/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright 2013, Joyent Inc. All rights reserved. */ /* * Zones * * A zone is a named collection of processes, namespace constraints, * and other system resources which comprise a secure and manageable * application containment facility. * * Zones (represented by the reference counted zone_t) are tracked in * the kernel in the zonehash. Elsewhere in the kernel, Zone IDs * (zoneid_t) are used to track zone association. Zone IDs are * dynamically generated when the zone is created; if a persistent * identifier is needed (core files, accounting logs, audit trail, * etc.), the zone name should be used. * * * Global Zone: * * The global zone (zoneid 0) is automatically associated with all * system resources that have not been bound to a user-created zone. * This means that even systems where zones are not in active use * have a global zone, and all processes, mounts, etc. are * associated with that zone. The global zone is generally * unconstrained in terms of privileges and access, though the usual * credential and privilege based restrictions apply. * * * Zone States: * * The states in which a zone may be in and the transitions are as * follows: * * ZONE_IS_UNINITIALIZED: primordial state for a zone. The partially * initialized zone is added to the list of active zones on the system but * isn't accessible. * * ZONE_IS_INITIALIZED: Initialization complete except the ZSD callbacks are * not yet completed. Not possible to enter the zone, but attributes can * be retrieved. * * ZONE_IS_READY: zsched (the kernel dummy process for a zone) is * ready. The zone is made visible after the ZSD constructor callbacks are * executed. A zone remains in this state until it transitions into * the ZONE_IS_BOOTING state as a result of a call to zone_boot(). * * ZONE_IS_BOOTING: in this shortlived-state, zsched attempts to start * init. Should that fail, the zone proceeds to the ZONE_IS_SHUTTING_DOWN * state. * * ZONE_IS_RUNNING: The zone is open for business: zsched has * successfully started init. A zone remains in this state until * zone_shutdown() is called. * * ZONE_IS_SHUTTING_DOWN: zone_shutdown() has been called, the system is * killing all processes running in the zone. The zone remains * in this state until there are no more user processes running in the zone. * zone_create(), zone_enter(), and zone_destroy() on this zone will fail. * Since zone_shutdown() is restartable, it may be called successfully * multiple times for the same zone_t. Setting of the zone's state to * ZONE_IS_SHUTTING_DOWN is synchronized with mounts, so VOP_MOUNT() may check * the zone's status without worrying about it being a moving target. * * ZONE_IS_EMPTY: zone_shutdown() has been called, and there * are no more user processes in the zone. The zone remains in this * state until there are no more kernel threads associated with the * zone. zone_create(), zone_enter(), and zone_destroy() on this zone will * fail. * * ZONE_IS_DOWN: All kernel threads doing work on behalf of the zone * have exited. zone_shutdown() returns. Henceforth it is not possible to * join the zone or create kernel threads therein. * * ZONE_IS_DYING: zone_destroy() has been called on the zone; zone * remains in this state until zsched exits. Calls to zone_find_by_*() * return NULL from now on. * * ZONE_IS_DEAD: zsched has exited (zone_ntasks == 0). There are no * processes or threads doing work on behalf of the zone. The zone is * removed from the list of active zones. zone_destroy() returns, and * the zone can be recreated. * * ZONE_IS_FREE (internal state): zone_ref goes to 0, ZSD destructor * callbacks are executed, and all memory associated with the zone is * freed. * * Threads can wait for the zone to enter a requested state by using * zone_status_wait() or zone_status_timedwait() with the desired * state passed in as an argument. Zone state transitions are * uni-directional; it is not possible to move back to an earlier state. * * * Zone-Specific Data: * * Subsystems needing to maintain zone-specific data can store that * data using the ZSD mechanism. This provides a zone-specific data * store, similar to thread-specific data (see pthread_getspecific(3C) * or the TSD code in uts/common/disp/thread.c. Also, ZSD can be used * to register callbacks to be invoked when a zone is created, shut * down, or destroyed. This can be used to initialize zone-specific * data for new zones and to clean up when zones go away. * * * Data Structures: * * The per-zone structure (zone_t) is reference counted, and freed * when all references are released. zone_hold and zone_rele can be * used to adjust the reference count. In addition, reference counts * associated with the cred_t structure are tracked separately using * zone_cred_hold and zone_cred_rele. * * Pointers to active zone_t's are stored in two hash tables; one * for searching by id, the other for searching by name. Lookups * can be performed on either basis, using zone_find_by_id and * zone_find_by_name. Both return zone_t pointers with the zone * held, so zone_rele should be called when the pointer is no longer * needed. Zones can also be searched by path; zone_find_by_path * returns the zone with which a path name is associated (global * zone if the path is not within some other zone's file system * hierarchy). This currently requires iterating through each zone, * so it is slower than an id or name search via a hash table. * * * Locking: * * zonehash_lock: This is a top-level global lock used to protect the * zone hash tables and lists. Zones cannot be created or destroyed * while this lock is held. * zone_status_lock: This is a global lock protecting zone state. * Zones cannot change state while this lock is held. It also * protects the list of kernel threads associated with a zone. * zone_lock: This is a per-zone lock used to protect several fields of * the zone_t (see for details). In addition, holding * this lock means that the zone cannot go away. * zone_nlwps_lock: This is a per-zone lock used to protect the fields * related to the zone.max-lwps rctl. * zone_mem_lock: This is a per-zone lock used to protect the fields * related to the zone.max-locked-memory and zone.max-swap rctls. * zone_rctl_lock: This is a per-zone lock used to protect other rctls, * currently just max_lofi * zsd_key_lock: This is a global lock protecting the key state for ZSD. * zone_deathrow_lock: This is a global lock protecting the "deathrow" * list (a list of zones in the ZONE_IS_DEAD state). * * Ordering requirements: * pool_lock --> cpu_lock --> zonehash_lock --> zone_status_lock --> * zone_lock --> zsd_key_lock --> pidlock --> p_lock * * When taking zone_mem_lock or zone_nlwps_lock, the lock ordering is: * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_mem_lock * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_nlwps_lock * * Blocking memory allocations are permitted while holding any of the * zone locks. * * * System Call Interface: * * The zone subsystem can be managed and queried from user level with * the following system calls (all subcodes of the primary "zone" * system call): * - zone_create: creates a zone with selected attributes (name, * root path, privileges, resource controls, ZFS datasets) * - zone_enter: allows the current process to enter a zone * - zone_getattr: reports attributes of a zone * - zone_setattr: set attributes of a zone * - zone_boot: set 'init' running for the zone * - zone_list: lists all zones active in the system * - zone_lookup: looks up zone id based on name * - zone_shutdown: initiates shutdown process (see states above) * - zone_destroy: completes shutdown process (see states above) * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * This constant specifies the number of seconds that threads waiting for * subsystems to release a zone's general-purpose references will wait before * they log the zone's reference counts. The constant's value shouldn't * be so small that reference counts are unnecessarily reported for zones * whose references are slowly released. On the other hand, it shouldn't be so * large that users reboot their systems out of frustration over hung zones * before the system logs the zones' reference counts. */ #define ZONE_DESTROY_TIMEOUT_SECS 60 /* List of data link IDs which are accessible from the zone */ typedef struct zone_dl { datalink_id_t zdl_id; nvlist_t *zdl_net; list_node_t zdl_linkage; } zone_dl_t; /* * cv used to signal that all references to the zone have been released. This * needs to be global since there may be multiple waiters, and the first to * wake up will free the zone_t, hence we cannot use zone->zone_cv. */ static kcondvar_t zone_destroy_cv; /* * Lock used to serialize access to zone_cv. This could have been per-zone, * but then we'd need another lock for zone_destroy_cv, and why bother? */ static kmutex_t zone_status_lock; /* * ZSD-related global variables. */ static kmutex_t zsd_key_lock; /* protects the following two */ /* * The next caller of zone_key_create() will be assigned a key of ++zsd_keyval. */ static zone_key_t zsd_keyval = 0; /* * Global list of registered keys. We use this when a new zone is created. */ static list_t zsd_registered_keys; int zone_hash_size = 256; static mod_hash_t *zonehashbyname, *zonehashbyid, *zonehashbylabel; static kmutex_t zonehash_lock; static uint_t zonecount; static id_space_t *zoneid_space; /* * The global zone (aka zone0) is the all-seeing, all-knowing zone in which the * kernel proper runs, and which manages all other zones. * * Although not declared as static, the variable "zone0" should not be used * except for by code that needs to reference the global zone early on in boot, * before it is fully initialized. All other consumers should use * 'global_zone'. */ zone_t zone0; zone_t *global_zone = NULL; /* Set when the global zone is initialized */ /* * List of active zones, protected by zonehash_lock. */ static list_t zone_active; /* * List of destroyed zones that still have outstanding cred references. * Used for debugging. Uses a separate lock to avoid lock ordering * problems in zone_free. */ static list_t zone_deathrow; static kmutex_t zone_deathrow_lock; /* number of zones is limited by virtual interface limit in IP */ uint_t maxzones = 8192; /* Event channel to sent zone state change notifications */ evchan_t *zone_event_chan; /* * This table holds the mapping from kernel zone states to * states visible in the state notification API. * The idea is that we only expose "obvious" states and * do not expose states which are just implementation details. */ const char *zone_status_table[] = { ZONE_EVENT_UNINITIALIZED, /* uninitialized */ ZONE_EVENT_INITIALIZED, /* initialized */ ZONE_EVENT_READY, /* ready */ ZONE_EVENT_READY, /* booting */ ZONE_EVENT_RUNNING, /* running */ ZONE_EVENT_SHUTTING_DOWN, /* shutting_down */ ZONE_EVENT_SHUTTING_DOWN, /* empty */ ZONE_EVENT_SHUTTING_DOWN, /* down */ ZONE_EVENT_SHUTTING_DOWN, /* dying */ ZONE_EVENT_UNINITIALIZED, /* dead */ }; /* * This array contains the names of the subsystems listed in zone_ref_subsys_t * (see sys/zone.h). */ static char *zone_ref_subsys_names[] = { "NFS", /* ZONE_REF_NFS */ "NFSv4", /* ZONE_REF_NFSV4 */ "SMBFS", /* ZONE_REF_SMBFS */ "MNTFS", /* ZONE_REF_MNTFS */ "LOFI", /* ZONE_REF_LOFI */ "VFS", /* ZONE_REF_VFS */ "IPC" /* ZONE_REF_IPC */ }; /* * This isn't static so lint doesn't complain. */ rctl_hndl_t rc_zone_cpu_shares; rctl_hndl_t rc_zone_locked_mem; rctl_hndl_t rc_zone_max_swap; rctl_hndl_t rc_zone_max_lofi; rctl_hndl_t rc_zone_cpu_cap; rctl_hndl_t rc_zone_nlwps; rctl_hndl_t rc_zone_nprocs; rctl_hndl_t rc_zone_shmmax; rctl_hndl_t rc_zone_shmmni; rctl_hndl_t rc_zone_semmni; rctl_hndl_t rc_zone_msgmni; /* * Synchronization primitives used to synchronize between mounts and zone * creation/destruction. */ static int mounts_in_progress; static kcondvar_t mount_cv; static kmutex_t mount_lock; const char * const zone_default_initname = "/sbin/init"; static char * const zone_prefix = "/zone/"; static int zone_shutdown(zoneid_t zoneid); static int zone_add_datalink(zoneid_t, datalink_id_t); static int zone_remove_datalink(zoneid_t, datalink_id_t); static int zone_list_datalink(zoneid_t, int *, datalink_id_t *); static int zone_set_network(zoneid_t, zone_net_data_t *); static int zone_get_network(zoneid_t, zone_net_data_t *); typedef boolean_t zsd_applyfn_t(kmutex_t *, boolean_t, zone_t *, zone_key_t); static void zsd_apply_all_zones(zsd_applyfn_t *, zone_key_t); static void zsd_apply_all_keys(zsd_applyfn_t *, zone_t *); static boolean_t zsd_apply_create(kmutex_t *, boolean_t, zone_t *, zone_key_t); static boolean_t zsd_apply_shutdown(kmutex_t *, boolean_t, zone_t *, zone_key_t); static boolean_t zsd_apply_destroy(kmutex_t *, boolean_t, zone_t *, zone_key_t); static boolean_t zsd_wait_for_creator(zone_t *, struct zsd_entry *, kmutex_t *); static boolean_t zsd_wait_for_inprogress(zone_t *, struct zsd_entry *, kmutex_t *); /* * Bump this number when you alter the zone syscall interfaces; this is * because we need to have support for previous API versions in libc * to support patching; libc calls into the kernel to determine this number. * * Version 1 of the API is the version originally shipped with Solaris 10 * Version 2 alters the zone_create system call in order to support more * arguments by moving the args into a structure; and to do better * error reporting when zone_create() fails. * Version 3 alters the zone_create system call in order to support the * import of ZFS datasets to zones. * Version 4 alters the zone_create system call in order to support * Trusted Extensions. * Version 5 alters the zone_boot system call, and converts its old * bootargs parameter to be set by the zone_setattr API instead. * Version 6 adds the flag argument to zone_create. */ static const int ZONE_SYSCALL_API_VERSION = 6; /* * Certain filesystems (such as NFS and autofs) need to know which zone * the mount is being placed in. Because of this, we need to be able to * ensure that a zone isn't in the process of being created such that * nfs_mount() thinks it is in the global zone, while by the time it * gets added the list of mounted zones, it ends up on zoneA's mount * list. * * The following functions: block_mounts()/resume_mounts() and * mount_in_progress()/mount_completed() are used by zones and the VFS * layer (respectively) to synchronize zone creation and new mounts. * * The semantics are like a reader-reader lock such that there may * either be multiple mounts (or zone creations, if that weren't * serialized by zonehash_lock) in progress at the same time, but not * both. * * We use cv's so the user can ctrl-C out of the operation if it's * taking too long. * * The semantics are such that there is unfair bias towards the * "current" operation. This means that zone creations may starve if * there is a rapid succession of new mounts coming in to the system, or * there is a remote possibility that zones will be created at such a * rate that new mounts will not be able to proceed. */ /* * Prevent new mounts from progressing to the point of calling * VFS_MOUNT(). If there are already mounts in this "region", wait for * them to complete. */ static int block_mounts(void) { int retval = 0; /* * Since it may block for a long time, block_mounts() shouldn't be * called with zonehash_lock held. */ ASSERT(MUTEX_NOT_HELD(&zonehash_lock)); mutex_enter(&mount_lock); while (mounts_in_progress > 0) { if (cv_wait_sig(&mount_cv, &mount_lock) == 0) goto signaled; } /* * A negative value of mounts_in_progress indicates that mounts * have been blocked by (-mounts_in_progress) different callers. */ mounts_in_progress--; retval = 1; signaled: mutex_exit(&mount_lock); return (retval); } /* * The VFS layer may progress with new mounts as far as we're concerned. * Allow them to progress if we were the last obstacle. */ static void resume_mounts(void) { mutex_enter(&mount_lock); if (++mounts_in_progress == 0) cv_broadcast(&mount_cv); mutex_exit(&mount_lock); } /* * The VFS layer is busy with a mount; zones should wait until all * mounts are completed to progress. */ void mount_in_progress(void) { mutex_enter(&mount_lock); while (mounts_in_progress < 0) cv_wait(&mount_cv, &mount_lock); mounts_in_progress++; mutex_exit(&mount_lock); } /* * VFS is done with one mount; wake up any waiting block_mounts() * callers if this is the last mount. */ void mount_completed(void) { mutex_enter(&mount_lock); if (--mounts_in_progress == 0) cv_broadcast(&mount_cv); mutex_exit(&mount_lock); } /* * ZSD routines. * * Zone Specific Data (ZSD) is modeled after Thread Specific Data as * defined by the pthread_key_create() and related interfaces. * * Kernel subsystems may register one or more data items and/or * callbacks to be executed when a zone is created, shutdown, or * destroyed. * * Unlike the thread counterpart, destructor callbacks will be executed * even if the data pointer is NULL and/or there are no constructor * callbacks, so it is the responsibility of such callbacks to check for * NULL data values if necessary. * * The locking strategy and overall picture is as follows: * * When someone calls zone_key_create(), a template ZSD entry is added to the * global list "zsd_registered_keys", protected by zsd_key_lock. While * holding that lock all the existing zones are marked as * ZSD_CREATE_NEEDED and a copy of the ZSD entry added to the per-zone * zone_zsd list (protected by zone_lock). The global list is updated first * (under zone_key_lock) to make sure that newly created zones use the * most recent list of keys. Then under zonehash_lock we walk the zones * and mark them. Similar locking is used in zone_key_delete(). * * The actual create, shutdown, and destroy callbacks are done without * holding any lock. And zsd_flags are used to ensure that the operations * completed so that when zone_key_create (and zone_create) is done, as well as * zone_key_delete (and zone_destroy) is done, all the necessary callbacks * are completed. * * When new zones are created constructor callbacks for all registered ZSD * entries will be called. That also uses the above two phases of marking * what needs to be done, and then running the callbacks without holding * any locks. * * The framework does not provide any locking around zone_getspecific() and * zone_setspecific() apart from that needed for internal consistency, so * callers interested in atomic "test-and-set" semantics will need to provide * their own locking. */ /* * Helper function to find the zsd_entry associated with the key in the * given list. */ static struct zsd_entry * zsd_find(list_t *l, zone_key_t key) { struct zsd_entry *zsd; for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) { if (zsd->zsd_key == key) { return (zsd); } } return (NULL); } /* * Helper function to find the zsd_entry associated with the key in the * given list. Move it to the front of the list. */ static struct zsd_entry * zsd_find_mru(list_t *l, zone_key_t key) { struct zsd_entry *zsd; for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) { if (zsd->zsd_key == key) { /* * Move to head of list to keep list in MRU order. */ if (zsd != list_head(l)) { list_remove(l, zsd); list_insert_head(l, zsd); } return (zsd); } } return (NULL); } void zone_key_create(zone_key_t *keyp, void *(*create)(zoneid_t), void (*shutdown)(zoneid_t, void *), void (*destroy)(zoneid_t, void *)) { struct zsd_entry *zsdp; struct zsd_entry *t; struct zone *zone; zone_key_t key; zsdp = kmem_zalloc(sizeof (*zsdp), KM_SLEEP); zsdp->zsd_data = NULL; zsdp->zsd_create = create; zsdp->zsd_shutdown = shutdown; zsdp->zsd_destroy = destroy; /* * Insert in global list of callbacks. Makes future zone creations * see it. */ mutex_enter(&zsd_key_lock); key = zsdp->zsd_key = ++zsd_keyval; ASSERT(zsd_keyval != 0); list_insert_tail(&zsd_registered_keys, zsdp); mutex_exit(&zsd_key_lock); /* * Insert for all existing zones and mark them as needing * a create callback. */ mutex_enter(&zonehash_lock); /* stop the world */ for (zone = list_head(&zone_active); zone != NULL; zone = list_next(&zone_active, zone)) { zone_status_t status; mutex_enter(&zone->zone_lock); /* Skip zones that are on the way down or not yet up */ status = zone_status_get(zone); if (status >= ZONE_IS_DOWN || status == ZONE_IS_UNINITIALIZED) { mutex_exit(&zone->zone_lock); continue; } t = zsd_find_mru(&zone->zone_zsd, key); if (t != NULL) { /* * A zsd_configure already inserted it after * we dropped zsd_key_lock above. */ mutex_exit(&zone->zone_lock); continue; } t = kmem_zalloc(sizeof (*t), KM_SLEEP); t->zsd_key = key; t->zsd_create = create; t->zsd_shutdown = shutdown; t->zsd_destroy = destroy; if (create != NULL) { t->zsd_flags = ZSD_CREATE_NEEDED; DTRACE_PROBE2(zsd__create__needed, zone_t *, zone, zone_key_t, key); } list_insert_tail(&zone->zone_zsd, t); mutex_exit(&zone->zone_lock); } mutex_exit(&zonehash_lock); if (create != NULL) { /* Now call the create callback for this key */ zsd_apply_all_zones(zsd_apply_create, key); } /* * It is safe for consumers to use the key now, make it * globally visible. Specifically zone_getspecific() will * always successfully return the zone specific data associated * with the key. */ *keyp = key; } /* * Function called when a module is being unloaded, or otherwise wishes * to unregister its ZSD key and callbacks. * * Remove from the global list and determine the functions that need to * be called under a global lock. Then call the functions without * holding any locks. Finally free up the zone_zsd entries. (The apply * functions need to access the zone_zsd entries to find zsd_data etc.) */ int zone_key_delete(zone_key_t key) { struct zsd_entry *zsdp = NULL; zone_t *zone; mutex_enter(&zsd_key_lock); zsdp = zsd_find_mru(&zsd_registered_keys, key); if (zsdp == NULL) { mutex_exit(&zsd_key_lock); return (-1); } list_remove(&zsd_registered_keys, zsdp); mutex_exit(&zsd_key_lock); mutex_enter(&zonehash_lock); for (zone = list_head(&zone_active); zone != NULL; zone = list_next(&zone_active, zone)) { struct zsd_entry *del; mutex_enter(&zone->zone_lock); del = zsd_find_mru(&zone->zone_zsd, key); if (del == NULL) { /* * Somebody else got here first e.g the zone going * away. */ mutex_exit(&zone->zone_lock); continue; } ASSERT(del->zsd_shutdown == zsdp->zsd_shutdown); ASSERT(del->zsd_destroy == zsdp->zsd_destroy); if (del->zsd_shutdown != NULL && (del->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) { del->zsd_flags |= ZSD_SHUTDOWN_NEEDED; DTRACE_PROBE2(zsd__shutdown__needed, zone_t *, zone, zone_key_t, key); } if (del->zsd_destroy != NULL && (del->zsd_flags & ZSD_DESTROY_ALL) == 0) { del->zsd_flags |= ZSD_DESTROY_NEEDED; DTRACE_PROBE2(zsd__destroy__needed, zone_t *, zone, zone_key_t, key); } mutex_exit(&zone->zone_lock); } mutex_exit(&zonehash_lock); kmem_free(zsdp, sizeof (*zsdp)); /* Now call the shutdown and destroy callback for this key */ zsd_apply_all_zones(zsd_apply_shutdown, key); zsd_apply_all_zones(zsd_apply_destroy, key); /* Now we can free up the zsdp structures in each zone */ mutex_enter(&zonehash_lock); for (zone = list_head(&zone_active); zone != NULL; zone = list_next(&zone_active, zone)) { struct zsd_entry *del; mutex_enter(&zone->zone_lock); del = zsd_find(&zone->zone_zsd, key); if (del != NULL) { list_remove(&zone->zone_zsd, del); ASSERT(!(del->zsd_flags & ZSD_ALL_INPROGRESS)); kmem_free(del, sizeof (*del)); } mutex_exit(&zone->zone_lock); } mutex_exit(&zonehash_lock); return (0); } /* * ZSD counterpart of pthread_setspecific(). * * Since all zsd callbacks, including those with no create function, * have an entry in zone_zsd, if the key is registered it is part of * the zone_zsd list. * Return an error if the key wasn't registerd. */ int zone_setspecific(zone_key_t key, zone_t *zone, const void *data) { struct zsd_entry *t; mutex_enter(&zone->zone_lock); t = zsd_find_mru(&zone->zone_zsd, key); if (t != NULL) { /* * Replace old value with new */ t->zsd_data = (void *)data; mutex_exit(&zone->zone_lock); return (0); } mutex_exit(&zone->zone_lock); return (-1); } /* * ZSD counterpart of pthread_getspecific(). */ void * zone_getspecific(zone_key_t key, zone_t *zone) { struct zsd_entry *t; void *data; mutex_enter(&zone->zone_lock); t = zsd_find_mru(&zone->zone_zsd, key); data = (t == NULL ? NULL : t->zsd_data); mutex_exit(&zone->zone_lock); return (data); } /* * Function used to initialize a zone's list of ZSD callbacks and data * when the zone is being created. The callbacks are initialized from * the template list (zsd_registered_keys). The constructor callback is * executed later (once the zone exists and with locks dropped). */ static void zone_zsd_configure(zone_t *zone) { struct zsd_entry *zsdp; struct zsd_entry *t; ASSERT(MUTEX_HELD(&zonehash_lock)); ASSERT(list_head(&zone->zone_zsd) == NULL); mutex_enter(&zone->zone_lock); mutex_enter(&zsd_key_lock); for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL; zsdp = list_next(&zsd_registered_keys, zsdp)) { /* * Since this zone is ZONE_IS_UNCONFIGURED, zone_key_create * should not have added anything to it. */ ASSERT(zsd_find(&zone->zone_zsd, zsdp->zsd_key) == NULL); t = kmem_zalloc(sizeof (*t), KM_SLEEP); t->zsd_key = zsdp->zsd_key; t->zsd_create = zsdp->zsd_create; t->zsd_shutdown = zsdp->zsd_shutdown; t->zsd_destroy = zsdp->zsd_destroy; if (zsdp->zsd_create != NULL) { t->zsd_flags = ZSD_CREATE_NEEDED; DTRACE_PROBE2(zsd__create__needed, zone_t *, zone, zone_key_t, zsdp->zsd_key); } list_insert_tail(&zone->zone_zsd, t); } mutex_exit(&zsd_key_lock); mutex_exit(&zone->zone_lock); } enum zsd_callback_type { ZSD_CREATE, ZSD_SHUTDOWN, ZSD_DESTROY }; /* * Helper function to execute shutdown or destructor callbacks. */ static void zone_zsd_callbacks(zone_t *zone, enum zsd_callback_type ct) { struct zsd_entry *t; ASSERT(ct == ZSD_SHUTDOWN || ct == ZSD_DESTROY); ASSERT(ct != ZSD_SHUTDOWN || zone_status_get(zone) >= ZONE_IS_EMPTY); ASSERT(ct != ZSD_DESTROY || zone_status_get(zone) >= ZONE_IS_DOWN); /* * Run the callback solely based on what is registered for the zone * in zone_zsd. The global list can change independently of this * as keys are registered and unregistered and we don't register new * callbacks for a zone that is in the process of going away. */ mutex_enter(&zone->zone_lock); for (t = list_head(&zone->zone_zsd); t != NULL; t = list_next(&zone->zone_zsd, t)) { zone_key_t key = t->zsd_key; /* Skip if no callbacks registered */ if (ct == ZSD_SHUTDOWN) { if (t->zsd_shutdown != NULL && (t->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) { t->zsd_flags |= ZSD_SHUTDOWN_NEEDED; DTRACE_PROBE2(zsd__shutdown__needed, zone_t *, zone, zone_key_t, key); } } else { if (t->zsd_destroy != NULL && (t->zsd_flags & ZSD_DESTROY_ALL) == 0) { t->zsd_flags |= ZSD_DESTROY_NEEDED; DTRACE_PROBE2(zsd__destroy__needed, zone_t *, zone, zone_key_t, key); } } } mutex_exit(&zone->zone_lock); /* Now call the shutdown and destroy callback for this key */ zsd_apply_all_keys(zsd_apply_shutdown, zone); zsd_apply_all_keys(zsd_apply_destroy, zone); } /* * Called when the zone is going away; free ZSD-related memory, and * destroy the zone_zsd list. */ static void zone_free_zsd(zone_t *zone) { struct zsd_entry *t, *next; /* * Free all the zsd_entry's we had on this zone. */ mutex_enter(&zone->zone_lock); for (t = list_head(&zone->zone_zsd); t != NULL; t = next) { next = list_next(&zone->zone_zsd, t); list_remove(&zone->zone_zsd, t); ASSERT(!(t->zsd_flags & ZSD_ALL_INPROGRESS)); kmem_free(t, sizeof (*t)); } list_destroy(&zone->zone_zsd); mutex_exit(&zone->zone_lock); } /* * Apply a function to all zones for particular key value. * * The applyfn has to drop zonehash_lock if it does some work, and * then reacquire it before it returns. * When the lock is dropped we don't follow list_next even * if it is possible to do so without any hazards. This is * because we want the design to allow for the list of zones * to change in any arbitrary way during the time the * lock was dropped. * * It is safe to restart the loop at list_head since the applyfn * changes the zsd_flags as it does work, so a subsequent * pass through will have no effect in applyfn, hence the loop will terminate * in at worst O(N^2). */ static void zsd_apply_all_zones(zsd_applyfn_t *applyfn, zone_key_t key) { zone_t *zone; mutex_enter(&zonehash_lock); zone = list_head(&zone_active); while (zone != NULL) { if ((applyfn)(&zonehash_lock, B_FALSE, zone, key)) { /* Lock dropped - restart at head */ zone = list_head(&zone_active); } else { zone = list_next(&zone_active, zone); } } mutex_exit(&zonehash_lock); } /* * Apply a function to all keys for a particular zone. * * The applyfn has to drop zonehash_lock if it does some work, and * then reacquire it before it returns. * When the lock is dropped we don't follow list_next even * if it is possible to do so without any hazards. This is * because we want the design to allow for the list of zsd callbacks * to change in any arbitrary way during the time the * lock was dropped. * * It is safe to restart the loop at list_head since the applyfn * changes the zsd_flags as it does work, so a subsequent * pass through will have no effect in applyfn, hence the loop will terminate * in at worst O(N^2). */ static void zsd_apply_all_keys(zsd_applyfn_t *applyfn, zone_t *zone) { struct zsd_entry *t; mutex_enter(&zone->zone_lock); t = list_head(&zone->zone_zsd); while (t != NULL) { if ((applyfn)(NULL, B_TRUE, zone, t->zsd_key)) { /* Lock dropped - restart at head */ t = list_head(&zone->zone_zsd); } else { t = list_next(&zone->zone_zsd, t); } } mutex_exit(&zone->zone_lock); } /* * Call the create function for the zone and key if CREATE_NEEDED * is set. * If some other thread gets here first and sets CREATE_INPROGRESS, then * we wait for that thread to complete so that we can ensure that * all the callbacks are done when we've looped over all zones/keys. * * When we call the create function, we drop the global held by the * caller, and return true to tell the caller it needs to re-evalute the * state. * If the caller holds zone_lock then zone_lock_held is set, and zone_lock * remains held on exit. */ static boolean_t zsd_apply_create(kmutex_t *lockp, boolean_t zone_lock_held, zone_t *zone, zone_key_t key) { void *result; struct zsd_entry *t; boolean_t dropped; if (lockp != NULL) { ASSERT(MUTEX_HELD(lockp)); } if (zone_lock_held) { ASSERT(MUTEX_HELD(&zone->zone_lock)); } else { mutex_enter(&zone->zone_lock); } t = zsd_find(&zone->zone_zsd, key); if (t == NULL) { /* * Somebody else got here first e.g the zone going * away. */ if (!zone_lock_held) mutex_exit(&zone->zone_lock); return (B_FALSE); } dropped = B_FALSE; if (zsd_wait_for_inprogress(zone, t, lockp)) dropped = B_TRUE; if (t->zsd_flags & ZSD_CREATE_NEEDED) { t->zsd_flags &= ~ZSD_CREATE_NEEDED; t->zsd_flags |= ZSD_CREATE_INPROGRESS; DTRACE_PROBE2(zsd__create__inprogress, zone_t *, zone, zone_key_t, key); mutex_exit(&zone->zone_lock); if (lockp != NULL) mutex_exit(lockp); dropped = B_TRUE; ASSERT(t->zsd_create != NULL); DTRACE_PROBE2(zsd__create__start, zone_t *, zone, zone_key_t, key); result = (*t->zsd_create)(zone->zone_id); DTRACE_PROBE2(zsd__create__end, zone_t *, zone, voidn *, result); ASSERT(result != NULL); if (lockp != NULL) mutex_enter(lockp); mutex_enter(&zone->zone_lock); t->zsd_data = result; t->zsd_flags &= ~ZSD_CREATE_INPROGRESS; t->zsd_flags |= ZSD_CREATE_COMPLETED; cv_broadcast(&t->zsd_cv); DTRACE_PROBE2(zsd__create__completed, zone_t *, zone, zone_key_t, key); } if (!zone_lock_held) mutex_exit(&zone->zone_lock); return (dropped); } /* * Call the shutdown function for the zone and key if SHUTDOWN_NEEDED * is set. * If some other thread gets here first and sets *_INPROGRESS, then * we wait for that thread to complete so that we can ensure that * all the callbacks are done when we've looped over all zones/keys. * * When we call the shutdown function, we drop the global held by the * caller, and return true to tell the caller it needs to re-evalute the * state. * If the caller holds zone_lock then zone_lock_held is set, and zone_lock * remains held on exit. */ static boolean_t zsd_apply_shutdown(kmutex_t *lockp, boolean_t zone_lock_held, zone_t *zone, zone_key_t key) { struct zsd_entry *t; void *data; boolean_t dropped; if (lockp != NULL) { ASSERT(MUTEX_HELD(lockp)); } if (zone_lock_held) { ASSERT(MUTEX_HELD(&zone->zone_lock)); } else { mutex_enter(&zone->zone_lock); } t = zsd_find(&zone->zone_zsd, key); if (t == NULL) { /* * Somebody else got here first e.g the zone going * away. */ if (!zone_lock_held) mutex_exit(&zone->zone_lock); return (B_FALSE); } dropped = B_FALSE; if (zsd_wait_for_creator(zone, t, lockp)) dropped = B_TRUE; if (zsd_wait_for_inprogress(zone, t, lockp)) dropped = B_TRUE; if (t->zsd_flags & ZSD_SHUTDOWN_NEEDED) { t->zsd_flags &= ~ZSD_SHUTDOWN_NEEDED; t->zsd_flags |= ZSD_SHUTDOWN_INPROGRESS; DTRACE_PROBE2(zsd__shutdown__inprogress, zone_t *, zone, zone_key_t, key); mutex_exit(&zone->zone_lock); if (lockp != NULL) mutex_exit(lockp); dropped = B_TRUE; ASSERT(t->zsd_shutdown != NULL); data = t->zsd_data; DTRACE_PROBE2(zsd__shutdown__start, zone_t *, zone, zone_key_t, key); (t->zsd_shutdown)(zone->zone_id, data); DTRACE_PROBE2(zsd__shutdown__end, zone_t *, zone, zone_key_t, key); if (lockp != NULL) mutex_enter(lockp); mutex_enter(&zone->zone_lock); t->zsd_flags &= ~ZSD_SHUTDOWN_INPROGRESS; t->zsd_flags |= ZSD_SHUTDOWN_COMPLETED; cv_broadcast(&t->zsd_cv); DTRACE_PROBE2(zsd__shutdown__completed, zone_t *, zone, zone_key_t, key); } if (!zone_lock_held) mutex_exit(&zone->zone_lock); return (dropped); } /* * Call the destroy function for the zone and key if DESTROY_NEEDED * is set. * If some other thread gets here first and sets *_INPROGRESS, then * we wait for that thread to complete so that we can ensure that * all the callbacks are done when we've looped over all zones/keys. * * When we call the destroy function, we drop the global held by the * caller, and return true to tell the caller it needs to re-evalute the * state. * If the caller holds zone_lock then zone_lock_held is set, and zone_lock * remains held on exit. */ static boolean_t zsd_apply_destroy(kmutex_t *lockp, boolean_t zone_lock_held, zone_t *zone, zone_key_t key) { struct zsd_entry *t; void *data; boolean_t dropped; if (lockp != NULL) { ASSERT(MUTEX_HELD(lockp)); } if (zone_lock_held) { ASSERT(MUTEX_HELD(&zone->zone_lock)); } else { mutex_enter(&zone->zone_lock); } t = zsd_find(&zone->zone_zsd, key); if (t == NULL) { /* * Somebody else got here first e.g the zone going * away. */ if (!zone_lock_held) mutex_exit(&zone->zone_lock); return (B_FALSE); } dropped = B_FALSE; if (zsd_wait_for_creator(zone, t, lockp)) dropped = B_TRUE; if (zsd_wait_for_inprogress(zone, t, lockp)) dropped = B_TRUE; if (t->zsd_flags & ZSD_DESTROY_NEEDED) { t->zsd_flags &= ~ZSD_DESTROY_NEEDED; t->zsd_flags |= ZSD_DESTROY_INPROGRESS; DTRACE_PROBE2(zsd__destroy__inprogress, zone_t *, zone, zone_key_t, key); mutex_exit(&zone->zone_lock); if (lockp != NULL) mutex_exit(lockp); dropped = B_TRUE; ASSERT(t->zsd_destroy != NULL); data = t->zsd_data; DTRACE_PROBE2(zsd__destroy__start, zone_t *, zone, zone_key_t, key); (t->zsd_destroy)(zone->zone_id, data); DTRACE_PROBE2(zsd__destroy__end, zone_t *, zone, zone_key_t, key); if (lockp != NULL) mutex_enter(lockp); mutex_enter(&zone->zone_lock); t->zsd_data = NULL; t->zsd_flags &= ~ZSD_DESTROY_INPROGRESS; t->zsd_flags |= ZSD_DESTROY_COMPLETED; cv_broadcast(&t->zsd_cv); DTRACE_PROBE2(zsd__destroy__completed, zone_t *, zone, zone_key_t, key); } if (!zone_lock_held) mutex_exit(&zone->zone_lock); return (dropped); } /* * Wait for any CREATE_NEEDED flag to be cleared. * Returns true if lockp was temporarily dropped while waiting. */ static boolean_t zsd_wait_for_creator(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp) { boolean_t dropped = B_FALSE; while (t->zsd_flags & ZSD_CREATE_NEEDED) { DTRACE_PROBE2(zsd__wait__for__creator, zone_t *, zone, struct zsd_entry *, t); if (lockp != NULL) { dropped = B_TRUE; mutex_exit(lockp); } cv_wait(&t->zsd_cv, &zone->zone_lock); if (lockp != NULL) { /* First drop zone_lock to preserve order */ mutex_exit(&zone->zone_lock); mutex_enter(lockp); mutex_enter(&zone->zone_lock); } } return (dropped); } /* * Wait for any INPROGRESS flag to be cleared. * Returns true if lockp was temporarily dropped while waiting. */ static boolean_t zsd_wait_for_inprogress(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp) { boolean_t dropped = B_FALSE; while (t->zsd_flags & ZSD_ALL_INPROGRESS) { DTRACE_PROBE2(zsd__wait__for__inprogress, zone_t *, zone, struct zsd_entry *, t); if (lockp != NULL) { dropped = B_TRUE; mutex_exit(lockp); } cv_wait(&t->zsd_cv, &zone->zone_lock); if (lockp != NULL) { /* First drop zone_lock to preserve order */ mutex_exit(&zone->zone_lock); mutex_enter(lockp); mutex_enter(&zone->zone_lock); } } return (dropped); } /* * Frees memory associated with the zone dataset list. */ static void zone_free_datasets(zone_t *zone) { zone_dataset_t *t, *next; for (t = list_head(&zone->zone_datasets); t != NULL; t = next) { next = list_next(&zone->zone_datasets, t); list_remove(&zone->zone_datasets, t); kmem_free(t->zd_dataset, strlen(t->zd_dataset) + 1); kmem_free(t, sizeof (*t)); } list_destroy(&zone->zone_datasets); } /* * zone.cpu-shares resource control support. */ /*ARGSUSED*/ static rctl_qty_t zone_cpu_shares_usage(rctl_t *rctl, struct proc *p) { ASSERT(MUTEX_HELD(&p->p_lock)); return (p->p_zone->zone_shares); } /*ARGSUSED*/ static int zone_cpu_shares_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv) { ASSERT(MUTEX_HELD(&p->p_lock)); ASSERT(e->rcep_t == RCENTITY_ZONE); if (e->rcep_p.zone == NULL) return (0); e->rcep_p.zone->zone_shares = nv; return (0); } static rctl_ops_t zone_cpu_shares_ops = { rcop_no_action, zone_cpu_shares_usage, zone_cpu_shares_set, rcop_no_test }; /* * zone.cpu-cap resource control support. */ /*ARGSUSED*/ static rctl_qty_t zone_cpu_cap_get(rctl_t *rctl, struct proc *p) { ASSERT(MUTEX_HELD(&p->p_lock)); return (cpucaps_zone_get(p->p_zone)); } /*ARGSUSED*/ static int zone_cpu_cap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv) { zone_t *zone = e->rcep_p.zone; ASSERT(MUTEX_HELD(&p->p_lock)); ASSERT(e->rcep_t == RCENTITY_ZONE); if (zone == NULL) return (0); /* * set cap to the new value. */ return (cpucaps_zone_set(zone, nv)); } static rctl_ops_t zone_cpu_cap_ops = { rcop_no_action, zone_cpu_cap_get, zone_cpu_cap_set, rcop_no_test }; /*ARGSUSED*/ static rctl_qty_t zone_lwps_usage(rctl_t *r, proc_t *p) { rctl_qty_t nlwps; zone_t *zone = p->p_zone; ASSERT(MUTEX_HELD(&p->p_lock)); mutex_enter(&zone->zone_nlwps_lock); nlwps = zone->zone_nlwps; mutex_exit(&zone->zone_nlwps_lock); return (nlwps); } /*ARGSUSED*/ static int zone_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) { rctl_qty_t nlwps; ASSERT(MUTEX_HELD(&p->p_lock)); ASSERT(e->rcep_t == RCENTITY_ZONE); if (e->rcep_p.zone == NULL) return (0); ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock))); nlwps = e->rcep_p.zone->zone_nlwps; if (nlwps + incr > rcntl->rcv_value) return (1); return (0); } /*ARGSUSED*/ static int zone_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv) { ASSERT(MUTEX_HELD(&p->p_lock)); ASSERT(e->rcep_t == RCENTITY_ZONE); if (e->rcep_p.zone == NULL) return (0); e->rcep_p.zone->zone_nlwps_ctl = nv; return (0); } static rctl_ops_t zone_lwps_ops = { rcop_no_action, zone_lwps_usage, zone_lwps_set, zone_lwps_test, }; /*ARGSUSED*/ static rctl_qty_t zone_procs_usage(rctl_t *r, proc_t *p) { rctl_qty_t nprocs; zone_t *zone = p->p_zone; ASSERT(MUTEX_HELD(&p->p_lock)); mutex_enter(&zone->zone_nlwps_lock); nprocs = zone->zone_nprocs; mutex_exit(&zone->zone_nlwps_lock); return (nprocs); } /*ARGSUSED*/ static int zone_procs_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) { rctl_qty_t nprocs; ASSERT(MUTEX_HELD(&p->p_lock)); ASSERT(e->rcep_t == RCENTITY_ZONE); if (e->rcep_p.zone == NULL) return (0); ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock))); nprocs = e->rcep_p.zone->zone_nprocs; if (nprocs + incr > rcntl->rcv_value) return (1); return (0); } /*ARGSUSED*/ static int zone_procs_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv) { ASSERT(MUTEX_HELD(&p->p_lock)); ASSERT(e->rcep_t == RCENTITY_ZONE); if (e->rcep_p.zone == NULL) return (0); e->rcep_p.zone->zone_nprocs_ctl = nv; return (0); } static rctl_ops_t zone_procs_ops = { rcop_no_action, zone_procs_usage, zone_procs_set, zone_procs_test, }; /*ARGSUSED*/ static int zone_shmmax_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, rctl_qty_t incr, uint_t flags) { rctl_qty_t v; ASSERT(MUTEX_HELD(&p->p_lock)); ASSERT(e->rcep_t == RCENTITY_ZONE); v = e->rcep_p.zone->zone_shmmax + incr; if (v > rval->rcv_value) return (1); return (0); } static rctl_ops_t zone_shmmax_ops = { rcop_no_action, rcop_no_usage, rcop_no_set, zone_shmmax_test }; /*ARGSUSED*/ static int zone_shmmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, rctl_qty_t incr, uint_t flags) { rctl_qty_t v; ASSERT(MUTEX_HELD(&p->p_lock)); ASSERT(e->rcep_t == RCENTITY_ZONE); v = e->rcep_p.zone->zone_ipc.ipcq_shmmni + incr; if (v > rval->rcv_value) return (1); return (0); } static rctl_ops_t zone_shmmni_ops = { rcop_no_action, rcop_no_usage, rcop_no_set, zone_shmmni_test }; /*ARGSUSED*/ static int zone_semmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, rctl_qty_t incr, uint_t flags) { rctl_qty_t v; ASSERT(MUTEX_HELD(&p->p_lock)); ASSERT(e->rcep_t == RCENTITY_ZONE); v = e->rcep_p.zone->zone_ipc.ipcq_semmni + incr; if (v > rval->rcv_value) return (1); return (0); } static rctl_ops_t zone_semmni_ops = { rcop_no_action, rcop_no_usage, rcop_no_set, zone_semmni_test }; /*ARGSUSED*/ static int zone_msgmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, rctl_qty_t incr, uint_t flags) { rctl_qty_t v; ASSERT(MUTEX_HELD(&p->p_lock)); ASSERT(e->rcep_t == RCENTITY_ZONE); v = e->rcep_p.zone->zone_ipc.ipcq_msgmni + incr; if (v > rval->rcv_value) return (1); return (0); } static rctl_ops_t zone_msgmni_ops = { rcop_no_action, rcop_no_usage, rcop_no_set, zone_msgmni_test }; /*ARGSUSED*/ static rctl_qty_t zone_locked_mem_usage(rctl_t *rctl, struct proc *p) { rctl_qty_t q; ASSERT(MUTEX_HELD(&p->p_lock)); mutex_enter(&p->p_zone->zone_mem_lock); q = p->p_zone->zone_locked_mem; mutex_exit(&p->p_zone->zone_mem_lock); return (q); } /*ARGSUSED*/ static int zone_locked_mem_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) { rctl_qty_t q; zone_t *z; z = e->rcep_p.zone; ASSERT(MUTEX_HELD(&p->p_lock)); ASSERT(MUTEX_HELD(&z->zone_mem_lock)); q = z->zone_locked_mem; if (q + incr > rcntl->rcv_value) return (1); return (0); } /*ARGSUSED*/ static int zone_locked_mem_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv) { ASSERT(MUTEX_HELD(&p->p_lock)); ASSERT(e->rcep_t == RCENTITY_ZONE); if (e->rcep_p.zone == NULL) return (0); e->rcep_p.zone->zone_locked_mem_ctl = nv; return (0); } static rctl_ops_t zone_locked_mem_ops = { rcop_no_action, zone_locked_mem_usage, zone_locked_mem_set, zone_locked_mem_test }; /*ARGSUSED*/ static rctl_qty_t zone_max_swap_usage(rctl_t *rctl, struct proc *p) { rctl_qty_t q; zone_t *z = p->p_zone; ASSERT(MUTEX_HELD(&p->p_lock)); mutex_enter(&z->zone_mem_lock); q = z->zone_max_swap; mutex_exit(&z->zone_mem_lock); return (q); } /*ARGSUSED*/ static int zone_max_swap_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) { rctl_qty_t q; zone_t *z; z = e->rcep_p.zone; ASSERT(MUTEX_HELD(&p->p_lock)); ASSERT(MUTEX_HELD(&z->zone_mem_lock)); q = z->zone_max_swap; if (q + incr > rcntl->rcv_value) return (1); return (0); } /*ARGSUSED*/ static int zone_max_swap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv) { ASSERT(MUTEX_HELD(&p->p_lock)); ASSERT(e->rcep_t == RCENTITY_ZONE); if (e->rcep_p.zone == NULL) return (0); e->rcep_p.zone->zone_max_swap_ctl = nv; return (0); } static rctl_ops_t zone_max_swap_ops = { rcop_no_action, zone_max_swap_usage, zone_max_swap_set, zone_max_swap_test }; /*ARGSUSED*/ static rctl_qty_t zone_max_lofi_usage(rctl_t *rctl, struct proc *p) { rctl_qty_t q; zone_t *z = p->p_zone; ASSERT(MUTEX_HELD(&p->p_lock)); mutex_enter(&z->zone_rctl_lock); q = z->zone_max_lofi; mutex_exit(&z->zone_rctl_lock); return (q); } /*ARGSUSED*/ static int zone_max_lofi_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) { rctl_qty_t q; zone_t *z; z = e->rcep_p.zone; ASSERT(MUTEX_HELD(&p->p_lock)); ASSERT(MUTEX_HELD(&z->zone_rctl_lock)); q = z->zone_max_lofi; if (q + incr > rcntl->rcv_value) return (1); return (0); } /*ARGSUSED*/ static int zone_max_lofi_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv) { ASSERT(MUTEX_HELD(&p->p_lock)); ASSERT(e->rcep_t == RCENTITY_ZONE); if (e->rcep_p.zone == NULL) return (0); e->rcep_p.zone->zone_max_lofi_ctl = nv; return (0); } static rctl_ops_t zone_max_lofi_ops = { rcop_no_action, zone_max_lofi_usage, zone_max_lofi_set, zone_max_lofi_test }; /* * Helper function to brand the zone with a unique ID. */ static void zone_uniqid(zone_t *zone) { static uint64_t uniqid = 0; ASSERT(MUTEX_HELD(&zonehash_lock)); zone->zone_uniqid = uniqid++; } /* * Returns a held pointer to the "kcred" for the specified zone. */ struct cred * zone_get_kcred(zoneid_t zoneid) { zone_t *zone; cred_t *cr; if ((zone = zone_find_by_id(zoneid)) == NULL) return (NULL); cr = zone->zone_kcred; crhold(cr); zone_rele(zone); return (cr); } static int zone_lockedmem_kstat_update(kstat_t *ksp, int rw) { zone_t *zone = ksp->ks_private; zone_kstat_t *zk = ksp->ks_data; if (rw == KSTAT_WRITE) return (EACCES); zk->zk_usage.value.ui64 = zone->zone_locked_mem; zk->zk_value.value.ui64 = zone->zone_locked_mem_ctl; return (0); } static int zone_nprocs_kstat_update(kstat_t *ksp, int rw) { zone_t *zone = ksp->ks_private; zone_kstat_t *zk = ksp->ks_data; if (rw == KSTAT_WRITE) return (EACCES); zk->zk_usage.value.ui64 = zone->zone_nprocs; zk->zk_value.value.ui64 = zone->zone_nprocs_ctl; return (0); } static int zone_swapresv_kstat_update(kstat_t *ksp, int rw) { zone_t *zone = ksp->ks_private; zone_kstat_t *zk = ksp->ks_data; if (rw == KSTAT_WRITE) return (EACCES); zk->zk_usage.value.ui64 = zone->zone_max_swap; zk->zk_value.value.ui64 = zone->zone_max_swap_ctl; return (0); } static kstat_t * zone_kstat_create_common(zone_t *zone, char *name, int (*updatefunc) (kstat_t *, int)) { kstat_t *ksp; zone_kstat_t *zk; ksp = rctl_kstat_create_zone(zone, name, KSTAT_TYPE_NAMED, sizeof (zone_kstat_t) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); if (ksp == NULL) return (NULL); zk = ksp->ks_data = kmem_alloc(sizeof (zone_kstat_t), KM_SLEEP); ksp->ks_data_size += strlen(zone->zone_name) + 1; kstat_named_init(&zk->zk_zonename, "zonename", KSTAT_DATA_STRING); kstat_named_setstr(&zk->zk_zonename, zone->zone_name); kstat_named_init(&zk->zk_usage, "usage", KSTAT_DATA_UINT64); kstat_named_init(&zk->zk_value, "value", KSTAT_DATA_UINT64); ksp->ks_update = updatefunc; ksp->ks_private = zone; kstat_install(ksp); return (ksp); } static int zone_misc_kstat_update(kstat_t *ksp, int rw) { zone_t *zone = ksp->ks_private; zone_misc_kstat_t *zmp = ksp->ks_data; hrtime_t tmp; if (rw == KSTAT_WRITE) return (EACCES); tmp = zone->zone_utime; scalehrtime(&tmp); zmp->zm_utime.value.ui64 = tmp; tmp = zone->zone_stime; scalehrtime(&tmp); zmp->zm_stime.value.ui64 = tmp; tmp = zone->zone_wtime; scalehrtime(&tmp); zmp->zm_wtime.value.ui64 = tmp; zmp->zm_avenrun1.value.ui32 = zone->zone_avenrun[0]; zmp->zm_avenrun5.value.ui32 = zone->zone_avenrun[1]; zmp->zm_avenrun15.value.ui32 = zone->zone_avenrun[2]; return (0); } static kstat_t * zone_misc_kstat_create(zone_t *zone) { kstat_t *ksp; zone_misc_kstat_t *zmp; if ((ksp = kstat_create_zone("zones", zone->zone_id, zone->zone_name, "zone_misc", KSTAT_TYPE_NAMED, sizeof (zone_misc_kstat_t) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL, zone->zone_id)) == NULL) return (NULL); if (zone->zone_id != GLOBAL_ZONEID) kstat_zone_add(ksp, GLOBAL_ZONEID); zmp = ksp->ks_data = kmem_zalloc(sizeof (zone_misc_kstat_t), KM_SLEEP); ksp->ks_data_size += strlen(zone->zone_name) + 1; ksp->ks_lock = &zone->zone_misc_lock; zone->zone_misc_stats = zmp; /* The kstat "name" field is not large enough for a full zonename */ kstat_named_init(&zmp->zm_zonename, "zonename", KSTAT_DATA_STRING); kstat_named_setstr(&zmp->zm_zonename, zone->zone_name); kstat_named_init(&zmp->zm_utime, "nsec_user", KSTAT_DATA_UINT64); kstat_named_init(&zmp->zm_stime, "nsec_sys", KSTAT_DATA_UINT64); kstat_named_init(&zmp->zm_wtime, "nsec_waitrq", KSTAT_DATA_UINT64); kstat_named_init(&zmp->zm_avenrun1, "avenrun_1min", KSTAT_DATA_UINT32); kstat_named_init(&zmp->zm_avenrun5, "avenrun_5min", KSTAT_DATA_UINT32); kstat_named_init(&zmp->zm_avenrun15, "avenrun_15min", KSTAT_DATA_UINT32); ksp->ks_update = zone_misc_kstat_update; ksp->ks_private = zone; kstat_install(ksp); return (ksp); } static void zone_kstat_create(zone_t *zone) { zone->zone_lockedmem_kstat = zone_kstat_create_common(zone, "lockedmem", zone_lockedmem_kstat_update); zone->zone_swapresv_kstat = zone_kstat_create_common(zone, "swapresv", zone_swapresv_kstat_update); zone->zone_nprocs_kstat = zone_kstat_create_common(zone, "nprocs", zone_nprocs_kstat_update); if ((zone->zone_misc_ksp = zone_misc_kstat_create(zone)) == NULL) { zone->zone_misc_stats = kmem_zalloc( sizeof (zone_misc_kstat_t), KM_SLEEP); } } static void zone_kstat_delete_common(kstat_t **pkstat, size_t datasz) { void *data; if (*pkstat != NULL) { data = (*pkstat)->ks_data; kstat_delete(*pkstat); kmem_free(data, datasz); *pkstat = NULL; } } static void zone_kstat_delete(zone_t *zone) { zone_kstat_delete_common(&zone->zone_lockedmem_kstat, sizeof (zone_kstat_t)); zone_kstat_delete_common(&zone->zone_swapresv_kstat, sizeof (zone_kstat_t)); zone_kstat_delete_common(&zone->zone_nprocs_kstat, sizeof (zone_kstat_t)); zone_kstat_delete_common(&zone->zone_misc_ksp, sizeof (zone_misc_kstat_t)); } /* * Called very early on in boot to initialize the ZSD list so that * zone_key_create() can be called before zone_init(). It also initializes * portions of zone0 which may be used before zone_init() is called. The * variable "global_zone" will be set when zone0 is fully initialized by * zone_init(). */ void zone_zsd_init(void) { mutex_init(&zonehash_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&zsd_key_lock, NULL, MUTEX_DEFAULT, NULL); list_create(&zsd_registered_keys, sizeof (struct zsd_entry), offsetof(struct zsd_entry, zsd_linkage)); list_create(&zone_active, sizeof (zone_t), offsetof(zone_t, zone_linkage)); list_create(&zone_deathrow, sizeof (zone_t), offsetof(zone_t, zone_linkage)); mutex_init(&zone0.zone_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&zone0.zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&zone0.zone_mem_lock, NULL, MUTEX_DEFAULT, NULL); zone0.zone_shares = 1; zone0.zone_nlwps = 0; zone0.zone_nlwps_ctl = INT_MAX; zone0.zone_nprocs = 0; zone0.zone_nprocs_ctl = INT_MAX; zone0.zone_locked_mem = 0; zone0.zone_locked_mem_ctl = UINT64_MAX; ASSERT(zone0.zone_max_swap == 0); zone0.zone_max_swap_ctl = UINT64_MAX; zone0.zone_max_lofi = 0; zone0.zone_max_lofi_ctl = UINT64_MAX; zone0.zone_shmmax = 0; zone0.zone_ipc.ipcq_shmmni = 0; zone0.zone_ipc.ipcq_semmni = 0; zone0.zone_ipc.ipcq_msgmni = 0; zone0.zone_name = GLOBAL_ZONENAME; zone0.zone_nodename = utsname.nodename; zone0.zone_domain = srpc_domain; zone0.zone_hostid = HW_INVALID_HOSTID; zone0.zone_fs_allowed = NULL; zone0.zone_ref = 1; zone0.zone_id = GLOBAL_ZONEID; zone0.zone_status = ZONE_IS_RUNNING; zone0.zone_rootpath = "/"; zone0.zone_rootpathlen = 2; zone0.zone_psetid = ZONE_PS_INVAL; zone0.zone_ncpus = 0; zone0.zone_ncpus_online = 0; zone0.zone_proc_initpid = 1; zone0.zone_initname = initname; zone0.zone_lockedmem_kstat = NULL; zone0.zone_swapresv_kstat = NULL; zone0.zone_nprocs_kstat = NULL; zone0.zone_stime = 0; zone0.zone_utime = 0; zone0.zone_wtime = 0; list_create(&zone0.zone_ref_list, sizeof (zone_ref_t), offsetof(zone_ref_t, zref_linkage)); list_create(&zone0.zone_zsd, sizeof (struct zsd_entry), offsetof(struct zsd_entry, zsd_linkage)); list_insert_head(&zone_active, &zone0); /* * The root filesystem is not mounted yet, so zone_rootvp cannot be set * to anything meaningful. It is assigned to be 'rootdir' in * vfs_mountroot(). */ zone0.zone_rootvp = NULL; zone0.zone_vfslist = NULL; zone0.zone_bootargs = initargs; zone0.zone_privset = kmem_alloc(sizeof (priv_set_t), KM_SLEEP); /* * The global zone has all privileges */ priv_fillset(zone0.zone_privset); /* * Add p0 to the global zone */ zone0.zone_zsched = &p0; p0.p_zone = &zone0; } /* * Compute a hash value based on the contents of the label and the DOI. The * hash algorithm is somewhat arbitrary, but is based on the observation that * humans will likely pick labels that differ by amounts that work out to be * multiples of the number of hash chains, and thus stirring in some primes * should help. */ static uint_t hash_bylabel(void *hdata, mod_hash_key_t key) { const ts_label_t *lab = (ts_label_t *)key; const uint32_t *up, *ue; uint_t hash; int i; _NOTE(ARGUNUSED(hdata)); hash = lab->tsl_doi + (lab->tsl_doi << 1); /* we depend on alignment of label, but not representation */ up = (const uint32_t *)&lab->tsl_label; ue = up + sizeof (lab->tsl_label) / sizeof (*up); i = 1; while (up < ue) { /* using 2^n + 1, 1 <= n <= 16 as source of many primes */ hash += *up + (*up << ((i % 16) + 1)); up++; i++; } return (hash); } /* * All that mod_hash cares about here is zero (equal) versus non-zero (not * equal). This may need to be changed if less than / greater than is ever * needed. */ static int hash_labelkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2) { ts_label_t *lab1 = (ts_label_t *)key1; ts_label_t *lab2 = (ts_label_t *)key2; return (label_equal(lab1, lab2) ? 0 : 1); } /* * Called by main() to initialize the zones framework. */ void zone_init(void) { rctl_dict_entry_t *rde; rctl_val_t *dval; rctl_set_t *set; rctl_alloc_gp_t *gp; rctl_entity_p_t e; int res; ASSERT(curproc == &p0); /* * Create ID space for zone IDs. ID 0 is reserved for the * global zone. */ zoneid_space = id_space_create("zoneid_space", 1, MAX_ZONEID); /* * Initialize generic zone resource controls, if any. */ rc_zone_cpu_shares = rctl_register("zone.cpu-shares", RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_NEVER | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | RCTL_GLOBAL_SYSLOG_NEVER, FSS_MAXSHARES, FSS_MAXSHARES, &zone_cpu_shares_ops); rc_zone_cpu_cap = rctl_register("zone.cpu-cap", RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |RCTL_GLOBAL_SYSLOG_NEVER | RCTL_GLOBAL_INFINITE, MAXCAP, MAXCAP, &zone_cpu_cap_ops); rc_zone_nlwps = rctl_register("zone.max-lwps", RCENTITY_ZONE, RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT, INT_MAX, INT_MAX, &zone_lwps_ops); rc_zone_nprocs = rctl_register("zone.max-processes", RCENTITY_ZONE, RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT, INT_MAX, INT_MAX, &zone_procs_ops); /* * System V IPC resource controls */ rc_zone_msgmni = rctl_register("zone.max-msg-ids", RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_msgmni_ops); rc_zone_semmni = rctl_register("zone.max-sem-ids", RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_semmni_ops); rc_zone_shmmni = rctl_register("zone.max-shm-ids", RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_shmmni_ops); rc_zone_shmmax = rctl_register("zone.max-shm-memory", RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES, UINT64_MAX, UINT64_MAX, &zone_shmmax_ops); /* * Create a rctl_val with PRIVILEGED, NOACTION, value = 1. Then attach * this at the head of the rctl_dict_entry for ``zone.cpu-shares''. */ dval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP); bzero(dval, sizeof (rctl_val_t)); dval->rcv_value = 1; dval->rcv_privilege = RCPRIV_PRIVILEGED; dval->rcv_flagaction = RCTL_LOCAL_NOACTION; dval->rcv_action_recip_pid = -1; rde = rctl_dict_lookup("zone.cpu-shares"); (void) rctl_val_list_insert(&rde->rcd_default_value, dval); rc_zone_locked_mem = rctl_register("zone.max-locked-memory", RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES | RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, &zone_locked_mem_ops); rc_zone_max_swap = rctl_register("zone.max-swap", RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES | RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, &zone_max_swap_ops); rc_zone_max_lofi = rctl_register("zone.max-lofi", RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, &zone_max_lofi_ops); /* * Initialize the ``global zone''. */ set = rctl_set_create(); gp = rctl_set_init_prealloc(RCENTITY_ZONE); mutex_enter(&p0.p_lock); e.rcep_p.zone = &zone0; e.rcep_t = RCENTITY_ZONE; zone0.zone_rctls = rctl_set_init(RCENTITY_ZONE, &p0, &e, set, gp); zone0.zone_nlwps = p0.p_lwpcnt; zone0.zone_nprocs = 1; zone0.zone_ntasks = 1; mutex_exit(&p0.p_lock); zone0.zone_restart_init = B_TRUE; zone0.zone_brand = &native_brand; rctl_prealloc_destroy(gp); /* * pool_default hasn't been initialized yet, so we let pool_init() * take care of making sure the global zone is in the default pool. */ /* * Initialize global zone kstats */ zone_kstat_create(&zone0); /* * Initialize zone label. * mlp are initialized when tnzonecfg is loaded. */ zone0.zone_slabel = l_admin_low; rw_init(&zone0.zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL); label_hold(l_admin_low); /* * Initialise the lock for the database structure used by mntfs. */ rw_init(&zone0.zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL); mutex_enter(&zonehash_lock); zone_uniqid(&zone0); ASSERT(zone0.zone_uniqid == GLOBAL_ZONEUNIQID); zonehashbyid = mod_hash_create_idhash("zone_by_id", zone_hash_size, mod_hash_null_valdtor); zonehashbyname = mod_hash_create_strhash("zone_by_name", zone_hash_size, mod_hash_null_valdtor); /* * maintain zonehashbylabel only for labeled systems */ if (is_system_labeled()) zonehashbylabel = mod_hash_create_extended("zone_by_label", zone_hash_size, mod_hash_null_keydtor, mod_hash_null_valdtor, hash_bylabel, NULL, hash_labelkey_cmp, KM_SLEEP); zonecount = 1; (void) mod_hash_insert(zonehashbyid, (mod_hash_key_t)GLOBAL_ZONEID, (mod_hash_val_t)&zone0); (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)zone0.zone_name, (mod_hash_val_t)&zone0); if (is_system_labeled()) { zone0.zone_flags |= ZF_HASHED_LABEL; (void) mod_hash_insert(zonehashbylabel, (mod_hash_key_t)zone0.zone_slabel, (mod_hash_val_t)&zone0); } mutex_exit(&zonehash_lock); /* * We avoid setting zone_kcred until now, since kcred is initialized * sometime after zone_zsd_init() and before zone_init(). */ zone0.zone_kcred = kcred; /* * The global zone is fully initialized (except for zone_rootvp which * will be set when the root filesystem is mounted). */ global_zone = &zone0; /* * Setup an event channel to send zone status change notifications on */ res = sysevent_evc_bind(ZONE_EVENT_CHANNEL, &zone_event_chan, EVCH_CREAT); if (res) panic("Sysevent_evc_bind failed during zone setup.\n"); } static void zone_free(zone_t *zone) { ASSERT(zone != global_zone); ASSERT(zone->zone_ntasks == 0); ASSERT(zone->zone_nlwps == 0); ASSERT(zone->zone_nprocs == 0); ASSERT(zone->zone_cred_ref == 0); ASSERT(zone->zone_kcred == NULL); ASSERT(zone_status_get(zone) == ZONE_IS_DEAD || zone_status_get(zone) == ZONE_IS_UNINITIALIZED); ASSERT(list_is_empty(&zone->zone_ref_list)); /* * Remove any zone caps. */ cpucaps_zone_remove(zone); ASSERT(zone->zone_cpucap == NULL); /* remove from deathrow list */ if (zone_status_get(zone) == ZONE_IS_DEAD) { ASSERT(zone->zone_ref == 0); mutex_enter(&zone_deathrow_lock); list_remove(&zone_deathrow, zone); mutex_exit(&zone_deathrow_lock); } list_destroy(&zone->zone_ref_list); zone_free_zsd(zone); zone_free_datasets(zone); list_destroy(&zone->zone_dl_list); if (zone->zone_rootvp != NULL) VN_RELE(zone->zone_rootvp); if (zone->zone_rootpath) kmem_free(zone->zone_rootpath, zone->zone_rootpathlen); if (zone->zone_name != NULL) kmem_free(zone->zone_name, ZONENAME_MAX); if (zone->zone_slabel != NULL) label_rele(zone->zone_slabel); if (zone->zone_nodename != NULL) kmem_free(zone->zone_nodename, _SYS_NMLN); if (zone->zone_domain != NULL) kmem_free(zone->zone_domain, _SYS_NMLN); if (zone->zone_privset != NULL) kmem_free(zone->zone_privset, sizeof (priv_set_t)); if (zone->zone_rctls != NULL) rctl_set_free(zone->zone_rctls); if (zone->zone_bootargs != NULL) strfree(zone->zone_bootargs); if (zone->zone_initname != NULL) strfree(zone->zone_initname); if (zone->zone_fs_allowed != NULL) strfree(zone->zone_fs_allowed); if (zone->zone_pfexecd != NULL) klpd_freelist(&zone->zone_pfexecd); id_free(zoneid_space, zone->zone_id); mutex_destroy(&zone->zone_lock); cv_destroy(&zone->zone_cv); rw_destroy(&zone->zone_mlps.mlpl_rwlock); rw_destroy(&zone->zone_mntfs_db_lock); kmem_free(zone, sizeof (zone_t)); } /* * See block comment at the top of this file for information about zone * status values. */ /* * Convenience function for setting zone status. */ static void zone_status_set(zone_t *zone, zone_status_t status) { nvlist_t *nvl = NULL; ASSERT(MUTEX_HELD(&zone_status_lock)); ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE && status >= zone_status_get(zone)); if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) || nvlist_add_string(nvl, ZONE_CB_NAME, zone->zone_name) || nvlist_add_string(nvl, ZONE_CB_NEWSTATE, zone_status_table[status]) || nvlist_add_string(nvl, ZONE_CB_OLDSTATE, zone_status_table[zone->zone_status]) || nvlist_add_int32(nvl, ZONE_CB_ZONEID, zone->zone_id) || nvlist_add_uint64(nvl, ZONE_CB_TIMESTAMP, (uint64_t)gethrtime()) || sysevent_evc_publish(zone_event_chan, ZONE_EVENT_STATUS_CLASS, ZONE_EVENT_STATUS_SUBCLASS, "sun.com", "kernel", nvl, EVCH_SLEEP)) { #ifdef DEBUG (void) printf( "Failed to allocate and send zone state change event.\n"); #endif } nvlist_free(nvl); zone->zone_status = status; cv_broadcast(&zone->zone_cv); } /* * Public function to retrieve the zone status. The zone status may * change after it is retrieved. */ zone_status_t zone_status_get(zone_t *zone) { return (zone->zone_status); } static int zone_set_bootargs(zone_t *zone, const char *zone_bootargs) { char *buf = kmem_zalloc(BOOTARGS_MAX, KM_SLEEP); int err = 0; ASSERT(zone != global_zone); if ((err = copyinstr(zone_bootargs, buf, BOOTARGS_MAX, NULL)) != 0) goto done; /* EFAULT or ENAMETOOLONG */ if (zone->zone_bootargs != NULL) strfree(zone->zone_bootargs); zone->zone_bootargs = strdup(buf); done: kmem_free(buf, BOOTARGS_MAX); return (err); } static int zone_set_brand(zone_t *zone, const char *brand) { struct brand_attr *attrp; brand_t *bp; attrp = kmem_alloc(sizeof (struct brand_attr), KM_SLEEP); if (copyin(brand, attrp, sizeof (struct brand_attr)) != 0) { kmem_free(attrp, sizeof (struct brand_attr)); return (EFAULT); } bp = brand_register_zone(attrp); kmem_free(attrp, sizeof (struct brand_attr)); if (bp == NULL) return (EINVAL); /* * This is the only place where a zone can change it's brand. * We already need to hold zone_status_lock to check the zone * status, so we'll just use that lock to serialize zone * branding requests as well. */ mutex_enter(&zone_status_lock); /* Re-Branding is not allowed and the zone can't be booted yet */ if ((ZONE_IS_BRANDED(zone)) || (zone_status_get(zone) >= ZONE_IS_BOOTING)) { mutex_exit(&zone_status_lock); brand_unregister_zone(bp); return (EINVAL); } /* set up the brand specific data */ zone->zone_brand = bp; ZBROP(zone)->b_init_brand_data(zone); mutex_exit(&zone_status_lock); return (0); } static int zone_set_fs_allowed(zone_t *zone, const char *zone_fs_allowed) { char *buf = kmem_zalloc(ZONE_FS_ALLOWED_MAX, KM_SLEEP); int err = 0; ASSERT(zone != global_zone); if ((err = copyinstr(zone_fs_allowed, buf, ZONE_FS_ALLOWED_MAX, NULL)) != 0) goto done; if (zone->zone_fs_allowed != NULL) strfree(zone->zone_fs_allowed); zone->zone_fs_allowed = strdup(buf); done: kmem_free(buf, ZONE_FS_ALLOWED_MAX); return (err); } static int zone_set_initname(zone_t *zone, const char *zone_initname) { char initname[INITNAME_SZ]; size_t len; int err = 0; ASSERT(zone != global_zone); if ((err = copyinstr(zone_initname, initname, INITNAME_SZ, &len)) != 0) return (err); /* EFAULT or ENAMETOOLONG */ if (zone->zone_initname != NULL) strfree(zone->zone_initname); zone->zone_initname = kmem_alloc(strlen(initname) + 1, KM_SLEEP); (void) strcpy(zone->zone_initname, initname); return (0); } static int zone_set_phys_mcap(zone_t *zone, const uint64_t *zone_mcap) { uint64_t mcap; int err = 0; if ((err = copyin(zone_mcap, &mcap, sizeof (uint64_t))) == 0) zone->zone_phys_mcap = mcap; return (err); } static int zone_set_sched_class(zone_t *zone, const char *new_class) { char sched_class[PC_CLNMSZ]; id_t classid; int err; ASSERT(zone != global_zone); if ((err = copyinstr(new_class, sched_class, PC_CLNMSZ, NULL)) != 0) return (err); /* EFAULT or ENAMETOOLONG */ if (getcid(sched_class, &classid) != 0 || CLASS_KERNEL(classid)) return (set_errno(EINVAL)); zone->zone_defaultcid = classid; ASSERT(zone->zone_defaultcid > 0 && zone->zone_defaultcid < loaded_classes); return (0); } /* * Block indefinitely waiting for (zone_status >= status) */ void zone_status_wait(zone_t *zone, zone_status_t status) { ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); mutex_enter(&zone_status_lock); while (zone->zone_status < status) { cv_wait(&zone->zone_cv, &zone_status_lock); } mutex_exit(&zone_status_lock); } /* * Private CPR-safe version of zone_status_wait(). */ static void zone_status_wait_cpr(zone_t *zone, zone_status_t status, char *str) { callb_cpr_t cprinfo; ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); CALLB_CPR_INIT(&cprinfo, &zone_status_lock, callb_generic_cpr, str); mutex_enter(&zone_status_lock); while (zone->zone_status < status) { CALLB_CPR_SAFE_BEGIN(&cprinfo); cv_wait(&zone->zone_cv, &zone_status_lock); CALLB_CPR_SAFE_END(&cprinfo, &zone_status_lock); } /* * zone_status_lock is implicitly released by the following. */ CALLB_CPR_EXIT(&cprinfo); } /* * Block until zone enters requested state or signal is received. Return (0) * if signaled, non-zero otherwise. */ int zone_status_wait_sig(zone_t *zone, zone_status_t status) { ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); mutex_enter(&zone_status_lock); while (zone->zone_status < status) { if (!cv_wait_sig(&zone->zone_cv, &zone_status_lock)) { mutex_exit(&zone_status_lock); return (0); } } mutex_exit(&zone_status_lock); return (1); } /* * Block until the zone enters the requested state or the timeout expires, * whichever happens first. Return (-1) if operation timed out, time remaining * otherwise. */ clock_t zone_status_timedwait(zone_t *zone, clock_t tim, zone_status_t status) { clock_t timeleft = 0; ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); mutex_enter(&zone_status_lock); while (zone->zone_status < status && timeleft != -1) { timeleft = cv_timedwait(&zone->zone_cv, &zone_status_lock, tim); } mutex_exit(&zone_status_lock); return (timeleft); } /* * Block until the zone enters the requested state, the current process is * signaled, or the timeout expires, whichever happens first. Return (-1) if * operation timed out, 0 if signaled, time remaining otherwise. */ clock_t zone_status_timedwait_sig(zone_t *zone, clock_t tim, zone_status_t status) { clock_t timeleft = tim - ddi_get_lbolt(); ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); mutex_enter(&zone_status_lock); while (zone->zone_status < status) { timeleft = cv_timedwait_sig(&zone->zone_cv, &zone_status_lock, tim); if (timeleft <= 0) break; } mutex_exit(&zone_status_lock); return (timeleft); } /* * Zones have two reference counts: one for references from credential * structures (zone_cred_ref), and one (zone_ref) for everything else. * This is so we can allow a zone to be rebooted while there are still * outstanding cred references, since certain drivers cache dblks (which * implicitly results in cached creds). We wait for zone_ref to drop to * 0 (actually 1), but not zone_cred_ref. The zone structure itself is * later freed when the zone_cred_ref drops to 0, though nothing other * than the zone id and privilege set should be accessed once the zone * is "dead". * * A debugging flag, zone_wait_for_cred, can be set to a non-zero value * to force halt/reboot to block waiting for the zone_cred_ref to drop * to 0. This can be useful to flush out other sources of cached creds * that may be less innocuous than the driver case. * * Zones also provide a tracked reference counting mechanism in which zone * references are represented by "crumbs" (zone_ref structures). Crumbs help * debuggers determine the sources of leaked zone references. See * zone_hold_ref() and zone_rele_ref() below for more information. */ int zone_wait_for_cred = 0; static void zone_hold_locked(zone_t *z) { ASSERT(MUTEX_HELD(&z->zone_lock)); z->zone_ref++; ASSERT(z->zone_ref != 0); } /* * Increment the specified zone's reference count. The zone's zone_t structure * will not be freed as long as the zone's reference count is nonzero. * Decrement the zone's reference count via zone_rele(). * * NOTE: This function should only be used to hold zones for short periods of * time. Use zone_hold_ref() if the zone must be held for a long time. */ void zone_hold(zone_t *z) { mutex_enter(&z->zone_lock); zone_hold_locked(z); mutex_exit(&z->zone_lock); } /* * If the non-cred ref count drops to 1 and either the cred ref count * is 0 or we aren't waiting for cred references, the zone is ready to * be destroyed. */ #define ZONE_IS_UNREF(zone) ((zone)->zone_ref == 1 && \ (!zone_wait_for_cred || (zone)->zone_cred_ref == 0)) /* * Common zone reference release function invoked by zone_rele() and * zone_rele_ref(). If subsys is ZONE_REF_NUM_SUBSYS, then the specified * zone's subsystem-specific reference counters are not affected by the * release. If ref is not NULL, then the zone_ref_t to which it refers is * removed from the specified zone's reference list. ref must be non-NULL iff * subsys is not ZONE_REF_NUM_SUBSYS. */ static void zone_rele_common(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys) { boolean_t wakeup; mutex_enter(&z->zone_lock); ASSERT(z->zone_ref != 0); z->zone_ref--; if (subsys != ZONE_REF_NUM_SUBSYS) { ASSERT(z->zone_subsys_ref[subsys] != 0); z->zone_subsys_ref[subsys]--; list_remove(&z->zone_ref_list, ref); } if (z->zone_ref == 0 && z->zone_cred_ref == 0) { /* no more refs, free the structure */ mutex_exit(&z->zone_lock); zone_free(z); return; } /* signal zone_destroy so the zone can finish halting */ wakeup = (ZONE_IS_UNREF(z) && zone_status_get(z) >= ZONE_IS_DEAD); mutex_exit(&z->zone_lock); if (wakeup) { /* * Grabbing zonehash_lock here effectively synchronizes with * zone_destroy() to avoid missed signals. */ mutex_enter(&zonehash_lock); cv_broadcast(&zone_destroy_cv); mutex_exit(&zonehash_lock); } } /* * Decrement the specified zone's reference count. The specified zone will * cease to exist after this function returns if the reference count drops to * zero. This function should be paired with zone_hold(). */ void zone_rele(zone_t *z) { zone_rele_common(z, NULL, ZONE_REF_NUM_SUBSYS); } /* * Initialize a zone reference structure. This function must be invoked for * a reference structure before the structure is passed to zone_hold_ref(). */ void zone_init_ref(zone_ref_t *ref) { ref->zref_zone = NULL; list_link_init(&ref->zref_linkage); } /* * Acquire a reference to zone z. The caller must specify the * zone_ref_subsys_t constant associated with its subsystem. The specified * zone_ref_t structure will represent a reference to the specified zone. Use * zone_rele_ref() to release the reference. * * The referenced zone_t structure will not be freed as long as the zone_t's * zone_status field is not ZONE_IS_DEAD and the zone has outstanding * references. * * NOTE: The zone_ref_t structure must be initialized before it is used. * See zone_init_ref() above. */ void zone_hold_ref(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys) { ASSERT(subsys >= 0 && subsys < ZONE_REF_NUM_SUBSYS); /* * Prevent consumers from reusing a reference structure before * releasing it. */ VERIFY(ref->zref_zone == NULL); ref->zref_zone = z; mutex_enter(&z->zone_lock); zone_hold_locked(z); z->zone_subsys_ref[subsys]++; ASSERT(z->zone_subsys_ref[subsys] != 0); list_insert_head(&z->zone_ref_list, ref); mutex_exit(&z->zone_lock); } /* * Release the zone reference represented by the specified zone_ref_t. * The reference is invalid after it's released; however, the zone_ref_t * structure can be reused without having to invoke zone_init_ref(). * subsys should be the same value that was passed to zone_hold_ref() * when the reference was acquired. */ void zone_rele_ref(zone_ref_t *ref, zone_ref_subsys_t subsys) { zone_rele_common(ref->zref_zone, ref, subsys); /* * Set the zone_ref_t's zref_zone field to NULL to generate panics * when consumers dereference the reference. This helps us catch * consumers who use released references. Furthermore, this lets * consumers reuse the zone_ref_t structure without having to * invoke zone_init_ref(). */ ref->zref_zone = NULL; } void zone_cred_hold(zone_t *z) { mutex_enter(&z->zone_lock); z->zone_cred_ref++; ASSERT(z->zone_cred_ref != 0); mutex_exit(&z->zone_lock); } void zone_cred_rele(zone_t *z) { boolean_t wakeup; mutex_enter(&z->zone_lock); ASSERT(z->zone_cred_ref != 0); z->zone_cred_ref--; if (z->zone_ref == 0 && z->zone_cred_ref == 0) { /* no more refs, free the structure */ mutex_exit(&z->zone_lock); zone_free(z); return; } /* * If zone_destroy is waiting for the cred references to drain * out, and they have, signal it. */ wakeup = (zone_wait_for_cred && ZONE_IS_UNREF(z) && zone_status_get(z) >= ZONE_IS_DEAD); mutex_exit(&z->zone_lock); if (wakeup) { /* * Grabbing zonehash_lock here effectively synchronizes with * zone_destroy() to avoid missed signals. */ mutex_enter(&zonehash_lock); cv_broadcast(&zone_destroy_cv); mutex_exit(&zonehash_lock); } } void zone_task_hold(zone_t *z) { mutex_enter(&z->zone_lock); z->zone_ntasks++; ASSERT(z->zone_ntasks != 0); mutex_exit(&z->zone_lock); } void zone_task_rele(zone_t *zone) { uint_t refcnt; mutex_enter(&zone->zone_lock); ASSERT(zone->zone_ntasks != 0); refcnt = --zone->zone_ntasks; if (refcnt > 1) { /* Common case */ mutex_exit(&zone->zone_lock); return; } zone_hold_locked(zone); /* so we can use the zone_t later */ mutex_exit(&zone->zone_lock); if (refcnt == 1) { /* * See if the zone is shutting down. */ mutex_enter(&zone_status_lock); if (zone_status_get(zone) != ZONE_IS_SHUTTING_DOWN) { goto out; } /* * Make sure the ntasks didn't change since we * dropped zone_lock. */ mutex_enter(&zone->zone_lock); if (refcnt != zone->zone_ntasks) { mutex_exit(&zone->zone_lock); goto out; } mutex_exit(&zone->zone_lock); /* * No more user processes in the zone. The zone is empty. */ zone_status_set(zone, ZONE_IS_EMPTY); goto out; } ASSERT(refcnt == 0); /* * zsched has exited; the zone is dead. */ zone->zone_zsched = NULL; /* paranoia */ mutex_enter(&zone_status_lock); zone_status_set(zone, ZONE_IS_DEAD); out: mutex_exit(&zone_status_lock); zone_rele(zone); } zoneid_t getzoneid(void) { return (curproc->p_zone->zone_id); } /* * Internal versions of zone_find_by_*(). These don't zone_hold() or * check the validity of a zone's state. */ static zone_t * zone_find_all_by_id(zoneid_t zoneid) { mod_hash_val_t hv; zone_t *zone = NULL; ASSERT(MUTEX_HELD(&zonehash_lock)); if (mod_hash_find(zonehashbyid, (mod_hash_key_t)(uintptr_t)zoneid, &hv) == 0) zone = (zone_t *)hv; return (zone); } static zone_t * zone_find_all_by_label(const ts_label_t *label) { mod_hash_val_t hv; zone_t *zone = NULL; ASSERT(MUTEX_HELD(&zonehash_lock)); /* * zonehashbylabel is not maintained for unlabeled systems */ if (!is_system_labeled()) return (NULL); if (mod_hash_find(zonehashbylabel, (mod_hash_key_t)label, &hv) == 0) zone = (zone_t *)hv; return (zone); } static zone_t * zone_find_all_by_name(char *name) { mod_hash_val_t hv; zone_t *zone = NULL; ASSERT(MUTEX_HELD(&zonehash_lock)); if (mod_hash_find(zonehashbyname, (mod_hash_key_t)name, &hv) == 0) zone = (zone_t *)hv; return (zone); } /* * Public interface for looking up a zone by zoneid. Only returns the zone if * it is fully initialized, and has not yet begun the zone_destroy() sequence. * Caller must call zone_rele() once it is done with the zone. * * The zone may begin the zone_destroy() sequence immediately after this * function returns, but may be safely used until zone_rele() is called. */ zone_t * zone_find_by_id(zoneid_t zoneid) { zone_t *zone; zone_status_t status; mutex_enter(&zonehash_lock); if ((zone = zone_find_all_by_id(zoneid)) == NULL) { mutex_exit(&zonehash_lock); return (NULL); } status = zone_status_get(zone); if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { /* * For all practical purposes the zone doesn't exist. */ mutex_exit(&zonehash_lock); return (NULL); } zone_hold(zone); mutex_exit(&zonehash_lock); return (zone); } /* * Similar to zone_find_by_id, but using zone label as the key. */ zone_t * zone_find_by_label(const ts_label_t *label) { zone_t *zone; zone_status_t status; mutex_enter(&zonehash_lock); if ((zone = zone_find_all_by_label(label)) == NULL) { mutex_exit(&zonehash_lock); return (NULL); } status = zone_status_get(zone); if (status > ZONE_IS_DOWN) { /* * For all practical purposes the zone doesn't exist. */ mutex_exit(&zonehash_lock); return (NULL); } zone_hold(zone); mutex_exit(&zonehash_lock); return (zone); } /* * Similar to zone_find_by_id, but using zone name as the key. */ zone_t * zone_find_by_name(char *name) { zone_t *zone; zone_status_t status; mutex_enter(&zonehash_lock); if ((zone = zone_find_all_by_name(name)) == NULL) { mutex_exit(&zonehash_lock); return (NULL); } status = zone_status_get(zone); if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { /* * For all practical purposes the zone doesn't exist. */ mutex_exit(&zonehash_lock); return (NULL); } zone_hold(zone); mutex_exit(&zonehash_lock); return (zone); } /* * Similar to zone_find_by_id(), using the path as a key. For instance, * if there is a zone "foo" rooted at /foo/root, and the path argument * is "/foo/root/proc", it will return the held zone_t corresponding to * zone "foo". * * zone_find_by_path() always returns a non-NULL value, since at the * very least every path will be contained in the global zone. * * As with the other zone_find_by_*() functions, the caller is * responsible for zone_rele()ing the return value of this function. */ zone_t * zone_find_by_path(const char *path) { zone_t *zone; zone_t *zret = NULL; zone_status_t status; if (path == NULL) { /* * Call from rootconf(). */ zone_hold(global_zone); return (global_zone); } ASSERT(*path == '/'); mutex_enter(&zonehash_lock); for (zone = list_head(&zone_active); zone != NULL; zone = list_next(&zone_active, zone)) { if (ZONE_PATH_VISIBLE(path, zone)) zret = zone; } ASSERT(zret != NULL); status = zone_status_get(zret); if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { /* * Zone practically doesn't exist. */ zret = global_zone; } zone_hold(zret); mutex_exit(&zonehash_lock); return (zret); } /* * Public interface for updating per-zone load averages. Called once per * second. * * Based on loadavg_update(), genloadavg() and calcloadavg() from clock.c. */ void zone_loadavg_update() { zone_t *zp; zone_status_t status; struct loadavg_s *lavg; hrtime_t zone_total; int i; hrtime_t hr_avg; int nrun; static int64_t f[3] = { 135, 27, 9 }; int64_t q, r; mutex_enter(&zonehash_lock); for (zp = list_head(&zone_active); zp != NULL; zp = list_next(&zone_active, zp)) { mutex_enter(&zp->zone_lock); /* Skip zones that are on the way down or not yet up */ status = zone_status_get(zp); if (status < ZONE_IS_READY || status >= ZONE_IS_DOWN) { /* For all practical purposes the zone doesn't exist. */ mutex_exit(&zp->zone_lock); continue; } /* * Update the 10 second moving average data in zone_loadavg. */ lavg = &zp->zone_loadavg; zone_total = zp->zone_utime + zp->zone_stime + zp->zone_wtime; scalehrtime(&zone_total); /* The zone_total should always be increasing. */ lavg->lg_loads[lavg->lg_cur] = (zone_total > lavg->lg_total) ? zone_total - lavg->lg_total : 0; lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ; /* lg_total holds the prev. 1 sec. total */ lavg->lg_total = zone_total; /* * To simplify the calculation, we don't calculate the load avg. * until the zone has been up for at least 10 seconds and our * moving average is thus full. */ if ((lavg->lg_len + 1) < S_LOADAVG_SZ) { lavg->lg_len++; mutex_exit(&zp->zone_lock); continue; } /* Now calculate the 1min, 5min, 15 min load avg. */ hr_avg = 0; for (i = 0; i < S_LOADAVG_SZ; i++) hr_avg += lavg->lg_loads[i]; hr_avg = hr_avg / S_LOADAVG_SZ; nrun = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX); /* Compute load avg. See comment in calcloadavg() */ for (i = 0; i < 3; i++) { q = (zp->zone_hp_avenrun[i] >> 16) << 7; r = (zp->zone_hp_avenrun[i] & 0xffff) << 7; zp->zone_hp_avenrun[i] += ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4; /* avenrun[] can only hold 31 bits of load avg. */ if (zp->zone_hp_avenrun[i] < ((uint64_t)1<<(31+16-FSHIFT))) zp->zone_avenrun[i] = (int32_t) (zp->zone_hp_avenrun[i] >> (16 - FSHIFT)); else zp->zone_avenrun[i] = 0x7fffffff; } mutex_exit(&zp->zone_lock); } mutex_exit(&zonehash_lock); } /* * Get the number of cpus visible to this zone. The system-wide global * 'ncpus' is returned if pools are disabled, the caller is in the * global zone, or a NULL zone argument is passed in. */ int zone_ncpus_get(zone_t *zone) { int myncpus = zone == NULL ? 0 : zone->zone_ncpus; return (myncpus != 0 ? myncpus : ncpus); } /* * Get the number of online cpus visible to this zone. The system-wide * global 'ncpus_online' is returned if pools are disabled, the caller * is in the global zone, or a NULL zone argument is passed in. */ int zone_ncpus_online_get(zone_t *zone) { int myncpus_online = zone == NULL ? 0 : zone->zone_ncpus_online; return (myncpus_online != 0 ? myncpus_online : ncpus_online); } /* * Return the pool to which the zone is currently bound. */ pool_t * zone_pool_get(zone_t *zone) { ASSERT(pool_lock_held()); return (zone->zone_pool); } /* * Set the zone's pool pointer and update the zone's visibility to match * the resources in the new pool. */ void zone_pool_set(zone_t *zone, pool_t *pool) { ASSERT(pool_lock_held()); ASSERT(MUTEX_HELD(&cpu_lock)); zone->zone_pool = pool; zone_pset_set(zone, pool->pool_pset->pset_id); } /* * Return the cached value of the id of the processor set to which the * zone is currently bound. The value will be ZONE_PS_INVAL if the pools * facility is disabled. */ psetid_t zone_pset_get(zone_t *zone) { ASSERT(MUTEX_HELD(&cpu_lock)); return (zone->zone_psetid); } /* * Set the cached value of the id of the processor set to which the zone * is currently bound. Also update the zone's visibility to match the * resources in the new processor set. */ void zone_pset_set(zone_t *zone, psetid_t newpsetid) { psetid_t oldpsetid; ASSERT(MUTEX_HELD(&cpu_lock)); oldpsetid = zone_pset_get(zone); if (oldpsetid == newpsetid) return; /* * Global zone sees all. */ if (zone != global_zone) { zone->zone_psetid = newpsetid; if (newpsetid != ZONE_PS_INVAL) pool_pset_visibility_add(newpsetid, zone); if (oldpsetid != ZONE_PS_INVAL) pool_pset_visibility_remove(oldpsetid, zone); } /* * Disabling pools, so we should start using the global values * for ncpus and ncpus_online. */ if (newpsetid == ZONE_PS_INVAL) { zone->zone_ncpus = 0; zone->zone_ncpus_online = 0; } } /* * Walk the list of active zones and issue the provided callback for * each of them. * * Caller must not be holding any locks that may be acquired under * zonehash_lock. See comment at the beginning of the file for a list of * common locks and their interactions with zones. */ int zone_walk(int (*cb)(zone_t *, void *), void *data) { zone_t *zone; int ret = 0; zone_status_t status; mutex_enter(&zonehash_lock); for (zone = list_head(&zone_active); zone != NULL; zone = list_next(&zone_active, zone)) { /* * Skip zones that shouldn't be externally visible. */ status = zone_status_get(zone); if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) continue; /* * Bail immediately if any callback invocation returns a * non-zero value. */ ret = (*cb)(zone, data); if (ret != 0) break; } mutex_exit(&zonehash_lock); return (ret); } static int zone_set_root(zone_t *zone, const char *upath) { vnode_t *vp; int trycount; int error = 0; char *path; struct pathname upn, pn; size_t pathlen; if ((error = pn_get((char *)upath, UIO_USERSPACE, &upn)) != 0) return (error); pn_alloc(&pn); /* prevent infinite loop */ trycount = 10; for (;;) { if (--trycount <= 0) { error = ESTALE; goto out; } if ((error = lookuppn(&upn, &pn, FOLLOW, NULLVPP, &vp)) == 0) { /* * VOP_ACCESS() may cover 'vp' with a new * filesystem, if 'vp' is an autoFS vnode. * Get the new 'vp' if so. */ if ((error = VOP_ACCESS(vp, VEXEC, 0, CRED(), NULL)) == 0 && (!vn_ismntpt(vp) || (error = traverse(&vp)) == 0)) { pathlen = pn.pn_pathlen + 2; path = kmem_alloc(pathlen, KM_SLEEP); (void) strncpy(path, pn.pn_path, pn.pn_pathlen + 1); path[pathlen - 2] = '/'; path[pathlen - 1] = '\0'; pn_free(&pn); pn_free(&upn); /* Success! */ break; } VN_RELE(vp); } if (error != ESTALE) goto out; } ASSERT(error == 0); zone->zone_rootvp = vp; /* we hold a reference to vp */ zone->zone_rootpath = path; zone->zone_rootpathlen = pathlen; if (pathlen > 5 && strcmp(path + pathlen - 5, "/lu/") == 0) zone->zone_flags |= ZF_IS_SCRATCH; return (0); out: pn_free(&pn); pn_free(&upn); return (error); } #define isalnum(c) (((c) >= '0' && (c) <= '9') || \ ((c) >= 'a' && (c) <= 'z') || \ ((c) >= 'A' && (c) <= 'Z')) static int zone_set_name(zone_t *zone, const char *uname) { char *kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP); size_t len; int i, err; if ((err = copyinstr(uname, kname, ZONENAME_MAX, &len)) != 0) { kmem_free(kname, ZONENAME_MAX); return (err); /* EFAULT or ENAMETOOLONG */ } /* must be less than ZONENAME_MAX */ if (len == ZONENAME_MAX && kname[ZONENAME_MAX - 1] != '\0') { kmem_free(kname, ZONENAME_MAX); return (EINVAL); } /* * Name must start with an alphanumeric and must contain only * alphanumerics, '-', '_' and '.'. */ if (!isalnum(kname[0])) { kmem_free(kname, ZONENAME_MAX); return (EINVAL); } for (i = 1; i < len - 1; i++) { if (!isalnum(kname[i]) && kname[i] != '-' && kname[i] != '_' && kname[i] != '.') { kmem_free(kname, ZONENAME_MAX); return (EINVAL); } } zone->zone_name = kname; return (0); } /* * Gets the 32-bit hostid of the specified zone as an unsigned int. If 'zonep' * is NULL or it points to a zone with no hostid emulation, then the machine's * hostid (i.e., the global zone's hostid) is returned. This function returns * zero if neither the zone nor the host machine (global zone) have hostids. It * returns HW_INVALID_HOSTID if the function attempts to return the machine's * hostid and the machine's hostid is invalid. */ uint32_t zone_get_hostid(zone_t *zonep) { unsigned long machine_hostid; if (zonep == NULL || zonep->zone_hostid == HW_INVALID_HOSTID) { if (ddi_strtoul(hw_serial, NULL, 10, &machine_hostid) != 0) return (HW_INVALID_HOSTID); return ((uint32_t)machine_hostid); } return (zonep->zone_hostid); } /* * Similar to thread_create(), but makes sure the thread is in the appropriate * zone's zsched process (curproc->p_zone->zone_zsched) before returning. */ /*ARGSUSED*/ kthread_t * zthread_create( caddr_t stk, size_t stksize, void (*proc)(), void *arg, size_t len, pri_t pri) { kthread_t *t; zone_t *zone = curproc->p_zone; proc_t *pp = zone->zone_zsched; zone_hold(zone); /* Reference to be dropped when thread exits */ /* * No-one should be trying to create threads if the zone is shutting * down and there aren't any kernel threads around. See comment * in zthread_exit(). */ ASSERT(!(zone->zone_kthreads == NULL && zone_status_get(zone) >= ZONE_IS_EMPTY)); /* * Create a thread, but don't let it run until we've finished setting * things up. */ t = thread_create(stk, stksize, proc, arg, len, pp, TS_STOPPED, pri); ASSERT(t->t_forw == NULL); mutex_enter(&zone_status_lock); if (zone->zone_kthreads == NULL) { t->t_forw = t->t_back = t; } else { kthread_t *tx = zone->zone_kthreads; t->t_forw = tx; t->t_back = tx->t_back; tx->t_back->t_forw = t; tx->t_back = t; } zone->zone_kthreads = t; mutex_exit(&zone_status_lock); mutex_enter(&pp->p_lock); t->t_proc_flag |= TP_ZTHREAD; project_rele(t->t_proj); t->t_proj = project_hold(pp->p_task->tk_proj); /* * Setup complete, let it run. */ thread_lock(t); t->t_schedflag |= TS_ALLSTART; setrun_locked(t); thread_unlock(t); mutex_exit(&pp->p_lock); return (t); } /* * Similar to thread_exit(). Must be called by threads created via * zthread_exit(). */ void zthread_exit(void) { kthread_t *t = curthread; proc_t *pp = curproc; zone_t *zone = pp->p_zone; mutex_enter(&zone_status_lock); /* * Reparent to p0 */ kpreempt_disable(); mutex_enter(&pp->p_lock); t->t_proc_flag &= ~TP_ZTHREAD; t->t_procp = &p0; hat_thread_exit(t); mutex_exit(&pp->p_lock); kpreempt_enable(); if (t->t_back == t) { ASSERT(t->t_forw == t); /* * If the zone is empty, once the thread count * goes to zero no further kernel threads can be * created. This is because if the creator is a process * in the zone, then it must have exited before the zone * state could be set to ZONE_IS_EMPTY. * Otherwise, if the creator is a kernel thread in the * zone, the thread count is non-zero. * * This really means that non-zone kernel threads should * not create zone kernel threads. */ zone->zone_kthreads = NULL; if (zone_status_get(zone) == ZONE_IS_EMPTY) { zone_status_set(zone, ZONE_IS_DOWN); /* * Remove any CPU caps on this zone. */ cpucaps_zone_remove(zone); } } else { t->t_forw->t_back = t->t_back; t->t_back->t_forw = t->t_forw; if (zone->zone_kthreads == t) zone->zone_kthreads = t->t_forw; } mutex_exit(&zone_status_lock); zone_rele(zone); thread_exit(); /* NOTREACHED */ } static void zone_chdir(vnode_t *vp, vnode_t **vpp, proc_t *pp) { vnode_t *oldvp; /* we're going to hold a reference here to the directory */ VN_HOLD(vp); /* update abs cwd/root path see c2/audit.c */ if (AU_AUDITING()) audit_chdirec(vp, vpp); mutex_enter(&pp->p_lock); oldvp = *vpp; *vpp = vp; mutex_exit(&pp->p_lock); if (oldvp != NULL) VN_RELE(oldvp); } /* * Convert an rctl value represented by an nvlist_t into an rctl_val_t. */ static int nvlist2rctlval(nvlist_t *nvl, rctl_val_t *rv) { nvpair_t *nvp = NULL; boolean_t priv_set = B_FALSE; boolean_t limit_set = B_FALSE; boolean_t action_set = B_FALSE; while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { const char *name; uint64_t ui64; name = nvpair_name(nvp); if (nvpair_type(nvp) != DATA_TYPE_UINT64) return (EINVAL); (void) nvpair_value_uint64(nvp, &ui64); if (strcmp(name, "privilege") == 0) { /* * Currently only privileged values are allowed, but * this may change in the future. */ if (ui64 != RCPRIV_PRIVILEGED) return (EINVAL); rv->rcv_privilege = ui64; priv_set = B_TRUE; } else if (strcmp(name, "limit") == 0) { rv->rcv_value = ui64; limit_set = B_TRUE; } else if (strcmp(name, "action") == 0) { if (ui64 != RCTL_LOCAL_NOACTION && ui64 != RCTL_LOCAL_DENY) return (EINVAL); rv->rcv_flagaction = ui64; action_set = B_TRUE; } else { return (EINVAL); } } if (!(priv_set && limit_set && action_set)) return (EINVAL); rv->rcv_action_signal = 0; rv->rcv_action_recipient = NULL; rv->rcv_action_recip_pid = -1; rv->rcv_firing_time = 0; return (0); } /* * Non-global zone version of start_init. */ void zone_start_init(void) { proc_t *p = ttoproc(curthread); zone_t *z = p->p_zone; ASSERT(!INGLOBALZONE(curproc)); /* * For all purposes (ZONE_ATTR_INITPID and restart_init), * storing just the pid of init is sufficient. */ z->zone_proc_initpid = p->p_pid; /* * We maintain zone_boot_err so that we can return the cause of the * failure back to the caller of the zone_boot syscall. */ p->p_zone->zone_boot_err = start_init_common(); /* * We will prevent booting zones from becoming running zones if the * global zone is shutting down. */ mutex_enter(&zone_status_lock); if (z->zone_boot_err != 0 || zone_status_get(global_zone) >= ZONE_IS_SHUTTING_DOWN) { /* * Make sure we are still in the booting state-- we could have * raced and already be shutting down, or even further along. */ if (zone_status_get(z) == ZONE_IS_BOOTING) { zone_status_set(z, ZONE_IS_SHUTTING_DOWN); } mutex_exit(&zone_status_lock); /* It's gone bad, dispose of the process */ if (proc_exit(CLD_EXITED, z->zone_boot_err) != 0) { mutex_enter(&p->p_lock); ASSERT(p->p_flag & SEXITLWPS); lwp_exit(); } } else { if (zone_status_get(z) == ZONE_IS_BOOTING) zone_status_set(z, ZONE_IS_RUNNING); mutex_exit(&zone_status_lock); /* cause the process to return to userland. */ lwp_rtt(); } } struct zsched_arg { zone_t *zone; nvlist_t *nvlist; }; /* * Per-zone "sched" workalike. The similarity to "sched" doesn't have * anything to do with scheduling, but rather with the fact that * per-zone kernel threads are parented to zsched, just like regular * kernel threads are parented to sched (p0). * * zsched is also responsible for launching init for the zone. */ static void zsched(void *arg) { struct zsched_arg *za = arg; proc_t *pp = curproc; proc_t *initp = proc_init; zone_t *zone = za->zone; cred_t *cr, *oldcred; rctl_set_t *set; rctl_alloc_gp_t *gp; contract_t *ct = NULL; task_t *tk, *oldtk; rctl_entity_p_t e; kproject_t *pj; nvlist_t *nvl = za->nvlist; nvpair_t *nvp = NULL; bcopy("zsched", PTOU(pp)->u_psargs, sizeof ("zsched")); bcopy("zsched", PTOU(pp)->u_comm, sizeof ("zsched")); PTOU(pp)->u_argc = 0; PTOU(pp)->u_argv = NULL; PTOU(pp)->u_envp = NULL; closeall(P_FINFO(pp)); /* * We are this zone's "zsched" process. As the zone isn't generally * visible yet we don't need to grab any locks before initializing its * zone_proc pointer. */ zone_hold(zone); /* this hold is released by zone_destroy() */ zone->zone_zsched = pp; mutex_enter(&pp->p_lock); pp->p_zone = zone; mutex_exit(&pp->p_lock); /* * Disassociate process from its 'parent'; parent ourselves to init * (pid 1) and change other values as needed. */ sess_create(); mutex_enter(&pidlock); proc_detach(pp); pp->p_ppid = 1; pp->p_flag |= SZONETOP; pp->p_ancpid = 1; pp->p_parent = initp; pp->p_psibling = NULL; if (initp->p_child) initp->p_child->p_psibling = pp; pp->p_sibling = initp->p_child; initp->p_child = pp; /* Decrement what newproc() incremented. */ upcount_dec(crgetruid(CRED()), GLOBAL_ZONEID); /* * Our credentials are about to become kcred-like, so we don't care * about the caller's ruid. */ upcount_inc(crgetruid(kcred), zone->zone_id); mutex_exit(&pidlock); /* * getting out of global zone, so decrement lwp and process counts */ pj = pp->p_task->tk_proj; mutex_enter(&global_zone->zone_nlwps_lock); pj->kpj_nlwps -= pp->p_lwpcnt; global_zone->zone_nlwps -= pp->p_lwpcnt; pj->kpj_nprocs--; global_zone->zone_nprocs--; mutex_exit(&global_zone->zone_nlwps_lock); /* * Decrement locked memory counts on old zone and project. */ mutex_enter(&global_zone->zone_mem_lock); global_zone->zone_locked_mem -= pp->p_locked_mem; pj->kpj_data.kpd_locked_mem -= pp->p_locked_mem; mutex_exit(&global_zone->zone_mem_lock); /* * Create and join a new task in project '0' of this zone. * * We don't need to call holdlwps() since we know we're the only lwp in * this process. * * task_join() returns with p_lock held. */ tk = task_create(0, zone); mutex_enter(&cpu_lock); oldtk = task_join(tk, 0); pj = pp->p_task->tk_proj; mutex_enter(&zone->zone_mem_lock); zone->zone_locked_mem += pp->p_locked_mem; pj->kpj_data.kpd_locked_mem += pp->p_locked_mem; mutex_exit(&zone->zone_mem_lock); /* * add lwp and process counts to zsched's zone, and increment * project's task and process count due to the task created in * the above task_create. */ mutex_enter(&zone->zone_nlwps_lock); pj->kpj_nlwps += pp->p_lwpcnt; pj->kpj_ntasks += 1; zone->zone_nlwps += pp->p_lwpcnt; pj->kpj_nprocs++; zone->zone_nprocs++; mutex_exit(&zone->zone_nlwps_lock); mutex_exit(&curproc->p_lock); mutex_exit(&cpu_lock); task_rele(oldtk); /* * The process was created by a process in the global zone, hence the * credentials are wrong. We might as well have kcred-ish credentials. */ cr = zone->zone_kcred; crhold(cr); mutex_enter(&pp->p_crlock); oldcred = pp->p_cred; pp->p_cred = cr; mutex_exit(&pp->p_crlock); crfree(oldcred); /* * Hold credentials again (for thread) */ crhold(cr); /* * p_lwpcnt can't change since this is a kernel process. */ crset(pp, cr); /* * Chroot */ zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_cdir, pp); zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_rdir, pp); /* * Initialize zone's rctl set. */ set = rctl_set_create(); gp = rctl_set_init_prealloc(RCENTITY_ZONE); mutex_enter(&pp->p_lock); e.rcep_p.zone = zone; e.rcep_t = RCENTITY_ZONE; zone->zone_rctls = rctl_set_init(RCENTITY_ZONE, pp, &e, set, gp); mutex_exit(&pp->p_lock); rctl_prealloc_destroy(gp); /* * Apply the rctls passed in to zone_create(). This is basically a list * assignment: all of the old values are removed and the new ones * inserted. That is, if an empty list is passed in, all values are * removed. */ while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { rctl_dict_entry_t *rde; rctl_hndl_t hndl; char *name; nvlist_t **nvlarray; uint_t i, nelem; int error; /* For ASSERT()s */ name = nvpair_name(nvp); hndl = rctl_hndl_lookup(name); ASSERT(hndl != -1); rde = rctl_dict_lookup_hndl(hndl); ASSERT(rde != NULL); for (; /* ever */; ) { rctl_val_t oval; mutex_enter(&pp->p_lock); error = rctl_local_get(hndl, NULL, &oval, pp); mutex_exit(&pp->p_lock); ASSERT(error == 0); /* Can't fail for RCTL_FIRST */ ASSERT(oval.rcv_privilege != RCPRIV_BASIC); if (oval.rcv_privilege == RCPRIV_SYSTEM) break; mutex_enter(&pp->p_lock); error = rctl_local_delete(hndl, &oval, pp); mutex_exit(&pp->p_lock); ASSERT(error == 0); } error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem); ASSERT(error == 0); for (i = 0; i < nelem; i++) { rctl_val_t *nvalp; nvalp = kmem_cache_alloc(rctl_val_cache, KM_SLEEP); error = nvlist2rctlval(nvlarray[i], nvalp); ASSERT(error == 0); /* * rctl_local_insert can fail if the value being * inserted is a duplicate; this is OK. */ mutex_enter(&pp->p_lock); if (rctl_local_insert(hndl, nvalp, pp) != 0) kmem_cache_free(rctl_val_cache, nvalp); mutex_exit(&pp->p_lock); } } /* * Tell the world that we're done setting up. * * At this point we want to set the zone status to ZONE_IS_INITIALIZED * and atomically set the zone's processor set visibility. Once * we drop pool_lock() this zone will automatically get updated * to reflect any future changes to the pools configuration. * * Note that after we drop the locks below (zonehash_lock in * particular) other operations such as a zone_getattr call can * now proceed and observe the zone. That is the reason for doing a * state transition to the INITIALIZED state. */ pool_lock(); mutex_enter(&cpu_lock); mutex_enter(&zonehash_lock); zone_uniqid(zone); zone_zsd_configure(zone); if (pool_state == POOL_ENABLED) zone_pset_set(zone, pool_default->pool_pset->pset_id); mutex_enter(&zone_status_lock); ASSERT(zone_status_get(zone) == ZONE_IS_UNINITIALIZED); zone_status_set(zone, ZONE_IS_INITIALIZED); mutex_exit(&zone_status_lock); mutex_exit(&zonehash_lock); mutex_exit(&cpu_lock); pool_unlock(); /* Now call the create callback for this key */ zsd_apply_all_keys(zsd_apply_create, zone); /* The callbacks are complete. Mark ZONE_IS_READY */ mutex_enter(&zone_status_lock); ASSERT(zone_status_get(zone) == ZONE_IS_INITIALIZED); zone_status_set(zone, ZONE_IS_READY); mutex_exit(&zone_status_lock); /* * Once we see the zone transition to the ZONE_IS_BOOTING state, * we launch init, and set the state to running. */ zone_status_wait_cpr(zone, ZONE_IS_BOOTING, "zsched"); if (zone_status_get(zone) == ZONE_IS_BOOTING) { id_t cid; /* * Ok, this is a little complicated. We need to grab the * zone's pool's scheduling class ID; note that by now, we * are already bound to a pool if we need to be (zoneadmd * will have done that to us while we're in the READY * state). *But* the scheduling class for the zone's 'init' * must be explicitly passed to newproc, which doesn't * respect pool bindings. * * We hold the pool_lock across the call to newproc() to * close the obvious race: the pool's scheduling class * could change before we manage to create the LWP with * classid 'cid'. */ pool_lock(); if (zone->zone_defaultcid > 0) cid = zone->zone_defaultcid; else cid = pool_get_class(zone->zone_pool); if (cid == -1) cid = defaultcid; /* * If this fails, zone_boot will ultimately fail. The * state of the zone will be set to SHUTTING_DOWN-- userland * will have to tear down the zone, and fail, or try again. */ if ((zone->zone_boot_err = newproc(zone_start_init, NULL, cid, minclsyspri - 1, &ct, 0)) != 0) { mutex_enter(&zone_status_lock); zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); mutex_exit(&zone_status_lock); } else { zone->zone_boot_time = gethrestime_sec(); } pool_unlock(); } /* * Wait for zone_destroy() to be called. This is what we spend * most of our life doing. */ zone_status_wait_cpr(zone, ZONE_IS_DYING, "zsched"); if (ct) /* * At this point the process contract should be empty. * (Though if it isn't, it's not the end of the world.) */ VERIFY(contract_abandon(ct, curproc, B_TRUE) == 0); /* * Allow kcred to be freed when all referring processes * (including this one) go away. We can't just do this in * zone_free because we need to wait for the zone_cred_ref to * drop to 0 before calling zone_free, and the existence of * zone_kcred will prevent that. Thus, we call crfree here to * balance the crdup in zone_create. The crhold calls earlier * in zsched will be dropped when the thread and process exit. */ crfree(zone->zone_kcred); zone->zone_kcred = NULL; exit(CLD_EXITED, 0); } /* * Helper function to determine if there are any submounts of the * provided path. Used to make sure the zone doesn't "inherit" any * mounts from before it is created. */ static uint_t zone_mount_count(const char *rootpath) { vfs_t *vfsp; uint_t count = 0; size_t rootpathlen = strlen(rootpath); /* * Holding zonehash_lock prevents race conditions with * vfs_list_add()/vfs_list_remove() since we serialize with * zone_find_by_path(). */ ASSERT(MUTEX_HELD(&zonehash_lock)); /* * The rootpath must end with a '/' */ ASSERT(rootpath[rootpathlen - 1] == '/'); /* * This intentionally does not count the rootpath itself if that * happens to be a mount point. */ vfs_list_read_lock(); vfsp = rootvfs; do { if (strncmp(rootpath, refstr_value(vfsp->vfs_mntpt), rootpathlen) == 0) count++; vfsp = vfsp->vfs_next; } while (vfsp != rootvfs); vfs_list_unlock(); return (count); } /* * Helper function to make sure that a zone created on 'rootpath' * wouldn't end up containing other zones' rootpaths. */ static boolean_t zone_is_nested(const char *rootpath) { zone_t *zone; size_t rootpathlen = strlen(rootpath); size_t len; ASSERT(MUTEX_HELD(&zonehash_lock)); /* * zone_set_root() appended '/' and '\0' at the end of rootpath */ if ((rootpathlen <= 3) && (rootpath[0] == '/') && (rootpath[1] == '/') && (rootpath[2] == '\0')) return (B_TRUE); for (zone = list_head(&zone_active); zone != NULL; zone = list_next(&zone_active, zone)) { if (zone == global_zone) continue; len = strlen(zone->zone_rootpath); if (strncmp(rootpath, zone->zone_rootpath, MIN(rootpathlen, len)) == 0) return (B_TRUE); } return (B_FALSE); } static int zone_set_privset(zone_t *zone, const priv_set_t *zone_privs, size_t zone_privssz) { priv_set_t *privs; if (zone_privssz < sizeof (priv_set_t)) return (ENOMEM); privs = kmem_alloc(sizeof (priv_set_t), KM_SLEEP); if (copyin(zone_privs, privs, sizeof (priv_set_t))) { kmem_free(privs, sizeof (priv_set_t)); return (EFAULT); } zone->zone_privset = privs; return (0); } /* * We make creative use of nvlists to pass in rctls from userland. The list is * a list of the following structures: * * (name = rctl_name, value = nvpair_list_array) * * Where each element of the nvpair_list_array is of the form: * * [(name = "privilege", value = RCPRIV_PRIVILEGED), * (name = "limit", value = uint64_t), * (name = "action", value = (RCTL_LOCAL_NOACTION || RCTL_LOCAL_DENY))] */ static int parse_rctls(caddr_t ubuf, size_t buflen, nvlist_t **nvlp) { nvpair_t *nvp = NULL; nvlist_t *nvl = NULL; char *kbuf; int error; rctl_val_t rv; *nvlp = NULL; if (buflen == 0) return (0); if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL) return (ENOMEM); if (copyin(ubuf, kbuf, buflen)) { error = EFAULT; goto out; } if (nvlist_unpack(kbuf, buflen, &nvl, KM_SLEEP) != 0) { /* * nvl may have been allocated/free'd, but the value set to * non-NULL, so we reset it here. */ nvl = NULL; error = EINVAL; goto out; } while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { rctl_dict_entry_t *rde; rctl_hndl_t hndl; nvlist_t **nvlarray; uint_t i, nelem; char *name; error = EINVAL; name = nvpair_name(nvp); if (strncmp(nvpair_name(nvp), "zone.", sizeof ("zone.") - 1) != 0 || nvpair_type(nvp) != DATA_TYPE_NVLIST_ARRAY) { goto out; } if ((hndl = rctl_hndl_lookup(name)) == -1) { goto out; } rde = rctl_dict_lookup_hndl(hndl); error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem); ASSERT(error == 0); for (i = 0; i < nelem; i++) { if (error = nvlist2rctlval(nvlarray[i], &rv)) goto out; } if (rctl_invalid_value(rde, &rv)) { error = EINVAL; goto out; } } error = 0; *nvlp = nvl; out: kmem_free(kbuf, buflen); if (error && nvl != NULL) nvlist_free(nvl); return (error); } int zone_create_error(int er_error, int er_ext, int *er_out) { if (er_out != NULL) { if (copyout(&er_ext, er_out, sizeof (int))) { return (set_errno(EFAULT)); } } return (set_errno(er_error)); } static int zone_set_label(zone_t *zone, const bslabel_t *lab, uint32_t doi) { ts_label_t *tsl; bslabel_t blab; /* Get label from user */ if (copyin(lab, &blab, sizeof (blab)) != 0) return (EFAULT); tsl = labelalloc(&blab, doi, KM_NOSLEEP); if (tsl == NULL) return (ENOMEM); zone->zone_slabel = tsl; return (0); } /* * Parses a comma-separated list of ZFS datasets into a per-zone dictionary. */ static int parse_zfs(zone_t *zone, caddr_t ubuf, size_t buflen) { char *kbuf; char *dataset, *next; zone_dataset_t *zd; size_t len; if (ubuf == NULL || buflen == 0) return (0); if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL) return (ENOMEM); if (copyin(ubuf, kbuf, buflen) != 0) { kmem_free(kbuf, buflen); return (EFAULT); } dataset = next = kbuf; for (;;) { zd = kmem_alloc(sizeof (zone_dataset_t), KM_SLEEP); next = strchr(dataset, ','); if (next == NULL) len = strlen(dataset); else len = next - dataset; zd->zd_dataset = kmem_alloc(len + 1, KM_SLEEP); bcopy(dataset, zd->zd_dataset, len); zd->zd_dataset[len] = '\0'; list_insert_head(&zone->zone_datasets, zd); if (next == NULL) break; dataset = next + 1; } kmem_free(kbuf, buflen); return (0); } /* * System call to create/initialize a new zone named 'zone_name', rooted * at 'zone_root', with a zone-wide privilege limit set of 'zone_privs', * and initialized with the zone-wide rctls described in 'rctlbuf', and * with labeling set by 'match', 'doi', and 'label'. * * If extended error is non-null, we may use it to return more detailed * error information. */ static zoneid_t zone_create(const char *zone_name, const char *zone_root, const priv_set_t *zone_privs, size_t zone_privssz, caddr_t rctlbuf, size_t rctlbufsz, caddr_t zfsbuf, size_t zfsbufsz, int *extended_error, int match, uint32_t doi, const bslabel_t *label, int flags) { struct zsched_arg zarg; nvlist_t *rctls = NULL; proc_t *pp = curproc; zone_t *zone, *ztmp; zoneid_t zoneid; int error; int error2 = 0; char *str; cred_t *zkcr; boolean_t insert_label_hash; if (secpolicy_zone_config(CRED()) != 0) return (set_errno(EPERM)); /* can't boot zone from within chroot environment */ if (PTOU(pp)->u_rdir != NULL && PTOU(pp)->u_rdir != rootdir) return (zone_create_error(ENOTSUP, ZE_CHROOTED, extended_error)); zone = kmem_zalloc(sizeof (zone_t), KM_SLEEP); zoneid = zone->zone_id = id_alloc(zoneid_space); zone->zone_status = ZONE_IS_UNINITIALIZED; zone->zone_pool = pool_default; zone->zone_pool_mod = gethrtime(); zone->zone_psetid = ZONE_PS_INVAL; zone->zone_ncpus = 0; zone->zone_ncpus_online = 0; zone->zone_restart_init = B_TRUE; zone->zone_brand = &native_brand; zone->zone_initname = NULL; mutex_init(&zone->zone_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&zone->zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&zone->zone_mem_lock, NULL, MUTEX_DEFAULT, NULL); cv_init(&zone->zone_cv, NULL, CV_DEFAULT, NULL); list_create(&zone->zone_ref_list, sizeof (zone_ref_t), offsetof(zone_ref_t, zref_linkage)); list_create(&zone->zone_zsd, sizeof (struct zsd_entry), offsetof(struct zsd_entry, zsd_linkage)); list_create(&zone->zone_datasets, sizeof (zone_dataset_t), offsetof(zone_dataset_t, zd_linkage)); list_create(&zone->zone_dl_list, sizeof (zone_dl_t), offsetof(zone_dl_t, zdl_linkage)); rw_init(&zone->zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL); rw_init(&zone->zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL); if (flags & ZCF_NET_EXCL) { zone->zone_flags |= ZF_NET_EXCL; } if ((error = zone_set_name(zone, zone_name)) != 0) { zone_free(zone); return (zone_create_error(error, 0, extended_error)); } if ((error = zone_set_root(zone, zone_root)) != 0) { zone_free(zone); return (zone_create_error(error, 0, extended_error)); } if ((error = zone_set_privset(zone, zone_privs, zone_privssz)) != 0) { zone_free(zone); return (zone_create_error(error, 0, extended_error)); } /* initialize node name to be the same as zone name */ zone->zone_nodename = kmem_alloc(_SYS_NMLN, KM_SLEEP); (void) strncpy(zone->zone_nodename, zone->zone_name, _SYS_NMLN); zone->zone_nodename[_SYS_NMLN - 1] = '\0'; zone->zone_domain = kmem_alloc(_SYS_NMLN, KM_SLEEP); zone->zone_domain[0] = '\0'; zone->zone_hostid = HW_INVALID_HOSTID; zone->zone_shares = 1; zone->zone_shmmax = 0; zone->zone_ipc.ipcq_shmmni = 0; zone->zone_ipc.ipcq_semmni = 0; zone->zone_ipc.ipcq_msgmni = 0; zone->zone_bootargs = NULL; zone->zone_fs_allowed = NULL; zone->zone_initname = kmem_alloc(strlen(zone_default_initname) + 1, KM_SLEEP); (void) strcpy(zone->zone_initname, zone_default_initname); zone->zone_nlwps = 0; zone->zone_nlwps_ctl = INT_MAX; zone->zone_nprocs = 0; zone->zone_nprocs_ctl = INT_MAX; zone->zone_locked_mem = 0; zone->zone_locked_mem_ctl = UINT64_MAX; zone->zone_max_swap = 0; zone->zone_max_swap_ctl = UINT64_MAX; zone->zone_max_lofi = 0; zone->zone_max_lofi_ctl = UINT64_MAX; zone0.zone_lockedmem_kstat = NULL; zone0.zone_swapresv_kstat = NULL; /* * Zsched initializes the rctls. */ zone->zone_rctls = NULL; if ((error = parse_rctls(rctlbuf, rctlbufsz, &rctls)) != 0) { zone_free(zone); return (zone_create_error(error, 0, extended_error)); } if ((error = parse_zfs(zone, zfsbuf, zfsbufsz)) != 0) { zone_free(zone); return (set_errno(error)); } /* * Read in the trusted system parameters: * match flag and sensitivity label. */ zone->zone_match = match; if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) { /* Fail if requested to set doi to anything but system's doi */ if (doi != 0 && doi != default_doi) { zone_free(zone); return (set_errno(EINVAL)); } /* Always apply system's doi to the zone */ error = zone_set_label(zone, label, default_doi); if (error != 0) { zone_free(zone); return (set_errno(error)); } insert_label_hash = B_TRUE; } else { /* all zones get an admin_low label if system is not labeled */ zone->zone_slabel = l_admin_low; label_hold(l_admin_low); insert_label_hash = B_FALSE; } /* * Stop all lwps since that's what normally happens as part of fork(). * This needs to happen before we grab any locks to avoid deadlock * (another lwp in the process could be waiting for the held lock). */ if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) { zone_free(zone); if (rctls) nvlist_free(rctls); return (zone_create_error(error, 0, extended_error)); } if (block_mounts() == 0) { mutex_enter(&pp->p_lock); if (curthread != pp->p_agenttp) continuelwps(pp); mutex_exit(&pp->p_lock); zone_free(zone); if (rctls) nvlist_free(rctls); return (zone_create_error(error, 0, extended_error)); } /* * Set up credential for kernel access. After this, any errors * should go through the dance in errout rather than calling * zone_free directly. */ zone->zone_kcred = crdup(kcred); crsetzone(zone->zone_kcred, zone); priv_intersect(zone->zone_privset, &CR_PPRIV(zone->zone_kcred)); priv_intersect(zone->zone_privset, &CR_EPRIV(zone->zone_kcred)); priv_intersect(zone->zone_privset, &CR_IPRIV(zone->zone_kcred)); priv_intersect(zone->zone_privset, &CR_LPRIV(zone->zone_kcred)); mutex_enter(&zonehash_lock); /* * Make sure zone doesn't already exist. * * If the system and zone are labeled, * make sure no other zone exists that has the same label. */ if ((ztmp = zone_find_all_by_name(zone->zone_name)) != NULL || (insert_label_hash && (ztmp = zone_find_all_by_label(zone->zone_slabel)) != NULL)) { zone_status_t status; status = zone_status_get(ztmp); if (status == ZONE_IS_READY || status == ZONE_IS_RUNNING) error = EEXIST; else error = EBUSY; if (insert_label_hash) error2 = ZE_LABELINUSE; goto errout; } /* * Don't allow zone creations which would cause one zone's rootpath to * be accessible from that of another (non-global) zone. */ if (zone_is_nested(zone->zone_rootpath)) { error = EBUSY; goto errout; } ASSERT(zonecount != 0); /* check for leaks */ if (zonecount + 1 > maxzones) { error = ENOMEM; goto errout; } if (zone_mount_count(zone->zone_rootpath) != 0) { error = EBUSY; error2 = ZE_AREMOUNTS; goto errout; } /* * Zone is still incomplete, but we need to drop all locks while * zsched() initializes this zone's kernel process. We * optimistically add the zone to the hashtable and associated * lists so a parallel zone_create() doesn't try to create the * same zone. */ zonecount++; (void) mod_hash_insert(zonehashbyid, (mod_hash_key_t)(uintptr_t)zone->zone_id, (mod_hash_val_t)(uintptr_t)zone); str = kmem_alloc(strlen(zone->zone_name) + 1, KM_SLEEP); (void) strcpy(str, zone->zone_name); (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)str, (mod_hash_val_t)(uintptr_t)zone); if (insert_label_hash) { (void) mod_hash_insert(zonehashbylabel, (mod_hash_key_t)zone->zone_slabel, (mod_hash_val_t)zone); zone->zone_flags |= ZF_HASHED_LABEL; } /* * Insert into active list. At this point there are no 'hold's * on the zone, but everyone else knows not to use it, so we can * continue to use it. zsched() will do a zone_hold() if the * newproc() is successful. */ list_insert_tail(&zone_active, zone); mutex_exit(&zonehash_lock); zarg.zone = zone; zarg.nvlist = rctls; /* * The process, task, and project rctls are probably wrong; * we need an interface to get the default values of all rctls, * and initialize zsched appropriately. I'm not sure that that * makes much of a difference, though. */ error = newproc(zsched, (void *)&zarg, syscid, minclsyspri, NULL, 0); if (error != 0) { /* * We need to undo all globally visible state. */ mutex_enter(&zonehash_lock); list_remove(&zone_active, zone); if (zone->zone_flags & ZF_HASHED_LABEL) { ASSERT(zone->zone_slabel != NULL); (void) mod_hash_destroy(zonehashbylabel, (mod_hash_key_t)zone->zone_slabel); } (void) mod_hash_destroy(zonehashbyname, (mod_hash_key_t)(uintptr_t)zone->zone_name); (void) mod_hash_destroy(zonehashbyid, (mod_hash_key_t)(uintptr_t)zone->zone_id); ASSERT(zonecount > 1); zonecount--; goto errout; } /* * Zone creation can't fail from now on. */ /* * Create zone kstats */ zone_kstat_create(zone); /* * Let the other lwps continue. */ mutex_enter(&pp->p_lock); if (curthread != pp->p_agenttp) continuelwps(pp); mutex_exit(&pp->p_lock); /* * Wait for zsched to finish initializing the zone. */ zone_status_wait(zone, ZONE_IS_READY); /* * The zone is fully visible, so we can let mounts progress. */ resume_mounts(); if (rctls) nvlist_free(rctls); return (zoneid); errout: mutex_exit(&zonehash_lock); /* * Let the other lwps continue. */ mutex_enter(&pp->p_lock); if (curthread != pp->p_agenttp) continuelwps(pp); mutex_exit(&pp->p_lock); resume_mounts(); if (rctls) nvlist_free(rctls); /* * There is currently one reference to the zone, a cred_ref from * zone_kcred. To free the zone, we call crfree, which will call * zone_cred_rele, which will call zone_free. */ ASSERT(zone->zone_cred_ref == 1); ASSERT(zone->zone_kcred->cr_ref == 1); ASSERT(zone->zone_ref == 0); zkcr = zone->zone_kcred; zone->zone_kcred = NULL; crfree(zkcr); /* triggers call to zone_free */ return (zone_create_error(error, error2, extended_error)); } /* * Cause the zone to boot. This is pretty simple, since we let zoneadmd do * the heavy lifting. initname is the path to the program to launch * at the "top" of the zone; if this is NULL, we use the system default, * which is stored at zone_default_initname. */ static int zone_boot(zoneid_t zoneid) { int err; zone_t *zone; if (secpolicy_zone_config(CRED()) != 0) return (set_errno(EPERM)); if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) return (set_errno(EINVAL)); mutex_enter(&zonehash_lock); /* * Look for zone under hash lock to prevent races with calls to * zone_shutdown, zone_destroy, etc. */ if ((zone = zone_find_all_by_id(zoneid)) == NULL) { mutex_exit(&zonehash_lock); return (set_errno(EINVAL)); } mutex_enter(&zone_status_lock); if (zone_status_get(zone) != ZONE_IS_READY) { mutex_exit(&zone_status_lock); mutex_exit(&zonehash_lock); return (set_errno(EINVAL)); } zone_status_set(zone, ZONE_IS_BOOTING); mutex_exit(&zone_status_lock); zone_hold(zone); /* so we can use the zone_t later */ mutex_exit(&zonehash_lock); if (zone_status_wait_sig(zone, ZONE_IS_RUNNING) == 0) { zone_rele(zone); return (set_errno(EINTR)); } /* * Boot (starting init) might have failed, in which case the zone * will go to the SHUTTING_DOWN state; an appropriate errno will * be placed in zone->zone_boot_err, and so we return that. */ err = zone->zone_boot_err; zone_rele(zone); return (err ? set_errno(err) : 0); } /* * Kills all user processes in the zone, waiting for them all to exit * before returning. */ static int zone_empty(zone_t *zone) { int waitstatus; /* * We need to drop zonehash_lock before killing all * processes, otherwise we'll deadlock with zone_find_* * which can be called from the exit path. */ ASSERT(MUTEX_NOT_HELD(&zonehash_lock)); while ((waitstatus = zone_status_timedwait_sig(zone, ddi_get_lbolt() + hz, ZONE_IS_EMPTY)) == -1) { killall(zone->zone_id); } /* * return EINTR if we were signaled */ if (waitstatus == 0) return (EINTR); return (0); } /* * This function implements the policy for zone visibility. * * In standard Solaris, a non-global zone can only see itself. * * In Trusted Extensions, a labeled zone can lookup any zone whose label * it dominates. For this test, the label of the global zone is treated as * admin_high so it is special-cased instead of being checked for dominance. * * Returns true if zone attributes are viewable, false otherwise. */ static boolean_t zone_list_access(zone_t *zone) { if (curproc->p_zone == global_zone || curproc->p_zone == zone) { return (B_TRUE); } else if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) { bslabel_t *curproc_label; bslabel_t *zone_label; curproc_label = label2bslabel(curproc->p_zone->zone_slabel); zone_label = label2bslabel(zone->zone_slabel); if (zone->zone_id != GLOBAL_ZONEID && bldominates(curproc_label, zone_label)) { return (B_TRUE); } else { return (B_FALSE); } } else { return (B_FALSE); } } /* * Systemcall to start the zone's halt sequence. By the time this * function successfully returns, all user processes and kernel threads * executing in it will have exited, ZSD shutdown callbacks executed, * and the zone status set to ZONE_IS_DOWN. * * It is possible that the call will interrupt itself if the caller is the * parent of any process running in the zone, and doesn't have SIGCHLD blocked. */ static int zone_shutdown(zoneid_t zoneid) { int error; zone_t *zone; zone_status_t status; if (secpolicy_zone_config(CRED()) != 0) return (set_errno(EPERM)); if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) return (set_errno(EINVAL)); /* * Block mounts so that VFS_MOUNT() can get an accurate view of * the zone's status with regards to ZONE_IS_SHUTTING down. * * e.g. NFS can fail the mount if it determines that the zone * has already begun the shutdown sequence. */ if (block_mounts() == 0) return (set_errno(EINTR)); mutex_enter(&zonehash_lock); /* * Look for zone under hash lock to prevent races with other * calls to zone_shutdown and zone_destroy. */ if ((zone = zone_find_all_by_id(zoneid)) == NULL) { mutex_exit(&zonehash_lock); resume_mounts(); return (set_errno(EINVAL)); } mutex_enter(&zone_status_lock); status = zone_status_get(zone); /* * Fail if the zone isn't fully initialized yet. */ if (status < ZONE_IS_READY) { mutex_exit(&zone_status_lock); mutex_exit(&zonehash_lock); resume_mounts(); return (set_errno(EINVAL)); } /* * If conditions required for zone_shutdown() to return have been met, * return success. */ if (status >= ZONE_IS_DOWN) { mutex_exit(&zone_status_lock); mutex_exit(&zonehash_lock); resume_mounts(); return (0); } /* * If zone_shutdown() hasn't been called before, go through the motions. * If it has, there's nothing to do but wait for the kernel threads to * drain. */ if (status < ZONE_IS_EMPTY) { uint_t ntasks; mutex_enter(&zone->zone_lock); if ((ntasks = zone->zone_ntasks) != 1) { /* * There's still stuff running. */ zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); } mutex_exit(&zone->zone_lock); if (ntasks == 1) { /* * The only way to create another task is through * zone_enter(), which will block until we drop * zonehash_lock. The zone is empty. */ if (zone->zone_kthreads == NULL) { /* * Skip ahead to ZONE_IS_DOWN */ zone_status_set(zone, ZONE_IS_DOWN); } else { zone_status_set(zone, ZONE_IS_EMPTY); } } } zone_hold(zone); /* so we can use the zone_t later */ mutex_exit(&zone_status_lock); mutex_exit(&zonehash_lock); resume_mounts(); if (error = zone_empty(zone)) { zone_rele(zone); return (set_errno(error)); } /* * After the zone status goes to ZONE_IS_DOWN this zone will no * longer be notified of changes to the pools configuration, so * in order to not end up with a stale pool pointer, we point * ourselves at the default pool and remove all resource * visibility. This is especially important as the zone_t may * languish on the deathrow for a very long time waiting for * cred's to drain out. * * This rebinding of the zone can happen multiple times * (presumably due to interrupted or parallel systemcalls) * without any adverse effects. */ if (pool_lock_intr() != 0) { zone_rele(zone); return (set_errno(EINTR)); } if (pool_state == POOL_ENABLED) { mutex_enter(&cpu_lock); zone_pool_set(zone, pool_default); /* * The zone no longer needs to be able to see any cpus. */ zone_pset_set(zone, ZONE_PS_INVAL); mutex_exit(&cpu_lock); } pool_unlock(); /* * ZSD shutdown callbacks can be executed multiple times, hence * it is safe to not be holding any locks across this call. */ zone_zsd_callbacks(zone, ZSD_SHUTDOWN); mutex_enter(&zone_status_lock); if (zone->zone_kthreads == NULL && zone_status_get(zone) < ZONE_IS_DOWN) zone_status_set(zone, ZONE_IS_DOWN); mutex_exit(&zone_status_lock); /* * Wait for kernel threads to drain. */ if (!zone_status_wait_sig(zone, ZONE_IS_DOWN)) { zone_rele(zone); return (set_errno(EINTR)); } /* * Zone can be become down/destroyable even if the above wait * returns EINTR, so any code added here may never execute. * (i.e. don't add code here) */ zone_rele(zone); return (0); } /* * Log the specified zone's reference counts. The caller should not be * holding the zone's zone_lock. */ static void zone_log_refcounts(zone_t *zone) { char *buffer; char *buffer_position; uint32_t buffer_size; uint32_t index; uint_t ref; uint_t cred_ref; /* * Construct a string representing the subsystem-specific reference * counts. The counts are printed in ascending order by index into the * zone_t::zone_subsys_ref array. The list will be surrounded by * square brackets [] and will only contain nonzero reference counts. * * The buffer will hold two square bracket characters plus ten digits, * one colon, one space, one comma, and some characters for a * subsystem name per subsystem-specific reference count. (Unsigned 32- * bit integers have at most ten decimal digits.) The last * reference count's comma is replaced by the closing square * bracket and a NULL character to terminate the string. * * NOTE: We have to grab the zone's zone_lock to create a consistent * snapshot of the zone's reference counters. * * First, figure out how much space the string buffer will need. * The buffer's size is stored in buffer_size. */ buffer_size = 2; /* for the square brackets */ mutex_enter(&zone->zone_lock); zone->zone_flags |= ZF_REFCOUNTS_LOGGED; ref = zone->zone_ref; cred_ref = zone->zone_cred_ref; for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index) if (zone->zone_subsys_ref[index] != 0) buffer_size += strlen(zone_ref_subsys_names[index]) + 13; if (buffer_size == 2) { /* * No subsystems had nonzero reference counts. Don't bother * with allocating a buffer; just log the general-purpose and * credential reference counts. */ mutex_exit(&zone->zone_lock); (void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE, "Zone '%s' (ID: %d) is shutting down, but %u zone " "references and %u credential references are still extant", zone->zone_name, zone->zone_id, ref, cred_ref); return; } /* * buffer_size contains the exact number of characters that the * buffer will need. Allocate the buffer and fill it with nonzero * subsystem-specific reference counts. Surround the results with * square brackets afterwards. */ buffer = kmem_alloc(buffer_size, KM_SLEEP); buffer_position = &buffer[1]; for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index) { /* * NOTE: The DDI's version of sprintf() returns a pointer to * the modified buffer rather than the number of bytes written * (as in snprintf(3C)). This is unfortunate and annoying. * Therefore, we'll use snprintf() with INT_MAX to get the * number of bytes written. Using INT_MAX is safe because * the buffer is perfectly sized for the data: we'll never * overrun the buffer. */ if (zone->zone_subsys_ref[index] != 0) buffer_position += snprintf(buffer_position, INT_MAX, "%s: %u,", zone_ref_subsys_names[index], zone->zone_subsys_ref[index]); } mutex_exit(&zone->zone_lock); buffer[0] = '['; ASSERT((uintptr_t)(buffer_position - buffer) < buffer_size); ASSERT(buffer_position[0] == '\0' && buffer_position[-1] == ','); buffer_position[-1] = ']'; /* * Log the reference counts and free the message buffer. */ (void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE, "Zone '%s' (ID: %d) is shutting down, but %u zone references and " "%u credential references are still extant %s", zone->zone_name, zone->zone_id, ref, cred_ref, buffer); kmem_free(buffer, buffer_size); } /* * Systemcall entry point to finalize the zone halt process. The caller * must have already successfully called zone_shutdown(). * * Upon successful completion, the zone will have been fully destroyed: * zsched will have exited, destructor callbacks executed, and the zone * removed from the list of active zones. */ static int zone_destroy(zoneid_t zoneid) { uint64_t uniqid; zone_t *zone; zone_status_t status; clock_t wait_time; boolean_t log_refcounts; if (secpolicy_zone_config(CRED()) != 0) return (set_errno(EPERM)); if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) return (set_errno(EINVAL)); mutex_enter(&zonehash_lock); /* * Look for zone under hash lock to prevent races with other * calls to zone_destroy. */ if ((zone = zone_find_all_by_id(zoneid)) == NULL) { mutex_exit(&zonehash_lock); return (set_errno(EINVAL)); } if (zone_mount_count(zone->zone_rootpath) != 0) { mutex_exit(&zonehash_lock); return (set_errno(EBUSY)); } mutex_enter(&zone_status_lock); status = zone_status_get(zone); if (status < ZONE_IS_DOWN) { mutex_exit(&zone_status_lock); mutex_exit(&zonehash_lock); return (set_errno(EBUSY)); } else if (status == ZONE_IS_DOWN) { zone_status_set(zone, ZONE_IS_DYING); /* Tell zsched to exit */ } mutex_exit(&zone_status_lock); zone_hold(zone); mutex_exit(&zonehash_lock); /* * wait for zsched to exit */ zone_status_wait(zone, ZONE_IS_DEAD); zone_zsd_callbacks(zone, ZSD_DESTROY); zone->zone_netstack = NULL; uniqid = zone->zone_uniqid; zone_rele(zone); zone = NULL; /* potentially free'd */ log_refcounts = B_FALSE; wait_time = SEC_TO_TICK(ZONE_DESTROY_TIMEOUT_SECS); mutex_enter(&zonehash_lock); for (; /* ever */; ) { boolean_t unref; boolean_t refs_have_been_logged; if ((zone = zone_find_all_by_id(zoneid)) == NULL || zone->zone_uniqid != uniqid) { /* * The zone has gone away. Necessary conditions * are met, so we return success. */ mutex_exit(&zonehash_lock); return (0); } mutex_enter(&zone->zone_lock); unref = ZONE_IS_UNREF(zone); refs_have_been_logged = (zone->zone_flags & ZF_REFCOUNTS_LOGGED); mutex_exit(&zone->zone_lock); if (unref) { /* * There is only one reference to the zone -- that * added when the zone was added to the hashtables -- * and things will remain this way until we drop * zonehash_lock... we can go ahead and cleanup the * zone. */ break; } /* * Wait for zone_rele_common() or zone_cred_rele() to signal * zone_destroy_cv. zone_destroy_cv is signaled only when * some zone's general-purpose reference count reaches one. * If ZONE_DESTROY_TIMEOUT_SECS seconds elapse while waiting * on zone_destroy_cv, then log the zone's reference counts and * continue to wait for zone_rele() and zone_cred_rele(). */ if (!refs_have_been_logged) { if (!log_refcounts) { /* * This thread hasn't timed out waiting on * zone_destroy_cv yet. Wait wait_time clock * ticks (initially ZONE_DESTROY_TIMEOUT_SECS * seconds) for the zone's references to clear. */ ASSERT(wait_time > 0); wait_time = cv_reltimedwait_sig( &zone_destroy_cv, &zonehash_lock, wait_time, TR_SEC); if (wait_time > 0) { /* * A thread in zone_rele() or * zone_cred_rele() signaled * zone_destroy_cv before this thread's * wait timed out. The zone might have * only one reference left; find out! */ continue; } else if (wait_time == 0) { /* The thread's process was signaled. */ mutex_exit(&zonehash_lock); return (set_errno(EINTR)); } /* * The thread timed out while waiting on * zone_destroy_cv. Even though the thread * timed out, it has to check whether another * thread woke up from zone_destroy_cv and * destroyed the zone. * * If the zone still exists and has more than * one unreleased general-purpose reference, * then log the zone's reference counts. */ log_refcounts = B_TRUE; continue; } /* * The thread already timed out on zone_destroy_cv while * waiting for subsystems to release the zone's last * general-purpose references. Log the zone's reference * counts and wait indefinitely on zone_destroy_cv. */ zone_log_refcounts(zone); } if (cv_wait_sig(&zone_destroy_cv, &zonehash_lock) == 0) { /* The thread's process was signaled. */ mutex_exit(&zonehash_lock); return (set_errno(EINTR)); } } /* * Remove CPU cap for this zone now since we're not going to * fail below this point. */ cpucaps_zone_remove(zone); /* Get rid of the zone's kstats */ zone_kstat_delete(zone); /* remove the pfexecd doors */ if (zone->zone_pfexecd != NULL) { klpd_freelist(&zone->zone_pfexecd); zone->zone_pfexecd = NULL; } /* free brand specific data */ if (ZONE_IS_BRANDED(zone)) ZBROP(zone)->b_free_brand_data(zone); /* Say goodbye to brand framework. */ brand_unregister_zone(zone->zone_brand); /* * It is now safe to let the zone be recreated; remove it from the * lists. The memory will not be freed until the last cred * reference goes away. */ ASSERT(zonecount > 1); /* must be > 1; can't destroy global zone */ zonecount--; /* remove from active list and hash tables */ list_remove(&zone_active, zone); (void) mod_hash_destroy(zonehashbyname, (mod_hash_key_t)zone->zone_name); (void) mod_hash_destroy(zonehashbyid, (mod_hash_key_t)(uintptr_t)zone->zone_id); if (zone->zone_flags & ZF_HASHED_LABEL) (void) mod_hash_destroy(zonehashbylabel, (mod_hash_key_t)zone->zone_slabel); mutex_exit(&zonehash_lock); /* * Release the root vnode; we're not using it anymore. Nor should any * other thread that might access it exist. */ if (zone->zone_rootvp != NULL) { VN_RELE(zone->zone_rootvp); zone->zone_rootvp = NULL; } /* add to deathrow list */ mutex_enter(&zone_deathrow_lock); list_insert_tail(&zone_deathrow, zone); mutex_exit(&zone_deathrow_lock); /* * Drop last reference (which was added by zsched()), this will * free the zone unless there are outstanding cred references. */ zone_rele(zone); return (0); } /* * Systemcall entry point for zone_getattr(2). */ static ssize_t zone_getattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize) { size_t size; int error = 0, err; zone_t *zone; char *zonepath; char *outstr; zone_status_t zone_status; pid_t initpid; boolean_t global = (curzone == global_zone); boolean_t inzone = (curzone->zone_id == zoneid); ushort_t flags; zone_net_data_t *zbuf; mutex_enter(&zonehash_lock); if ((zone = zone_find_all_by_id(zoneid)) == NULL) { mutex_exit(&zonehash_lock); return (set_errno(EINVAL)); } zone_status = zone_status_get(zone); if (zone_status < ZONE_IS_INITIALIZED) { mutex_exit(&zonehash_lock); return (set_errno(EINVAL)); } zone_hold(zone); mutex_exit(&zonehash_lock); /* * If not in the global zone, don't show information about other zones, * unless the system is labeled and the local zone's label dominates * the other zone. */ if (!zone_list_access(zone)) { zone_rele(zone); return (set_errno(EINVAL)); } switch (attr) { case ZONE_ATTR_ROOT: if (global) { /* * Copy the path to trim the trailing "/" (except for * the global zone). */ if (zone != global_zone) size = zone->zone_rootpathlen - 1; else size = zone->zone_rootpathlen; zonepath = kmem_alloc(size, KM_SLEEP); bcopy(zone->zone_rootpath, zonepath, size); zonepath[size - 1] = '\0'; } else { if (inzone || !is_system_labeled()) { /* * Caller is not in the global zone. * if the query is on the current zone * or the system is not labeled, * just return faked-up path for current zone. */ zonepath = "/"; size = 2; } else { /* * Return related path for current zone. */ int prefix_len = strlen(zone_prefix); int zname_len = strlen(zone->zone_name); size = prefix_len + zname_len + 1; zonepath = kmem_alloc(size, KM_SLEEP); bcopy(zone_prefix, zonepath, prefix_len); bcopy(zone->zone_name, zonepath + prefix_len, zname_len); zonepath[size - 1] = '\0'; } } if (bufsize > size) bufsize = size; if (buf != NULL) { err = copyoutstr(zonepath, buf, bufsize, NULL); if (err != 0 && err != ENAMETOOLONG) error = EFAULT; } if (global || (is_system_labeled() && !inzone)) kmem_free(zonepath, size); break; case ZONE_ATTR_NAME: size = strlen(zone->zone_name) + 1; if (bufsize > size) bufsize = size; if (buf != NULL) { err = copyoutstr(zone->zone_name, buf, bufsize, NULL); if (err != 0 && err != ENAMETOOLONG) error = EFAULT; } break; case ZONE_ATTR_STATUS: /* * Since we're not holding zonehash_lock, the zone status * may be anything; leave it up to userland to sort it out. */ size = sizeof (zone_status); if (bufsize > size) bufsize = size; zone_status = zone_status_get(zone); if (buf != NULL && copyout(&zone_status, buf, bufsize) != 0) error = EFAULT; break; case ZONE_ATTR_FLAGS: size = sizeof (zone->zone_flags); if (bufsize > size) bufsize = size; flags = zone->zone_flags; if (buf != NULL && copyout(&flags, buf, bufsize) != 0) error = EFAULT; break; case ZONE_ATTR_PRIVSET: size = sizeof (priv_set_t); if (bufsize > size) bufsize = size; if (buf != NULL && copyout(zone->zone_privset, buf, bufsize) != 0) error = EFAULT; break; case ZONE_ATTR_UNIQID: size = sizeof (zone->zone_uniqid); if (bufsize > size) bufsize = size; if (buf != NULL && copyout(&zone->zone_uniqid, buf, bufsize) != 0) error = EFAULT; break; case ZONE_ATTR_POOLID: { pool_t *pool; poolid_t poolid; if (pool_lock_intr() != 0) { error = EINTR; break; } pool = zone_pool_get(zone); poolid = pool->pool_id; pool_unlock(); size = sizeof (poolid); if (bufsize > size) bufsize = size; if (buf != NULL && copyout(&poolid, buf, size) != 0) error = EFAULT; } break; case ZONE_ATTR_SLBL: size = sizeof (bslabel_t); if (bufsize > size) bufsize = size; if (zone->zone_slabel == NULL) error = EINVAL; else if (buf != NULL && copyout(label2bslabel(zone->zone_slabel), buf, bufsize) != 0) error = EFAULT; break; case ZONE_ATTR_INITPID: size = sizeof (initpid); if (bufsize > size) bufsize = size; initpid = zone->zone_proc_initpid; if (initpid == -1) { error = ESRCH; break; } if (buf != NULL && copyout(&initpid, buf, bufsize) != 0) error = EFAULT; break; case ZONE_ATTR_BRAND: size = strlen(zone->zone_brand->b_name) + 1; if (bufsize > size) bufsize = size; if (buf != NULL) { err = copyoutstr(zone->zone_brand->b_name, buf, bufsize, NULL); if (err != 0 && err != ENAMETOOLONG) error = EFAULT; } break; case ZONE_ATTR_INITNAME: size = strlen(zone->zone_initname) + 1; if (bufsize > size) bufsize = size; if (buf != NULL) { err = copyoutstr(zone->zone_initname, buf, bufsize, NULL); if (err != 0 && err != ENAMETOOLONG) error = EFAULT; } break; case ZONE_ATTR_BOOTARGS: if (zone->zone_bootargs == NULL) outstr = ""; else outstr = zone->zone_bootargs; size = strlen(outstr) + 1; if (bufsize > size) bufsize = size; if (buf != NULL) { err = copyoutstr(outstr, buf, bufsize, NULL); if (err != 0 && err != ENAMETOOLONG) error = EFAULT; } break; case ZONE_ATTR_PHYS_MCAP: size = sizeof (zone->zone_phys_mcap); if (bufsize > size) bufsize = size; if (buf != NULL && copyout(&zone->zone_phys_mcap, buf, bufsize) != 0) error = EFAULT; break; case ZONE_ATTR_SCHED_CLASS: mutex_enter(&class_lock); if (zone->zone_defaultcid >= loaded_classes) outstr = ""; else outstr = sclass[zone->zone_defaultcid].cl_name; size = strlen(outstr) + 1; if (bufsize > size) bufsize = size; if (buf != NULL) { err = copyoutstr(outstr, buf, bufsize, NULL); if (err != 0 && err != ENAMETOOLONG) error = EFAULT; } mutex_exit(&class_lock); break; case ZONE_ATTR_HOSTID: if (zone->zone_hostid != HW_INVALID_HOSTID && bufsize == sizeof (zone->zone_hostid)) { size = sizeof (zone->zone_hostid); if (buf != NULL && copyout(&zone->zone_hostid, buf, bufsize) != 0) error = EFAULT; } else { error = EINVAL; } break; case ZONE_ATTR_FS_ALLOWED: if (zone->zone_fs_allowed == NULL) outstr = ""; else outstr = zone->zone_fs_allowed; size = strlen(outstr) + 1; if (bufsize > size) bufsize = size; if (buf != NULL) { err = copyoutstr(outstr, buf, bufsize, NULL); if (err != 0 && err != ENAMETOOLONG) error = EFAULT; } break; case ZONE_ATTR_NETWORK: zbuf = kmem_alloc(bufsize, KM_SLEEP); if (copyin(buf, zbuf, bufsize) != 0) { error = EFAULT; } else { error = zone_get_network(zoneid, zbuf); if (error == 0 && copyout(zbuf, buf, bufsize) != 0) error = EFAULT; } kmem_free(zbuf, bufsize); break; default: if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) { size = bufsize; error = ZBROP(zone)->b_getattr(zone, attr, buf, &size); } else { error = EINVAL; } } zone_rele(zone); if (error) return (set_errno(error)); return ((ssize_t)size); } /* * Systemcall entry point for zone_setattr(2). */ /*ARGSUSED*/ static int zone_setattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize) { zone_t *zone; zone_status_t zone_status; int err = -1; zone_net_data_t *zbuf; if (secpolicy_zone_config(CRED()) != 0) return (set_errno(EPERM)); /* * Only the ZONE_ATTR_PHYS_MCAP attribute can be set on the * global zone. */ if (zoneid == GLOBAL_ZONEID && attr != ZONE_ATTR_PHYS_MCAP) { return (set_errno(EINVAL)); } mutex_enter(&zonehash_lock); if ((zone = zone_find_all_by_id(zoneid)) == NULL) { mutex_exit(&zonehash_lock); return (set_errno(EINVAL)); } zone_hold(zone); mutex_exit(&zonehash_lock); /* * At present most attributes can only be set on non-running, * non-global zones. */ zone_status = zone_status_get(zone); if (attr != ZONE_ATTR_PHYS_MCAP && zone_status > ZONE_IS_READY) { err = EINVAL; goto done; } switch (attr) { case ZONE_ATTR_INITNAME: err = zone_set_initname(zone, (const char *)buf); break; case ZONE_ATTR_BOOTARGS: err = zone_set_bootargs(zone, (const char *)buf); break; case ZONE_ATTR_BRAND: err = zone_set_brand(zone, (const char *)buf); break; case ZONE_ATTR_FS_ALLOWED: err = zone_set_fs_allowed(zone, (const char *)buf); break; case ZONE_ATTR_PHYS_MCAP: err = zone_set_phys_mcap(zone, (const uint64_t *)buf); break; case ZONE_ATTR_SCHED_CLASS: err = zone_set_sched_class(zone, (const char *)buf); break; case ZONE_ATTR_HOSTID: if (bufsize == sizeof (zone->zone_hostid)) { if (copyin(buf, &zone->zone_hostid, bufsize) == 0) err = 0; else err = EFAULT; } else { err = EINVAL; } break; case ZONE_ATTR_NETWORK: if (bufsize > (PIPE_BUF + sizeof (zone_net_data_t))) { err = EINVAL; break; } zbuf = kmem_alloc(bufsize, KM_SLEEP); if (copyin(buf, zbuf, bufsize) != 0) { kmem_free(zbuf, bufsize); err = EFAULT; break; } err = zone_set_network(zoneid, zbuf); kmem_free(zbuf, bufsize); break; default: if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) err = ZBROP(zone)->b_setattr(zone, attr, buf, bufsize); else err = EINVAL; } done: zone_rele(zone); ASSERT(err != -1); return (err != 0 ? set_errno(err) : 0); } /* * Return zero if the process has at least one vnode mapped in to its * address space which shouldn't be allowed to change zones. * * Also return zero if the process has any shared mappings which reserve * swap. This is because the counting for zone.max-swap does not allow swap * reservation to be shared between zones. zone swap reservation is counted * on zone->zone_max_swap. */ static int as_can_change_zones(void) { proc_t *pp = curproc; struct seg *seg; struct as *as = pp->p_as; vnode_t *vp; int allow = 1; ASSERT(pp->p_as != &kas); AS_LOCK_ENTER(as, &as->a_lock, RW_READER); for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { /* * Cannot enter zone with shared anon memory which * reserves swap. See comment above. */ if (seg_can_change_zones(seg) == B_FALSE) { allow = 0; break; } /* * if we can't get a backing vnode for this segment then skip * it. */ vp = NULL; if (SEGOP_GETVP(seg, seg->s_base, &vp) != 0 || vp == NULL) continue; if (!vn_can_change_zones(vp)) { /* bail on first match */ allow = 0; break; } } AS_LOCK_EXIT(as, &as->a_lock); return (allow); } /* * Count swap reserved by curproc's address space */ static size_t as_swresv(void) { proc_t *pp = curproc; struct seg *seg; struct as *as = pp->p_as; size_t swap = 0; ASSERT(pp->p_as != &kas); ASSERT(AS_WRITE_HELD(as, &as->a_lock)); for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) swap += seg_swresv(seg); return (swap); } /* * Systemcall entry point for zone_enter(). * * The current process is injected into said zone. In the process * it will change its project membership, privileges, rootdir/cwd, * zone-wide rctls, and pool association to match those of the zone. * * The first zone_enter() called while the zone is in the ZONE_IS_READY * state will transition it to ZONE_IS_RUNNING. Processes may only * enter a zone that is "ready" or "running". */ static int zone_enter(zoneid_t zoneid) { zone_t *zone; vnode_t *vp; proc_t *pp = curproc; contract_t *ct; cont_process_t *ctp; task_t *tk, *oldtk; kproject_t *zone_proj0; cred_t *cr, *newcr; pool_t *oldpool, *newpool; sess_t *sp; uid_t uid; zone_status_t status; int err = 0; rctl_entity_p_t e; size_t swap; kthread_id_t t; if (secpolicy_zone_config(CRED()) != 0) return (set_errno(EPERM)); if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) return (set_errno(EINVAL)); /* * Stop all lwps so we don't need to hold a lock to look at * curproc->p_zone. This needs to happen before we grab any * locks to avoid deadlock (another lwp in the process could * be waiting for the held lock). */ if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) return (set_errno(EINTR)); /* * Make sure we're not changing zones with files open or mapped in * to our address space which shouldn't be changing zones. */ if (!files_can_change_zones()) { err = EBADF; goto out; } if (!as_can_change_zones()) { err = EFAULT; goto out; } mutex_enter(&zonehash_lock); if (pp->p_zone != global_zone) { mutex_exit(&zonehash_lock); err = EINVAL; goto out; } zone = zone_find_all_by_id(zoneid); if (zone == NULL) { mutex_exit(&zonehash_lock); err = EINVAL; goto out; } /* * To prevent processes in a zone from holding contracts on * extrazonal resources, and to avoid process contract * memberships which span zones, contract holders and processes * which aren't the sole members of their encapsulating process * contracts are not allowed to zone_enter. */ ctp = pp->p_ct_process; ct = &ctp->conp_contract; mutex_enter(&ct->ct_lock); mutex_enter(&pp->p_lock); if ((avl_numnodes(&pp->p_ct_held) != 0) || (ctp->conp_nmembers != 1)) { mutex_exit(&pp->p_lock); mutex_exit(&ct->ct_lock); mutex_exit(&zonehash_lock); err = EINVAL; goto out; } /* * Moreover, we don't allow processes whose encapsulating * process contracts have inherited extrazonal contracts. * While it would be easier to eliminate all process contracts * with inherited contracts, we need to be able to give a * restarted init (or other zone-penetrating process) its * predecessor's contracts. */ if (ctp->conp_ninherited != 0) { contract_t *next; for (next = list_head(&ctp->conp_inherited); next; next = list_next(&ctp->conp_inherited, next)) { if (contract_getzuniqid(next) != zone->zone_uniqid) { mutex_exit(&pp->p_lock); mutex_exit(&ct->ct_lock); mutex_exit(&zonehash_lock); err = EINVAL; goto out; } } } mutex_exit(&pp->p_lock); mutex_exit(&ct->ct_lock); status = zone_status_get(zone); if (status < ZONE_IS_READY || status >= ZONE_IS_SHUTTING_DOWN) { /* * Can't join */ mutex_exit(&zonehash_lock); err = EINVAL; goto out; } /* * Make sure new priv set is within the permitted set for caller */ if (!priv_issubset(zone->zone_privset, &CR_OPPRIV(CRED()))) { mutex_exit(&zonehash_lock); err = EPERM; goto out; } /* * We want to momentarily drop zonehash_lock while we optimistically * bind curproc to the pool it should be running in. This is safe * since the zone can't disappear (we have a hold on it). */ zone_hold(zone); mutex_exit(&zonehash_lock); /* * Grab pool_lock to keep the pools configuration from changing * and to stop ourselves from getting rebound to another pool * until we join the zone. */ if (pool_lock_intr() != 0) { zone_rele(zone); err = EINTR; goto out; } ASSERT(secpolicy_pool(CRED()) == 0); /* * Bind ourselves to the pool currently associated with the zone. */ oldpool = curproc->p_pool; newpool = zone_pool_get(zone); if (pool_state == POOL_ENABLED && newpool != oldpool && (err = pool_do_bind(newpool, P_PID, P_MYID, POOL_BIND_ALL)) != 0) { pool_unlock(); zone_rele(zone); goto out; } /* * Grab cpu_lock now; we'll need it later when we call * task_join(). */ mutex_enter(&cpu_lock); mutex_enter(&zonehash_lock); /* * Make sure the zone hasn't moved on since we dropped zonehash_lock. */ if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) { /* * Can't join anymore. */ mutex_exit(&zonehash_lock); mutex_exit(&cpu_lock); if (pool_state == POOL_ENABLED && newpool != oldpool) (void) pool_do_bind(oldpool, P_PID, P_MYID, POOL_BIND_ALL); pool_unlock(); zone_rele(zone); err = EINVAL; goto out; } /* * a_lock must be held while transfering locked memory and swap * reservation from the global zone to the non global zone because * asynchronous faults on the processes' address space can lock * memory and reserve swap via MCL_FUTURE and MAP_NORESERVE * segments respectively. */ AS_LOCK_ENTER(pp->as, &pp->p_as->a_lock, RW_WRITER); swap = as_swresv(); mutex_enter(&pp->p_lock); zone_proj0 = zone->zone_zsched->p_task->tk_proj; /* verify that we do not exceed and task or lwp limits */ mutex_enter(&zone->zone_nlwps_lock); /* add new lwps to zone and zone's proj0 */ zone_proj0->kpj_nlwps += pp->p_lwpcnt; zone->zone_nlwps += pp->p_lwpcnt; /* add 1 task to zone's proj0 */ zone_proj0->kpj_ntasks += 1; zone_proj0->kpj_nprocs++; zone->zone_nprocs++; mutex_exit(&zone->zone_nlwps_lock); mutex_enter(&zone->zone_mem_lock); zone->zone_locked_mem += pp->p_locked_mem; zone_proj0->kpj_data.kpd_locked_mem += pp->p_locked_mem; zone->zone_max_swap += swap; mutex_exit(&zone->zone_mem_lock); mutex_enter(&(zone_proj0->kpj_data.kpd_crypto_lock)); zone_proj0->kpj_data.kpd_crypto_mem += pp->p_crypto_mem; mutex_exit(&(zone_proj0->kpj_data.kpd_crypto_lock)); /* remove lwps and process from proc's old zone and old project */ mutex_enter(&pp->p_zone->zone_nlwps_lock); pp->p_zone->zone_nlwps -= pp->p_lwpcnt; pp->p_task->tk_proj->kpj_nlwps -= pp->p_lwpcnt; pp->p_task->tk_proj->kpj_nprocs--; pp->p_zone->zone_nprocs--; mutex_exit(&pp->p_zone->zone_nlwps_lock); mutex_enter(&pp->p_zone->zone_mem_lock); pp->p_zone->zone_locked_mem -= pp->p_locked_mem; pp->p_task->tk_proj->kpj_data.kpd_locked_mem -= pp->p_locked_mem; pp->p_zone->zone_max_swap -= swap; mutex_exit(&pp->p_zone->zone_mem_lock); mutex_enter(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock)); pp->p_task->tk_proj->kpj_data.kpd_crypto_mem -= pp->p_crypto_mem; mutex_exit(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock)); pp->p_flag |= SZONETOP; pp->p_zone = zone; mutex_exit(&pp->p_lock); AS_LOCK_EXIT(pp->p_as, &pp->p_as->a_lock); /* * Joining the zone cannot fail from now on. * * This means that a lot of the following code can be commonized and * shared with zsched(). */ /* * If the process contract fmri was inherited, we need to * flag this so that any contract status will not leak * extra zone information, svc_fmri in this case */ if (ctp->conp_svc_ctid != ct->ct_id) { mutex_enter(&ct->ct_lock); ctp->conp_svc_zone_enter = ct->ct_id; mutex_exit(&ct->ct_lock); } /* * Reset the encapsulating process contract's zone. */ ASSERT(ct->ct_mzuniqid == GLOBAL_ZONEUNIQID); contract_setzuniqid(ct, zone->zone_uniqid); /* * Create a new task and associate the process with the project keyed * by (projid,zoneid). * * We might as well be in project 0; the global zone's projid doesn't * make much sense in a zone anyhow. * * This also increments zone_ntasks, and returns with p_lock held. */ tk = task_create(0, zone); oldtk = task_join(tk, 0); mutex_exit(&cpu_lock); /* * call RCTLOP_SET functions on this proc */ e.rcep_p.zone = zone; e.rcep_t = RCENTITY_ZONE; (void) rctl_set_dup(NULL, NULL, pp, &e, zone->zone_rctls, NULL, RCD_CALLBACK); mutex_exit(&pp->p_lock); /* * We don't need to hold any of zsched's locks here; not only do we know * the process and zone aren't going away, we know its session isn't * changing either. * * By joining zsched's session here, we mimic the behavior in the * global zone of init's sid being the pid of sched. We extend this * to all zlogin-like zone_enter()'ing processes as well. */ mutex_enter(&pidlock); sp = zone->zone_zsched->p_sessp; sess_hold(zone->zone_zsched); mutex_enter(&pp->p_lock); pgexit(pp); sess_rele(pp->p_sessp, B_TRUE); pp->p_sessp = sp; pgjoin(pp, zone->zone_zsched->p_pidp); /* * If any threads are scheduled to be placed on zone wait queue they * should abandon the idea since the wait queue is changing. * We need to be holding pidlock & p_lock to do this. */ if ((t = pp->p_tlist) != NULL) { do { thread_lock(t); /* * Kick this thread so that he doesn't sit * on a wrong wait queue. */ if (ISWAITING(t)) setrun_locked(t); if (t->t_schedflag & TS_ANYWAITQ) t->t_schedflag &= ~ TS_ANYWAITQ; thread_unlock(t); } while ((t = t->t_forw) != pp->p_tlist); } /* * If there is a default scheduling class for the zone and it is not * the class we are currently in, change all of the threads in the * process to the new class. We need to be holding pidlock & p_lock * when we call parmsset so this is a good place to do it. */ if (zone->zone_defaultcid > 0 && zone->zone_defaultcid != curthread->t_cid) { pcparms_t pcparms; pcparms.pc_cid = zone->zone_defaultcid; pcparms.pc_clparms[0] = 0; /* * If setting the class fails, we still want to enter the zone. */ if ((t = pp->p_tlist) != NULL) { do { (void) parmsset(&pcparms, t); } while ((t = t->t_forw) != pp->p_tlist); } } mutex_exit(&pp->p_lock); mutex_exit(&pidlock); mutex_exit(&zonehash_lock); /* * We're firmly in the zone; let pools progress. */ pool_unlock(); task_rele(oldtk); /* * We don't need to retain a hold on the zone since we already * incremented zone_ntasks, so the zone isn't going anywhere. */ zone_rele(zone); /* * Chroot */ vp = zone->zone_rootvp; zone_chdir(vp, &PTOU(pp)->u_cdir, pp); zone_chdir(vp, &PTOU(pp)->u_rdir, pp); /* * Change process credentials */ newcr = cralloc(); mutex_enter(&pp->p_crlock); cr = pp->p_cred; crcopy_to(cr, newcr); crsetzone(newcr, zone); pp->p_cred = newcr; /* * Restrict all process privilege sets to zone limit */ priv_intersect(zone->zone_privset, &CR_PPRIV(newcr)); priv_intersect(zone->zone_privset, &CR_EPRIV(newcr)); priv_intersect(zone->zone_privset, &CR_IPRIV(newcr)); priv_intersect(zone->zone_privset, &CR_LPRIV(newcr)); mutex_exit(&pp->p_crlock); crset(pp, newcr); /* * Adjust upcount to reflect zone entry. */ uid = crgetruid(newcr); mutex_enter(&pidlock); upcount_dec(uid, GLOBAL_ZONEID); upcount_inc(uid, zoneid); mutex_exit(&pidlock); /* * Set up core file path and content. */ set_core_defaults(); out: /* * Let the other lwps continue. */ mutex_enter(&pp->p_lock); if (curthread != pp->p_agenttp) continuelwps(pp); mutex_exit(&pp->p_lock); return (err != 0 ? set_errno(err) : 0); } /* * Systemcall entry point for zone_list(2). * * Processes running in a (non-global) zone only see themselves. * On labeled systems, they see all zones whose label they dominate. */ static int zone_list(zoneid_t *zoneidlist, uint_t *numzones) { zoneid_t *zoneids; zone_t *zone, *myzone; uint_t user_nzones, real_nzones; uint_t domi_nzones; int error; if (copyin(numzones, &user_nzones, sizeof (uint_t)) != 0) return (set_errno(EFAULT)); myzone = curproc->p_zone; if (myzone != global_zone) { bslabel_t *mybslab; if (!is_system_labeled()) { /* just return current zone */ real_nzones = domi_nzones = 1; zoneids = kmem_alloc(sizeof (zoneid_t), KM_SLEEP); zoneids[0] = myzone->zone_id; } else { /* return all zones that are dominated */ mutex_enter(&zonehash_lock); real_nzones = zonecount; domi_nzones = 0; if (real_nzones > 0) { zoneids = kmem_alloc(real_nzones * sizeof (zoneid_t), KM_SLEEP); mybslab = label2bslabel(myzone->zone_slabel); for (zone = list_head(&zone_active); zone != NULL; zone = list_next(&zone_active, zone)) { if (zone->zone_id == GLOBAL_ZONEID) continue; if (zone != myzone && (zone->zone_flags & ZF_IS_SCRATCH)) continue; /* * Note that a label always dominates * itself, so myzone is always included * in the list. */ if (bldominates(mybslab, label2bslabel(zone->zone_slabel))) { zoneids[domi_nzones++] = zone->zone_id; } } } mutex_exit(&zonehash_lock); } } else { mutex_enter(&zonehash_lock); real_nzones = zonecount; domi_nzones = 0; if (real_nzones > 0) { zoneids = kmem_alloc(real_nzones * sizeof (zoneid_t), KM_SLEEP); for (zone = list_head(&zone_active); zone != NULL; zone = list_next(&zone_active, zone)) zoneids[domi_nzones++] = zone->zone_id; ASSERT(domi_nzones == real_nzones); } mutex_exit(&zonehash_lock); } /* * If user has allocated space for fewer entries than we found, then * return only up to his limit. Either way, tell him exactly how many * we found. */ if (domi_nzones < user_nzones) user_nzones = domi_nzones; error = 0; if (copyout(&domi_nzones, numzones, sizeof (uint_t)) != 0) { error = EFAULT; } else if (zoneidlist != NULL && user_nzones != 0) { if (copyout(zoneids, zoneidlist, user_nzones * sizeof (zoneid_t)) != 0) error = EFAULT; } if (real_nzones > 0) kmem_free(zoneids, real_nzones * sizeof (zoneid_t)); if (error != 0) return (set_errno(error)); else return (0); } /* * Systemcall entry point for zone_lookup(2). * * Non-global zones are only able to see themselves and (on labeled systems) * the zones they dominate. */ static zoneid_t zone_lookup(const char *zone_name) { char *kname; zone_t *zone; zoneid_t zoneid; int err; if (zone_name == NULL) { /* return caller's zone id */ return (getzoneid()); } kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP); if ((err = copyinstr(zone_name, kname, ZONENAME_MAX, NULL)) != 0) { kmem_free(kname, ZONENAME_MAX); return (set_errno(err)); } mutex_enter(&zonehash_lock); zone = zone_find_all_by_name(kname); kmem_free(kname, ZONENAME_MAX); /* * In a non-global zone, can only lookup global and own name. * In Trusted Extensions zone label dominance rules apply. */ if (zone == NULL || zone_status_get(zone) < ZONE_IS_READY || !zone_list_access(zone)) { mutex_exit(&zonehash_lock); return (set_errno(EINVAL)); } else { zoneid = zone->zone_id; mutex_exit(&zonehash_lock); return (zoneid); } } static int zone_version(int *version_arg) { int version = ZONE_SYSCALL_API_VERSION; if (copyout(&version, version_arg, sizeof (int)) != 0) return (set_errno(EFAULT)); return (0); } /* ARGSUSED */ long zone(int cmd, void *arg1, void *arg2, void *arg3, void *arg4) { zone_def zs; int err; switch (cmd) { case ZONE_CREATE: if (get_udatamodel() == DATAMODEL_NATIVE) { if (copyin(arg1, &zs, sizeof (zone_def))) { return (set_errno(EFAULT)); } } else { #ifdef _SYSCALL32_IMPL zone_def32 zs32; if (copyin(arg1, &zs32, sizeof (zone_def32))) { return (set_errno(EFAULT)); } zs.zone_name = (const char *)(unsigned long)zs32.zone_name; zs.zone_root = (const char *)(unsigned long)zs32.zone_root; zs.zone_privs = (const struct priv_set *) (unsigned long)zs32.zone_privs; zs.zone_privssz = zs32.zone_privssz; zs.rctlbuf = (caddr_t)(unsigned long)zs32.rctlbuf; zs.rctlbufsz = zs32.rctlbufsz; zs.zfsbuf = (caddr_t)(unsigned long)zs32.zfsbuf; zs.zfsbufsz = zs32.zfsbufsz; zs.extended_error = (int *)(unsigned long)zs32.extended_error; zs.match = zs32.match; zs.doi = zs32.doi; zs.label = (const bslabel_t *)(uintptr_t)zs32.label; zs.flags = zs32.flags; #else panic("get_udatamodel() returned bogus result\n"); #endif } return (zone_create(zs.zone_name, zs.zone_root, zs.zone_privs, zs.zone_privssz, (caddr_t)zs.rctlbuf, zs.rctlbufsz, (caddr_t)zs.zfsbuf, zs.zfsbufsz, zs.extended_error, zs.match, zs.doi, zs.label, zs.flags)); case ZONE_BOOT: return (zone_boot((zoneid_t)(uintptr_t)arg1)); case ZONE_DESTROY: return (zone_destroy((zoneid_t)(uintptr_t)arg1)); case ZONE_GETATTR: return (zone_getattr((zoneid_t)(uintptr_t)arg1, (int)(uintptr_t)arg2, arg3, (size_t)arg4)); case ZONE_SETATTR: return (zone_setattr((zoneid_t)(uintptr_t)arg1, (int)(uintptr_t)arg2, arg3, (size_t)arg4)); case ZONE_ENTER: return (zone_enter((zoneid_t)(uintptr_t)arg1)); case ZONE_LIST: return (zone_list((zoneid_t *)arg1, (uint_t *)arg2)); case ZONE_SHUTDOWN: return (zone_shutdown((zoneid_t)(uintptr_t)arg1)); case ZONE_LOOKUP: return (zone_lookup((const char *)arg1)); case ZONE_VERSION: return (zone_version((int *)arg1)); case ZONE_ADD_DATALINK: return (zone_add_datalink((zoneid_t)(uintptr_t)arg1, (datalink_id_t)(uintptr_t)arg2)); case ZONE_DEL_DATALINK: return (zone_remove_datalink((zoneid_t)(uintptr_t)arg1, (datalink_id_t)(uintptr_t)arg2)); case ZONE_CHECK_DATALINK: { zoneid_t zoneid; boolean_t need_copyout; if (copyin(arg1, &zoneid, sizeof (zoneid)) != 0) return (EFAULT); need_copyout = (zoneid == ALL_ZONES); err = zone_check_datalink(&zoneid, (datalink_id_t)(uintptr_t)arg2); if (err == 0 && need_copyout) { if (copyout(&zoneid, arg1, sizeof (zoneid)) != 0) err = EFAULT; } return (err == 0 ? 0 : set_errno(err)); } case ZONE_LIST_DATALINK: return (zone_list_datalink((zoneid_t)(uintptr_t)arg1, (int *)arg2, (datalink_id_t *)(uintptr_t)arg3)); default: return (set_errno(EINVAL)); } } struct zarg { zone_t *zone; zone_cmd_arg_t arg; }; static int zone_lookup_door(const char *zone_name, door_handle_t *doorp) { char *buf; size_t buflen; int error; buflen = sizeof (ZONE_DOOR_PATH) + strlen(zone_name); buf = kmem_alloc(buflen, KM_SLEEP); (void) snprintf(buf, buflen, ZONE_DOOR_PATH, zone_name); error = door_ki_open(buf, doorp); kmem_free(buf, buflen); return (error); } static void zone_release_door(door_handle_t *doorp) { door_ki_rele(*doorp); *doorp = NULL; } static void zone_ki_call_zoneadmd(struct zarg *zargp) { door_handle_t door = NULL; door_arg_t darg, save_arg; char *zone_name; size_t zone_namelen; zoneid_t zoneid; zone_t *zone; zone_cmd_arg_t arg; uint64_t uniqid; size_t size; int error; int retry; zone = zargp->zone; arg = zargp->arg; kmem_free(zargp, sizeof (*zargp)); zone_namelen = strlen(zone->zone_name) + 1; zone_name = kmem_alloc(zone_namelen, KM_SLEEP); bcopy(zone->zone_name, zone_name, zone_namelen); zoneid = zone->zone_id; uniqid = zone->zone_uniqid; /* * zoneadmd may be down, but at least we can empty out the zone. * We can ignore the return value of zone_empty() since we're called * from a kernel thread and know we won't be delivered any signals. */ ASSERT(curproc == &p0); (void) zone_empty(zone); ASSERT(zone_status_get(zone) >= ZONE_IS_EMPTY); zone_rele(zone); size = sizeof (arg); darg.rbuf = (char *)&arg; darg.data_ptr = (char *)&arg; darg.rsize = size; darg.data_size = size; darg.desc_ptr = NULL; darg.desc_num = 0; save_arg = darg; /* * Since we're not holding a reference to the zone, any number of * things can go wrong, including the zone disappearing before we get a * chance to talk to zoneadmd. */ for (retry = 0; /* forever */; retry++) { if (door == NULL && (error = zone_lookup_door(zone_name, &door)) != 0) { goto next; } ASSERT(door != NULL); if ((error = door_ki_upcall_limited(door, &darg, NULL, SIZE_MAX, 0)) == 0) { break; } switch (error) { case EINTR: /* FALLTHROUGH */ case EAGAIN: /* process may be forking */ /* * Back off for a bit */ break; case EBADF: zone_release_door(&door); if (zone_lookup_door(zone_name, &door) != 0) { /* * zoneadmd may be dead, but it may come back to * life later. */ break; } break; default: cmn_err(CE_WARN, "zone_ki_call_zoneadmd: door_ki_upcall error %d\n", error); goto out; } next: /* * If this isn't the same zone_t that we originally had in mind, * then this is the same as if two kadmin requests come in at * the same time: the first one wins. This means we lose, so we * bail. */ if ((zone = zone_find_by_id(zoneid)) == NULL) { /* * Problem is solved. */ break; } if (zone->zone_uniqid != uniqid) { /* * zoneid recycled */ zone_rele(zone); break; } /* * We could zone_status_timedwait(), but there doesn't seem to * be much point in doing that (plus, it would mean that * zone_free() isn't called until this thread exits). */ zone_rele(zone); delay(hz); darg = save_arg; } out: if (door != NULL) { zone_release_door(&door); } kmem_free(zone_name, zone_namelen); thread_exit(); } /* * Entry point for uadmin() to tell the zone to go away or reboot. Analog to * kadmin(). The caller is a process in the zone. * * In order to shutdown the zone, we will hand off control to zoneadmd * (running in the global zone) via a door. We do a half-hearted job at * killing all processes in the zone, create a kernel thread to contact * zoneadmd, and make note of the "uniqid" of the zone. The uniqid is * a form of generation number used to let zoneadmd (as well as * zone_destroy()) know exactly which zone they're re talking about. */ int zone_kadmin(int cmd, int fcn, const char *mdep, cred_t *credp) { struct zarg *zargp; zone_cmd_t zcmd; zone_t *zone; zone = curproc->p_zone; ASSERT(getzoneid() != GLOBAL_ZONEID); switch (cmd) { case A_SHUTDOWN: switch (fcn) { case AD_HALT: case AD_POWEROFF: zcmd = Z_HALT; break; case AD_BOOT: zcmd = Z_REBOOT; break; case AD_IBOOT: case AD_SBOOT: case AD_SIBOOT: case AD_NOSYNC: return (ENOTSUP); default: return (EINVAL); } break; case A_REBOOT: zcmd = Z_REBOOT; break; case A_FTRACE: case A_REMOUNT: case A_FREEZE: case A_DUMP: case A_CONFIG: return (ENOTSUP); default: ASSERT(cmd != A_SWAPCTL); /* handled by uadmin() */ return (EINVAL); } if (secpolicy_zone_admin(credp, B_FALSE)) return (EPERM); mutex_enter(&zone_status_lock); /* * zone_status can't be ZONE_IS_EMPTY or higher since curproc * is in the zone. */ ASSERT(zone_status_get(zone) < ZONE_IS_EMPTY); if (zone_status_get(zone) > ZONE_IS_RUNNING) { /* * This zone is already on its way down. */ mutex_exit(&zone_status_lock); return (0); } /* * Prevent future zone_enter()s */ zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); mutex_exit(&zone_status_lock); /* * Kill everyone now and call zoneadmd later. * zone_ki_call_zoneadmd() will do a more thorough job of this * later. */ killall(zone->zone_id); /* * Now, create the thread to contact zoneadmd and do the rest of the * work. This thread can't be created in our zone otherwise * zone_destroy() would deadlock. */ zargp = kmem_zalloc(sizeof (*zargp), KM_SLEEP); zargp->arg.cmd = zcmd; zargp->arg.uniqid = zone->zone_uniqid; zargp->zone = zone; (void) strcpy(zargp->arg.locale, "C"); /* mdep was already copied in for us by uadmin */ if (mdep != NULL) (void) strlcpy(zargp->arg.bootbuf, mdep, sizeof (zargp->arg.bootbuf)); zone_hold(zone); (void) thread_create(NULL, 0, zone_ki_call_zoneadmd, zargp, 0, &p0, TS_RUN, minclsyspri); exit(CLD_EXITED, 0); return (EINVAL); } /* * Entry point so kadmin(A_SHUTDOWN, ...) can set the global zone's * status to ZONE_IS_SHUTTING_DOWN. * * This function also shuts down all running zones to ensure that they won't * fork new processes. */ void zone_shutdown_global(void) { zone_t *current_zonep; ASSERT(INGLOBALZONE(curproc)); mutex_enter(&zonehash_lock); mutex_enter(&zone_status_lock); /* Modify the global zone's status first. */ ASSERT(zone_status_get(global_zone) == ZONE_IS_RUNNING); zone_status_set(global_zone, ZONE_IS_SHUTTING_DOWN); /* * Now change the states of all running zones to ZONE_IS_SHUTTING_DOWN. * We don't mark all zones with ZONE_IS_SHUTTING_DOWN because doing so * could cause assertions to fail (e.g., assertions about a zone's * state during initialization, readying, or booting) or produce races. * We'll let threads continue to initialize and ready new zones: they'll * fail to boot the new zones when they see that the global zone is * shutting down. */ for (current_zonep = list_head(&zone_active); current_zonep != NULL; current_zonep = list_next(&zone_active, current_zonep)) { if (zone_status_get(current_zonep) == ZONE_IS_RUNNING) zone_status_set(current_zonep, ZONE_IS_SHUTTING_DOWN); } mutex_exit(&zone_status_lock); mutex_exit(&zonehash_lock); } /* * Returns true if the named dataset is visible in the current zone. * The 'write' parameter is set to 1 if the dataset is also writable. */ int zone_dataset_visible(const char *dataset, int *write) { static int zfstype = -1; zone_dataset_t *zd; size_t len; zone_t *zone = curproc->p_zone; const char *name = NULL; vfs_t *vfsp = NULL; if (dataset[0] == '\0') return (0); /* * Walk the list once, looking for datasets which match exactly, or * specify a dataset underneath an exported dataset. If found, return * true and note that it is writable. */ for (zd = list_head(&zone->zone_datasets); zd != NULL; zd = list_next(&zone->zone_datasets, zd)) { len = strlen(zd->zd_dataset); if (strlen(dataset) >= len && bcmp(dataset, zd->zd_dataset, len) == 0 && (dataset[len] == '\0' || dataset[len] == '/' || dataset[len] == '@')) { if (write) *write = 1; return (1); } } /* * Walk the list a second time, searching for datasets which are parents * of exported datasets. These should be visible, but read-only. * * Note that we also have to support forms such as 'pool/dataset/', with * a trailing slash. */ for (zd = list_head(&zone->zone_datasets); zd != NULL; zd = list_next(&zone->zone_datasets, zd)) { len = strlen(dataset); if (dataset[len - 1] == '/') len--; /* Ignore trailing slash */ if (len < strlen(zd->zd_dataset) && bcmp(dataset, zd->zd_dataset, len) == 0 && zd->zd_dataset[len] == '/') { if (write) *write = 0; return (1); } } /* * We reach here if the given dataset is not found in the zone_dataset * list. Check if this dataset was added as a filesystem (ie. "add fs") * instead of delegation. For this we search for the dataset in the * zone_vfslist of this zone. If found, return true and note that it is * not writable. */ /* * Initialize zfstype if it is not initialized yet. */ if (zfstype == -1) { struct vfssw *vswp = vfs_getvfssw("zfs"); zfstype = vswp - vfssw; vfs_unrefvfssw(vswp); } vfs_list_read_lock(); vfsp = zone->zone_vfslist; do { ASSERT(vfsp); if (vfsp->vfs_fstype == zfstype) { name = refstr_value(vfsp->vfs_resource); /* * Check if we have an exact match. */ if (strcmp(dataset, name) == 0) { vfs_list_unlock(); if (write) *write = 0; return (1); } /* * We need to check if we are looking for parents of * a dataset. These should be visible, but read-only. */ len = strlen(dataset); if (dataset[len - 1] == '/') len--; if (len < strlen(name) && bcmp(dataset, name, len) == 0 && name[len] == '/') { vfs_list_unlock(); if (write) *write = 0; return (1); } } vfsp = vfsp->vfs_zone_next; } while (vfsp != zone->zone_vfslist); vfs_list_unlock(); return (0); } /* * zone_find_by_any_path() - * * kernel-private routine similar to zone_find_by_path(), but which * effectively compares against zone paths rather than zonerootpath * (i.e., the last component of zonerootpaths, which should be "root/", * are not compared.) This is done in order to accurately identify all * paths, whether zone-visible or not, including those which are parallel * to /root/, such as /dev/, /home/, etc... * * If the specified path does not fall under any zone path then global * zone is returned. * * The treat_abs parameter indicates whether the path should be treated as * an absolute path although it does not begin with "/". (This supports * nfs mount syntax such as host:any/path.) * * The caller is responsible for zone_rele of the returned zone. */ zone_t * zone_find_by_any_path(const char *path, boolean_t treat_abs) { zone_t *zone; int path_offset = 0; if (path == NULL) { zone_hold(global_zone); return (global_zone); } if (*path != '/') { ASSERT(treat_abs); path_offset = 1; } mutex_enter(&zonehash_lock); for (zone = list_head(&zone_active); zone != NULL; zone = list_next(&zone_active, zone)) { char *c; size_t pathlen; char *rootpath_start; if (zone == global_zone) /* skip global zone */ continue; /* scan backwards to find start of last component */ c = zone->zone_rootpath + zone->zone_rootpathlen - 2; do { c--; } while (*c != '/'); pathlen = c - zone->zone_rootpath + 1 - path_offset; rootpath_start = (zone->zone_rootpath + path_offset); if (strncmp(path, rootpath_start, pathlen) == 0) break; } if (zone == NULL) zone = global_zone; zone_hold(zone); mutex_exit(&zonehash_lock); return (zone); } /* * Finds a zone_dl_t with the given linkid in the given zone. Returns the * zone_dl_t pointer if found, and NULL otherwise. */ static zone_dl_t * zone_find_dl(zone_t *zone, datalink_id_t linkid) { zone_dl_t *zdl; ASSERT(mutex_owned(&zone->zone_lock)); for (zdl = list_head(&zone->zone_dl_list); zdl != NULL; zdl = list_next(&zone->zone_dl_list, zdl)) { if (zdl->zdl_id == linkid) break; } return (zdl); } static boolean_t zone_dl_exists(zone_t *zone, datalink_id_t linkid) { boolean_t exists; mutex_enter(&zone->zone_lock); exists = (zone_find_dl(zone, linkid) != NULL); mutex_exit(&zone->zone_lock); return (exists); } /* * Add an data link name for the zone. */ static int zone_add_datalink(zoneid_t zoneid, datalink_id_t linkid) { zone_dl_t *zdl; zone_t *zone; zone_t *thiszone; if ((thiszone = zone_find_by_id(zoneid)) == NULL) return (set_errno(ENXIO)); /* Verify that the datalink ID doesn't already belong to a zone. */ mutex_enter(&zonehash_lock); for (zone = list_head(&zone_active); zone != NULL; zone = list_next(&zone_active, zone)) { if (zone_dl_exists(zone, linkid)) { mutex_exit(&zonehash_lock); zone_rele(thiszone); return (set_errno((zone == thiszone) ? EEXIST : EPERM)); } } zdl = kmem_zalloc(sizeof (*zdl), KM_SLEEP); zdl->zdl_id = linkid; zdl->zdl_net = NULL; mutex_enter(&thiszone->zone_lock); list_insert_head(&thiszone->zone_dl_list, zdl); mutex_exit(&thiszone->zone_lock); mutex_exit(&zonehash_lock); zone_rele(thiszone); return (0); } static int zone_remove_datalink(zoneid_t zoneid, datalink_id_t linkid) { zone_dl_t *zdl; zone_t *zone; int err = 0; if ((zone = zone_find_by_id(zoneid)) == NULL) return (set_errno(EINVAL)); mutex_enter(&zone->zone_lock); if ((zdl = zone_find_dl(zone, linkid)) == NULL) { err = ENXIO; } else { list_remove(&zone->zone_dl_list, zdl); if (zdl->zdl_net != NULL) nvlist_free(zdl->zdl_net); kmem_free(zdl, sizeof (zone_dl_t)); } mutex_exit(&zone->zone_lock); zone_rele(zone); return (err == 0 ? 0 : set_errno(err)); } /* * Using the zoneidp as ALL_ZONES, we can lookup which zone has been assigned * the linkid. Otherwise we just check if the specified zoneidp has been * assigned the supplied linkid. */ int zone_check_datalink(zoneid_t *zoneidp, datalink_id_t linkid) { zone_t *zone; int err = ENXIO; if (*zoneidp != ALL_ZONES) { if ((zone = zone_find_by_id(*zoneidp)) != NULL) { if (zone_dl_exists(zone, linkid)) err = 0; zone_rele(zone); } return (err); } mutex_enter(&zonehash_lock); for (zone = list_head(&zone_active); zone != NULL; zone = list_next(&zone_active, zone)) { if (zone_dl_exists(zone, linkid)) { *zoneidp = zone->zone_id; err = 0; break; } } mutex_exit(&zonehash_lock); return (err); } /* * Get the list of datalink IDs assigned to a zone. * * On input, *nump is the number of datalink IDs that can fit in the supplied * idarray. Upon return, *nump is either set to the number of datalink IDs * that were placed in the array if the array was large enough, or to the * number of datalink IDs that the function needs to place in the array if the * array is too small. */ static int zone_list_datalink(zoneid_t zoneid, int *nump, datalink_id_t *idarray) { uint_t num, dlcount; zone_t *zone; zone_dl_t *zdl; datalink_id_t *idptr = idarray; if (copyin(nump, &dlcount, sizeof (dlcount)) != 0) return (set_errno(EFAULT)); if ((zone = zone_find_by_id(zoneid)) == NULL) return (set_errno(ENXIO)); num = 0; mutex_enter(&zone->zone_lock); for (zdl = list_head(&zone->zone_dl_list); zdl != NULL; zdl = list_next(&zone->zone_dl_list, zdl)) { /* * If the list is bigger than what the caller supplied, just * count, don't do copyout. */ if (++num > dlcount) continue; if (copyout(&zdl->zdl_id, idptr, sizeof (*idptr)) != 0) { mutex_exit(&zone->zone_lock); zone_rele(zone); return (set_errno(EFAULT)); } idptr++; } mutex_exit(&zone->zone_lock); zone_rele(zone); /* Increased or decreased, caller should be notified. */ if (num != dlcount) { if (copyout(&num, nump, sizeof (num)) != 0) return (set_errno(EFAULT)); } return (0); } /* * Public interface for looking up a zone by zoneid. It's a customized version * for netstack_zone_create(). It can only be called from the zsd create * callbacks, since it doesn't have reference on the zone structure hence if * it is called elsewhere the zone could disappear after the zonehash_lock * is dropped. * * Furthermore it * 1. Doesn't check the status of the zone. * 2. It will be called even before zone_init is called, in that case the * address of zone0 is returned directly, and netstack_zone_create() * will only assign a value to zone0.zone_netstack, won't break anything. * 3. Returns without the zone being held. */ zone_t * zone_find_by_id_nolock(zoneid_t zoneid) { zone_t *zone; mutex_enter(&zonehash_lock); if (zonehashbyid == NULL) zone = &zone0; else zone = zone_find_all_by_id(zoneid); mutex_exit(&zonehash_lock); return (zone); } /* * Walk the datalinks for a given zone */ int zone_datalink_walk(zoneid_t zoneid, int (*cb)(datalink_id_t, void *), void *data) { zone_t *zone; zone_dl_t *zdl; datalink_id_t *idarray; uint_t idcount = 0; int i, ret = 0; if ((zone = zone_find_by_id(zoneid)) == NULL) return (ENOENT); /* * We first build an array of linkid's so that we can walk these and * execute the callback with the zone_lock dropped. */ mutex_enter(&zone->zone_lock); for (zdl = list_head(&zone->zone_dl_list); zdl != NULL; zdl = list_next(&zone->zone_dl_list, zdl)) { idcount++; } if (idcount == 0) { mutex_exit(&zone->zone_lock); zone_rele(zone); return (0); } idarray = kmem_alloc(sizeof (datalink_id_t) * idcount, KM_NOSLEEP); if (idarray == NULL) { mutex_exit(&zone->zone_lock); zone_rele(zone); return (ENOMEM); } for (i = 0, zdl = list_head(&zone->zone_dl_list); zdl != NULL; i++, zdl = list_next(&zone->zone_dl_list, zdl)) { idarray[i] = zdl->zdl_id; } mutex_exit(&zone->zone_lock); for (i = 0; i < idcount && ret == 0; i++) { if ((ret = (*cb)(idarray[i], data)) != 0) break; } zone_rele(zone); kmem_free(idarray, sizeof (datalink_id_t) * idcount); return (ret); } static char * zone_net_type2name(int type) { switch (type) { case ZONE_NETWORK_ADDRESS: return (ZONE_NET_ADDRNAME); case ZONE_NETWORK_DEFROUTER: return (ZONE_NET_RTRNAME); default: return (NULL); } } static int zone_set_network(zoneid_t zoneid, zone_net_data_t *znbuf) { zone_t *zone; zone_dl_t *zdl; nvlist_t *nvl; int err = 0; uint8_t *new = NULL; char *nvname; int bufsize; datalink_id_t linkid = znbuf->zn_linkid; if (secpolicy_zone_config(CRED()) != 0) return (set_errno(EPERM)); if (zoneid == GLOBAL_ZONEID) return (set_errno(EINVAL)); nvname = zone_net_type2name(znbuf->zn_type); bufsize = znbuf->zn_len; new = znbuf->zn_val; if (nvname == NULL) return (set_errno(EINVAL)); if ((zone = zone_find_by_id(zoneid)) == NULL) { return (set_errno(EINVAL)); } mutex_enter(&zone->zone_lock); if ((zdl = zone_find_dl(zone, linkid)) == NULL) { err = ENXIO; goto done; } if ((nvl = zdl->zdl_net) == NULL) { if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP)) { err = ENOMEM; goto done; } else { zdl->zdl_net = nvl; } } if (nvlist_exists(nvl, nvname)) { err = EINVAL; goto done; } err = nvlist_add_uint8_array(nvl, nvname, new, bufsize); ASSERT(err == 0); done: mutex_exit(&zone->zone_lock); zone_rele(zone); if (err != 0) return (set_errno(err)); else return (0); } static int zone_get_network(zoneid_t zoneid, zone_net_data_t *znbuf) { zone_t *zone; zone_dl_t *zdl; nvlist_t *nvl; uint8_t *ptr; uint_t psize; int err = 0; char *nvname; int bufsize; void *buf; datalink_id_t linkid = znbuf->zn_linkid; if (zoneid == GLOBAL_ZONEID) return (set_errno(EINVAL)); nvname = zone_net_type2name(znbuf->zn_type); bufsize = znbuf->zn_len; buf = znbuf->zn_val; if (nvname == NULL) return (set_errno(EINVAL)); if ((zone = zone_find_by_id(zoneid)) == NULL) return (set_errno(EINVAL)); mutex_enter(&zone->zone_lock); if ((zdl = zone_find_dl(zone, linkid)) == NULL) { err = ENXIO; goto done; } if ((nvl = zdl->zdl_net) == NULL || !nvlist_exists(nvl, nvname)) { err = ENOENT; goto done; } err = nvlist_lookup_uint8_array(nvl, nvname, &ptr, &psize); ASSERT(err == 0); if (psize > bufsize) { err = ENOBUFS; goto done; } znbuf->zn_len = psize; bcopy(ptr, buf, psize); done: mutex_exit(&zone->zone_lock); zone_rele(zone); if (err != 0) return (set_errno(err)); else return (0); }