hold the microcode file */ ucode_cleanup(); affinity_clear(); mach_cpucontext_fini(); done: if (get_hwenv() == HW_NATIVE) workaround_errata_end(); cmi_post_mpstartup(); if (use_mp && ncpus != boot_max_ncpus) { cmn_err(CE_NOTE, "System detected %d cpus, but " "only %d cpu(s) were enabled during boot.", boot_max_ncpus, ncpus); cmn_err(CE_NOTE, "Use \"boot-ncpus\" parameter to enable more CPU(s). " "See eeprom(1M)."); } } int mp_cpu_configure(int cpuid) { cpu_t *cp; if (use_mp == 0 || plat_dr_support_cpu() == 0) { return (ENOTSUP); } cp = cpu_get(cpuid); if (cp != NULL) { return (EALREADY); } /* * Check if there's at least a Mbyte of kmem available * before attempting to start the cpu. */ if (kmem_avail() < 1024 * 1024) { /* * Kick off a reap in case that helps us with * later attempts .. */ kmem_reap(); return (ENOMEM); } cp = mp_cpu_configure_common(cpuid, B_FALSE); ASSERT(cp != NULL && cpu_get(cpuid) == cp); return (cp != NULL ? 0 : EAGAIN); } int mp_cpu_unconfigure(int cpuid) { cpu_t *cp; if (use_mp == 0 || plat_dr_support_cpu() == 0) { return (ENOTSUP); } else if (cpuid < 0 || cpuid >= max_ncpus) { return (EINVAL); } cp = cpu_get(cpuid); if (cp == NULL) { return (ENODEV); } mp_cpu_unconfigure_common(cp, 0); return (0); } /* * Startup function for 'other' CPUs (besides boot cpu). * Called from real_mode_start. * * WARNING: until CPU_READY is set, mp_startup_common and routines called by * mp_startup_common should not call routines (e.g. kmem_free) that could call * hat_unload which requires CPU_READY to be set. */ static void mp_startup_common(boolean_t boot) { cpu_t *cp = CPU; uint_t new_x86_feature; const char *fmt = "?cpu%d: %b\n"; extern void cpu_event_init_cpu(cpu_t *); /* * We need to get TSC on this proc synced (i.e., any delta * from cpu0 accounted for) as soon as we can, because many * many things use gethrtime/pc_gethrestime, including * interrupts, cmn_err, etc. */ /* Let the control CPU continue into tsc_sync_master() */ mp_startup_signal(&procset_slave, cp->cpu_id); #ifndef __xpv if (tsc_gethrtime_enable) tsc_sync_slave(); #endif /* * Once this was done from assembly, but it's safer here; if * it blocks, we need to be able to swtch() to and from, and * since we get here by calling t_pc, we need to do that call * before swtch() overwrites it. */ (void) (*ap_mlsetup)(); new_x86_feature = cpuid_pass1(cp); #ifndef __xpv /* * Program this cpu's PAT */ if (x86_feature & X86_PAT) pat_sync(); #endif /* * Set up TSC_AUX to contain the cpuid for this processor * for the rdtscp instruction. */ if (x86_feature & X86_TSCP) (void) wrmsr(MSR_AMD_TSCAUX, cp->cpu_id); /* * Initialize this CPU's syscall handlers */ init_cpu_syscall(cp); /* * Enable interrupts with spl set to LOCK_LEVEL. LOCK_LEVEL is the * highest level at which a routine is permitted to block on * an adaptive mutex (allows for cpu poke interrupt in case * the cpu is blocked on a mutex and halts). Setting LOCK_LEVEL blocks * device interrupts that may end up in the hat layer issuing cross * calls before CPU_READY is set. */ splx(ipltospl(LOCK_LEVEL)); sti(); /* * Do a sanity check to make sure this new CPU is a sane thing * to add to the collection of processors running this system. * * XXX Clearly this needs to get more sophisticated, if x86 * systems start to get built out of heterogenous CPUs; as is * likely to happen once the number of processors in a configuration * gets large enough. */ if ((x86_feature & new_x86_feature) != x86_feature) { cmn_err(CE_CONT, fmt, cp->cpu_id, new_x86_feature, FMT_X86_FEATURE); cmn_err(CE_WARN, "cpu%d feature mismatch", cp->cpu_id); } /* * We do not support cpus with mixed monitor/mwait support if the * boot cpu supports monitor/mwait. */ if ((x86_feature & ~new_x86_feature) & X86_MWAIT) panic("unsupported mixed cpu monitor/mwait support detected"); /* * We could be more sophisticated here, and just mark the CPU * as "faulted" but at this point we'll opt for the easier * answer of dying horribly. Provided the boot cpu is ok, * the system can be recovered by booting with use_mp set to zero. */ if (workaround_errata(cp) != 0) panic("critical workaround(s) missing for cpu%d", cp->cpu_id); /* * We can touch cpu_flags here without acquiring the cpu_lock here * because the cpu_lock is held by the control CPU which is running * mp_start_cpu_common(). * Need to clear CPU_QUIESCED flag before calling any function which * may cause thread context switching, such as kmem_alloc() etc. * The idle thread checks for CPU_QUIESCED flag and loops for ever if * it's set. So the startup thread may have no chance to switch back * again if it's switched away with CPU_QUIESCED set. */ cp->cpu_flags &= ~(CPU_POWEROFF | CPU_QUIESCED); cpuid_pass2(cp); cpuid_pass3(cp); (void) cpuid_pass4(cp); /* * Correct cpu_idstr and cpu_brandstr on target CPU after * cpuid_pass1() is done. */ (void) cpuid_getidstr(cp, cp->cpu_idstr, CPU_IDSTRLEN); (void) cpuid_getbrandstr(cp, cp->cpu_brandstr, CPU_IDSTRLEN); cp->cpu_flags |= CPU_RUNNING | CPU_READY | CPU_EXISTS; post_startup_cpu_fixups(); cpu_event_init_cpu(cp); /* * Enable preemption here so that contention for any locks acquired * later in mp_startup_common may be preempted if the thread owning * those locks is continuously executing on other CPUs (for example, * this CPU must be preemptible to allow other CPUs to pause it during * their startup phases). It's safe to enable preemption here because * the CPU state is pretty-much fully constructed. */ curthread->t_preempt = 0; /* The base spl should still be at LOCK LEVEL here */ ASSERT(cp->cpu_base_spl == ipltospl(LOCK_LEVEL)); set_base_spl(); /* Restore the spl to its proper value */ pghw_physid_create(cp); /* * Delegate initialization tasks, which need to access the cpu_lock, * to mp_start_cpu_common() because we can't acquire the cpu_lock here * during CPU DR operations. */ mp_startup_signal(&procset_slave, cp->cpu_id); mp_startup_wait(&procset_master, cp->cpu_id); pg_cmt_cpu_startup(cp); if (boot) { mutex_enter(&cpu_lock); cp->cpu_flags &= ~CPU_OFFLINE; cpu_enable_intr(cp); cpu_add_active(cp); mutex_exit(&cpu_lock); } /* Enable interrupts */ (void) spl0(); /* * Fill out cpu_ucode_info. Update microcode if necessary. */ ucode_check(cp); #ifndef __xpv { /* * Set up the CPU module for this CPU. This can't be done * before this CPU is made CPU_READY, because we may (in * heterogeneous systems) need to go load another CPU module. * The act of attempting to load a module may trigger a * cross-call, which will ASSERT unless this cpu is CPU_READY. */ cmi_hdl_t hdl; if ((hdl = cmi_init(CMI_HDL_NATIVE, cmi_ntv_hwchipid(CPU), cmi_ntv_hwcoreid(CPU), cmi_ntv_hwstrandid(CPU))) != NULL) { if (x86_feature & X86_MCA) cmi_mca_init(hdl); cp->cpu_m.mcpu_cmi_hdl = hdl; } } #endif /* __xpv */ if (boothowto & RB_DEBUG) kdi_cpu_init(); /* * Setting the bit in cpu_ready_set must be the last operation in * processor initialization; the boot CPU will continue to boot once * it sees this bit set for all active CPUs. */ CPUSET_ATOMIC_ADD(cpu_ready_set, cp->cpu_id); (void) mach_cpu_create_device_node(cp, NULL); cmn_err(CE_CONT, "?cpu%d: %s\n", cp->cpu_id, cp->cpu_idstr); cmn_err(CE_CONT, "?cpu%d: %s\n", cp->cpu_id, cp->cpu_brandstr); cmn_err(CE_CONT, "?cpu%d initialization complete - online\n", cp->cpu_id); /* * Now we are done with the startup thread, so free it up. */ thread_exit(); panic("mp_startup: cannot return"); /*NOTREACHED*/ } /* * Startup function for 'other' CPUs at boot time (besides boot cpu). */ static void mp_startup_boot(void) { mp_startup_common(B_TRUE); } /* * Startup function for hotplug CPUs at runtime. */ void mp_startup_hotplug(void) { mp_startup_common(B_FALSE); } /* * Start CPU on user request. */ /* ARGSUSED */ int mp_cpu_start(struct cpu *cp) { ASSERT(MUTEX_HELD(&cpu_lock)); return (0); } /* * Stop CPU on user request. */ int mp_cpu_stop(struct cpu *cp) { extern int cbe_psm_timer_mode; ASSERT(MUTEX_HELD(&cpu_lock)); #ifdef __xpv /* * We can't offline vcpu0. */ if (cp->cpu_id == 0) return (EBUSY); #endif /* * If TIMER_PERIODIC mode is used, CPU0 is the one running it; * can't stop it. (This is true only for machines with no TSC.) */ if ((cbe_psm_timer_mode == TIMER_PERIODIC) && (cp->cpu_id == 0)) return (EBUSY); return (0); } /* * Take the specified CPU out of participation in interrupts. */ int cpu_disable_intr(struct cpu *cp) { if (psm_disable_intr(cp->cpu_id) != DDI_SUCCESS) return (EBUSY); cp->cpu_flags &= ~CPU_ENABLE; return (0); } /* * Allow the specified CPU to participate in interrupts. */ void cpu_enable_intr(struct cpu *cp) { ASSERT(MUTEX_HELD(&cpu_lock)); cp->cpu_flags |= CPU_ENABLE; psm_enable_intr(cp->cpu_id); } void mp_cpu_faulted_enter(struct cpu *cp) { #ifdef __xpv _NOTE(ARGUNUSED(cp)); #else cmi_hdl_t hdl = cp->cpu_m.mcpu_cmi_hdl; if (hdl != NULL) { cmi_hdl_hold(hdl); } else { hdl = cmi_hdl_lookup(CMI_HDL_NATIVE, cmi_ntv_hwchipid(cp), cmi_ntv_hwcoreid(cp), cmi_ntv_hwstrandid(cp)); } if (hdl != NULL) { cmi_faulted_enter(hdl); cmi_hdl_rele(hdl); } #endif } void mp_cpu_faulted_exit(struct cpu *cp) { #ifdef __xpv _NOTE(ARGUNUSED(cp)); #else cmi_hdl_t hdl = cp->cpu_m.mcpu_cmi_hdl; if (hdl != NULL) { cmi_hdl_hold(hdl); } else { hdl = cmi_hdl_lookup(CMI_HDL_NATIVE, cmi_ntv_hwchipid(cp), cmi_ntv_hwcoreid(cp), cmi_ntv_hwstrandid(cp)); } if (hdl != NULL) { cmi_faulted_exit(hdl); cmi_hdl_rele(hdl); } #endif } /* * The following two routines are used as context operators on threads belonging * to processes with a private LDT (see sysi86). Due to the rarity of such * processes, these routines are currently written for best code readability and * organization rather than speed. We could avoid checking x86_feature at every * context switch by installing different context ops, depending on the * x86_feature flags, at LDT creation time -- one for each combination of fast * syscall feature flags. */ /*ARGSUSED*/ void cpu_fast_syscall_disable(void *arg) { if ((x86_feature & (X86_MSR | X86_SEP)) == (X86_MSR | X86_SEP)) cpu_sep_disable(); if ((x86_feature & (X86_MSR | X86_ASYSC)) == (X86_MSR | X86_ASYSC)) cpu_asysc_disable(); } /*ARGSUSED*/ void cpu_fast_syscall_enable(void *arg) { if ((x86_feature & (X86_MSR | X86_SEP)) == (X86_MSR | X86_SEP)) cpu_sep_enable(); if ((x86_feature & (X86_MSR | X86_ASYSC)) == (X86_MSR | X86_ASYSC)) cpu_asysc_enable(); } static void cpu_sep_enable(void) { ASSERT(x86_feature & X86_SEP); ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL); wrmsr(MSR_INTC_SEP_CS, (uint64_t)(uintptr_t)KCS_SEL); } static void cpu_sep_disable(void) { ASSERT(x86_feature & X86_SEP); ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL); /* * Setting the SYSENTER_CS_MSR register to 0 causes software executing * the sysenter or sysexit instruction to trigger a #gp fault. */ wrmsr(MSR_INTC_SEP_CS, 0); } static void cpu_asysc_enable(void) { ASSERT(x86_feature & X86_ASYSC); ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL); wrmsr(MSR_AMD_EFER, rdmsr(MSR_AMD_EFER) | (uint64_t)(uintptr_t)AMD_EFER_SCE); } static void cpu_asysc_disable(void) { ASSERT(x86_feature & X86_ASYSC); ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL); /* * Turn off the SCE (syscall enable) bit in the EFER register. Software * executing syscall or sysret with this bit off will incur a #ud trap. */ wrmsr(MSR_AMD_EFER, rdmsr(MSR_AMD_EFER) & ~((uint64_t)(uintptr_t)AMD_EFER_SCE)); }