/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ /* All Rights Reserved */ /* * University Copyright- Copyright (c) 1982, 1986, 1988 * The Regents of the University of California * All Rights Reserved * * University Acknowledgment- Portions of this document are derived from * software developed by the University of California, Berkeley, and its * contributors. */ #ifndef _VM_ANON_H #define _VM_ANON_H #pragma ident "%Z%%M% %I% %E% SMI" #include #include #include #ifdef __cplusplus extern "C" { #endif /* * VM - Anonymous pages. */ typedef unsigned long anoff_t; /* anon offsets */ /* * Each anonymous page, either in memory or in swap, has an anon structure. * The structure (slot) provides a level of indirection between anonymous pages * and their backing store. * * (an_vp, an_off) names the vnode of the anonymous page for this slot. * * (an_pvp, an_poff) names the location of the physical backing store * for the page this slot represents. If the name is null there is no * associated physical store. The physical backing store location can * change while the slot is in use. * * an_hash is a hash list of anon slots. The list is hashed by * (an_vp, an_off) of the associated anonymous page and provides a * method of going from the name of an anonymous page to its * associated anon slot. * * an_refcnt holds a reference count which is the number of separate * copies that will need to be created in case of copy-on-write. * A refcnt > 0 protects the existence of the slot. The refcnt is * initialized to 1 when the anon slot is created in anon_alloc(). * If a client obtains an anon slot and allows multiple threads to * share it, then it is the client's responsibility to insure that * it does not allow one thread to try to reference the slot at the * same time as another is trying to decrement the last count and * destroy the anon slot. E.g., the seg_vn segment type protects * against this with higher level locks. */ struct anon { struct vnode *an_vp; /* vnode of anon page */ struct vnode *an_pvp; /* vnode of physical backing store */ anoff_t an_off; /* offset of anon page */ anoff_t an_poff; /* offset in vnode */ struct anon *an_hash; /* hash table of anon slots */ int an_refcnt; /* # of people sharing slot */ }; #ifdef _KERNEL /* * The swapinfo_lock protects: * swapinfo list * individual swapinfo structures * * The anoninfo_lock protects: * anoninfo counters * * The anonhash_lock protects: * anon hash lists * anon slot fields * * Fields in the anon slot which are read-only for the life of the slot * (an_vp, an_off) do not require the anonhash_lock be held to access them. * If you access a field without the anonhash_lock held you must be holding * the slot with an_refcnt to make sure it isn't destroyed. * To write (an_pvp, an_poff) in a given slot you must also hold the * p_iolock of the anonymous page for slot. */ extern kmutex_t anoninfo_lock; extern kmutex_t swapinfo_lock; extern kmutex_t anonhash_lock[]; extern pad_mutex_t anon_array_lock[]; extern kcondvar_t anon_array_cv[]; /* * Global hash table to provide a function from (vp, off) -> ap */ extern size_t anon_hash_size; extern struct anon **anon_hash; #define ANON_HASH_SIZE anon_hash_size #define ANON_HASHAVELEN 4 #define ANON_HASH(VP, OFF) \ ((((uintptr_t)(VP) >> 7) ^ ((OFF) >> PAGESHIFT)) & (ANON_HASH_SIZE - 1)) #define AH_LOCK_SIZE 64 #define AH_LOCK(vp, off) (ANON_HASH((vp), (off)) & (AH_LOCK_SIZE -1)) #endif /* _KERNEL */ /* * Declaration for the Global counters to accurately * track the kernel foot print in memory. */ extern pgcnt_t segvn_pages_locked; extern pgcnt_t pages_locked; extern pgcnt_t pages_claimed; extern pgcnt_t pages_useclaim; extern pgcnt_t obp_pages; /* * Anonymous backing store accounting structure for swapctl. * * ani_max = maximum amount of swap space * (including potentially available physical memory) * ani_free = amount of unallocated anonymous memory * (some of which might be reserved and including * potentially available physical memory) * ani_resv = amount of claimed (reserved) anonymous memory * * The swap data can be aquired more efficiently through the * kstats interface. * Total slots currently available for reservation = * MAX(ani_max - ani_resv, 0) + (availrmem - swapfs_minfree) */ struct anoninfo { pgcnt_t ani_max; pgcnt_t ani_free; pgcnt_t ani_resv; }; #ifdef _SYSCALL32 struct anoninfo32 { size32_t ani_max; size32_t ani_free; size32_t ani_resv; }; #endif /* _SYSCALL32 */ /* * Define the NCPU pool of the ani_free counters. Update the counter * of the cpu on which the thread is running and in every clock intr * sync anoninfo.ani_free with the current total off all the NCPU entries. */ typedef struct ani_free { kmutex_t ani_lock; pgcnt_t ani_count; uchar_t pad[64 - sizeof (kmutex_t) - sizeof (pgcnt_t)]; /* XXX 64 = cacheline size */ } ani_free_t; #define ANI_MAX_POOL 128 extern ani_free_t ani_free_pool[]; #define ANI_ADD(inc) { \ ani_free_t *anifp; \ int index; \ index = (CPU->cpu_id & (ANI_MAX_POOL - 1)); \ anifp = &ani_free_pool[index]; \ mutex_enter(&anifp->ani_lock); \ anifp->ani_count += inc; \ mutex_exit(&anifp->ani_lock); \ } /* * Anon array pointers are allocated in chunks. Each chunk * has PAGESIZE/sizeof(u_long *) of anon pointers. * There are two levels of arrays for anon array pointers larger * than a chunk. The first level points to anon array chunks. * The second level consists of chunks of anon pointers. * * If anon array is smaller than a chunk then the whole anon array * is created (memory is allocated for whole anon array). * If anon array is larger than a chunk only first level array is * allocated. Then other arrays (chunks) are allocated only when * they are initialized with anon pointers. */ struct anon_hdr { kmutex_t serial_lock; /* serialize array chunk allocation */ pgcnt_t size; /* number of pointers to (anon) pages */ void **array_chunk; /* pointers to anon pointers or chunks of */ /* anon pointers */ int flags; /* ANON_ALLOC_FORCE force preallocation of */ /* whole anon array */ }; #ifdef _LP64 #define ANON_PTRSHIFT 3 #define ANON_PTRMASK ~7 #else #define ANON_PTRSHIFT 2 #define ANON_PTRMASK ~3 #endif #define ANON_CHUNK_SIZE (PAGESIZE >> ANON_PTRSHIFT) #define ANON_CHUNK_SHIFT (PAGESHIFT - ANON_PTRSHIFT) #define ANON_CHUNK_OFF (ANON_CHUNK_SIZE - 1) /* * Anon flags. */ #define ANON_SLEEP 0x0 /* ok to block */ #define ANON_NOSLEEP 0x1 /* non-blocking call */ #define ANON_ALLOC_FORCE 0x2 /* force single level anon array */ #define ANON_GROWDOWN 0x4 /* anon array should grow downward */ struct kshmid; /* * The anon_map structure is used by various clients of the anon layer to * manage anonymous memory. When anonymous memory is shared, * then the different clients sharing it will point to the * same anon_map structure. Also, if a segment is unmapped * in the middle where an anon_map structure exists, the * newly created segment will also share the anon_map structure, * although the two segments will use different ranges of the * anon array. When mappings are private (or shared with * a reference count of 1), an unmap operation will free up * a range of anon slots in the array given by the anon_map * structure. Because of fragmentation due to this unmapping, * we have to store the size of the anon array in the anon_map * structure so that we can free everything when the referernce * count goes to zero. * * A new rangelock scheme is introduced to make the anon layer scale. * A reader/writer lock per anon_amp and an array of system-wide hash * locks, anon_array_lock[] are introduced to replace serial_lock and * anonmap lock. The writer lock is held when we want to singlethreaD * the reference to the anon array pointers or when references to * anon_map's members, whereas reader lock and anon_array_lock are * held to allows multiple threads to reference different part of * anon array. A global set of condition variables, anon_array_cv, * are used with anon_array_lock[] to make the hold time of the locks * short. * * szc is used to calculate the index of hash locks and cv's. We * could've just used seg->s_szc if not for the possible sharing of * anon_amp between SYSV shared memory and ISM, so now we introduce * szc in the anon_map structure. For MAP_SHARED, the amp->szc is either * 0 (base page size) or page_num_pagesizes() - 1, while MAP_PRIVATE * the amp->szc could be anything in [0, page_num_pagesizes() - 1]. */ struct anon_map { krwlock_t a_rwlock; /* protect anon_map and anon array */ size_t size; /* size in bytes mapped by the anon array */ struct anon_hdr *ahp; /* anon array header pointer, containing */ /* anon pointer array(s) */ size_t swresv; /* swap space reserved for this anon_map */ ulong_t refcnt; /* reference count on this structure */ ushort_t a_szc; /* max szc among shared processes */ void *locality; /* lgroup locality info */ struct kshmid *a_sp; /* kshmid if amp backs sysV, or NULL */ }; #ifdef _KERNEL #define ANON_BUSY 0x1 #define ANON_ISBUSY(slot) (*(slot) & ANON_BUSY) #define ANON_SETBUSY(slot) (*(slot) |= ANON_BUSY) #define ANON_CLRBUSY(slot) (*(slot) &= ~ANON_BUSY) #define ANON_MAP_SHIFT 6 /* log2(sizeof (struct anon_map)) */ #define ANON_ARRAY_SHIFT 7 /* log2(ANON_LOCKSIZE) */ #define ANON_LOCKSIZE 128 #define ANON_LOCK_ENTER(lock, type) rw_enter((lock), (type)) #define ANON_LOCK_EXIT(lock) rw_exit((lock)) #define ANON_ARRAY_HASH(amp, idx)\ ((((idx) + ((idx) >> ANON_ARRAY_SHIFT) +\ ((idx) >> (ANON_ARRAY_SHIFT << 1)) +\ ((idx) >> (ANON_ARRAY_SHIFT + (ANON_ARRAY_SHIFT << 1)))) ^\ ((uintptr_t)(amp) >> ANON_MAP_SHIFT)) & (ANON_LOCKSIZE - 1)) typedef struct anon_sync_obj { kmutex_t *sync_mutex; kcondvar_t *sync_cv; ulong_t *sync_data; } anon_sync_obj_t; /* * Anonymous backing store accounting structure for kernel. * ani_max = total reservable slots on physical (disk-backed) swap * ani_phys_resv = total phys slots reserved for use by clients * ani_mem_resv = total mem slots reserved for use by clients * ani_free = # unallocated physical slots + # of reserved unallocated * memory slots */ /* * Initial total swap slots available for reservation */ #define TOTAL_AVAILABLE_SWAP \ (k_anoninfo.ani_max + MAX((spgcnt_t)(availrmem - swapfs_minfree), 0)) /* * Swap slots currently available for reservation */ #define CURRENT_TOTAL_AVAILABLE_SWAP \ ((k_anoninfo.ani_max - k_anoninfo.ani_phys_resv) + \ MAX((spgcnt_t)(availrmem - swapfs_minfree), 0)) struct k_anoninfo { pgcnt_t ani_max; /* total reservable slots on phys */ /* (disk) swap */ pgcnt_t ani_free; /* # of unallocated phys and mem slots */ pgcnt_t ani_phys_resv; /* # of reserved phys (disk) slots */ pgcnt_t ani_mem_resv; /* # of reserved mem slots */ pgcnt_t ani_locked_swap; /* # of swap slots locked in reserved */ /* mem swap */ }; extern struct k_anoninfo k_anoninfo; extern void anon_init(void); extern struct anon *anon_alloc(struct vnode *, anoff_t); extern void anon_dup(struct anon_hdr *, ulong_t, struct anon_hdr *, ulong_t, size_t); extern void anon_dup_fill_holes(struct anon_hdr *, ulong_t, struct anon_hdr *, ulong_t, size_t, uint_t, int); extern int anon_fill_cow_holes(struct seg *, caddr_t, struct anon_hdr *, ulong_t, struct vnode *, u_offset_t, size_t, uint_t, uint_t, struct vpage [], struct cred *); extern void anon_free(struct anon_hdr *, ulong_t, size_t); extern void anon_free_pages(struct anon_hdr *, ulong_t, size_t, uint_t); extern void anon_disclaim(struct anon_map *, ulong_t, size_t, int); extern int anon_getpage(struct anon **, uint_t *, struct page **, size_t, struct seg *, caddr_t, enum seg_rw, struct cred *); extern int swap_getconpage(struct vnode *, u_offset_t, size_t, uint_t *, page_t *[], size_t, page_t *, uint_t *, spgcnt_t *, struct seg *, caddr_t, enum seg_rw, struct cred *); extern int anon_map_getpages(struct anon_map *, ulong_t, uint_t, struct seg *, caddr_t, uint_t, uint_t *, page_t *[], uint_t *, struct vpage [], enum seg_rw, int, int, struct cred *); extern int anon_map_privatepages(struct anon_map *, ulong_t, uint_t, struct seg *, caddr_t, uint_t, page_t *[], struct vpage [], int, struct cred *); extern struct page *anon_private(struct anon **, struct seg *, caddr_t, uint_t, struct page *, int, struct cred *); extern struct page *anon_zero(struct seg *, caddr_t, struct anon **, struct cred *); extern int anon_map_createpages(struct anon_map *, ulong_t, size_t, struct page **, struct seg *, caddr_t, enum seg_rw, struct cred *); extern int anon_map_demotepages(struct anon_map *, ulong_t, struct seg *, caddr_t, uint_t, struct vpage [], struct cred *); extern void anon_shmap_free_pages(struct anon_map *, ulong_t, size_t); extern int anon_resvmem(size_t, uint_t); extern void anon_unresv(size_t); extern struct anon_map *anonmap_alloc(size_t, size_t); extern void anonmap_free(struct anon_map *); extern void anon_decref(struct anon *); extern int non_anon(struct anon_hdr *, ulong_t, u_offset_t *, size_t *); extern pgcnt_t anon_pages(struct anon_hdr *, ulong_t, pgcnt_t); extern int anon_swap_adjust(pgcnt_t); extern void anon_swap_restore(pgcnt_t); extern struct anon_hdr *anon_create(pgcnt_t, int); extern void anon_release(struct anon_hdr *, pgcnt_t); extern struct anon *anon_get_ptr(struct anon_hdr *, ulong_t); extern ulong_t *anon_get_slot(struct anon_hdr *, ulong_t); extern struct anon *anon_get_next_ptr(struct anon_hdr *, ulong_t *); extern int anon_set_ptr(struct anon_hdr *, ulong_t, struct anon *, int); extern int anon_copy_ptr(struct anon_hdr *, ulong_t, struct anon_hdr *, ulong_t, pgcnt_t, int); extern pgcnt_t anon_grow(struct anon_hdr *, ulong_t *, pgcnt_t, pgcnt_t, int); extern void anon_array_enter(struct anon_map *, ulong_t, anon_sync_obj_t *); extern int anon_array_try_enter(struct anon_map *, ulong_t, anon_sync_obj_t *); extern void anon_array_exit(anon_sync_obj_t *); /* * anon_resv checks to see if there is enough swap space to fulfill a * request and if so, reserves the appropriate anonymous memory resources. * anon_checkspace just checks to see if there is space to fulfill the request, * without taking any resources. Both return 1 if successful and 0 if not. */ #define anon_resv(size) anon_resvmem((size), 1) #define anon_checkspace(size) anon_resvmem((size), 0) /* * Flags to anon_private */ #define STEAL_PAGE 0x1 /* page can be stolen */ #define LOCK_PAGE 0x2 /* page must be ``logically'' locked */ /* * Flags to anon_disclaim */ #define ANON_PGLOOKUP_BLK 0x1 /* block on locked pages */ /* * SEGKP ANON pages that are locked are assumed to be LWP stack pages * and thus count towards the user pages locked count. * This value is protected by the same lock as availrmem. */ extern pgcnt_t anon_segkp_pages_locked; extern int anon_debug; #ifdef ANON_DEBUG #define A_ANON 0x01 #define A_RESV 0x02 #define A_MRESV 0x04 /* vararg-like debugging macro. */ #define ANON_PRINT(f, printf_args) \ if (anon_debug & f) \ printf printf_args #else /* ANON_DEBUG */ #define ANON_PRINT(f, printf_args) #endif /* ANON_DEBUG */ #endif /* _KERNEL */ #ifdef __cplusplus } #endif #endif /* _VM_ANON_H */