/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include extern void cpu_idle_adaptive(void); static int cpu_idle_init(cpu_t *); static void cpu_idle_fini(cpu_t *); static boolean_t cpu_deep_idle_callb(void *arg, int code); static boolean_t cpu_idle_cpr_callb(void *arg, int code); static void acpi_cpu_cstate(cpu_acpi_cstate_t *cstate); static void cpuidle_set_cstate_latency(cpu_t *cp); /* * Interfaces for modules implementing Intel's deep c-state. */ cpupm_state_ops_t cpu_idle_ops = { "Generic ACPI C-state Support", cpu_idle_init, cpu_idle_fini, NULL }; static kmutex_t cpu_idle_callb_mutex; static callb_id_t cpu_deep_idle_callb_id; static callb_id_t cpu_idle_cpr_callb_id; static uint_t cpu_idle_cfg_state; static kmutex_t cpu_idle_mutex; cpu_idle_kstat_t cpu_idle_kstat = { { "address_space_id", KSTAT_DATA_STRING }, { "latency", KSTAT_DATA_UINT32 }, { "power", KSTAT_DATA_UINT32 }, }; /* * kstat update function of the c-state info */ static int cpu_idle_kstat_update(kstat_t *ksp, int flag) { cpu_acpi_cstate_t *cstate = ksp->ks_private; if (flag == KSTAT_WRITE) { return (EACCES); } if (cstate->cs_addrspace_id == ACPI_ADR_SPACE_FIXED_HARDWARE) { kstat_named_setstr(&cpu_idle_kstat.addr_space_id, "FFixedHW"); } else if (cstate->cs_addrspace_id == ACPI_ADR_SPACE_SYSTEM_IO) { kstat_named_setstr(&cpu_idle_kstat.addr_space_id, "SystemIO"); } else { kstat_named_setstr(&cpu_idle_kstat.addr_space_id, "Unsupported"); } cpu_idle_kstat.cs_latency.value.ui32 = cstate->cs_latency; cpu_idle_kstat.cs_power.value.ui32 = cstate->cs_power; return (0); } /* * c-state wakeup function. * Similar to cpu_wakeup and cpu_wakeup_mwait except this function deals * with CPUs asleep in MWAIT, HLT, or ACPI Deep C-State. */ void cstate_wakeup(cpu_t *cp, int bound) { struct machcpu *mcpu = &(cp->cpu_m); volatile uint32_t *mcpu_mwait = mcpu->mcpu_mwait; cpupart_t *cpu_part; uint_t cpu_found; processorid_t cpu_sid; cpu_part = cp->cpu_part; cpu_sid = cp->cpu_seqid; /* * Clear the halted bit for that CPU since it will be woken up * in a moment. */ if (bitset_in_set(&cpu_part->cp_haltset, cpu_sid)) { /* * Clear the halted bit for that CPU since it will be * poked in a moment. */ bitset_atomic_del(&cpu_part->cp_haltset, cpu_sid); /* * We may find the current CPU present in the halted cpuset * if we're in the context of an interrupt that occurred * before we had a chance to clear our bit in cpu_idle(). * Waking ourself is obviously unnecessary, since if * we're here, we're not halted. */ if (cp != CPU) { /* * Use correct wakeup mechanism */ if ((mcpu_mwait != NULL) && (*mcpu_mwait == MWAIT_HALTED)) MWAIT_WAKEUP(cp); else poke_cpu(cp->cpu_id); } return; } else { /* * This cpu isn't halted, but it's idle or undergoing a * context switch. No need to awaken anyone else. */ if (cp->cpu_thread == cp->cpu_idle_thread || cp->cpu_disp_flags & CPU_DISP_DONTSTEAL) return; } /* * No need to wake up other CPUs if the thread we just enqueued * is bound. */ if (bound) return; /* * See if there's any other halted CPUs. If there are, then * select one, and awaken it. * It's possible that after we find a CPU, somebody else * will awaken it before we get the chance. * In that case, look again. */ do { cpu_found = bitset_find(&cpu_part->cp_haltset); if (cpu_found == (uint_t)-1) return; } while (bitset_atomic_test_and_del(&cpu_part->cp_haltset, cpu_found) < 0); /* * Must use correct wakeup mechanism to avoid lost wakeup of * alternate cpu. */ if (cpu_found != CPU->cpu_seqid) { mcpu_mwait = cpu[cpu_found]->cpu_m.mcpu_mwait; if ((mcpu_mwait != NULL) && (*mcpu_mwait == MWAIT_HALTED)) MWAIT_WAKEUP(cpu_seq[cpu_found]); else poke_cpu(cpu_seq[cpu_found]->cpu_id); } } /* * enter deep c-state handler */ static void acpi_cpu_cstate(cpu_acpi_cstate_t *cstate) { volatile uint32_t *mcpu_mwait = CPU->cpu_m.mcpu_mwait; cpu_t *cpup = CPU; processorid_t cpu_sid = cpup->cpu_seqid; cpupart_t *cp = cpup->cpu_part; hrtime_t lapic_expire; uint8_t type = cstate->cs_addrspace_id; uint32_t cs_type = cstate->cs_type; int hset_update = 1; boolean_t using_hpet_timer; /* * Set our mcpu_mwait here, so we can tell if anyone tries to * wake us between now and when we call mwait. No other cpu will * attempt to set our mcpu_mwait until we add ourself to the haltset. */ if (mcpu_mwait) { if (type == ACPI_ADR_SPACE_SYSTEM_IO) *mcpu_mwait = MWAIT_WAKEUP_IPI; else *mcpu_mwait = MWAIT_HALTED; } /* * If this CPU is online, and there are multiple CPUs * in the system, then we should note our halting * by adding ourselves to the partition's halted CPU * bitmap. This allows other CPUs to find/awaken us when * work becomes available. */ if (cpup->cpu_flags & CPU_OFFLINE || ncpus == 1) hset_update = 0; /* * Add ourselves to the partition's halted CPUs bitmask * and set our HALTED flag, if necessary. * * When a thread becomes runnable, it is placed on the queue * and then the halted cpuset is checked to determine who * (if anyone) should be awakened. We therefore need to first * add ourselves to the halted cpuset, and and then check if there * is any work available. * * Note that memory barriers after updating the HALTED flag * are not necessary since an atomic operation (updating the bitmap) * immediately follows. On x86 the atomic operation acts as a * memory barrier for the update of cpu_disp_flags. */ if (hset_update) { cpup->cpu_disp_flags |= CPU_DISP_HALTED; bitset_atomic_add(&cp->cp_haltset, cpu_sid); } /* * Check to make sure there's really nothing to do. * Work destined for this CPU may become available after * this check. We'll be notified through the clearing of our * bit in the halted CPU bitmask, and a write to our mcpu_mwait. * * disp_anywork() checks disp_nrunnable, so we do not have to later. */ if (disp_anywork()) { if (hset_update) { cpup->cpu_disp_flags &= ~CPU_DISP_HALTED; bitset_atomic_del(&cp->cp_haltset, cpu_sid); } return; } /* * We're on our way to being halted. * * The local APIC timer can stop in ACPI C2 and deeper c-states. * Program the HPET hardware to substitute for this CPU's lAPIC timer. * hpet.use_hpet_timer() disables the LAPIC Timer. Make sure to * start the LAPIC Timer again before leaving this function. * * hpet.use_hpet_timer disables interrupts, so we will awaken * immediately after halting if someone tries to poke us between now * and the time we actually halt. */ using_hpet_timer = hpet.use_hpet_timer(&lapic_expire); /* * We check for the presence of our bit after disabling interrupts. * If it's cleared, we'll return. If the bit is cleared after * we check then the cstate_wakeup() will pop us out of the halted * state. * * This means that the ordering of the cstate_wakeup() and the clearing * of the bit by cpu_wakeup is important. * cpu_wakeup() must clear our mc_haltset bit, and then call * cstate_wakeup(). * acpi_cpu_cstate() must disable interrupts, then check for the bit. */ if (hset_update && bitset_in_set(&cp->cp_haltset, cpu_sid) == 0) { hpet.use_lapic_timer(lapic_expire); cpup->cpu_disp_flags &= ~CPU_DISP_HALTED; return; } /* * The check for anything locally runnable is here for performance * and isn't needed for correctness. disp_nrunnable ought to be * in our cache still, so it's inexpensive to check, and if there * is anything runnable we won't have to wait for the poke. */ if (cpup->cpu_disp->disp_nrunnable != 0) { hpet.use_lapic_timer(lapic_expire); if (hset_update) { cpup->cpu_disp_flags &= ~CPU_DISP_HALTED; bitset_atomic_del(&cp->cp_haltset, cpu_sid); } return; } if (using_hpet_timer == B_FALSE) { hpet.use_lapic_timer(lapic_expire); /* * We are currently unable to program the HPET to act as this * CPU's proxy lAPIC timer. This CPU cannot enter C2 or deeper * because no timer is set to wake it up while its lAPIC timer * stalls in deep C-States. * Enter C1 instead. * * cstate_wake_cpu() will wake this CPU with an IPI which * works with MWAIT. */ i86_monitor(mcpu_mwait, 0, 0); if ((*mcpu_mwait & ~MWAIT_WAKEUP_IPI) == MWAIT_HALTED) { cpu_dtrace_idle_probe(CPU_ACPI_C1); tlb_going_idle(); i86_mwait(0, 0); tlb_service(); cpu_dtrace_idle_probe(CPU_ACPI_C0); } /* * We're no longer halted */ if (hset_update) { cpup->cpu_disp_flags &= ~CPU_DISP_HALTED; bitset_atomic_del(&cp->cp_haltset, cpu_sid); } return; } cpu_dtrace_idle_probe((uint_t)cs_type); if (type == ACPI_ADR_SPACE_FIXED_HARDWARE) { /* * We're on our way to being halted. * To avoid a lost wakeup, arm the monitor before checking * if another cpu wrote to mcpu_mwait to wake us up. */ i86_monitor(mcpu_mwait, 0, 0); if (*mcpu_mwait == MWAIT_HALTED) { uint32_t eax = cstate->cs_address; uint32_t ecx = 1; tlb_going_idle(); i86_mwait(eax, ecx); tlb_service(); } } else if (type == ACPI_ADR_SPACE_SYSTEM_IO) { uint32_t value; ACPI_TABLE_FADT *gbl_FADT; if (*mcpu_mwait == MWAIT_WAKEUP_IPI) { tlb_going_idle(); (void) cpu_acpi_read_port(cstate->cs_address, &value, 8); acpica_get_global_FADT(&gbl_FADT); (void) cpu_acpi_read_port( gbl_FADT->XPmTimerBlock.Address, &value, 32); tlb_service(); } } else { cmn_err(CE_WARN, "!_CST: cs_type %lx bad asid type %lx\n", (long)cs_type, (long)type); } /* * The lAPIC timer may have stopped in deep c-state. * Reprogram this CPU's lAPIC here before enabling interrupts. */ hpet.use_lapic_timer(lapic_expire); cpu_dtrace_idle_probe(CPU_ACPI_C0); /* * We're no longer halted */ if (hset_update) { cpup->cpu_disp_flags &= ~CPU_DISP_HALTED; bitset_atomic_del(&cp->cp_haltset, cpu_sid); } } /* * indicate when bus masters are active */ static uint32_t cpu_acpi_bm_sts(void) { uint32_t bm_sts = 0; cpu_acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_sts); if (bm_sts) cpu_acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1); return (bm_sts); } /* * Idle the present CPU, deep c-state is supported */ void cpu_acpi_idle(void) { cpu_t *cp = CPU; uint16_t cs_type; cpu_acpi_handle_t handle; cma_c_state_t *cs_data; cpu_acpi_cstate_t *cstate; hrtime_t start, end; int cpu_max_cstates; cpupm_mach_state_t *mach_state = (cpupm_mach_state_t *)cp->cpu_m.mcpu_pm_mach_state; handle = mach_state->ms_acpi_handle; ASSERT(CPU_ACPI_CSTATES(handle) != NULL); cs_data = mach_state->ms_cstate.cma_state.cstate; cstate = (cpu_acpi_cstate_t *)CPU_ACPI_CSTATES(handle); ASSERT(cstate != NULL); cpu_max_cstates = cpu_acpi_get_max_cstates(handle); if (cpu_max_cstates > CPU_MAX_CSTATES) cpu_max_cstates = CPU_MAX_CSTATES; start = gethrtime_unscaled(); cs_type = cpupm_next_cstate(cs_data, start); /* * OSPM uses the BM_STS bit to determine the power state to enter * when considering a transition to or from the C2/C3 power state. * if C3 is determined, bus master activity demotes the power state * to C2. */ if ((cs_type >= CPU_ACPI_C3) && cpu_acpi_bm_sts()) cs_type = CPU_ACPI_C2; /* * BM_RLD determines if the Cx power state was exited as a result of * bus master requests. Set this bit when using a C3 power state, and * clear it when using a C1 or C2 power state. */ if ((CPU_ACPI_BM_INFO(handle) & BM_RLD) && (cs_type < CPU_ACPI_C3)) { cpu_acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0); CPU_ACPI_BM_INFO(handle) &= ~BM_RLD; } if ((!(CPU_ACPI_BM_INFO(handle) & BM_RLD)) && (cs_type >= CPU_ACPI_C3)) { cpu_acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1); CPU_ACPI_BM_INFO(handle) |= BM_RLD; } cstate += cs_type - 1; switch (cs_type) { default: /* FALLTHROUGH */ case CPU_ACPI_C1: (*non_deep_idle_cpu)(); break; case CPU_ACPI_C2: acpi_cpu_cstate(cstate); break; case CPU_ACPI_C3: /* * recommended in ACPI spec, providing hardware mechanisms * to prevent master from writing to memory (UP-only) */ if ((ncpus_online == 1) && (CPU_ACPI_BM_INFO(handle) & BM_CTL)) { cpu_acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1); CPU_ACPI_BM_INFO(handle) |= BM_ARB_DIS; /* * Today all Intel's processor support C3 share cache. */ } else if (x86_vendor != X86_VENDOR_Intel) { __acpi_wbinvd(); } acpi_cpu_cstate(cstate); if (CPU_ACPI_BM_INFO(handle) & BM_ARB_DIS) { cpu_acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0); CPU_ACPI_BM_INFO(handle) &= ~BM_ARB_DIS; } break; } end = gethrtime_unscaled(); /* * Update statistics */ cpupm_wakeup_cstate_data(cs_data, end); } boolean_t cpu_deep_cstates_supported(void) { extern int idle_cpu_no_deep_c; if (idle_cpu_no_deep_c) return (B_FALSE); if (!cpuid_deep_cstates_supported()) return (B_FALSE); if ((hpet.supported != HPET_FULL_SUPPORT) || !hpet.install_proxy()) return (B_FALSE); return (B_TRUE); } /* * Validate that this processor supports deep cstate and if so, * get the c-state data from ACPI and cache it. */ static int cpu_idle_init(cpu_t *cp) { cpupm_mach_state_t *mach_state = (cpupm_mach_state_t *)cp->cpu_m.mcpu_pm_mach_state; cpu_acpi_handle_t handle = mach_state->ms_acpi_handle; cpu_acpi_cstate_t *cstate; char name[KSTAT_STRLEN]; int cpu_max_cstates, i; ACPI_TABLE_FADT *gbl_FADT; /* * Cache the C-state specific ACPI data. */ if (cpu_acpi_cache_cstate_data(handle) != 0) { cmn_err(CE_NOTE, "!cpu_idle_init: Failed to cache ACPI C-state data\n"); cpu_idle_fini(cp); return (-1); } /* * Check the bus master arbitration control ability. */ acpica_get_global_FADT(&gbl_FADT); if (gbl_FADT->Pm2ControlBlock && gbl_FADT->Pm2ControlLength) CPU_ACPI_BM_INFO(handle) |= BM_CTL; cstate = (cpu_acpi_cstate_t *)CPU_ACPI_CSTATES(handle); cpu_max_cstates = cpu_acpi_get_max_cstates(handle); for (i = CPU_ACPI_C1; i <= cpu_max_cstates; i++) { (void) snprintf(name, KSTAT_STRLEN - 1, "c%d", cstate->cs_type); /* * Allocate, initialize and install cstate kstat */ cstate->cs_ksp = kstat_create("cstate", CPU->cpu_id, name, "misc", KSTAT_TYPE_NAMED, sizeof (cpu_idle_kstat) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); if (cstate->cs_ksp == NULL) { cmn_err(CE_NOTE, "kstat_create(c_state) fail"); } else { cstate->cs_ksp->ks_data = &cpu_idle_kstat; cstate->cs_ksp->ks_lock = &cpu_idle_mutex; cstate->cs_ksp->ks_update = cpu_idle_kstat_update; cstate->cs_ksp->ks_data_size += MAXNAMELEN; cstate->cs_ksp->ks_private = cstate; kstat_install(cstate->cs_ksp); cstate++; } } cpupm_alloc_domains(cp, CPUPM_C_STATES); cpupm_alloc_ms_cstate(cp); cpuidle_set_cstate_latency(cp); if (cpu_deep_cstates_supported()) { mutex_enter(&cpu_idle_callb_mutex); if (cpu_deep_idle_callb_id == (callb_id_t)0) cpu_deep_idle_callb_id = callb_add(&cpu_deep_idle_callb, (void *)NULL, CB_CL_CPU_DEEP_IDLE, "cpu_deep_idle"); if (cpu_idle_cpr_callb_id == (callb_id_t)0) cpu_idle_cpr_callb_id = callb_add(&cpu_idle_cpr_callb, (void *)NULL, CB_CL_CPR_PM, "cpu_idle_cpr"); mutex_exit(&cpu_idle_callb_mutex); } return (0); } /* * Free resources allocated by cpu_idle_init(). */ static void cpu_idle_fini(cpu_t *cp) { cpupm_mach_state_t *mach_state = (cpupm_mach_state_t *)(cp->cpu_m.mcpu_pm_mach_state); cpu_acpi_handle_t handle = mach_state->ms_acpi_handle; cpu_acpi_cstate_t *cstate; uint_t cpu_max_cstates, i; /* * idle cpu points back to the generic one */ idle_cpu = CPU->cpu_m.mcpu_idle_cpu = non_deep_idle_cpu; disp_enq_thread = non_deep_idle_disp_enq_thread; cstate = (cpu_acpi_cstate_t *)CPU_ACPI_CSTATES(handle); if (cstate) { cpu_max_cstates = cpu_acpi_get_max_cstates(handle); for (i = CPU_ACPI_C1; i <= cpu_max_cstates; i++) { if (cstate->cs_ksp != NULL) kstat_delete(cstate->cs_ksp); cstate++; } } cpupm_free_ms_cstate(cp); cpupm_free_domains(&cpupm_cstate_domains); cpu_acpi_free_cstate_data(handle); mutex_enter(&cpu_idle_callb_mutex); if (cpu_deep_idle_callb_id != (callb_id_t)0) { (void) callb_delete(cpu_deep_idle_callb_id); cpu_deep_idle_callb_id = (callb_id_t)0; } if (cpu_idle_cpr_callb_id != (callb_id_t)0) { (void) callb_delete(cpu_idle_cpr_callb_id); cpu_idle_cpr_callb_id = (callb_id_t)0; } mutex_exit(&cpu_idle_callb_mutex); } /*ARGSUSED*/ static boolean_t cpu_deep_idle_callb(void *arg, int code) { boolean_t rslt = B_TRUE; mutex_enter(&cpu_idle_callb_mutex); switch (code) { case PM_DEFAULT_CPU_DEEP_IDLE: /* * Default policy is same as enable */ /*FALLTHROUGH*/ case PM_ENABLE_CPU_DEEP_IDLE: if ((cpu_idle_cfg_state & CPU_IDLE_DEEP_CFG) == 0) break; if (hpet.callback(PM_ENABLE_CPU_DEEP_IDLE)) { disp_enq_thread = cstate_wakeup; idle_cpu = cpu_idle_adaptive; cpu_idle_cfg_state &= ~CPU_IDLE_DEEP_CFG; } else { rslt = B_FALSE; } break; case PM_DISABLE_CPU_DEEP_IDLE: if (cpu_idle_cfg_state & CPU_IDLE_DEEP_CFG) break; idle_cpu = non_deep_idle_cpu; if (hpet.callback(PM_DISABLE_CPU_DEEP_IDLE)) { disp_enq_thread = non_deep_idle_disp_enq_thread; cpu_idle_cfg_state |= CPU_IDLE_DEEP_CFG; } break; default: cmn_err(CE_NOTE, "!cpu deep_idle_callb: invalid code %d\n", code); break; } mutex_exit(&cpu_idle_callb_mutex); return (rslt); } /*ARGSUSED*/ static boolean_t cpu_idle_cpr_callb(void *arg, int code) { boolean_t rslt = B_TRUE; mutex_enter(&cpu_idle_callb_mutex); switch (code) { case CB_CODE_CPR_RESUME: if (hpet.callback(CB_CODE_CPR_RESUME)) { /* * Do not enable dispatcher hooks if disabled by user. */ if (cpu_idle_cfg_state & CPU_IDLE_DEEP_CFG) break; disp_enq_thread = cstate_wakeup; idle_cpu = cpu_idle_adaptive; } else { rslt = B_FALSE; } break; case CB_CODE_CPR_CHKPT: idle_cpu = non_deep_idle_cpu; disp_enq_thread = non_deep_idle_disp_enq_thread; hpet.callback(CB_CODE_CPR_CHKPT); break; default: cmn_err(CE_NOTE, "!cpudvr cpr_callb: invalid code %d\n", code); break; } mutex_exit(&cpu_idle_callb_mutex); return (rslt); } /* * handle _CST notification */ void cpuidle_cstate_instance(cpu_t *cp) { #ifndef __xpv cpupm_mach_state_t *mach_state = (cpupm_mach_state_t *)cp->cpu_m.mcpu_pm_mach_state; cpu_acpi_handle_t handle; struct machcpu *mcpu; cpuset_t dom_cpu_set; kmutex_t *pm_lock; int result = 0; processorid_t cpu_id; if (mach_state == NULL) { return; } ASSERT(mach_state->ms_cstate.cma_domain != NULL); dom_cpu_set = mach_state->ms_cstate.cma_domain->pm_cpus; pm_lock = &mach_state->ms_cstate.cma_domain->pm_lock; /* * Do for all the CPU's in the domain */ mutex_enter(pm_lock); do { CPUSET_FIND(dom_cpu_set, cpu_id); if (cpu_id == CPUSET_NOTINSET) break; ASSERT(cpu_id >= 0 && cpu_id < NCPU); cp = cpu[cpu_id]; mach_state = (cpupm_mach_state_t *) cp->cpu_m.mcpu_pm_mach_state; if (!(mach_state->ms_caps & CPUPM_C_STATES)) { mutex_exit(pm_lock); return; } handle = mach_state->ms_acpi_handle; ASSERT(handle != NULL); /* * re-evaluate cstate object */ if (cpu_acpi_cache_cstate_data(handle) != 0) { cmn_err(CE_WARN, "Cannot re-evaluate the cpu c-state" " object Instance: %d", cpu_id); } mutex_enter(&cpu_lock); mcpu = &(cp->cpu_m); mcpu->max_cstates = cpu_acpi_get_max_cstates(handle); if (mcpu->max_cstates > CPU_ACPI_C1) { hpet.callback(CST_EVENT_MULTIPLE_CSTATES); disp_enq_thread = cstate_wakeup; cp->cpu_m.mcpu_idle_cpu = cpu_acpi_idle; cpuidle_set_cstate_latency(cp); } else if (mcpu->max_cstates == CPU_ACPI_C1) { disp_enq_thread = non_deep_idle_disp_enq_thread; cp->cpu_m.mcpu_idle_cpu = non_deep_idle_cpu; hpet.callback(CST_EVENT_ONE_CSTATE); } mutex_exit(&cpu_lock); CPUSET_ATOMIC_XDEL(dom_cpu_set, cpu_id, result); mutex_exit(pm_lock); } while (result < 0); #endif } /* * handle the number or the type of available processor power states change */ void cpuidle_manage_cstates(void *ctx) { cpu_t *cp = ctx; processorid_t cpu_id = cp->cpu_id; cpupm_mach_state_t *mach_state = (cpupm_mach_state_t *)cp->cpu_m.mcpu_pm_mach_state; boolean_t is_ready; if (mach_state == NULL) { return; } /* * We currently refuse to power manage if the CPU is not ready to * take cross calls (cross calls fail silently if CPU is not ready * for it). * * Additionally, for x86 platforms we cannot power manage * any one instance, until all instances have been initialized. * That's because we don't know what the CPU domains look like * until all instances have been initialized. */ is_ready = CPUPM_XCALL_IS_READY(cpu_id) && cpupm_cstate_ready(); if (!is_ready) return; cpuidle_cstate_instance(cp); } static void cpuidle_set_cstate_latency(cpu_t *cp) { cpupm_mach_state_t *mach_state = (cpupm_mach_state_t *)cp->cpu_m.mcpu_pm_mach_state; cpu_acpi_handle_t handle; cpu_acpi_cstate_t *acpi_cstates; cma_c_state_t *cpupm_cdata; uint32_t i, cnt; cpupm_cdata = mach_state->ms_cstate.cma_state.cstate; ASSERT(cpupm_cdata != 0); ASSERT(mach_state != NULL); handle = mach_state->ms_acpi_handle; ASSERT(handle != NULL); cnt = CPU_ACPI_CSTATES_COUNT(handle); acpi_cstates = (cpu_acpi_cstate_t *)CPU_ACPI_CSTATES(handle); cpupm_cdata->cs_C2_latency = CPU_CSTATE_LATENCY_UNDEF; cpupm_cdata->cs_C3_latency = CPU_CSTATE_LATENCY_UNDEF; for (i = 1; i <= cnt; ++i, ++acpi_cstates) { if ((cpupm_cdata->cs_C2_latency == CPU_CSTATE_LATENCY_UNDEF) && (acpi_cstates->cs_type == CPU_ACPI_C2)) cpupm_cdata->cs_C2_latency = acpi_cstates->cs_latency; if ((cpupm_cdata->cs_C3_latency == CPU_CSTATE_LATENCY_UNDEF) && (acpi_cstates->cs_type == CPU_ACPI_C3)) cpupm_cdata->cs_C3_latency = acpi_cstates->cs_latency; } }