/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(__amd64) && !defined(__xpv) #include #endif #ifdef DEBUG int ddidebug = DDI_AUDIT; #else int ddidebug = 0; #endif #define MT_CONFIG_OP 0 #define MT_UNCONFIG_OP 1 /* Multi-threaded configuration */ struct mt_config_handle { kmutex_t mtc_lock; kcondvar_t mtc_cv; int mtc_thr_count; dev_info_t *mtc_pdip; /* parent dip for mt_config_children */ dev_info_t **mtc_fdip; /* "a" dip where unconfigure failed */ major_t mtc_parmajor; /* parent major for mt_config_driver */ major_t mtc_major; int mtc_flags; int mtc_op; /* config or unconfig */ int mtc_error; /* operation error */ struct brevq_node **mtc_brevqp; /* outstanding branch events queue */ #ifdef DEBUG int total_time; timestruc_t start_time; #endif /* DEBUG */ }; struct devi_nodeid { pnode_t nodeid; dev_info_t *dip; struct devi_nodeid *next; }; struct devi_nodeid_list { kmutex_t dno_lock; /* Protects other fields */ struct devi_nodeid *dno_head; /* list of devi nodeid elements */ struct devi_nodeid *dno_free; /* Free list */ uint_t dno_list_length; /* number of dips in list */ }; /* used to keep track of branch remove events to be generated */ struct brevq_node { char *brn_deviname; struct brevq_node *brn_sibling; struct brevq_node *brn_child; }; static struct devi_nodeid_list devi_nodeid_list; static struct devi_nodeid_list *devimap = &devi_nodeid_list; /* * Well known nodes which are attached first at boot time. */ dev_info_t *top_devinfo; /* root of device tree */ dev_info_t *options_dip; dev_info_t *pseudo_dip; dev_info_t *clone_dip; dev_info_t *scsi_vhci_dip; /* MPXIO dip */ major_t clone_major; /* * A non-global zone's /dev is derived from the device tree. * This generation number serves to indicate when a zone's * /dev may need to be updated. */ volatile ulong_t devtree_gen; /* generation number */ /* block all future dev_info state changes */ hrtime_t volatile devinfo_freeze = 0; /* number of dev_info attaches/detaches currently in progress */ static ulong_t devinfo_attach_detach = 0; extern int sys_shutdown; extern kmutex_t global_vhci_lock; /* bitset of DS_SYSAVAIL & DS_RECONFIG - no races, no lock */ static int devname_state = 0; /* * The devinfo snapshot cache and related variables. * The only field in the di_cache structure that needs initialization * is the mutex (cache_lock). However, since this is an adaptive mutex * (MUTEX_DEFAULT) - it is automatically initialized by being allocated * in zeroed memory (static storage class). Therefore no explicit * initialization of the di_cache structure is needed. */ struct di_cache di_cache = {1}; int di_cache_debug = 0; /* For ddvis, which needs pseudo children under PCI */ int pci_allow_pseudo_children = 0; /* Allow path-oriented alias driver binding on driver.conf enumerated nodes */ int driver_conf_allow_path_alias = 1; /* * The following switch is for service people, in case a * 3rd party driver depends on identify(9e) being called. */ int identify_9e = 0; int mtc_off; /* turn off mt config */ int quiesce_debug = 0; boolean_t ddi_aliases_present = B_FALSE; ddi_alias_t ddi_aliases; uint_t tsd_ddi_redirect; #define DDI_ALIAS_HASH_SIZE (2700) static kmem_cache_t *ddi_node_cache; /* devinfo node cache */ static devinfo_log_header_t *devinfo_audit_log; /* devinfo log */ static int devinfo_log_size; /* size in pages */ boolean_t ddi_err_panic = B_FALSE; static int lookup_compatible(dev_info_t *, uint_t); static char *encode_composite_string(char **, uint_t, size_t *, uint_t); static void link_to_driver_list(dev_info_t *); static void unlink_from_driver_list(dev_info_t *); static void add_to_dn_list(struct devnames *, dev_info_t *); static void remove_from_dn_list(struct devnames *, dev_info_t *); static dev_info_t *find_duplicate_child(); static void add_global_props(dev_info_t *); static void remove_global_props(dev_info_t *); static int uninit_node(dev_info_t *); static void da_log_init(void); static void da_log_enter(dev_info_t *); static int walk_devs(dev_info_t *, int (*f)(dev_info_t *, void *), void *, int); static int reset_nexus_flags(dev_info_t *, void *); static void ddi_optimize_dtree(dev_info_t *); static int is_leaf_node(dev_info_t *); static struct mt_config_handle *mt_config_init(dev_info_t *, dev_info_t **, int, major_t, int, struct brevq_node **); static void mt_config_children(struct mt_config_handle *); static void mt_config_driver(struct mt_config_handle *); static int mt_config_fini(struct mt_config_handle *); static int devi_unconfig_common(dev_info_t *, dev_info_t **, int, major_t, struct brevq_node **); static int ndi_devi_config_obp_args(dev_info_t *parent, char *devnm, dev_info_t **childp, int flags); static void i_link_vhci_node(dev_info_t *); static void ndi_devi_exit_and_wait(dev_info_t *dip, int circular, clock_t end_time); static int ndi_devi_unbind_driver(dev_info_t *dip); static void i_ddi_check_retire(dev_info_t *dip); static void quiesce_one_device(dev_info_t *, void *); dev_info_t *ddi_alias_redirect(char *alias); char *ddi_curr_redirect(char *currpath); /* * dev_info cache and node management */ /* initialize dev_info node cache */ void i_ddi_node_cache_init() { ASSERT(ddi_node_cache == NULL); ddi_node_cache = kmem_cache_create("dev_info_node_cache", sizeof (struct dev_info), 0, NULL, NULL, NULL, NULL, NULL, 0); if (ddidebug & DDI_AUDIT) da_log_init(); } /* * Allocating a dev_info node, callable from interrupt context with KM_NOSLEEP * The allocated node has a reference count of 0. */ dev_info_t * i_ddi_alloc_node(dev_info_t *pdip, char *node_name, pnode_t nodeid, int instance, ddi_prop_t *sys_prop, int flag) { struct dev_info *devi; struct devi_nodeid *elem; static char failed[] = "i_ddi_alloc_node: out of memory"; ASSERT(node_name != NULL); if ((devi = kmem_cache_alloc(ddi_node_cache, flag)) == NULL) { cmn_err(CE_NOTE, failed); return (NULL); } bzero(devi, sizeof (struct dev_info)); if (devinfo_audit_log) { devi->devi_audit = kmem_zalloc(sizeof (devinfo_audit_t), flag); if (devi->devi_audit == NULL) goto fail; } if ((devi->devi_node_name = i_ddi_strdup(node_name, flag)) == NULL) goto fail; /* default binding name is node name */ devi->devi_binding_name = devi->devi_node_name; devi->devi_major = DDI_MAJOR_T_NONE; /* unbound by default */ /* * Make a copy of system property */ if (sys_prop && (devi->devi_sys_prop_ptr = i_ddi_prop_list_dup(sys_prop, flag)) == NULL) goto fail; /* * Assign devi_nodeid, devi_node_class, devi_node_attributes * according to the following algorithm: * * nodeid arg node class node attributes * * DEVI_PSEUDO_NODEID DDI_NC_PSEUDO A * DEVI_SID_NODEID DDI_NC_PSEUDO A,P * DEVI_SID_HIDDEN_NODEID DDI_NC_PSEUDO A,P,H * DEVI_SID_HP_NODEID DDI_NC_PSEUDO A,P,h * DEVI_SID_HP_HIDDEN_NODEID DDI_NC_PSEUDO A,P,H,h * other DDI_NC_PROM P * * Where A = DDI_AUTO_ASSIGNED_NODEID (auto-assign a nodeid) * and P = DDI_PERSISTENT * and H = DDI_HIDDEN_NODE * and h = DDI_HOTPLUG_NODE * * auto-assigned nodeids are also auto-freed. */ devi->devi_node_attributes = 0; switch (nodeid) { case DEVI_SID_HIDDEN_NODEID: devi->devi_node_attributes |= DDI_HIDDEN_NODE; goto sid; case DEVI_SID_HP_NODEID: devi->devi_node_attributes |= DDI_HOTPLUG_NODE; goto sid; case DEVI_SID_HP_HIDDEN_NODEID: devi->devi_node_attributes |= DDI_HIDDEN_NODE; devi->devi_node_attributes |= DDI_HOTPLUG_NODE; goto sid; case DEVI_SID_NODEID: sid: devi->devi_node_attributes |= DDI_PERSISTENT; if ((elem = kmem_zalloc(sizeof (*elem), flag)) == NULL) goto fail; /*FALLTHROUGH*/ case DEVI_PSEUDO_NODEID: devi->devi_node_attributes |= DDI_AUTO_ASSIGNED_NODEID; devi->devi_node_class = DDI_NC_PSEUDO; if (impl_ddi_alloc_nodeid(&devi->devi_nodeid)) { panic("i_ddi_alloc_node: out of nodeids"); /*NOTREACHED*/ } break; default: if ((elem = kmem_zalloc(sizeof (*elem), flag)) == NULL) goto fail; /* * the nodetype is 'prom', try to 'take' the nodeid now. * This requires memory allocation, so check for failure. */ if (impl_ddi_take_nodeid(nodeid, flag) != 0) { kmem_free(elem, sizeof (*elem)); goto fail; } devi->devi_nodeid = nodeid; devi->devi_node_class = DDI_NC_PROM; devi->devi_node_attributes = DDI_PERSISTENT; break; } if (ndi_dev_is_persistent_node((dev_info_t *)devi)) { mutex_enter(&devimap->dno_lock); elem->next = devimap->dno_free; devimap->dno_free = elem; mutex_exit(&devimap->dno_lock); } /* * Instance is normally initialized to -1. In a few special * cases, the caller may specify an instance (e.g. CPU nodes). */ devi->devi_instance = instance; /* * set parent and bus_ctl parent */ devi->devi_parent = DEVI(pdip); devi->devi_bus_ctl = DEVI(pdip); NDI_CONFIG_DEBUG((CE_CONT, "i_ddi_alloc_node: name=%s id=%d\n", node_name, devi->devi_nodeid)); cv_init(&(devi->devi_cv), NULL, CV_DEFAULT, NULL); mutex_init(&(devi->devi_lock), NULL, MUTEX_DEFAULT, NULL); mutex_init(&(devi->devi_pm_lock), NULL, MUTEX_DEFAULT, NULL); mutex_init(&(devi->devi_pm_busy_lock), NULL, MUTEX_DEFAULT, NULL); RIO_TRACE((CE_NOTE, "i_ddi_alloc_node: Initing contract fields: " "dip=%p, name=%s", (void *)devi, node_name)); mutex_init(&(devi->devi_ct_lock), NULL, MUTEX_DEFAULT, NULL); cv_init(&(devi->devi_ct_cv), NULL, CV_DEFAULT, NULL); devi->devi_ct_count = -1; /* counter not in use if -1 */ list_create(&(devi->devi_ct), sizeof (cont_device_t), offsetof(cont_device_t, cond_next)); i_ddi_set_node_state((dev_info_t *)devi, DS_PROTO); da_log_enter((dev_info_t *)devi); return ((dev_info_t *)devi); fail: if (devi->devi_sys_prop_ptr) i_ddi_prop_list_delete(devi->devi_sys_prop_ptr); if (devi->devi_node_name) kmem_free(devi->devi_node_name, strlen(node_name) + 1); if (devi->devi_audit) kmem_free(devi->devi_audit, sizeof (devinfo_audit_t)); kmem_cache_free(ddi_node_cache, devi); cmn_err(CE_NOTE, failed); return (NULL); } /* * free a dev_info structure. * NB. Not callable from interrupt since impl_ddi_free_nodeid may block. */ void i_ddi_free_node(dev_info_t *dip) { struct dev_info *devi = DEVI(dip); struct devi_nodeid *elem; ASSERT(devi->devi_ref == 0); ASSERT(devi->devi_addr == NULL); ASSERT(devi->devi_node_state == DS_PROTO); ASSERT(devi->devi_child == NULL); ASSERT(devi->devi_hp_hdlp == NULL); /* free devi_addr_buf allocated by ddi_set_name_addr() */ if (devi->devi_addr_buf) kmem_free(devi->devi_addr_buf, 2 * MAXNAMELEN); if (i_ndi_dev_is_auto_assigned_node(dip)) impl_ddi_free_nodeid(DEVI(dip)->devi_nodeid); if (ndi_dev_is_persistent_node(dip)) { mutex_enter(&devimap->dno_lock); ASSERT(devimap->dno_free); elem = devimap->dno_free; devimap->dno_free = elem->next; mutex_exit(&devimap->dno_lock); kmem_free(elem, sizeof (*elem)); } if (DEVI(dip)->devi_compat_names) kmem_free(DEVI(dip)->devi_compat_names, DEVI(dip)->devi_compat_length); if (DEVI(dip)->devi_rebinding_name) kmem_free(DEVI(dip)->devi_rebinding_name, strlen(DEVI(dip)->devi_rebinding_name) + 1); ddi_prop_remove_all(dip); /* remove driver properties */ if (devi->devi_sys_prop_ptr) i_ddi_prop_list_delete(devi->devi_sys_prop_ptr); if (devi->devi_hw_prop_ptr) i_ddi_prop_list_delete(devi->devi_hw_prop_ptr); if (DEVI(dip)->devi_devid_str) ddi_devid_str_free(DEVI(dip)->devi_devid_str); i_ddi_set_node_state(dip, DS_INVAL); da_log_enter(dip); if (devi->devi_audit) { kmem_free(devi->devi_audit, sizeof (devinfo_audit_t)); } if (devi->devi_device_class) kmem_free(devi->devi_device_class, strlen(devi->devi_device_class) + 1); cv_destroy(&(devi->devi_cv)); mutex_destroy(&(devi->devi_lock)); mutex_destroy(&(devi->devi_pm_lock)); mutex_destroy(&(devi->devi_pm_busy_lock)); RIO_TRACE((CE_NOTE, "i_ddi_free_node: destroying contract fields: " "dip=%p", (void *)dip)); contract_device_remove_dip(dip); ASSERT(devi->devi_ct_count == -1); ASSERT(list_is_empty(&(devi->devi_ct))); cv_destroy(&(devi->devi_ct_cv)); list_destroy(&(devi->devi_ct)); /* free this last since contract_device_remove_dip() uses it */ mutex_destroy(&(devi->devi_ct_lock)); RIO_TRACE((CE_NOTE, "i_ddi_free_node: destroyed all contract fields: " "dip=%p, name=%s", (void *)dip, devi->devi_node_name)); kmem_free(devi->devi_node_name, strlen(devi->devi_node_name) + 1); kmem_cache_free(ddi_node_cache, devi); } /* * Node state transitions */ /* * Change the node name */ int ndi_devi_set_nodename(dev_info_t *dip, char *name, int flags) { _NOTE(ARGUNUSED(flags)) char *nname, *oname; ASSERT(dip && name); oname = DEVI(dip)->devi_node_name; if (strcmp(oname, name) == 0) return (DDI_SUCCESS); /* * pcicfg_fix_ethernet requires a name change after node * is linked into the tree. When pcicfg is fixed, we * should only allow name change in DS_PROTO state. */ if (i_ddi_node_state(dip) >= DS_BOUND) { /* * Don't allow name change once node is bound */ cmn_err(CE_NOTE, "ndi_devi_set_nodename: node already bound dip = %p," " %s -> %s", (void *)dip, ddi_node_name(dip), name); return (NDI_FAILURE); } nname = i_ddi_strdup(name, KM_SLEEP); DEVI(dip)->devi_node_name = nname; i_ddi_set_binding_name(dip, nname); kmem_free(oname, strlen(oname) + 1); da_log_enter(dip); return (NDI_SUCCESS); } void i_ddi_add_devimap(dev_info_t *dip) { struct devi_nodeid *elem; ASSERT(dip); if (!ndi_dev_is_persistent_node(dip)) return; ASSERT(ddi_get_parent(dip) == NULL || (DEVI_VHCI_NODE(dip)) || DEVI_BUSY_OWNED(ddi_get_parent(dip))); mutex_enter(&devimap->dno_lock); ASSERT(devimap->dno_free); elem = devimap->dno_free; devimap->dno_free = elem->next; elem->nodeid = ddi_get_nodeid(dip); elem->dip = dip; elem->next = devimap->dno_head; devimap->dno_head = elem; devimap->dno_list_length++; mutex_exit(&devimap->dno_lock); } static int i_ddi_remove_devimap(dev_info_t *dip) { struct devi_nodeid *prev, *elem; static const char *fcn = "i_ddi_remove_devimap"; ASSERT(dip); if (!ndi_dev_is_persistent_node(dip)) return (DDI_SUCCESS); mutex_enter(&devimap->dno_lock); /* * The following check is done with dno_lock held * to prevent race between dip removal and * e_ddi_prom_node_to_dip() */ if (e_ddi_devi_holdcnt(dip)) { mutex_exit(&devimap->dno_lock); return (DDI_FAILURE); } ASSERT(devimap->dno_head); ASSERT(devimap->dno_list_length > 0); prev = NULL; for (elem = devimap->dno_head; elem; elem = elem->next) { if (elem->dip == dip) { ASSERT(elem->nodeid == ddi_get_nodeid(dip)); break; } prev = elem; } if (elem && prev) prev->next = elem->next; else if (elem) devimap->dno_head = elem->next; else panic("%s: devinfo node(%p) not found", fcn, (void *)dip); devimap->dno_list_length--; elem->nodeid = 0; elem->dip = NULL; elem->next = devimap->dno_free; devimap->dno_free = elem; mutex_exit(&devimap->dno_lock); return (DDI_SUCCESS); } /* * Link this node into the devinfo tree and add to orphan list * Not callable from interrupt context */ static void link_node(dev_info_t *dip) { struct dev_info *devi = DEVI(dip); struct dev_info *parent = devi->devi_parent; dev_info_t **dipp; ASSERT(parent); /* never called for root node */ NDI_CONFIG_DEBUG((CE_CONT, "link_node: parent = %s child = %s\n", parent->devi_node_name, devi->devi_node_name)); /* * Hold the global_vhci_lock before linking any direct * children of rootnex driver. This special lock protects * linking and unlinking for rootnext direct children. */ if ((dev_info_t *)parent == ddi_root_node()) mutex_enter(&global_vhci_lock); /* * attach the node to end of the list unless the node is already there */ dipp = (dev_info_t **)(&DEVI(parent)->devi_child); while (*dipp && (*dipp != dip)) { dipp = (dev_info_t **)(&DEVI(*dipp)->devi_sibling); } ASSERT(*dipp == NULL); /* node is not linked */ /* * Now that we are in the tree, update the devi-nodeid map. */ i_ddi_add_devimap(dip); /* * This is a temporary workaround for Bug 4618861. * We keep the scsi_vhci nexus node on the left side of the devinfo * tree (under the root nexus driver), so that virtual nodes under * scsi_vhci will be SUSPENDed first and RESUMEd last. This ensures * that the pHCI nodes are active during times when their clients * may be depending on them. This workaround embodies the knowledge * that system PM and CPR both traverse the tree left-to-right during * SUSPEND and right-to-left during RESUME. * Extending the workaround to IB Nexus/VHCI * driver also. */ if (strcmp(devi->devi_binding_name, "scsi_vhci") == 0) { /* Add scsi_vhci to beginning of list */ ASSERT((dev_info_t *)parent == top_devinfo); /* scsi_vhci under rootnex */ devi->devi_sibling = parent->devi_child; parent->devi_child = devi; } else if (strcmp(devi->devi_binding_name, "ib") == 0) { i_link_vhci_node(dip); } else { /* Add to end of list */ *dipp = dip; DEVI(dip)->devi_sibling = NULL; } /* * Release the global_vhci_lock before linking any direct * children of rootnex driver. */ if ((dev_info_t *)parent == ddi_root_node()) mutex_exit(&global_vhci_lock); /* persistent nodes go on orphan list */ if (ndi_dev_is_persistent_node(dip)) add_to_dn_list(&orphanlist, dip); } /* * Unlink this node from the devinfo tree */ static int unlink_node(dev_info_t *dip) { struct dev_info *devi = DEVI(dip); struct dev_info *parent = devi->devi_parent; dev_info_t **dipp; ddi_hp_cn_handle_t *hdlp; ASSERT(parent != NULL); ASSERT(devi->devi_node_state == DS_LINKED); NDI_CONFIG_DEBUG((CE_CONT, "unlink_node: name = %s\n", ddi_node_name(dip))); /* check references */ if (devi->devi_ref || i_ddi_remove_devimap(dip) != DDI_SUCCESS) return (DDI_FAILURE); /* * Hold the global_vhci_lock before linking any direct * children of rootnex driver. */ if ((dev_info_t *)parent == ddi_root_node()) mutex_enter(&global_vhci_lock); dipp = (dev_info_t **)(&DEVI(parent)->devi_child); while (*dipp && (*dipp != dip)) { dipp = (dev_info_t **)(&DEVI(*dipp)->devi_sibling); } if (*dipp) { *dipp = (dev_info_t *)(devi->devi_sibling); devi->devi_sibling = NULL; } else { NDI_CONFIG_DEBUG((CE_NOTE, "unlink_node: %s not linked", devi->devi_node_name)); } /* * Release the global_vhci_lock before linking any direct * children of rootnex driver. */ if ((dev_info_t *)parent == ddi_root_node()) mutex_exit(&global_vhci_lock); /* Remove node from orphan list */ if (ndi_dev_is_persistent_node(dip)) { remove_from_dn_list(&orphanlist, dip); } /* Update parent's hotplug handle list */ for (hdlp = DEVI(parent)->devi_hp_hdlp; hdlp; hdlp = hdlp->next) { if (hdlp->cn_info.cn_child == dip) hdlp->cn_info.cn_child = NULL; } return (DDI_SUCCESS); } /* * Bind this devinfo node to a driver. If compat is NON-NULL, try that first. * Else, use the node-name. * * NOTE: IEEE1275 specifies that nodename should be tried before compatible. * Solaris implementation binds nodename after compatible. * * If we find a binding, * - set the binding name to the string, * - set major number to driver major * * If we don't find a binding, * - return failure */ static int bind_node(dev_info_t *dip) { char *p = NULL; major_t major = DDI_MAJOR_T_NONE; struct dev_info *devi = DEVI(dip); dev_info_t *parent = ddi_get_parent(dip); ASSERT(devi->devi_node_state == DS_LINKED); NDI_CONFIG_DEBUG((CE_CONT, "bind_node: 0x%p(name = %s)\n", (void *)dip, ddi_node_name(dip))); mutex_enter(&DEVI(dip)->devi_lock); if (DEVI(dip)->devi_flags & DEVI_NO_BIND) { mutex_exit(&DEVI(dip)->devi_lock); return (DDI_FAILURE); } mutex_exit(&DEVI(dip)->devi_lock); /* find the driver with most specific binding using compatible */ major = ddi_compatible_driver_major(dip, &p); if (major == DDI_MAJOR_T_NONE) return (DDI_FAILURE); devi->devi_major = major; if (p != NULL) { i_ddi_set_binding_name(dip, p); NDI_CONFIG_DEBUG((CE_CONT, "bind_node: %s bound to %s\n", devi->devi_node_name, p)); } /* Link node to per-driver list */ link_to_driver_list(dip); /* * reset parent flag so that nexus will merge .conf props */ if (ndi_dev_is_persistent_node(dip)) { mutex_enter(&DEVI(parent)->devi_lock); DEVI(parent)->devi_flags &= ~(DEVI_ATTACHED_CHILDREN|DEVI_MADE_CHILDREN); mutex_exit(&DEVI(parent)->devi_lock); } return (DDI_SUCCESS); } /* * Unbind this devinfo node * Called before the node is destroyed or driver is removed from system */ static int unbind_node(dev_info_t *dip) { ASSERT(DEVI(dip)->devi_node_state == DS_BOUND); ASSERT(DEVI(dip)->devi_major != DDI_MAJOR_T_NONE); /* check references */ if (DEVI(dip)->devi_ref) return (DDI_FAILURE); NDI_CONFIG_DEBUG((CE_CONT, "unbind_node: 0x%p(name = %s)\n", (void *)dip, ddi_node_name(dip))); unlink_from_driver_list(dip); DEVI(dip)->devi_major = DDI_MAJOR_T_NONE; DEVI(dip)->devi_binding_name = DEVI(dip)->devi_node_name; return (DDI_SUCCESS); } /* * Initialize a node: calls the parent nexus' bus_ctl ops to do the operation. * Must hold parent and per-driver list while calling this function. * A successful init_node() returns with an active ndi_hold_devi() hold on * the parent. */ static int init_node(dev_info_t *dip) { int error; dev_info_t *pdip = ddi_get_parent(dip); int (*f)(dev_info_t *, dev_info_t *, ddi_ctl_enum_t, void *, void *); char *path; major_t major; ddi_devid_t devid = NULL; ASSERT(i_ddi_node_state(dip) == DS_BOUND); /* should be DS_READY except for pcmcia ... */ ASSERT(i_ddi_node_state(pdip) >= DS_PROBED); path = kmem_alloc(MAXPATHLEN, KM_SLEEP); (void) ddi_pathname(dip, path); NDI_CONFIG_DEBUG((CE_CONT, "init_node: entry: path %s 0x%p\n", path, (void *)dip)); /* * The parent must have a bus_ctl operation. */ if ((DEVI(pdip)->devi_ops->devo_bus_ops == NULL) || (f = DEVI(pdip)->devi_ops->devo_bus_ops->bus_ctl) == NULL) { error = DDI_FAILURE; goto out; } add_global_props(dip); /* * Invoke the parent's bus_ctl operation with the DDI_CTLOPS_INITCHILD * command to transform the child to canonical form 1. If there * is an error, ddi_remove_child should be called, to clean up. */ error = (*f)(pdip, pdip, DDI_CTLOPS_INITCHILD, dip, NULL); if (error != DDI_SUCCESS) { NDI_CONFIG_DEBUG((CE_CONT, "init_node: %s 0x%p failed\n", path, (void *)dip)); remove_global_props(dip); /* in case nexus driver didn't clear this field */ ddi_set_name_addr(dip, NULL); error = DDI_FAILURE; goto out; } ndi_hold_devi(pdip); /* initial hold of parent */ /* recompute path after initchild for @addr information */ (void) ddi_pathname(dip, path); /* Check for duplicate nodes */ if (find_duplicate_child(pdip, dip) != NULL) { /* * uninit_node() the duplicate - a successful uninit_node() * will release inital hold of parent using ndi_rele_devi(). */ if ((error = uninit_node(dip)) != DDI_SUCCESS) { ndi_rele_devi(pdip); /* release initial hold */ cmn_err(CE_WARN, "init_node: uninit of duplicate " "node %s failed", path); } NDI_CONFIG_DEBUG((CE_CONT, "init_node: duplicate uninit " "%s 0x%p%s\n", path, (void *)dip, (error == DDI_SUCCESS) ? "" : " failed")); error = DDI_FAILURE; goto out; } /* * If a devid was registered for a DS_BOUND node then the devid_cache * may not have captured the path. Detect this situation and ensure that * the path enters the cache now that devi_addr is established. */ if (!(DEVI(dip)->devi_flags & DEVI_REGISTERED_DEVID) && (ddi_devid_get(dip, &devid) == DDI_SUCCESS)) { if (e_devid_cache_register(dip, devid) == DDI_SUCCESS) { DEVI(dip)->devi_flags |= DEVI_REGISTERED_DEVID; } ddi_devid_free(devid); } /* * Check to see if we have a path-oriented driver alias that overrides * the current driver binding. If so, we need to rebind. This check * needs to be delayed until after a successful DDI_CTLOPS_INITCHILD, * so the unit-address is established on the last component of the path. * * NOTE: Allowing a path-oriented alias to change the driver binding * of a driver.conf node results in non-intuitive property behavior. * We provide a tunable (driver_conf_allow_path_alias) to control * this behavior. See uninit_node() for more details. * * NOTE: If you are adding a path-oriented alias for the boot device, * and there is mismatch between OBP and the kernel in regard to * generic name use, like "disk" .vs. "ssd", then you will need * to add a path-oriented alias for both paths. */ major = ddi_name_to_major(path); if (driver_active(major) && (major != DEVI(dip)->devi_major) && (ndi_dev_is_persistent_node(dip) || driver_conf_allow_path_alias)) { /* Mark node for rebind processing. */ mutex_enter(&DEVI(dip)->devi_lock); DEVI(dip)->devi_flags |= DEVI_REBIND; mutex_exit(&DEVI(dip)->devi_lock); /* * Add an extra hold on the parent to prevent it from ever * having a zero devi_ref during the child rebind process. * This is necessary to ensure that the parent will never * detach(9E) during the rebind. */ ndi_hold_devi(pdip); /* extra hold of parent */ /* * uninit_node() current binding - a successful uninit_node() * will release extra hold of parent using ndi_rele_devi(). */ if ((error = uninit_node(dip)) != DDI_SUCCESS) { ndi_rele_devi(pdip); /* release extra hold */ ndi_rele_devi(pdip); /* release initial hold */ cmn_err(CE_WARN, "init_node: uninit for rebind " "of node %s failed", path); goto out; } /* Unbind: demote the node back to DS_LINKED. */ if ((error = ndi_devi_unbind_driver(dip)) != DDI_SUCCESS) { ndi_rele_devi(pdip); /* release initial hold */ cmn_err(CE_WARN, "init_node: unbind for rebind " "of node %s failed", path); goto out; } /* establish rebinding name */ if (DEVI(dip)->devi_rebinding_name == NULL) DEVI(dip)->devi_rebinding_name = i_ddi_strdup(path, KM_SLEEP); /* * Now that we are demoted and marked for rebind, repromote. * We need to do this in steps, instead of just calling * ddi_initchild, so that we can redo the merge operation * after we are rebound to the path-bound driver. * * Start by rebinding node to the path-bound driver. */ if ((error = ndi_devi_bind_driver(dip, 0)) != DDI_SUCCESS) { ndi_rele_devi(pdip); /* release initial hold */ cmn_err(CE_WARN, "init_node: rebind " "of node %s failed", path); goto out; } /* * If the node is not a driver.conf node then merge * driver.conf properties from new path-bound driver.conf. */ if (ndi_dev_is_persistent_node(dip)) (void) i_ndi_make_spec_children(pdip, 0); /* * Now that we have taken care of merge, repromote back * to DS_INITIALIZED. */ error = ddi_initchild(pdip, dip); NDI_CONFIG_DEBUG((CE_CONT, "init_node: rebind " "%s 0x%p\n", path, (void *)dip)); /* * Release our initial hold. If ddi_initchild() was * successful then it will return with the active hold. */ ndi_rele_devi(pdip); goto out; } /* * Apply multi-parent/deep-nexus optimization to the new node */ DEVI(dip)->devi_instance = e_ddi_assign_instance(dip); ddi_optimize_dtree(dip); error = DDI_SUCCESS; /* return with active hold */ out: if (error != DDI_SUCCESS) { /* On failure ensure that DEVI_REBIND is cleared */ mutex_enter(&DEVI(dip)->devi_lock); DEVI(dip)->devi_flags &= ~DEVI_REBIND; mutex_exit(&DEVI(dip)->devi_lock); } kmem_free(path, MAXPATHLEN); return (error); } /* * Uninitialize node * The per-driver list must be held busy during the call. * A successful uninit_node() releases the init_node() hold on * the parent by calling ndi_rele_devi(). */ static int uninit_node(dev_info_t *dip) { int node_state_entry; dev_info_t *pdip; struct dev_ops *ops; int (*f)(); int error; char *addr; /* * Don't check for references here or else a ref-counted * dip cannot be downgraded by the framework. */ node_state_entry = i_ddi_node_state(dip); ASSERT((node_state_entry == DS_BOUND) || (node_state_entry == DS_INITIALIZED)); pdip = ddi_get_parent(dip); ASSERT(pdip); NDI_CONFIG_DEBUG((CE_CONT, "uninit_node: 0x%p(%s%d)\n", (void *)dip, ddi_driver_name(dip), ddi_get_instance(dip))); if (((ops = ddi_get_driver(pdip)) == NULL) || (ops->devo_bus_ops == NULL) || ((f = ops->devo_bus_ops->bus_ctl) == NULL)) { return (DDI_FAILURE); } /* * save the @addr prior to DDI_CTLOPS_UNINITCHILD for use in * freeing the instance if it succeeds. */ if (node_state_entry == DS_INITIALIZED) { addr = ddi_get_name_addr(dip); if (addr) addr = i_ddi_strdup(addr, KM_SLEEP); } else { addr = NULL; } error = (*f)(pdip, pdip, DDI_CTLOPS_UNINITCHILD, dip, (void *)NULL); if (error == DDI_SUCCESS) { /* ensure that devids are unregistered */ if (DEVI(dip)->devi_flags & DEVI_REGISTERED_DEVID) { DEVI(dip)->devi_flags &= ~DEVI_REGISTERED_DEVID; ddi_devid_unregister(dip); } /* if uninitchild forgot to set devi_addr to NULL do it now */ ddi_set_name_addr(dip, NULL); /* * Free instance number. This is a no-op if instance has * been kept by probe_node(). Avoid free when we are called * from init_node (DS_BOUND) because the instance has not yet * been assigned. */ if (node_state_entry == DS_INITIALIZED) { e_ddi_free_instance(dip, addr); DEVI(dip)->devi_instance = -1; } /* release the init_node hold */ ndi_rele_devi(pdip); remove_global_props(dip); /* * NOTE: The decision on whether to allow a path-oriented * rebind of a driver.conf enumerated node is made by * init_node() based on driver_conf_allow_path_alias. The * rebind code below prevents deletion of system properties * on driver.conf nodes. * * When driver_conf_allow_path_alias is set, property behavior * on rebound driver.conf file is non-intuitive. For a * driver.conf node, the unit-address properties come from * the driver.conf file as system properties. Removing system * properties from a driver.conf node makes the node * useless (we get node without unit-address properties) - so * we leave system properties in place. The result is a node * where system properties come from the node being rebound, * and global properties come from the driver.conf file * of the driver we are rebinding to. If we could determine * that the path-oriented alias driver.conf file defined a * node at the same unit address, it would be best to use * that node and avoid the non-intuitive property behavior. * Unfortunately, the current "merge" code does not support * this, so we live with the non-intuitive property behavior. */ if (!((ndi_dev_is_persistent_node(dip) == 0) && (DEVI(dip)->devi_flags & DEVI_REBIND))) e_ddi_prop_remove_all(dip); } else { NDI_CONFIG_DEBUG((CE_CONT, "uninit_node failed: 0x%p(%s%d)\n", (void *)dip, ddi_driver_name(dip), ddi_get_instance(dip))); } if (addr) kmem_free(addr, strlen(addr) + 1); return (error); } /* * Invoke driver's probe entry point to probe for existence of hardware. * Keep instance permanent for successful probe and leaf nodes. * * Per-driver list must be held busy while calling this function. */ static int probe_node(dev_info_t *dip) { int rv; ASSERT(i_ddi_node_state(dip) == DS_INITIALIZED); NDI_CONFIG_DEBUG((CE_CONT, "probe_node: 0x%p(%s%d)\n", (void *)dip, ddi_driver_name(dip), ddi_get_instance(dip))); /* temporarily hold the driver while we probe */ DEVI(dip)->devi_ops = ndi_hold_driver(dip); if (DEVI(dip)->devi_ops == NULL) { NDI_CONFIG_DEBUG((CE_CONT, "probe_node: 0x%p(%s%d) cannot load driver\n", (void *)dip, ddi_driver_name(dip), ddi_get_instance(dip))); return (DDI_FAILURE); } if (identify_9e != 0) (void) devi_identify(dip); rv = devi_probe(dip); /* release the driver now that probe is complete */ ndi_rele_driver(dip); DEVI(dip)->devi_ops = NULL; switch (rv) { case DDI_PROBE_SUCCESS: /* found */ case DDI_PROBE_DONTCARE: /* ddi_dev_is_sid */ e_ddi_keep_instance(dip); /* persist instance */ rv = DDI_SUCCESS; break; case DDI_PROBE_PARTIAL: /* maybe later */ case DDI_PROBE_FAILURE: /* not found */ NDI_CONFIG_DEBUG((CE_CONT, "probe_node: 0x%p(%s%d) no hardware found%s\n", (void *)dip, ddi_driver_name(dip), ddi_get_instance(dip), (rv == DDI_PROBE_PARTIAL) ? " yet" : "")); rv = DDI_FAILURE; break; default: #ifdef DEBUG cmn_err(CE_WARN, "probe_node: %s%d: illegal probe(9E) value", ddi_driver_name(dip), ddi_get_instance(dip)); #endif /* DEBUG */ rv = DDI_FAILURE; break; } return (rv); } /* * Unprobe a node. Simply reset the node state. * Per-driver list must be held busy while calling this function. */ static int unprobe_node(dev_info_t *dip) { ASSERT(i_ddi_node_state(dip) == DS_PROBED); /* * Don't check for references here or else a ref-counted * dip cannot be downgraded by the framework. */ NDI_CONFIG_DEBUG((CE_CONT, "unprobe_node: 0x%p(name = %s)\n", (void *)dip, ddi_node_name(dip))); return (DDI_SUCCESS); } /* * Attach devinfo node. * Per-driver list must be held busy. */ static int attach_node(dev_info_t *dip) { int rv; ASSERT(DEVI_BUSY_OWNED(ddi_get_parent(dip))); ASSERT(i_ddi_node_state(dip) == DS_PROBED); NDI_CONFIG_DEBUG((CE_CONT, "attach_node: 0x%p(%s%d)\n", (void *)dip, ddi_driver_name(dip), ddi_get_instance(dip))); /* * Tell mpxio framework that a node is about to online. */ if ((rv = mdi_devi_online(dip, 0)) != NDI_SUCCESS) { return (DDI_FAILURE); } /* no recursive attachment */ ASSERT(DEVI(dip)->devi_ops == NULL); /* * Hold driver the node is bound to. */ DEVI(dip)->devi_ops = ndi_hold_driver(dip); if (DEVI(dip)->devi_ops == NULL) { /* * We were able to load driver for probing, so we should * not get here unless something really bad happened. */ cmn_err(CE_WARN, "attach_node: no driver for major %d", DEVI(dip)->devi_major); return (DDI_FAILURE); } if (NEXUS_DRV(DEVI(dip)->devi_ops)) DEVI(dip)->devi_taskq = ddi_taskq_create(dip, "nexus_enum_tq", 1, TASKQ_DEFAULTPRI, 0); mutex_enter(&(DEVI(dip)->devi_lock)); DEVI_SET_ATTACHING(dip); DEVI_SET_NEED_RESET(dip); mutex_exit(&(DEVI(dip)->devi_lock)); rv = devi_attach(dip, DDI_ATTACH); mutex_enter(&(DEVI(dip)->devi_lock)); DEVI_CLR_ATTACHING(dip); if (rv != DDI_SUCCESS) { DEVI_CLR_NEED_RESET(dip); mutex_exit(&DEVI(dip)->devi_lock); /* * Cleanup dacf reservations */ mutex_enter(&dacf_lock); dacf_clr_rsrvs(dip, DACF_OPID_POSTATTACH); dacf_clr_rsrvs(dip, DACF_OPID_PREDETACH); mutex_exit(&dacf_lock); if (DEVI(dip)->devi_taskq) ddi_taskq_destroy(DEVI(dip)->devi_taskq); ddi_remove_minor_node(dip, NULL); /* release the driver if attach failed */ ndi_rele_driver(dip); DEVI(dip)->devi_ops = NULL; NDI_CONFIG_DEBUG((CE_CONT, "attach_node: 0x%p(%s%d) failed\n", (void *)dip, ddi_driver_name(dip), ddi_get_instance(dip))); return (DDI_FAILURE); } else mutex_exit(&DEVI(dip)->devi_lock); /* successful attach, return with driver held */ return (DDI_SUCCESS); } /* * Detach devinfo node. * Per-driver list must be held busy. */ static int detach_node(dev_info_t *dip, uint_t flag) { struct devnames *dnp; int rv; ASSERT(DEVI_BUSY_OWNED(ddi_get_parent(dip))); ASSERT(i_ddi_node_state(dip) == DS_ATTACHED); /* check references */ if (DEVI(dip)->devi_ref) return (DDI_FAILURE); NDI_CONFIG_DEBUG((CE_CONT, "detach_node: 0x%p(%s%d)\n", (void *)dip, ddi_driver_name(dip), ddi_get_instance(dip))); /* * NOTE: If we are processing a pHCI node then the calling code * must detect this and ndi_devi_enter() in (vHCI, parent(pHCI)) * order unless pHCI and vHCI are siblings. Code paths leading * here that must ensure this ordering include: * unconfig_immediate_children(), devi_unconfig_one(), * ndi_devi_unconfig_one(), ndi_devi_offline(). */ ASSERT(!MDI_PHCI(dip) || (ddi_get_parent(mdi_devi_get_vdip(dip)) == ddi_get_parent(dip)) || DEVI_BUSY_OWNED(mdi_devi_get_vdip(dip))); /* Offline the device node with the mpxio framework. */ if (mdi_devi_offline(dip, flag) != NDI_SUCCESS) { return (DDI_FAILURE); } /* drain the taskq */ if (DEVI(dip)->devi_taskq) ddi_taskq_wait(DEVI(dip)->devi_taskq); rv = devi_detach(dip, DDI_DETACH); if (rv != DDI_SUCCESS) { NDI_CONFIG_DEBUG((CE_CONT, "detach_node: 0x%p(%s%d) failed\n", (void *)dip, ddi_driver_name(dip), ddi_get_instance(dip))); return (DDI_FAILURE); } mutex_enter(&(DEVI(dip)->devi_lock)); DEVI_CLR_NEED_RESET(dip); mutex_exit(&(DEVI(dip)->devi_lock)); #if defined(__amd64) && !defined(__xpv) /* * Close any iommulib mediated linkage to an IOMMU */ iommulib_nex_close(dip); #endif /* destroy the taskq */ if (DEVI(dip)->devi_taskq) { ddi_taskq_destroy(DEVI(dip)->devi_taskq); DEVI(dip)->devi_taskq = NULL; } /* Cleanup dacf reservations */ mutex_enter(&dacf_lock); dacf_clr_rsrvs(dip, DACF_OPID_POSTATTACH); dacf_clr_rsrvs(dip, DACF_OPID_PREDETACH); mutex_exit(&dacf_lock); /* remove any additional flavors that were added */ if (DEVI(dip)->devi_flavorv_n > 1 && DEVI(dip)->devi_flavorv != NULL) { kmem_free(DEVI(dip)->devi_flavorv, (DEVI(dip)->devi_flavorv_n - 1) * sizeof (void *)); DEVI(dip)->devi_flavorv = NULL; } /* Remove properties and minor nodes in case driver forgots */ ddi_remove_minor_node(dip, NULL); ddi_prop_remove_all(dip); /* a detached node can't have attached or .conf children */ mutex_enter(&DEVI(dip)->devi_lock); DEVI(dip)->devi_flags &= ~(DEVI_MADE_CHILDREN|DEVI_ATTACHED_CHILDREN); mutex_exit(&DEVI(dip)->devi_lock); /* * If the instance has successfully detached in detach_driver() context, * clear DN_DRIVER_HELD for correct ddi_hold_installed_driver() * behavior. Consumers like qassociate() depend on this (via clnopen()). */ if (flag & NDI_DETACH_DRIVER) { dnp = &(devnamesp[DEVI(dip)->devi_major]); LOCK_DEV_OPS(&dnp->dn_lock); dnp->dn_flags &= ~DN_DRIVER_HELD; UNLOCK_DEV_OPS(&dnp->dn_lock); } /* successful detach, release the driver */ ndi_rele_driver(dip); DEVI(dip)->devi_ops = NULL; return (DDI_SUCCESS); } /* * Run dacf post_attach routines */ static int postattach_node(dev_info_t *dip) { int rval; /* * For hotplug busses like USB, it's possible that devices * are removed but dip is still around. We don't want to * run dacf routines as part of detach failure recovery. * * Pretend success until we figure out how to prevent * access to such devinfo nodes. */ if (DEVI_IS_DEVICE_REMOVED(dip)) return (DDI_SUCCESS); /* * if dacf_postattach failed, report it to the framework * so that it can be retried later at the open time. */ mutex_enter(&dacf_lock); rval = dacfc_postattach(dip); mutex_exit(&dacf_lock); /* * Plumbing during postattach may fail because of the * underlying device is not ready. This will fail ndi_devi_config() * in dv_filldir() and a warning message is issued. The message * from here will explain what happened */ if (rval != DACF_SUCCESS) { cmn_err(CE_WARN, "Postattach failed for %s%d\n", ddi_driver_name(dip), ddi_get_instance(dip)); return (DDI_FAILURE); } return (DDI_SUCCESS); } /* * Run dacf pre-detach routines */ static int predetach_node(dev_info_t *dip, uint_t flag) { int ret; /* * Don't auto-detach if DDI_FORCEATTACH or DDI_NO_AUTODETACH * properties are set. */ if (flag & NDI_AUTODETACH) { struct devnames *dnp; int pflag = DDI_PROP_NOTPROM | DDI_PROP_DONTPASS; if ((ddi_prop_get_int(DDI_DEV_T_ANY, dip, pflag, DDI_FORCEATTACH, 0) == 1) || (ddi_prop_get_int(DDI_DEV_T_ANY, dip, pflag, DDI_NO_AUTODETACH, 0) == 1)) return (DDI_FAILURE); /* check for driver global version of DDI_NO_AUTODETACH */ dnp = &devnamesp[DEVI(dip)->devi_major]; LOCK_DEV_OPS(&dnp->dn_lock); if (dnp->dn_flags & DN_NO_AUTODETACH) { UNLOCK_DEV_OPS(&dnp->dn_lock); return (DDI_FAILURE); } UNLOCK_DEV_OPS(&dnp->dn_lock); } mutex_enter(&dacf_lock); ret = dacfc_predetach(dip); mutex_exit(&dacf_lock); return (ret); } /* * Wrapper for making multiple state transitions */ /* * i_ndi_config_node: upgrade dev_info node into a specified state. * It is a bit tricky because the locking protocol changes before and * after a node is bound to a driver. All locks are held external to * this function. */ int i_ndi_config_node(dev_info_t *dip, ddi_node_state_t state, uint_t flag) { _NOTE(ARGUNUSED(flag)) int rv = DDI_SUCCESS; ASSERT(DEVI_BUSY_OWNED(ddi_get_parent(dip))); while ((i_ddi_node_state(dip) < state) && (rv == DDI_SUCCESS)) { /* don't allow any more changes to the device tree */ if (devinfo_freeze) { rv = DDI_FAILURE; break; } switch (i_ddi_node_state(dip)) { case DS_PROTO: /* * only caller can reference this node, no external * locking needed. */ link_node(dip); translate_devid((dev_info_t *)dip); i_ddi_set_node_state(dip, DS_LINKED); break; case DS_LINKED: /* * Three code path may attempt to bind a node: * - boot code * - add_drv * - hotplug thread * Boot code is single threaded, add_drv synchronize * on a userland lock, and hotplug synchronize on * hotplug_lk. There could be a race between add_drv * and hotplug thread. We'll live with this until the * conversion to top-down loading. */ if ((rv = bind_node(dip)) == DDI_SUCCESS) i_ddi_set_node_state(dip, DS_BOUND); break; case DS_BOUND: /* * The following transitions synchronizes on the * per-driver busy changing flag, since we already * have a driver. */ if ((rv = init_node(dip)) == DDI_SUCCESS) i_ddi_set_node_state(dip, DS_INITIALIZED); break; case DS_INITIALIZED: if ((rv = probe_node(dip)) == DDI_SUCCESS) i_ddi_set_node_state(dip, DS_PROBED); break; case DS_PROBED: i_ddi_check_retire(dip); atomic_add_long(&devinfo_attach_detach, 1); if ((rv = attach_node(dip)) == DDI_SUCCESS) i_ddi_set_node_state(dip, DS_ATTACHED); atomic_add_long(&devinfo_attach_detach, -1); break; case DS_ATTACHED: if ((rv = postattach_node(dip)) == DDI_SUCCESS) i_ddi_set_node_state(dip, DS_READY); break; case DS_READY: break; default: /* should never reach here */ ASSERT("unknown devinfo state"); } } if (ddidebug & DDI_AUDIT) da_log_enter(dip); return (rv); } /* * i_ndi_unconfig_node: downgrade dev_info node into a specified state. */ int i_ndi_unconfig_node(dev_info_t *dip, ddi_node_state_t state, uint_t flag) { int rv = DDI_SUCCESS; ASSERT(DEVI_BUSY_OWNED(ddi_get_parent(dip))); while ((i_ddi_node_state(dip) > state) && (rv == DDI_SUCCESS)) { /* don't allow any more changes to the device tree */ if (devinfo_freeze) { rv = DDI_FAILURE; break; } switch (i_ddi_node_state(dip)) { case DS_PROTO: break; case DS_LINKED: /* * Persistent nodes are only removed by hotplug code * .conf nodes synchronizes on per-driver list. */ if ((rv = unlink_node(dip)) == DDI_SUCCESS) i_ddi_set_node_state(dip, DS_PROTO); break; case DS_BOUND: /* * The following transitions synchronizes on the * per-driver busy changing flag, since we already * have a driver. */ if ((rv = unbind_node(dip)) == DDI_SUCCESS) i_ddi_set_node_state(dip, DS_LINKED); break; case DS_INITIALIZED: if ((rv = uninit_node(dip)) == DDI_SUCCESS) i_ddi_set_node_state(dip, DS_BOUND); break; case DS_PROBED: if ((rv = unprobe_node(dip)) == DDI_SUCCESS) i_ddi_set_node_state(dip, DS_INITIALIZED); break; case DS_ATTACHED: atomic_add_long(&devinfo_attach_detach, 1); mutex_enter(&(DEVI(dip)->devi_lock)); DEVI_SET_DETACHING(dip); mutex_exit(&(DEVI(dip)->devi_lock)); membar_enter(); /* ensure visibility for hold_devi */ if ((rv = detach_node(dip, flag)) == DDI_SUCCESS) i_ddi_set_node_state(dip, DS_PROBED); mutex_enter(&(DEVI(dip)->devi_lock)); DEVI_CLR_DETACHING(dip); mutex_exit(&(DEVI(dip)->devi_lock)); atomic_add_long(&devinfo_attach_detach, -1); break; case DS_READY: if ((rv = predetach_node(dip, flag)) == DDI_SUCCESS) i_ddi_set_node_state(dip, DS_ATTACHED); break; default: ASSERT("unknown devinfo state"); } } da_log_enter(dip); return (rv); } /* * ddi_initchild: transform node to DS_INITIALIZED state */ int ddi_initchild(dev_info_t *parent, dev_info_t *proto) { int ret, circ; ndi_devi_enter(parent, &circ); ret = i_ndi_config_node(proto, DS_INITIALIZED, 0); ndi_devi_exit(parent, circ); return (ret); } /* * ddi_uninitchild: transform node down to DS_BOUND state */ int ddi_uninitchild(dev_info_t *dip) { int ret, circ; dev_info_t *parent = ddi_get_parent(dip); ASSERT(parent); ndi_devi_enter(parent, &circ); ret = i_ndi_unconfig_node(dip, DS_BOUND, 0); ndi_devi_exit(parent, circ); return (ret); } /* * i_ddi_attachchild: transform node to DS_READY/i_ddi_devi_attached() state */ static int i_ddi_attachchild(dev_info_t *dip) { dev_info_t *parent = ddi_get_parent(dip); int ret; ASSERT(parent && DEVI_BUSY_OWNED(parent)); if ((i_ddi_node_state(dip) < DS_BOUND) || DEVI_IS_DEVICE_OFFLINE(dip)) return (DDI_FAILURE); ret = i_ndi_config_node(dip, DS_READY, 0); if (ret == NDI_SUCCESS) { ret = DDI_SUCCESS; } else { /* * Take it down to DS_INITIALIZED so pm_pre_probe is run * on the next attach */ (void) i_ndi_unconfig_node(dip, DS_INITIALIZED, 0); ret = DDI_FAILURE; } return (ret); } /* * i_ddi_detachchild: transform node down to DS_PROBED state * If it fails, put it back to DS_READY state. * NOTE: A node that fails detach may be at DS_ATTACHED instead * of DS_READY for a small amount of time - this is the source of * transient DS_READY->DS_ATTACHED->DS_READY state changes. */ static int i_ddi_detachchild(dev_info_t *dip, uint_t flags) { dev_info_t *parent = ddi_get_parent(dip); int ret; ASSERT(parent && DEVI_BUSY_OWNED(parent)); ret = i_ndi_unconfig_node(dip, DS_PROBED, flags); if (ret != DDI_SUCCESS) (void) i_ndi_config_node(dip, DS_READY, 0); else /* allow pm_pre_probe to reestablish pm state */ (void) i_ndi_unconfig_node(dip, DS_INITIALIZED, 0); return (ret); } /* * Add a child and bind to driver */ dev_info_t * ddi_add_child(dev_info_t *pdip, char *name, uint_t nodeid, uint_t unit) { int circ; dev_info_t *dip; /* allocate a new node */ dip = i_ddi_alloc_node(pdip, name, nodeid, (int)unit, NULL, KM_SLEEP); ndi_devi_enter(pdip, &circ); (void) i_ndi_config_node(dip, DS_BOUND, 0); ndi_devi_exit(pdip, circ); return (dip); } /* * ddi_remove_child: remove the dip. The parent must be attached and held */ int ddi_remove_child(dev_info_t *dip, int dummy) { _NOTE(ARGUNUSED(dummy)) int circ, ret; dev_info_t *parent = ddi_get_parent(dip); ASSERT(parent); ndi_devi_enter(parent, &circ); /* * If we still have children, for example SID nodes marked * as persistent but not attached, attempt to remove them. */ if (DEVI(dip)->devi_child) { ret = ndi_devi_unconfig(dip, NDI_DEVI_REMOVE); if (ret != NDI_SUCCESS) { ndi_devi_exit(parent, circ); return (DDI_FAILURE); } ASSERT(DEVI(dip)->devi_child == NULL); } ret = i_ndi_unconfig_node(dip, DS_PROTO, 0); ndi_devi_exit(parent, circ); if (ret != DDI_SUCCESS) return (ret); ASSERT(i_ddi_node_state(dip) == DS_PROTO); i_ddi_free_node(dip); return (DDI_SUCCESS); } /* * NDI wrappers for ref counting, node allocation, and transitions */ /* * Hold/release the devinfo node itself. * Caller is assumed to prevent the devi from detaching during this call */ void ndi_hold_devi(dev_info_t *dip) { mutex_enter(&DEVI(dip)->devi_lock); ASSERT(DEVI(dip)->devi_ref >= 0); DEVI(dip)->devi_ref++; membar_enter(); /* make sure stores are flushed */ mutex_exit(&DEVI(dip)->devi_lock); } void ndi_rele_devi(dev_info_t *dip) { ASSERT(DEVI(dip)->devi_ref > 0); mutex_enter(&DEVI(dip)->devi_lock); DEVI(dip)->devi_ref--; membar_enter(); /* make sure stores are flushed */ mutex_exit(&DEVI(dip)->devi_lock); } int e_ddi_devi_holdcnt(dev_info_t *dip) { return (DEVI(dip)->devi_ref); } /* * Hold/release the driver the devinfo node is bound to. */ struct dev_ops * ndi_hold_driver(dev_info_t *dip) { if (i_ddi_node_state(dip) < DS_BOUND) return (NULL); ASSERT(DEVI(dip)->devi_major != -1); return (mod_hold_dev_by_major(DEVI(dip)->devi_major)); } void ndi_rele_driver(dev_info_t *dip) { ASSERT(i_ddi_node_state(dip) >= DS_BOUND); mod_rele_dev_by_major(DEVI(dip)->devi_major); } /* * Single thread entry into devinfo node for modifying its children (devinfo, * pathinfo, and minor). To verify in ASSERTS use DEVI_BUSY_OWNED macro. */ void ndi_devi_enter(dev_info_t *dip, int *circular) { struct dev_info *devi = DEVI(dip); ASSERT(dip != NULL); /* for vHCI, enforce (vHCI, pHCI) ndi_deve_enter() order */ ASSERT(!MDI_VHCI(dip) || (mdi_devi_pdip_entered(dip) == 0) || DEVI_BUSY_OWNED(dip)); mutex_enter(&devi->devi_lock); if (devi->devi_busy_thread == curthread) { devi->devi_circular++; } else { while (DEVI_BUSY_CHANGING(devi) && !panicstr) cv_wait(&(devi->devi_cv), &(devi->devi_lock)); if (panicstr) { mutex_exit(&devi->devi_lock); return; } devi->devi_flags |= DEVI_BUSY; devi->devi_busy_thread = curthread; } *circular = devi->devi_circular; mutex_exit(&devi->devi_lock); } /* * Release ndi_devi_enter or successful ndi_devi_tryenter. */ void ndi_devi_exit(dev_info_t *dip, int circular) { struct dev_info *devi = DEVI(dip); struct dev_info *vdevi; ASSERT(dip != NULL); if (panicstr) return; mutex_enter(&(devi->devi_lock)); if (circular != 0) { devi->devi_circular--; } else { devi->devi_flags &= ~DEVI_BUSY; ASSERT(devi->devi_busy_thread == curthread); devi->devi_busy_thread = NULL; cv_broadcast(&(devi->devi_cv)); } mutex_exit(&(devi->devi_lock)); /* * For pHCI exit we issue a broadcast to vHCI for ndi_devi_config_one() * doing cv_wait on vHCI. */ if (MDI_PHCI(dip)) { vdevi = DEVI(mdi_devi_get_vdip(dip)); if (vdevi) { mutex_enter(&(vdevi->devi_lock)); if (vdevi->devi_flags & DEVI_PHCI_SIGNALS_VHCI) { vdevi->devi_flags &= ~DEVI_PHCI_SIGNALS_VHCI; cv_broadcast(&(vdevi->devi_cv)); } mutex_exit(&(vdevi->devi_lock)); } } } /* * Release ndi_devi_enter and wait for possibility of new children, avoiding * possibility of missing broadcast before getting to cv_timedwait(). */ static void ndi_devi_exit_and_wait(dev_info_t *dip, int circular, clock_t end_time) { struct dev_info *devi = DEVI(dip); ASSERT(dip != NULL); if (panicstr) return; /* * We are called to wait for of a new child, and new child can * only be added if circular is zero. */ ASSERT(circular == 0); /* like ndi_devi_exit with circular of zero */ mutex_enter(&(devi->devi_lock)); devi->devi_flags &= ~DEVI_BUSY; ASSERT(devi->devi_busy_thread == curthread); devi->devi_busy_thread = NULL; cv_broadcast(&(devi->devi_cv)); /* now wait for new children while still holding devi_lock */ (void) cv_timedwait(&devi->devi_cv, &(devi->devi_lock), end_time); mutex_exit(&(devi->devi_lock)); } /* * Attempt to single thread entry into devinfo node for modifying its children. */ int ndi_devi_tryenter(dev_info_t *dip, int *circular) { int rval = 1; /* assume we enter */ struct dev_info *devi = DEVI(dip); ASSERT(dip != NULL); mutex_enter(&devi->devi_lock); if (devi->devi_busy_thread == (void *)curthread) { devi->devi_circular++; } else { if (!DEVI_BUSY_CHANGING(devi)) { devi->devi_flags |= DEVI_BUSY; devi->devi_busy_thread = (void *)curthread; } else { rval = 0; /* devi is busy */ } } *circular = devi->devi_circular; mutex_exit(&devi->devi_lock); return (rval); } /* * Allocate and initialize a new dev_info structure. * * This routine may be called at interrupt time by a nexus in * response to a hotplug event, therefore memory allocations are * not allowed to sleep. */ int ndi_devi_alloc(dev_info_t *parent, char *node_name, pnode_t nodeid, dev_info_t **ret_dip) { ASSERT(node_name != NULL); ASSERT(ret_dip != NULL); *ret_dip = i_ddi_alloc_node(parent, node_name, nodeid, -1, NULL, KM_NOSLEEP); if (*ret_dip == NULL) { return (NDI_NOMEM); } return (NDI_SUCCESS); } /* * Allocate and initialize a new dev_info structure * This routine may sleep and should not be called at interrupt time */ void ndi_devi_alloc_sleep(dev_info_t *parent, char *node_name, pnode_t nodeid, dev_info_t **ret_dip) { ASSERT(node_name != NULL); ASSERT(ret_dip != NULL); *ret_dip = i_ddi_alloc_node(parent, node_name, nodeid, -1, NULL, KM_SLEEP); ASSERT(*ret_dip); } /* * Remove an initialized (but not yet attached) dev_info * node from it's parent. */ int ndi_devi_free(dev_info_t *dip) { ASSERT(dip != NULL); if (i_ddi_node_state(dip) >= DS_INITIALIZED) return (DDI_FAILURE); NDI_CONFIG_DEBUG((CE_CONT, "ndi_devi_free: %s%d (%p)\n", ddi_driver_name(dip), ddi_get_instance(dip), (void *)dip)); (void) ddi_remove_child(dip, 0); return (NDI_SUCCESS); } /* * ndi_devi_bind_driver() binds a driver to a given device. If it fails * to bind the driver, it returns an appropriate error back. Some drivers * may want to know if the actually failed to bind. */ int ndi_devi_bind_driver(dev_info_t *dip, uint_t flags) { int ret = NDI_FAILURE; int circ; dev_info_t *pdip = ddi_get_parent(dip); ASSERT(pdip); NDI_CONFIG_DEBUG((CE_CONT, "ndi_devi_bind_driver: %s%d (%p) flags: %x\n", ddi_driver_name(dip), ddi_get_instance(dip), (void *)dip, flags)); ndi_devi_enter(pdip, &circ); if (i_ndi_config_node(dip, DS_BOUND, flags) == DDI_SUCCESS) ret = NDI_SUCCESS; ndi_devi_exit(pdip, circ); return (ret); } /* * ndi_devi_unbind_driver: unbind the dip */ static int ndi_devi_unbind_driver(dev_info_t *dip) { ASSERT(DEVI_BUSY_OWNED(ddi_get_parent(dip))); return (i_ndi_unconfig_node(dip, DS_LINKED, 0)); } /* * Misc. help routines called by framework only */ /* * Get the state of node */ ddi_node_state_t i_ddi_node_state(dev_info_t *dip) { return (DEVI(dip)->devi_node_state); } /* * Set the state of node */ void i_ddi_set_node_state(dev_info_t *dip, ddi_node_state_t state) { DEVI(dip)->devi_node_state = state; membar_enter(); /* make sure stores are flushed */ } /* * Determine if node is attached. The implementation accommodates transient * DS_READY->DS_ATTACHED->DS_READY state changes. Outside this file, this * function should be instead of i_ddi_node_state() DS_ATTACHED/DS_READY * state checks. */ int i_ddi_devi_attached(dev_info_t *dip) { return (DEVI(dip)->devi_node_state >= DS_ATTACHED); } /* * Common function for finding a node in a sibling list given name and addr. * * By default, name is matched with devi_node_name. The following * alternative match strategies are supported: * * FIND_NODE_BY_NODENAME: Match on node name - typical use. * * FIND_NODE_BY_DRIVER: A match on driver name bound to node is conducted. * This support is used for support of OBP generic names and * for the conversion from driver names to generic names. When * more consistency in the generic name environment is achieved * (and not needed for upgrade) this support can be removed. * * FIND_NODE_BY_ADDR: Match on just the addr. * This support is only used/needed during boot to match * a node bound via a path-based driver alias. * * If a child is not named (dev_addr == NULL), there are three * possible actions: * * (1) skip it * (2) FIND_ADDR_BY_INIT: bring child to DS_INITIALIZED state * (3) FIND_ADDR_BY_CALLBACK: use a caller-supplied callback function */ #define FIND_NODE_BY_NODENAME 0x01 #define FIND_NODE_BY_DRIVER 0x02 #define FIND_NODE_BY_ADDR 0x04 #define FIND_ADDR_BY_INIT 0x10 #define FIND_ADDR_BY_CALLBACK 0x20 static dev_info_t * find_sibling(dev_info_t *head, char *cname, char *caddr, uint_t flag, int (*callback)(dev_info_t *, char *, int)) { dev_info_t *dip; char *addr, *buf; major_t major; uint_t by; /* only one way to find a node */ by = flag & (FIND_NODE_BY_DRIVER | FIND_NODE_BY_NODENAME | FIND_NODE_BY_ADDR); ASSERT(by && BIT_ONLYONESET(by)); /* only one way to name a node */ ASSERT(((flag & FIND_ADDR_BY_INIT) == 0) || ((flag & FIND_ADDR_BY_CALLBACK) == 0)); if (by == FIND_NODE_BY_DRIVER) { major = ddi_name_to_major(cname); if (major == DDI_MAJOR_T_NONE) return (NULL); } /* preallocate buffer of naming node by callback */ if (flag & FIND_ADDR_BY_CALLBACK) buf = kmem_alloc(MAXNAMELEN, KM_SLEEP); /* * Walk the child list to find a match */ if (head == NULL) return (NULL); ASSERT(DEVI_BUSY_OWNED(ddi_get_parent(head))); for (dip = head; dip; dip = ddi_get_next_sibling(dip)) { if (by == FIND_NODE_BY_NODENAME) { /* match node name */ if (strcmp(cname, DEVI(dip)->devi_node_name) != 0) continue; } else if (by == FIND_NODE_BY_DRIVER) { /* match driver major */ if (DEVI(dip)->devi_major != major) continue; } if ((addr = DEVI(dip)->devi_addr) == NULL) { /* name the child based on the flag */ if (flag & FIND_ADDR_BY_INIT) { if (ddi_initchild(ddi_get_parent(dip), dip) != DDI_SUCCESS) continue; addr = DEVI(dip)->devi_addr; } else if (flag & FIND_ADDR_BY_CALLBACK) { if ((callback == NULL) || (callback( dip, buf, MAXNAMELEN) != DDI_SUCCESS)) continue; addr = buf; } else { continue; /* skip */ } } /* match addr */ ASSERT(addr != NULL); if (strcmp(caddr, addr) == 0) break; /* node found */ } if (flag & FIND_ADDR_BY_CALLBACK) kmem_free(buf, MAXNAMELEN); return (dip); } /* * Find child of pdip with name: cname@caddr * Called by init_node() to look for duplicate nodes */ static dev_info_t * find_duplicate_child(dev_info_t *pdip, dev_info_t *dip) { dev_info_t *dup; char *cname = DEVI(dip)->devi_node_name; char *caddr = DEVI(dip)->devi_addr; /* search nodes before dip */ dup = find_sibling(ddi_get_child(pdip), cname, caddr, FIND_NODE_BY_NODENAME, NULL); if (dup != dip) return (dup); /* * search nodes after dip; normally this is not needed, */ return (find_sibling(ddi_get_next_sibling(dip), cname, caddr, FIND_NODE_BY_NODENAME, NULL)); } /* * Find a child of a given name and address, using a callback to name * unnamed children. cname is the binding name. */ dev_info_t * ndi_devi_findchild_by_callback(dev_info_t *pdip, char *dname, char *ua, int (*make_ua)(dev_info_t *, char *, int)) { int by = FIND_ADDR_BY_CALLBACK; ASSERT(DEVI_BUSY_OWNED(pdip)); by |= dname ? FIND_NODE_BY_DRIVER : FIND_NODE_BY_ADDR; return (find_sibling(ddi_get_child(pdip), dname, ua, by, make_ua)); } /* * Find a child of a given name and address, invoking initchild to name * unnamed children. cname is the node name. */ static dev_info_t * find_child_by_name(dev_info_t *pdip, char *cname, char *caddr) { dev_info_t *dip; /* attempt search without changing state of preceding siblings */ dip = find_sibling(ddi_get_child(pdip), cname, caddr, FIND_NODE_BY_NODENAME, NULL); if (dip) return (dip); return (find_sibling(ddi_get_child(pdip), cname, caddr, FIND_NODE_BY_NODENAME|FIND_ADDR_BY_INIT, NULL)); } /* * Find a child of a given name and address, invoking initchild to name * unnamed children. cname is the node name. */ static dev_info_t * find_child_by_driver(dev_info_t *pdip, char *cname, char *caddr) { dev_info_t *dip; /* attempt search without changing state of preceding siblings */ dip = find_sibling(ddi_get_child(pdip), cname, caddr, FIND_NODE_BY_DRIVER, NULL); if (dip) return (dip); return (find_sibling(ddi_get_child(pdip), cname, caddr, FIND_NODE_BY_DRIVER|FIND_ADDR_BY_INIT, NULL)); } /* * Find a child of a given address, invoking initchild to name * unnamed children. cname is the node name. * * NOTE: This function is only used during boot. One would hope that * unique sibling unit-addresses on hardware branches of the tree would * be a requirement to avoid two drivers trying to control the same * piece of hardware. Unfortunately there are some cases where this * situation exists (/ssm@0,0/pci@1c,700000 /ssm@0,0/sghsc@1c,700000). * Until unit-address uniqueness of siblings is guaranteed, use of this * interface for purposes other than boot should be avoided. */ static dev_info_t * find_child_by_addr(dev_info_t *pdip, char *caddr) { dev_info_t *dip; /* return NULL if called without a unit-address */ if ((caddr == NULL) || (*caddr == '\0')) return (NULL); /* attempt search without changing state of preceding siblings */ dip = find_sibling(ddi_get_child(pdip), NULL, caddr, FIND_NODE_BY_ADDR, NULL); if (dip) return (dip); return (find_sibling(ddi_get_child(pdip), NULL, caddr, FIND_NODE_BY_ADDR|FIND_ADDR_BY_INIT, NULL)); } /* * Deleting a property list. Take care, since some property structures * may not be fully built. */ void i_ddi_prop_list_delete(ddi_prop_t *prop) { while (prop) { ddi_prop_t *next = prop->prop_next; if (prop->prop_name) kmem_free(prop->prop_name, strlen(prop->prop_name) + 1); if ((prop->prop_len != 0) && prop->prop_val) kmem_free(prop->prop_val, prop->prop_len); kmem_free(prop, sizeof (struct ddi_prop)); prop = next; } } /* * Duplicate property list */ ddi_prop_t * i_ddi_prop_list_dup(ddi_prop_t *prop, uint_t flag) { ddi_prop_t *result, *prev, *copy; if (prop == NULL) return (NULL); result = prev = NULL; for (; prop != NULL; prop = prop->prop_next) { ASSERT(prop->prop_name != NULL); copy = kmem_zalloc(sizeof (struct ddi_prop), flag); if (copy == NULL) goto fail; copy->prop_dev = prop->prop_dev; copy->prop_flags = prop->prop_flags; copy->prop_name = i_ddi_strdup(prop->prop_name, flag); if (copy->prop_name == NULL) goto fail; if ((copy->prop_len = prop->prop_len) != 0) { copy->prop_val = kmem_zalloc(prop->prop_len, flag); if (copy->prop_val == NULL) goto fail; bcopy(prop->prop_val, copy->prop_val, prop->prop_len); } if (prev == NULL) result = prev = copy; else prev->prop_next = copy; prev = copy; } return (result); fail: i_ddi_prop_list_delete(result); return (NULL); } /* * Create a reference property list, currently used only for * driver global properties. Created with ref count of 1. */ ddi_prop_list_t * i_ddi_prop_list_create(ddi_prop_t *props) { ddi_prop_list_t *list = kmem_alloc(sizeof (*list), KM_SLEEP); list->prop_list = props; list->prop_ref = 1; return (list); } /* * Increment/decrement reference count. The reference is * protected by dn_lock. The only interfaces modifying * dn_global_prop_ptr is in impl_make[free]_parlist(). */ void i_ddi_prop_list_hold(ddi_prop_list_t *prop_list, struct devnames *dnp) { ASSERT(prop_list->prop_ref >= 0); ASSERT(mutex_owned(&dnp->dn_lock)); prop_list->prop_ref++; } void i_ddi_prop_list_rele(ddi_prop_list_t *prop_list, struct devnames *dnp) { ASSERT(prop_list->prop_ref > 0); ASSERT(mutex_owned(&dnp->dn_lock)); prop_list->prop_ref--; if (prop_list->prop_ref == 0) { i_ddi_prop_list_delete(prop_list->prop_list); kmem_free(prop_list, sizeof (*prop_list)); } } /* * Free table of classes by drivers */ void i_ddi_free_exported_classes(char **classes, int n) { if ((n == 0) || (classes == NULL)) return; kmem_free(classes, n * sizeof (char *)); } /* * Get all classes exported by dip */ int i_ddi_get_exported_classes(dev_info_t *dip, char ***classes) { extern void lock_hw_class_list(); extern void unlock_hw_class_list(); extern int get_class(const char *, char **); static char *rootclass = "root"; int n = 0, nclass = 0; char **buf; ASSERT(i_ddi_node_state(dip) >= DS_BOUND); if (dip == ddi_root_node()) /* rootnode exports class "root" */ nclass = 1; lock_hw_class_list(); nclass += get_class(ddi_driver_name(dip), NULL); if (nclass == 0) { unlock_hw_class_list(); return (0); /* no class exported */ } *classes = buf = kmem_alloc(nclass * sizeof (char *), KM_SLEEP); if (dip == ddi_root_node()) { *buf++ = rootclass; n = 1; } n += get_class(ddi_driver_name(dip), buf); unlock_hw_class_list(); ASSERT(n == nclass); /* make sure buf wasn't overrun */ return (nclass); } /* * Helper functions, returns NULL if no memory. */ char * i_ddi_strdup(char *str, uint_t flag) { char *copy; if (str == NULL) return (NULL); copy = kmem_alloc(strlen(str) + 1, flag); if (copy == NULL) return (NULL); (void) strcpy(copy, str); return (copy); } /* * Load driver.conf file for major. Load all if major == -1. * * This is called * - early in boot after devnames array is initialized * - from vfs code when certain file systems are mounted * - from add_drv when a new driver is added */ int i_ddi_load_drvconf(major_t major) { extern int modrootloaded; major_t low, high, m; if (major == DDI_MAJOR_T_NONE) { low = 0; high = devcnt - 1; } else { if (major >= devcnt) return (EINVAL); low = high = major; } for (m = low; m <= high; m++) { struct devnames *dnp = &devnamesp[m]; LOCK_DEV_OPS(&dnp->dn_lock); dnp->dn_flags &= ~(DN_DRIVER_HELD|DN_DRIVER_INACTIVE); (void) impl_make_parlist(m); UNLOCK_DEV_OPS(&dnp->dn_lock); } if (modrootloaded) { ddi_walk_devs(ddi_root_node(), reset_nexus_flags, (void *)(uintptr_t)major); } /* build dn_list from old entries in path_to_inst */ e_ddi_unorphan_instance_nos(); return (0); } /* * Unload a specific driver.conf. * Don't support unload all because it doesn't make any sense */ int i_ddi_unload_drvconf(major_t major) { int error; struct devnames *dnp; if (major >= devcnt) return (EINVAL); /* * Take the per-driver lock while unloading driver.conf */ dnp = &devnamesp[major]; LOCK_DEV_OPS(&dnp->dn_lock); error = impl_free_parlist(major); UNLOCK_DEV_OPS(&dnp->dn_lock); return (error); } /* * Merge a .conf node. This is called by nexus drivers to augment * hw node with properties specified in driver.conf file. This function * takes a callback routine to name nexus children. * The parent node must be held busy. * * It returns DDI_SUCCESS if the node is merged and DDI_FAILURE otherwise. */ int ndi_merge_node(dev_info_t *dip, int (*make_ua)(dev_info_t *, char *, int)) { dev_info_t *hwdip; ASSERT(ndi_dev_is_persistent_node(dip) == 0); ASSERT(ddi_get_name_addr(dip) != NULL); hwdip = ndi_devi_findchild_by_callback(ddi_get_parent(dip), ddi_binding_name(dip), ddi_get_name_addr(dip), make_ua); /* * Look for the hardware node that is the target of the merge; * return failure if not found. */ if ((hwdip == NULL) || (hwdip == dip)) { char *buf = kmem_alloc(MAXNAMELEN, KM_SLEEP); NDI_CONFIG_DEBUG((CE_WARN, "No HW node to merge conf node %s", ddi_deviname(dip, buf))); kmem_free(buf, MAXNAMELEN); return (DDI_FAILURE); } /* * Make sure the hardware node is uninitialized and has no property. * This may not be the case if new .conf files are load after some * hardware nodes have already been initialized and attached. * * N.B. We return success here because the node was *intended* * to be a merge node because there is a hw node with the name. */ mutex_enter(&DEVI(hwdip)->devi_lock); if (ndi_dev_is_persistent_node(hwdip) == 0) { char *buf; mutex_exit(&DEVI(hwdip)->devi_lock); buf = kmem_alloc(MAXNAMELEN, KM_SLEEP); NDI_CONFIG_DEBUG((CE_NOTE, "Duplicate .conf node %s", ddi_deviname(dip, buf))); kmem_free(buf, MAXNAMELEN); return (DDI_SUCCESS); } /* * If it is possible that the hardware has already been touched * then don't merge. */ if (i_ddi_node_state(hwdip) >= DS_INITIALIZED || (DEVI(hwdip)->devi_sys_prop_ptr != NULL) || (DEVI(hwdip)->devi_drv_prop_ptr != NULL)) { char *buf; mutex_exit(&DEVI(hwdip)->devi_lock); buf = kmem_alloc(MAXNAMELEN, KM_SLEEP); NDI_CONFIG_DEBUG((CE_NOTE, "!Cannot merge .conf node %s with hw node %p " "-- not in proper state", ddi_deviname(dip, buf), (void *)hwdip)); kmem_free(buf, MAXNAMELEN); return (DDI_SUCCESS); } mutex_enter(&DEVI(dip)->devi_lock); DEVI(hwdip)->devi_sys_prop_ptr = DEVI(dip)->devi_sys_prop_ptr; DEVI(hwdip)->devi_drv_prop_ptr = DEVI(dip)->devi_drv_prop_ptr; DEVI(dip)->devi_sys_prop_ptr = NULL; DEVI(dip)->devi_drv_prop_ptr = NULL; mutex_exit(&DEVI(dip)->devi_lock); mutex_exit(&DEVI(hwdip)->devi_lock); return (DDI_SUCCESS); } /* * Merge a "wildcard" .conf node. This is called by nexus drivers to * augment a set of hw node with properties specified in driver.conf file. * The parent node must be held busy. * * There is no failure mode, since the nexus may or may not have child * node bound the driver specified by the wildcard node. */ void ndi_merge_wildcard_node(dev_info_t *dip) { dev_info_t *hwdip; dev_info_t *pdip = ddi_get_parent(dip); major_t major = ddi_driver_major(dip); /* never attempt to merge a hw node */ ASSERT(ndi_dev_is_persistent_node(dip) == 0); /* must be bound to a driver major number */ ASSERT(major != DDI_MAJOR_T_NONE); /* * Walk the child list to find all nodes bound to major * and copy properties. */ mutex_enter(&DEVI(dip)->devi_lock); ASSERT(DEVI_BUSY_OWNED(pdip)); for (hwdip = ddi_get_child(pdip); hwdip; hwdip = ddi_get_next_sibling(hwdip)) { /* * Skip nodes not bound to same driver */ if (ddi_driver_major(hwdip) != major) continue; /* * Skip .conf nodes */ if (ndi_dev_is_persistent_node(hwdip) == 0) continue; /* * Make sure the node is uninitialized and has no property. */ mutex_enter(&DEVI(hwdip)->devi_lock); if (i_ddi_node_state(hwdip) >= DS_INITIALIZED || (DEVI(hwdip)->devi_sys_prop_ptr != NULL) || (DEVI(hwdip)->devi_drv_prop_ptr != NULL)) { mutex_exit(&DEVI(hwdip)->devi_lock); NDI_CONFIG_DEBUG((CE_NOTE, "HW node %p state not " "suitable for merging wildcard conf node %s", (void *)hwdip, ddi_node_name(dip))); continue; } DEVI(hwdip)->devi_sys_prop_ptr = i_ddi_prop_list_dup(DEVI(dip)->devi_sys_prop_ptr, KM_SLEEP); DEVI(hwdip)->devi_drv_prop_ptr = i_ddi_prop_list_dup(DEVI(dip)->devi_drv_prop_ptr, KM_SLEEP); mutex_exit(&DEVI(hwdip)->devi_lock); } mutex_exit(&DEVI(dip)->devi_lock); } /* * Return the major number based on the compatible property. This interface * may be used in situations where we are trying to detect if a better driver * now exists for a device, so it must use the 'compatible' property. If * a non-NULL formp is specified and the binding was based on compatible then * return the pointer to the form used in *formp. */ major_t ddi_compatible_driver_major(dev_info_t *dip, char **formp) { struct dev_info *devi = DEVI(dip); void *compat; size_t len; char *p = NULL; major_t major = DDI_MAJOR_T_NONE; if (formp) *formp = NULL; if (ddi_prop_exists(DDI_DEV_T_NONE, dip, DDI_PROP_DONTPASS, "ddi-assigned")) { major = ddi_name_to_major("nulldriver"); return (major); } /* * Highest precedence binding is a path-oriented alias. Since this * requires a 'path', this type of binding occurs via more obtuse * 'rebind'. The need for a path-oriented alias 'rebind' is detected * after a successful DDI_CTLOPS_INITCHILD to another driver: this is * is the first point at which the unit-address (or instance) of the * last component of the path is available (even though the path is * bound to the wrong driver at this point). */ if (devi->devi_flags & DEVI_REBIND) { p = devi->devi_rebinding_name; major = ddi_name_to_major(p); if (driver_active(major)) { if (formp) *formp = p; return (major); } /* * If for some reason devi_rebinding_name no longer resolves * to a proper driver then clear DEVI_REBIND. */ mutex_enter(&devi->devi_lock); devi->devi_flags &= ~DEVI_REBIND; mutex_exit(&devi->devi_lock); } /* look up compatible property */ (void) lookup_compatible(dip, KM_SLEEP); compat = (void *)(devi->devi_compat_names); len = devi->devi_compat_length; /* find the highest precedence compatible form with a driver binding */ while ((p = prom_decode_composite_string(compat, len, p)) != NULL) { major = ddi_name_to_major(p); if (driver_active(major)) { if (formp) *formp = p; return (major); } } /* * none of the compatible forms have a driver binding, see if * the node name has a driver binding. */ major = ddi_name_to_major(ddi_node_name(dip)); if (driver_active(major)) return (major); /* no driver */ return (DDI_MAJOR_T_NONE); } /* * Static help functions */ /* * lookup the "compatible" property and cache it's contents in the * device node. */ static int lookup_compatible(dev_info_t *dip, uint_t flag) { int rv; int prop_flags; uint_t ncompatstrs; char **compatstrpp; char *di_compat_strp; size_t di_compat_strlen; if (DEVI(dip)->devi_compat_names) { return (DDI_SUCCESS); } prop_flags = DDI_PROP_TYPE_STRING | DDI_PROP_DONTPASS; if (flag & KM_NOSLEEP) { prop_flags |= DDI_PROP_DONTSLEEP; } if (ndi_dev_is_prom_node(dip) == 0) { prop_flags |= DDI_PROP_NOTPROM; } rv = ddi_prop_lookup_common(DDI_DEV_T_ANY, dip, prop_flags, "compatible", &compatstrpp, &ncompatstrs, ddi_prop_fm_decode_strings); if (rv == DDI_PROP_NOT_FOUND) { return (DDI_SUCCESS); } if (rv != DDI_PROP_SUCCESS) { return (DDI_FAILURE); } /* * encode the compatible property data in the dev_info node */ rv = DDI_SUCCESS; if (ncompatstrs != 0) { di_compat_strp = encode_composite_string(compatstrpp, ncompatstrs, &di_compat_strlen, flag); if (di_compat_strp != NULL) { DEVI(dip)->devi_compat_names = di_compat_strp; DEVI(dip)->devi_compat_length = di_compat_strlen; } else { rv = DDI_FAILURE; } } ddi_prop_free(compatstrpp); return (rv); } /* * Create a composite string from a list of strings. * * A composite string consists of a single buffer containing one * or more NULL terminated strings. */ static char * encode_composite_string(char **strings, uint_t nstrings, size_t *retsz, uint_t flag) { uint_t index; char **strpp; uint_t slen; size_t cbuf_sz = 0; char *cbuf_p; char *cbuf_ip; if (strings == NULL || nstrings == 0 || retsz == NULL) { return (NULL); } for (index = 0, strpp = strings; index < nstrings; index++) cbuf_sz += strlen(*(strpp++)) + 1; if ((cbuf_p = kmem_alloc(cbuf_sz, flag)) == NULL) { cmn_err(CE_NOTE, "?failed to allocate device node compatstr"); return (NULL); } cbuf_ip = cbuf_p; for (index = 0, strpp = strings; index < nstrings; index++) { slen = strlen(*strpp); bcopy(*(strpp++), cbuf_ip, slen); cbuf_ip += slen; *(cbuf_ip++) = '\0'; } *retsz = cbuf_sz; return (cbuf_p); } static void link_to_driver_list(dev_info_t *dip) { major_t major = DEVI(dip)->devi_major; struct devnames *dnp; ASSERT(major != DDI_MAJOR_T_NONE); /* * Remove from orphan list */ if (ndi_dev_is_persistent_node(dip)) { dnp = &orphanlist; remove_from_dn_list(dnp, dip); } /* * Add to per driver list */ dnp = &devnamesp[major]; add_to_dn_list(dnp, dip); } static void unlink_from_driver_list(dev_info_t *dip) { major_t major = DEVI(dip)->devi_major; struct devnames *dnp; ASSERT(major != DDI_MAJOR_T_NONE); /* * Remove from per-driver list */ dnp = &devnamesp[major]; remove_from_dn_list(dnp, dip); /* * Add to orphan list */ if (ndi_dev_is_persistent_node(dip)) { dnp = &orphanlist; add_to_dn_list(dnp, dip); } } /* * scan the per-driver list looking for dev_info "dip" */ static dev_info_t * in_dn_list(struct devnames *dnp, dev_info_t *dip) { struct dev_info *idevi; if ((idevi = DEVI(dnp->dn_head)) == NULL) return (NULL); while (idevi) { if (idevi == DEVI(dip)) return (dip); idevi = idevi->devi_next; } return (NULL); } /* * insert devinfo node 'dip' into the per-driver instance list * headed by 'dnp' * * Nodes on the per-driver list are ordered: HW - SID - PSEUDO. The order is * required for merging of .conf file data to work properly. */ static void add_to_ordered_dn_list(struct devnames *dnp, dev_info_t *dip) { dev_info_t **dipp; ASSERT(mutex_owned(&(dnp->dn_lock))); dipp = &dnp->dn_head; if (ndi_dev_is_prom_node(dip)) { /* * Find the first non-prom node or end of list */ while (*dipp && (ndi_dev_is_prom_node(*dipp) != 0)) { dipp = (dev_info_t **)&DEVI(*dipp)->devi_next; } } else if (ndi_dev_is_persistent_node(dip)) { /* * Find the first non-persistent node */ while (*dipp && (ndi_dev_is_persistent_node(*dipp) != 0)) { dipp = (dev_info_t **)&DEVI(*dipp)->devi_next; } } else { /* * Find the end of the list */ while (*dipp) { dipp = (dev_info_t **)&DEVI(*dipp)->devi_next; } } DEVI(dip)->devi_next = DEVI(*dipp); *dipp = dip; } /* * add a list of device nodes to the device node list in the * devnames structure */ static void add_to_dn_list(struct devnames *dnp, dev_info_t *dip) { /* * Look to see if node already exists */ LOCK_DEV_OPS(&(dnp->dn_lock)); if (in_dn_list(dnp, dip)) { cmn_err(CE_NOTE, "add_to_dn_list: node %s already in list", DEVI(dip)->devi_node_name); } else { add_to_ordered_dn_list(dnp, dip); } UNLOCK_DEV_OPS(&(dnp->dn_lock)); } static void remove_from_dn_list(struct devnames *dnp, dev_info_t *dip) { dev_info_t **plist; LOCK_DEV_OPS(&(dnp->dn_lock)); plist = (dev_info_t **)&dnp->dn_head; while (*plist && (*plist != dip)) { plist = (dev_info_t **)&DEVI(*plist)->devi_next; } if (*plist != NULL) { ASSERT(*plist == dip); *plist = (dev_info_t *)(DEVI(dip)->devi_next); DEVI(dip)->devi_next = NULL; } else { NDI_CONFIG_DEBUG((CE_NOTE, "remove_from_dn_list: node %s not found in list", DEVI(dip)->devi_node_name)); } UNLOCK_DEV_OPS(&(dnp->dn_lock)); } /* * Add and remove reference driver global property list */ static void add_global_props(dev_info_t *dip) { struct devnames *dnp; ddi_prop_list_t *plist; ASSERT(DEVI(dip)->devi_global_prop_list == NULL); ASSERT(DEVI(dip)->devi_major != DDI_MAJOR_T_NONE); dnp = &devnamesp[DEVI(dip)->devi_major]; LOCK_DEV_OPS(&dnp->dn_lock); plist = dnp->dn_global_prop_ptr; if (plist == NULL) { UNLOCK_DEV_OPS(&dnp->dn_lock); return; } i_ddi_prop_list_hold(plist, dnp); UNLOCK_DEV_OPS(&dnp->dn_lock); mutex_enter(&DEVI(dip)->devi_lock); DEVI(dip)->devi_global_prop_list = plist; mutex_exit(&DEVI(dip)->devi_lock); } static void remove_global_props(dev_info_t *dip) { ddi_prop_list_t *proplist; mutex_enter(&DEVI(dip)->devi_lock); proplist = DEVI(dip)->devi_global_prop_list; DEVI(dip)->devi_global_prop_list = NULL; mutex_exit(&DEVI(dip)->devi_lock); if (proplist) { major_t major; struct devnames *dnp; major = ddi_driver_major(dip); ASSERT(major != DDI_MAJOR_T_NONE); dnp = &devnamesp[major]; LOCK_DEV_OPS(&dnp->dn_lock); i_ddi_prop_list_rele(proplist, dnp); UNLOCK_DEV_OPS(&dnp->dn_lock); } } #ifdef DEBUG /* * Set this variable to '0' to disable the optimization, * and to 2 to print debug message. */ static int optimize_dtree = 1; static void debug_dtree(dev_info_t *devi, struct dev_info *adevi, char *service) { char *adeviname, *buf; /* * Don't print unless optimize dtree is set to 2+ */ if (optimize_dtree <= 1) return; buf = kmem_alloc(MAXNAMELEN, KM_SLEEP); adeviname = ddi_deviname((dev_info_t *)adevi, buf); if (*adeviname == '\0') adeviname = "root"; cmn_err(CE_CONT, "%s %s -> %s\n", ddi_deviname(devi, buf), service, adeviname); kmem_free(buf, MAXNAMELEN); } #else /* DEBUG */ #define debug_dtree(a1, a2, a3) /* nothing */ #endif /* DEBUG */ static void ddi_optimize_dtree(dev_info_t *devi) { struct dev_info *pdevi; struct bus_ops *b; pdevi = DEVI(devi)->devi_parent; ASSERT(pdevi); /* * Set the unoptimized values */ DEVI(devi)->devi_bus_map_fault = pdevi; DEVI(devi)->devi_bus_dma_map = pdevi; DEVI(devi)->devi_bus_dma_allochdl = pdevi; DEVI(devi)->devi_bus_dma_freehdl = pdevi; DEVI(devi)->devi_bus_dma_bindhdl = pdevi; DEVI(devi)->devi_bus_dma_bindfunc = pdevi->devi_ops->devo_bus_ops->bus_dma_bindhdl; DEVI(devi)->devi_bus_dma_unbindhdl = pdevi; DEVI(devi)->devi_bus_dma_unbindfunc = pdevi->devi_ops->devo_bus_ops->bus_dma_unbindhdl; DEVI(devi)->devi_bus_dma_flush = pdevi; DEVI(devi)->devi_bus_dma_win = pdevi; DEVI(devi)->devi_bus_dma_ctl = pdevi; DEVI(devi)->devi_bus_ctl = pdevi; #ifdef DEBUG if (optimize_dtree == 0) return; #endif /* DEBUG */ b = pdevi->devi_ops->devo_bus_ops; if (i_ddi_map_fault == b->bus_map_fault) { DEVI(devi)->devi_bus_map_fault = pdevi->devi_bus_map_fault; debug_dtree(devi, DEVI(devi)->devi_bus_map_fault, "bus_map_fault"); } if (ddi_dma_map == b->bus_dma_map) { DEVI(devi)->devi_bus_dma_map = pdevi->devi_bus_dma_map; debug_dtree(devi, DEVI(devi)->devi_bus_dma_map, "bus_dma_map"); } if (ddi_dma_allochdl == b->bus_dma_allochdl) { DEVI(devi)->devi_bus_dma_allochdl = pdevi->devi_bus_dma_allochdl; debug_dtree(devi, DEVI(devi)->devi_bus_dma_allochdl, "bus_dma_allochdl"); } if (ddi_dma_freehdl == b->bus_dma_freehdl) { DEVI(devi)->devi_bus_dma_freehdl = pdevi->devi_bus_dma_freehdl; debug_dtree(devi, DEVI(devi)->devi_bus_dma_freehdl, "bus_dma_freehdl"); } if (ddi_dma_bindhdl == b->bus_dma_bindhdl) { DEVI(devi)->devi_bus_dma_bindhdl = pdevi->devi_bus_dma_bindhdl; DEVI(devi)->devi_bus_dma_bindfunc = pdevi->devi_bus_dma_bindhdl->devi_ops-> devo_bus_ops->bus_dma_bindhdl; debug_dtree(devi, DEVI(devi)->devi_bus_dma_bindhdl, "bus_dma_bindhdl"); } if (ddi_dma_unbindhdl == b->bus_dma_unbindhdl) { DEVI(devi)->devi_bus_dma_unbindhdl = pdevi->devi_bus_dma_unbindhdl; DEVI(devi)->devi_bus_dma_unbindfunc = pdevi->devi_bus_dma_unbindhdl->devi_ops-> devo_bus_ops->bus_dma_unbindhdl; debug_dtree(devi, DEVI(devi)->devi_bus_dma_unbindhdl, "bus_dma_unbindhdl"); } if (ddi_dma_flush == b->bus_dma_flush) { DEVI(devi)->devi_bus_dma_flush = pdevi->devi_bus_dma_flush; debug_dtree(devi, DEVI(devi)->devi_bus_dma_flush, "bus_dma_flush"); } if (ddi_dma_win == b->bus_dma_win) { DEVI(devi)->devi_bus_dma_win = pdevi->devi_bus_dma_win; debug_dtree(devi, DEVI(devi)->devi_bus_dma_win, "bus_dma_win"); } if (ddi_dma_mctl == b->bus_dma_ctl) { DEVI(devi)->devi_bus_dma_ctl = pdevi->devi_bus_dma_ctl; debug_dtree(devi, DEVI(devi)->devi_bus_dma_ctl, "bus_dma_ctl"); } if (ddi_ctlops == b->bus_ctl) { DEVI(devi)->devi_bus_ctl = pdevi->devi_bus_ctl; debug_dtree(devi, DEVI(devi)->devi_bus_ctl, "bus_ctl"); } } #define MIN_DEVINFO_LOG_SIZE max_ncpus #define MAX_DEVINFO_LOG_SIZE max_ncpus * 10 static void da_log_init() { devinfo_log_header_t *dh; int logsize = devinfo_log_size; if (logsize == 0) logsize = MIN_DEVINFO_LOG_SIZE; else if (logsize > MAX_DEVINFO_LOG_SIZE) logsize = MAX_DEVINFO_LOG_SIZE; dh = kmem_alloc(logsize * PAGESIZE, KM_SLEEP); mutex_init(&dh->dh_lock, NULL, MUTEX_DEFAULT, NULL); dh->dh_max = ((logsize * PAGESIZE) - sizeof (*dh)) / sizeof (devinfo_audit_t) + 1; dh->dh_curr = -1; dh->dh_hits = 0; devinfo_audit_log = dh; } /* * Log the stack trace in per-devinfo audit structure and also enter * it into a system wide log for recording the time history. */ static void da_log_enter(dev_info_t *dip) { devinfo_audit_t *da_log, *da = DEVI(dip)->devi_audit; devinfo_log_header_t *dh = devinfo_audit_log; if (devinfo_audit_log == NULL) return; ASSERT(da != NULL); da->da_devinfo = dip; da->da_timestamp = gethrtime(); da->da_thread = curthread; da->da_node_state = DEVI(dip)->devi_node_state; da->da_device_state = DEVI(dip)->devi_state; da->da_depth = getpcstack(da->da_stack, DDI_STACK_DEPTH); /* * Copy into common log and note the location for tracing history */ mutex_enter(&dh->dh_lock); dh->dh_hits++; dh->dh_curr++; if (dh->dh_curr >= dh->dh_max) dh->dh_curr -= dh->dh_max; da_log = &dh->dh_entry[dh->dh_curr]; mutex_exit(&dh->dh_lock); bcopy(da, da_log, sizeof (devinfo_audit_t)); da->da_lastlog = da_log; } static void attach_drivers() { int i; for (i = 0; i < devcnt; i++) { struct devnames *dnp = &devnamesp[i]; if ((dnp->dn_flags & DN_FORCE_ATTACH) && (ddi_hold_installed_driver((major_t)i) != NULL)) ddi_rele_driver((major_t)i); } } /* * Launch a thread to force attach drivers. This avoids penalty on boot time. */ void i_ddi_forceattach_drivers() { /* * Attach IB VHCI driver before the force-attach thread attaches the * IB HCA driver. IB HCA driver will fail if IB Nexus has not yet * been attached. */ (void) ddi_hold_installed_driver(ddi_name_to_major("ib")); (void) thread_create(NULL, 0, (void (*)())attach_drivers, NULL, 0, &p0, TS_RUN, minclsyspri); } /* * This is a private DDI interface for optimizing boot performance. * I/O subsystem initialization is considered complete when devfsadm * is executed. * * NOTE: The start of syseventd happens to be a convenient indicator * of the completion of I/O initialization during boot. * The implementation should be replaced by something more robust. */ int i_ddi_io_initialized() { extern int sysevent_daemon_init; return (sysevent_daemon_init); } /* * May be used to determine system boot state * "Available" means the system is for the most part up * and initialized, with all system services either up or * capable of being started. This state is set by devfsadm * during the boot process. The /dev filesystem infers * from this when implicit reconfig can be performed, * ie, devfsadm can be invoked. Please avoid making * further use of this unless it's really necessary. */ int i_ddi_sysavail() { return (devname_state & DS_SYSAVAIL); } /* * May be used to determine if boot is a reconfigure boot. */ int i_ddi_reconfig() { return (devname_state & DS_RECONFIG); } /* * Note system services are up, inform /dev. */ void i_ddi_set_sysavail() { if ((devname_state & DS_SYSAVAIL) == 0) { devname_state |= DS_SYSAVAIL; sdev_devstate_change(); } } /* * Note reconfiguration boot, inform /dev. */ void i_ddi_set_reconfig() { if ((devname_state & DS_RECONFIG) == 0) { devname_state |= DS_RECONFIG; sdev_devstate_change(); } } /* * device tree walking */ struct walk_elem { struct walk_elem *next; dev_info_t *dip; }; static void free_list(struct walk_elem *list) { while (list) { struct walk_elem *next = list->next; kmem_free(list, sizeof (*list)); list = next; } } static void append_node(struct walk_elem **list, dev_info_t *dip) { struct walk_elem *tail; struct walk_elem *elem = kmem_alloc(sizeof (*elem), KM_SLEEP); elem->next = NULL; elem->dip = dip; if (*list == NULL) { *list = elem; return; } tail = *list; while (tail->next) tail = tail->next; tail->next = elem; } /* * The implementation of ddi_walk_devs(). */ static int walk_devs(dev_info_t *dip, int (*f)(dev_info_t *, void *), void *arg, int do_locking) { struct walk_elem *head = NULL; /* * Do it in two passes. First pass invoke callback on each * dip on the sibling list. Second pass invoke callback on * children of each dip. */ while (dip) { switch ((*f)(dip, arg)) { case DDI_WALK_TERMINATE: free_list(head); return (DDI_WALK_TERMINATE); case DDI_WALK_PRUNESIB: /* ignore sibling by setting dip to NULL */ append_node(&head, dip); dip = NULL; break; case DDI_WALK_PRUNECHILD: /* don't worry about children */ dip = ddi_get_next_sibling(dip); break; case DDI_WALK_CONTINUE: default: append_node(&head, dip); dip = ddi_get_next_sibling(dip); break; } } /* second pass */ while (head) { int circ; struct walk_elem *next = head->next; if (do_locking) ndi_devi_enter(head->dip, &circ); if (walk_devs(ddi_get_child(head->dip), f, arg, do_locking) == DDI_WALK_TERMINATE) { if (do_locking) ndi_devi_exit(head->dip, circ); free_list(head); return (DDI_WALK_TERMINATE); } if (do_locking) ndi_devi_exit(head->dip, circ); kmem_free(head, sizeof (*head)); head = next; } return (DDI_WALK_CONTINUE); } /* * This general-purpose routine traverses the tree of dev_info nodes, * starting from the given node, and calls the given function for each * node that it finds with the current node and the pointer arg (which * can point to a structure of information that the function * needs) as arguments. * * It does the walk a layer at a time, not depth-first. The given function * must return one of the following values: * DDI_WALK_CONTINUE * DDI_WALK_PRUNESIB * DDI_WALK_PRUNECHILD * DDI_WALK_TERMINATE * * N.B. Since we walk the sibling list, the caller must ensure that * the parent of dip is held against changes, unless the parent * is rootnode. ndi_devi_enter() on the parent is sufficient. * * To avoid deadlock situations, caller must not attempt to * configure/unconfigure/remove device node in (*f)(), nor should * it attempt to recurse on other nodes in the system. Any * ndi_devi_enter() done by (*f)() must occur 'at-or-below' the * node entered prior to ddi_walk_devs(). Furthermore, if (*f)() * does any multi-threading (in framework *or* in driver) then the * ndi_devi_enter() calls done by dependent threads must be * 'strictly-below'. * * This is not callable from device autoconfiguration routines. * They include, but not limited to, _init(9e), _fini(9e), probe(9e), * attach(9e), and detach(9e). */ void ddi_walk_devs(dev_info_t *dip, int (*f)(dev_info_t *, void *), void *arg) { ASSERT(dip == NULL || ddi_get_parent(dip) == NULL || DEVI_BUSY_OWNED(ddi_get_parent(dip))); (void) walk_devs(dip, f, arg, 1); } /* * This is a general-purpose routine traverses the per-driver list * and calls the given function for each node. must return one of * the following values: * DDI_WALK_CONTINUE * DDI_WALK_TERMINATE * * N.B. The same restrictions from ddi_walk_devs() apply. */ void e_ddi_walk_driver(char *drv, int (*f)(dev_info_t *, void *), void *arg) { major_t major; struct devnames *dnp; dev_info_t *dip; major = ddi_name_to_major(drv); if (major == DDI_MAJOR_T_NONE) return; dnp = &devnamesp[major]; LOCK_DEV_OPS(&dnp->dn_lock); dip = dnp->dn_head; while (dip) { ndi_hold_devi(dip); UNLOCK_DEV_OPS(&dnp->dn_lock); if ((*f)(dip, arg) == DDI_WALK_TERMINATE) { ndi_rele_devi(dip); return; } LOCK_DEV_OPS(&dnp->dn_lock); ndi_rele_devi(dip); dip = ddi_get_next(dip); } UNLOCK_DEV_OPS(&dnp->dn_lock); } /* * argument to i_find_devi, a devinfo node search callback function. */ struct match_info { dev_info_t *dip; /* result */ char *nodename; /* if non-null, nodename must match */ int instance; /* if != -1, instance must match */ int attached; /* if != 0, i_ddi_devi_attached() */ }; static int i_find_devi(dev_info_t *dip, void *arg) { struct match_info *info = (struct match_info *)arg; if (((info->nodename == NULL) || (strcmp(ddi_node_name(dip), info->nodename) == 0)) && ((info->instance == -1) || (ddi_get_instance(dip) == info->instance)) && ((info->attached == 0) || i_ddi_devi_attached(dip))) { info->dip = dip; ndi_hold_devi(dip); return (DDI_WALK_TERMINATE); } return (DDI_WALK_CONTINUE); } /* * Find dip with a known node name and instance and return with it held */ dev_info_t * ddi_find_devinfo(char *nodename, int instance, int attached) { struct match_info info; info.nodename = nodename; info.instance = instance; info.attached = attached; info.dip = NULL; ddi_walk_devs(ddi_root_node(), i_find_devi, &info); return (info.dip); } extern ib_boot_prop_t *iscsiboot_prop; static void i_ddi_parse_iscsi_name(char *name, char **nodename, char **addrname, char **minorname) { char *cp, *colon; static char nulladdrname[] = ""; /* default values */ if (nodename) *nodename = name; if (addrname) *addrname = nulladdrname; if (minorname) *minorname = NULL; cp = colon = name; while (*cp != '\0') { if (addrname && *cp == '@') { *addrname = cp + 1; *cp = '\0'; } else if (minorname && *cp == ':') { *minorname = cp + 1; colon = cp; } ++cp; } if (colon != name) { *colon = '\0'; } } /* * Parse for name, addr, and minor names. Some args may be NULL. */ void i_ddi_parse_name(char *name, char **nodename, char **addrname, char **minorname) { char *cp; static char nulladdrname[] = ""; /* default values */ if (nodename) *nodename = name; if (addrname) *addrname = nulladdrname; if (minorname) *minorname = NULL; cp = name; while (*cp != '\0') { if (addrname && *cp == '@') { *addrname = cp + 1; *cp = '\0'; } else if (minorname && *cp == ':') { *minorname = cp + 1; *cp = '\0'; } ++cp; } } static char * child_path_to_driver(dev_info_t *parent, char *child_name, char *unit_address) { char *p, *drvname = NULL; major_t maj; /* * Construct the pathname and ask the implementation * if it can do a driver = f(pathname) for us, if not * we'll just default to using the node-name that * was given to us. We want to do this first to * allow the platform to use 'generic' names for * legacy device drivers. */ p = kmem_zalloc(MAXPATHLEN, KM_SLEEP); (void) ddi_pathname(parent, p); (void) strcat(p, "/"); (void) strcat(p, child_name); if (unit_address && *unit_address) { (void) strcat(p, "@"); (void) strcat(p, unit_address); } /* * Get the binding. If there is none, return the child_name * and let the caller deal with it. */ maj = path_to_major(p); kmem_free(p, MAXPATHLEN); if (maj != DDI_MAJOR_T_NONE) drvname = ddi_major_to_name(maj); if (drvname == NULL) drvname = child_name; return (drvname); } #define PCI_EX_CLASS "pciexclass" #define PCI_EX "pciex" #define PCI_CLASS "pciclass" #define PCI "pci" int ddi_is_pci_dip(dev_info_t *dip) { char *prop = NULL; if (ddi_prop_lookup_string(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, "compatible", &prop) == DDI_PROP_SUCCESS) { ASSERT(prop); if (strncmp(prop, PCI_EX_CLASS, sizeof (PCI_EX_CLASS) - 1) == 0 || strncmp(prop, PCI_EX, sizeof (PCI_EX)- 1) == 0 || strncmp(prop, PCI_CLASS, sizeof (PCI_CLASS) - 1) == 0 || strncmp(prop, PCI, sizeof (PCI) - 1) == 0) { ddi_prop_free(prop); return (1); } } if (prop != NULL) { ddi_prop_free(prop); } return (0); } /* * Given the pathname of a device, fill in the dev_info_t value and/or the * dev_t value and/or the spectype, depending on which parameters are non-NULL. * If there is an error, this function returns -1. * * NOTE: If this function returns the dev_info_t structure, then it * does so with a hold on the devi. Caller should ensure that they get * decremented via ddi_release_devi() or ndi_rele_devi(); * * This function can be invoked in the boot case for a pathname without * device argument (:xxxx), traditionally treated as a minor name. * In this case, we do the following * (1) search the minor node of type DDM_DEFAULT. * (2) if no DDM_DEFAULT minor exists, then the first non-alias minor is chosen. * (3) if neither exists, a dev_t is faked with minor number = instance. * As of S9 FCS, no instance of #1 exists. #2 is used by several platforms * to default the boot partition to :a possibly by other OBP definitions. * #3 is used for booting off network interfaces, most SPARC network * drivers support Style-2 only, so only DDM_ALIAS minor exists. * * It is possible for OBP to present device args at the end of the path as * well as in the middle. For example, with IB the following strings are * valid boot paths. * a /pci@8,700000/ib@1,2:port=1,pkey=ff,dhcp,... * b /pci@8,700000/ib@1,1:port=1/ioc@xxxxxx,yyyyyyy:dhcp * Case (a), we first look for minor node "port=1,pkey...". * Failing that, we will pass "port=1,pkey..." to the bus_config * entry point of ib (HCA) driver. * Case (b), configure ib@1,1 as usual. Then invoke ib's bus_config * with argument "ioc@xxxxxxx,yyyyyyy:port=1". After configuring * the ioc, look for minor node dhcp. If not found, pass ":dhcp" * to ioc's bus_config entry point. */ int resolve_pathname(char *pathname, dev_info_t **dipp, dev_t *devtp, int *spectypep) { int error; dev_info_t *parent, *child; struct pathname pn; char *component, *config_name; char *minorname = NULL; char *prev_minor = NULL; dev_t devt = NODEV; int spectype; struct ddi_minor_data *dmn; int circ; if (*pathname != '/') return (EINVAL); parent = ddi_root_node(); /* Begin at the top of the tree */ if (error = pn_get(pathname, UIO_SYSSPACE, &pn)) return (error); pn_skipslash(&pn); ASSERT(i_ddi_devi_attached(parent)); ndi_hold_devi(parent); component = kmem_alloc(MAXNAMELEN, KM_SLEEP); config_name = kmem_alloc(MAXNAMELEN, KM_SLEEP); while (pn_pathleft(&pn)) { /* remember prev minor (:xxx) in the middle of path */ if (minorname) prev_minor = i_ddi_strdup(minorname, KM_SLEEP); /* Get component and chop off minorname */ (void) pn_getcomponent(&pn, component); if ((iscsiboot_prop != NULL) && (strcmp((DEVI(parent)->devi_node_name), "iscsi") == 0)) { i_ddi_parse_iscsi_name(component, NULL, NULL, &minorname); } else { i_ddi_parse_name(component, NULL, NULL, &minorname); } if (prev_minor == NULL) { (void) snprintf(config_name, MAXNAMELEN, "%s", component); } else { (void) snprintf(config_name, MAXNAMELEN, "%s:%s", component, prev_minor); kmem_free(prev_minor, strlen(prev_minor) + 1); prev_minor = NULL; } /* * Find and configure the child */ if (ndi_devi_config_one(parent, config_name, &child, NDI_PROMNAME | NDI_NO_EVENT) != NDI_SUCCESS) { ndi_rele_devi(parent); pn_free(&pn); kmem_free(component, MAXNAMELEN); kmem_free(config_name, MAXNAMELEN); return (-1); } ASSERT(i_ddi_devi_attached(child)); ndi_rele_devi(parent); parent = child; pn_skipslash(&pn); } /* * First look for a minor node matching minorname. * Failing that, try to pass minorname to bus_config(). */ if (minorname && i_ddi_minorname_to_devtspectype(parent, minorname, &devt, &spectype) == DDI_FAILURE) { (void) snprintf(config_name, MAXNAMELEN, "%s", minorname); if (ndi_devi_config_obp_args(parent, config_name, &child, 0) != NDI_SUCCESS) { ndi_rele_devi(parent); pn_free(&pn); kmem_free(component, MAXNAMELEN); kmem_free(config_name, MAXNAMELEN); NDI_CONFIG_DEBUG((CE_NOTE, "%s: minor node not found\n", pathname)); return (-1); } minorname = NULL; /* look for default minor */ ASSERT(i_ddi_devi_attached(child)); ndi_rele_devi(parent); parent = child; } if (devtp || spectypep) { if (minorname == NULL) { /* * Search for a default entry with an active * ndi_devi_enter to protect the devi_minor list. */ ndi_devi_enter(parent, &circ); for (dmn = DEVI(parent)->devi_minor; dmn; dmn = dmn->next) { if (dmn->type == DDM_DEFAULT) { devt = dmn->ddm_dev; spectype = dmn->ddm_spec_type; break; } } if (devt == NODEV) { /* * No default minor node, try the first one; * else, assume 1-1 instance-minor mapping */ dmn = DEVI(parent)->devi_minor; if (dmn && ((dmn->type == DDM_MINOR) || (dmn->type == DDM_INTERNAL_PATH))) { devt = dmn->ddm_dev; spectype = dmn->ddm_spec_type; } else { devt = makedevice( DEVI(parent)->devi_major, ddi_get_instance(parent)); spectype = S_IFCHR; } } ndi_devi_exit(parent, circ); } if (devtp) *devtp = devt; if (spectypep) *spectypep = spectype; } pn_free(&pn); kmem_free(component, MAXNAMELEN); kmem_free(config_name, MAXNAMELEN); /* * If there is no error, return the appropriate parameters */ if (dipp != NULL) *dipp = parent; else { /* * We should really keep the ref count to keep the node from * detaching but ddi_pathname_to_dev_t() specifies a NULL dipp, * so we have no way of passing back the held dip. Not holding * the dip allows detaches to occur - which can cause problems * for subsystems which call ddi_pathname_to_dev_t (console). * * Instead of holding the dip, we place a ddi-no-autodetach * property on the node to prevent auto detaching. * * The right fix is to remove ddi_pathname_to_dev_t and replace * it, and all references, with a call that specifies a dipp. * In addition, the callers of this new interfaces would then * need to call ndi_rele_devi when the reference is complete. * */ (void) ddi_prop_update_int(DDI_DEV_T_NONE, parent, DDI_NO_AUTODETACH, 1); ndi_rele_devi(parent); } return (0); } /* * Given the pathname of a device, return the dev_t of the corresponding * device. Returns NODEV on failure. * * Note that this call sets the DDI_NO_AUTODETACH property on the devinfo node. */ dev_t ddi_pathname_to_dev_t(char *pathname) { dev_t devt; int error; error = resolve_pathname(pathname, NULL, &devt, NULL); return (error ? NODEV : devt); } /* * Translate a prom pathname to kernel devfs pathname. * Caller is assumed to allocate devfspath memory of * size at least MAXPATHLEN * * The prom pathname may not include minor name, but * devfs pathname has a minor name portion. */ int i_ddi_prompath_to_devfspath(char *prompath, char *devfspath) { dev_t devt = (dev_t)NODEV; dev_info_t *dip = NULL; char *minor_name = NULL; int spectype; int error; int circ; error = resolve_pathname(prompath, &dip, &devt, &spectype); if (error) return (DDI_FAILURE); ASSERT(dip && devt != NODEV); /* * Get in-kernel devfs pathname */ (void) ddi_pathname(dip, devfspath); ndi_devi_enter(dip, &circ); minor_name = i_ddi_devtspectype_to_minorname(dip, devt, spectype); if (minor_name) { (void) strcat(devfspath, ":"); (void) strcat(devfspath, minor_name); } else { /* * If minor_name is NULL, we have an alias minor node. * So manufacture a path to the corresponding clone minor. */ (void) snprintf(devfspath, MAXPATHLEN, "%s:%s", CLONE_PATH, ddi_driver_name(dip)); } ndi_devi_exit(dip, circ); /* release hold from resolve_pathname() */ ndi_rele_devi(dip); return (0); } /* * This function is intended to identify drivers that must quiesce for fast * reboot to succeed. It does not claim to have more knowledge about the device * than its driver. If a driver has implemented quiesce(), it will be invoked; * if a so identified driver does not manage any device that needs to be * quiesced, it must explicitly set its devo_quiesce dev_op to * ddi_quiesce_not_needed. */ static int skip_pseudo = 1; /* Skip pseudo devices */ static int skip_non_hw = 1; /* Skip devices with no hardware property */ static int should_implement_quiesce(dev_info_t *dip) { struct dev_info *devi = DEVI(dip); dev_info_t *pdip; /* * If dip is pseudo and skip_pseudo is set, driver doesn't have to * implement quiesce(). */ if (skip_pseudo && strncmp(ddi_binding_name(dip), "pseudo", sizeof ("pseudo")) == 0) return (0); /* * If parent dip is pseudo and skip_pseudo is set, driver doesn't have * to implement quiesce(). */ if (skip_pseudo && (pdip = ddi_get_parent(dip)) != NULL && strncmp(ddi_binding_name(pdip), "pseudo", sizeof ("pseudo")) == 0) return (0); /* * If not attached, driver doesn't have to implement quiesce(). */ if (!i_ddi_devi_attached(dip)) return (0); /* * If dip has no hardware property and skip_non_hw is set, * driver doesn't have to implement quiesce(). */ if (skip_non_hw && devi->devi_hw_prop_ptr == NULL) return (0); return (1); } static int driver_has_quiesce(struct dev_ops *ops) { if ((ops->devo_rev >= 4) && (ops->devo_quiesce != nodev) && (ops->devo_quiesce != NULL) && (ops->devo_quiesce != nulldev) && (ops->devo_quiesce != ddi_quiesce_not_supported)) return (1); else return (0); } /* * Check to see if a driver has implemented the quiesce() DDI function. */ int check_driver_quiesce(dev_info_t *dip, void *arg) { struct dev_ops *ops; if (!should_implement_quiesce(dip)) return (DDI_WALK_CONTINUE); if ((ops = ddi_get_driver(dip)) == NULL) return (DDI_WALK_CONTINUE); if (driver_has_quiesce(ops)) { if ((quiesce_debug & 0x2) == 0x2) { if (ops->devo_quiesce == ddi_quiesce_not_needed) cmn_err(CE_CONT, "%s does not need to be " "quiesced", ddi_driver_name(dip)); else cmn_err(CE_CONT, "%s has quiesce routine", ddi_driver_name(dip)); } } else { if (arg != NULL) *((int *)arg) = -1; cmn_err(CE_WARN, "%s has no quiesce()", ddi_driver_name(dip)); } return (DDI_WALK_CONTINUE); } /* * Quiesce device. */ static void quiesce_one_device(dev_info_t *dip, void *arg) { struct dev_ops *ops; int should_quiesce = 0; /* * If the device is not attached it doesn't need to be quiesced. */ if (!i_ddi_devi_attached(dip)) return; if ((ops = ddi_get_driver(dip)) == NULL) return; should_quiesce = should_implement_quiesce(dip); /* * If there's an implementation of quiesce(), always call it even if * some of the drivers don't have quiesce() or quiesce() have failed * so we can do force fast reboot. The implementation of quiesce() * should not negatively affect a regular reboot. */ if (driver_has_quiesce(ops)) { int rc = DDI_SUCCESS; if (ops->devo_quiesce == ddi_quiesce_not_needed) return; rc = devi_quiesce(dip); /* quiesce() should never fail */ ASSERT(rc == DDI_SUCCESS); if (rc != DDI_SUCCESS && should_quiesce) { if (arg != NULL) *((int *)arg) = -1; } } else if (should_quiesce && arg != NULL) { *((int *)arg) = -1; } } /* * Traverse the dev info tree in a breadth-first manner so that we quiesce * children first. All subtrees under the parent of dip will be quiesced. */ void quiesce_devices(dev_info_t *dip, void *arg) { /* * if we're reached here, the device tree better not be changing. * so either devinfo_freeze better be set or we better be panicing. */ ASSERT(devinfo_freeze || panicstr); for (; dip != NULL; dip = ddi_get_next_sibling(dip)) { quiesce_devices(ddi_get_child(dip), arg); quiesce_one_device(dip, arg); } } /* * Reset all the pure leaf drivers on the system at halt time */ static int reset_leaf_device(dev_info_t *dip, void *arg) { _NOTE(ARGUNUSED(arg)) struct dev_ops *ops; /* if the device doesn't need to be reset then there's nothing to do */ if (!DEVI_NEED_RESET(dip)) return (DDI_WALK_CONTINUE); /* * if the device isn't a char/block device or doesn't have a * reset entry point then there's nothing to do. */ ops = ddi_get_driver(dip); if ((ops == NULL) || (ops->devo_cb_ops == NULL) || (ops->devo_reset == nodev) || (ops->devo_reset == nulldev) || (ops->devo_reset == NULL)) return (DDI_WALK_CONTINUE); if (DEVI_IS_ATTACHING(dip) || DEVI_IS_DETACHING(dip)) { static char path[MAXPATHLEN]; /* * bad news, this device has blocked in it's attach or * detach routine, which means it not safe to call it's * devo_reset() entry point. */ cmn_err(CE_WARN, "unable to reset device: %s", ddi_pathname(dip, path)); return (DDI_WALK_CONTINUE); } NDI_CONFIG_DEBUG((CE_NOTE, "resetting %s%d\n", ddi_driver_name(dip), ddi_get_instance(dip))); (void) devi_reset(dip, DDI_RESET_FORCE); return (DDI_WALK_CONTINUE); } void reset_leaves(void) { /* * if we're reached here, the device tree better not be changing. * so either devinfo_freeze better be set or we better be panicing. */ ASSERT(devinfo_freeze || panicstr); (void) walk_devs(top_devinfo, reset_leaf_device, NULL, 0); } /* * devtree_freeze() must be called before quiesce_devices() and reset_leaves() * during a normal system shutdown. It attempts to ensure that there are no * outstanding attach or detach operations in progress when quiesce_devices() or * reset_leaves()is invoked. It must be called before the system becomes * single-threaded because device attach and detach are multi-threaded * operations. (note that during system shutdown the system doesn't actually * become single-thread since other threads still exist, but the shutdown thread * will disable preemption for itself, raise it's pil, and stop all the other * cpus in the system there by effectively making the system single-threaded.) */ void devtree_freeze(void) { int delayed = 0; /* if we're panicing then the device tree isn't going to be changing */ if (panicstr) return; /* stop all dev_info state changes in the device tree */ devinfo_freeze = gethrtime(); /* * if we're not panicing and there are on-going attach or detach * operations, wait for up to 3 seconds for them to finish. This * is a randomly chosen interval but this should be ok because: * - 3 seconds is very small relative to the deadman timer. * - normal attach and detach operations should be very quick. * - attach and detach operations are fairly rare. */ while (!panicstr && atomic_add_long_nv(&devinfo_attach_detach, 0) && (delayed < 3)) { delayed += 1; /* do a sleeping wait for one second */ ASSERT(!servicing_interrupt()); delay(drv_usectohz(MICROSEC)); } } static int bind_dip(dev_info_t *dip, void *arg) { _NOTE(ARGUNUSED(arg)) char *path; major_t major, pmajor; /* * If the node is currently bound to the wrong driver, try to unbind * so that we can rebind to the correct driver. */ if (i_ddi_node_state(dip) >= DS_BOUND) { major = ddi_compatible_driver_major(dip, NULL); if ((DEVI(dip)->devi_major == major) && (i_ddi_node_state(dip) >= DS_INITIALIZED)) { /* * Check for a path-oriented driver alias that * takes precedence over current driver binding. */ path = kmem_alloc(MAXPATHLEN, KM_SLEEP); (void) ddi_pathname(dip, path); pmajor = ddi_name_to_major(path); if (driver_active(pmajor)) major = pmajor; kmem_free(path, MAXPATHLEN); } /* attempt unbind if current driver is incorrect */ if (driver_active(major) && (major != DEVI(dip)->devi_major)) (void) ndi_devi_unbind_driver(dip); } /* If unbound, try to bind to a driver */ if (i_ddi_node_state(dip) < DS_BOUND) (void) ndi_devi_bind_driver(dip, 0); return (DDI_WALK_CONTINUE); } void i_ddi_bind_devs(void) { /* flush devfs so that ndi_devi_unbind_driver will work when possible */ (void) devfs_clean(top_devinfo, NULL, 0); ddi_walk_devs(top_devinfo, bind_dip, (void *)NULL); } /* callback data for unbind_children_by_alias() */ typedef struct unbind_data { major_t drv_major; char *drv_alias; int ndevs_bound; int unbind_errors; } unbind_data_t; /* * A utility function provided for testing and support convenience * Called for each device during an upgrade_drv -d bound to the alias * that cannot be unbound due to device in use. */ static void unbind_alias_dev_in_use(dev_info_t *dip, char *alias) { if (moddebug & MODDEBUG_BINDING) { cmn_err(CE_CONT, "%s%d: state %d: bound to %s\n", ddi_driver_name(dip), ddi_get_instance(dip), i_ddi_node_state(dip), alias); } } /* * walkdevs callback for unbind devices bound to specific driver * and alias. Invoked within the context of update_drv -d . */ static int unbind_children_by_alias(dev_info_t *dip, void *arg) { int circ; dev_info_t *cdip; dev_info_t *next; unbind_data_t *ub = (unbind_data_t *)(uintptr_t)arg; int rv; /* * We are called from update_drv to try to unbind a specific * set of aliases for a driver. Unbind what persistent nodes * we can, and return the number of nodes which cannot be unbound. * If not all nodes can be unbound, update_drv leaves the * state of the driver binding files unchanged, except in * the case of -f. */ ndi_devi_enter(dip, &circ); for (cdip = ddi_get_child(dip); cdip; cdip = next) { next = ddi_get_next_sibling(cdip); if ((ddi_driver_major(cdip) != ub->drv_major) || (strcmp(DEVI(cdip)->devi_node_name, ub->drv_alias) != 0)) continue; if (i_ddi_node_state(cdip) >= DS_BOUND) { rv = ndi_devi_unbind_driver(cdip); if (rv != DDI_SUCCESS || (i_ddi_node_state(cdip) >= DS_BOUND)) { unbind_alias_dev_in_use(cdip, ub->drv_alias); ub->ndevs_bound++; continue; } if (ndi_dev_is_persistent_node(cdip) == 0) (void) ddi_remove_child(cdip, 0); } } ndi_devi_exit(dip, circ); return (DDI_WALK_CONTINUE); } /* * Unbind devices by driver & alias * Context: update_drv [-f] -d -i */ int i_ddi_unbind_devs_by_alias(major_t major, char *alias) { unbind_data_t *ub; int rv; ub = kmem_zalloc(sizeof (*ub), KM_SLEEP); ub->drv_major = major; ub->drv_alias = alias; ub->ndevs_bound = 0; ub->unbind_errors = 0; /* flush devfs so that ndi_devi_unbind_driver will work when possible */ (void) devfs_clean(top_devinfo, NULL, 0); ddi_walk_devs(top_devinfo, unbind_children_by_alias, (void *)(uintptr_t)ub); /* return the number of devices remaining bound to the alias */ rv = ub->ndevs_bound + ub->unbind_errors; kmem_free(ub, sizeof (*ub)); return (rv); } /* * walkdevs callback for unbind devices by driver */ static int unbind_children_by_driver(dev_info_t *dip, void *arg) { int circ; dev_info_t *cdip; dev_info_t *next; major_t major = (major_t)(uintptr_t)arg; int rv; /* * We are called either from rem_drv or update_drv when reloading * a driver.conf file. In either case, we unbind persistent nodes * and destroy .conf nodes. In the case of rem_drv, this will be * the final state. In the case of update_drv, i_ddi_bind_devs() * may be invoked later to re-enumerate (new) driver.conf rebind * persistent nodes. */ ndi_devi_enter(dip, &circ); for (cdip = ddi_get_child(dip); cdip; cdip = next) { next = ddi_get_next_sibling(cdip); if (ddi_driver_major(cdip) != major) continue; if (i_ddi_node_state(cdip) >= DS_BOUND) { rv = ndi_devi_unbind_driver(cdip); if (rv == DDI_FAILURE || (i_ddi_node_state(cdip) >= DS_BOUND)) continue; if (ndi_dev_is_persistent_node(cdip) == 0) (void) ddi_remove_child(cdip, 0); } } ndi_devi_exit(dip, circ); return (DDI_WALK_CONTINUE); } /* * Unbind devices by driver * Context: rem_drv or unload driver.conf */ void i_ddi_unbind_devs(major_t major) { /* flush devfs so that ndi_devi_unbind_driver will work when possible */ (void) devfs_clean(top_devinfo, NULL, 0); ddi_walk_devs(top_devinfo, unbind_children_by_driver, (void *)(uintptr_t)major); } /* * I/O Hotplug control */ /* * create and attach a dev_info node from a .conf file spec */ static void init_spec_child(dev_info_t *pdip, struct hwc_spec *specp, uint_t flags) { _NOTE(ARGUNUSED(flags)) dev_info_t *dip; char *node_name; if (((node_name = specp->hwc_devi_name) == NULL) || (ddi_name_to_major(node_name) == DDI_MAJOR_T_NONE)) { char *tmp = node_name; if (tmp == NULL) tmp = ""; cmn_err(CE_CONT, "init_spec_child: parent=%s, bad spec (%s)\n", ddi_node_name(pdip), tmp); return; } dip = i_ddi_alloc_node(pdip, node_name, (pnode_t)DEVI_PSEUDO_NODEID, -1, specp->hwc_devi_sys_prop_ptr, KM_SLEEP); if (dip == NULL) return; if (ddi_initchild(pdip, dip) != DDI_SUCCESS) (void) ddi_remove_child(dip, 0); } /* * Lookup hwc specs from hash tables and make children from the spec * Because some .conf children are "merge" nodes, we also initialize * .conf children to merge properties onto hardware nodes. * * The pdip must be held busy. */ int i_ndi_make_spec_children(dev_info_t *pdip, uint_t flags) { extern struct hwc_spec *hwc_get_child_spec(dev_info_t *, major_t); int circ; struct hwc_spec *list, *spec; ndi_devi_enter(pdip, &circ); if (DEVI(pdip)->devi_flags & DEVI_MADE_CHILDREN) { ndi_devi_exit(pdip, circ); return (DDI_SUCCESS); } list = hwc_get_child_spec(pdip, DDI_MAJOR_T_NONE); for (spec = list; spec != NULL; spec = spec->hwc_next) { init_spec_child(pdip, spec, flags); } hwc_free_spec_list(list); mutex_enter(&DEVI(pdip)->devi_lock); DEVI(pdip)->devi_flags |= DEVI_MADE_CHILDREN; mutex_exit(&DEVI(pdip)->devi_lock); ndi_devi_exit(pdip, circ); return (DDI_SUCCESS); } /* * Run initchild on all child nodes such that instance assignment * for multiport network cards are contiguous. * * The pdip must be held busy. */ static void i_ndi_init_hw_children(dev_info_t *pdip, uint_t flags) { dev_info_t *dip; ASSERT(DEVI(pdip)->devi_flags & DEVI_MADE_CHILDREN); /* contiguous instance assignment */ e_ddi_enter_instance(); dip = ddi_get_child(pdip); while (dip) { if (ndi_dev_is_persistent_node(dip)) (void) i_ndi_config_node(dip, DS_INITIALIZED, flags); dip = ddi_get_next_sibling(dip); } e_ddi_exit_instance(); } /* * report device status */ static void i_ndi_devi_report_status_change(dev_info_t *dip, char *path) { char *status; if (!DEVI_NEED_REPORT(dip) || (i_ddi_node_state(dip) < DS_INITIALIZED) || ndi_dev_is_hidden_node(dip)) { return; } /* Invalidate the devinfo snapshot cache */ i_ddi_di_cache_invalidate(); if (DEVI_IS_DEVICE_REMOVED(dip)) { status = "removed"; } else if (DEVI_IS_DEVICE_OFFLINE(dip)) { status = "offline"; } else if (DEVI_IS_DEVICE_DOWN(dip)) { status = "down"; } else if (DEVI_IS_BUS_QUIESCED(dip)) { status = "quiesced"; } else if (DEVI_IS_BUS_DOWN(dip)) { status = "down"; } else if (i_ddi_devi_attached(dip)) { status = "online"; } else { status = "unknown"; } if (path == NULL) { path = kmem_alloc(MAXPATHLEN, KM_SLEEP); cmn_err(CE_CONT, "?%s (%s%d) %s\n", ddi_pathname(dip, path), ddi_driver_name(dip), ddi_get_instance(dip), status); kmem_free(path, MAXPATHLEN); } else { cmn_err(CE_CONT, "?%s (%s%d) %s\n", path, ddi_driver_name(dip), ddi_get_instance(dip), status); } mutex_enter(&(DEVI(dip)->devi_lock)); DEVI_REPORT_DONE(dip); mutex_exit(&(DEVI(dip)->devi_lock)); } /* * log a notification that a dev_info node has been configured. */ static int i_log_devfs_add_devinfo(dev_info_t *dip, uint_t flags) { int se_err; char *pathname; sysevent_t *ev; sysevent_id_t eid; sysevent_value_t se_val; sysevent_attr_list_t *ev_attr_list = NULL; char *class_name; int no_transport = 0; ASSERT(dip && ddi_get_parent(dip) && DEVI_BUSY_OWNED(ddi_get_parent(dip))); /* do not generate ESC_DEVFS_DEVI_ADD event during boot */ if (!i_ddi_io_initialized()) return (DDI_SUCCESS); /* Invalidate the devinfo snapshot cache */ i_ddi_di_cache_invalidate(); ev = sysevent_alloc(EC_DEVFS, ESC_DEVFS_DEVI_ADD, EP_DDI, SE_SLEEP); pathname = kmem_alloc(MAXPATHLEN, KM_SLEEP); (void) ddi_pathname(dip, pathname); ASSERT(strlen(pathname)); se_val.value_type = SE_DATA_TYPE_STRING; se_val.value.sv_string = pathname; if (sysevent_add_attr(&ev_attr_list, DEVFS_PATHNAME, &se_val, SE_SLEEP) != 0) { goto fail; } /* add the device class attribute */ if ((class_name = i_ddi_devi_class(dip)) != NULL) { se_val.value_type = SE_DATA_TYPE_STRING; se_val.value.sv_string = class_name; if (sysevent_add_attr(&ev_attr_list, DEVFS_DEVI_CLASS, &se_val, SE_SLEEP) != 0) { sysevent_free_attr(ev_attr_list); goto fail; } } /* * must log a branch event too unless NDI_BRANCH_EVENT_OP is set, * in which case the branch event will be logged by the caller * after the entire branch has been configured. */ if ((flags & NDI_BRANCH_EVENT_OP) == 0) { /* * Instead of logging a separate branch event just add * DEVFS_BRANCH_EVENT attribute. It indicates devfsadmd to * generate a EC_DEV_BRANCH event. */ se_val.value_type = SE_DATA_TYPE_INT32; se_val.value.sv_int32 = 1; if (sysevent_add_attr(&ev_attr_list, DEVFS_BRANCH_EVENT, &se_val, SE_SLEEP) != 0) { sysevent_free_attr(ev_attr_list); goto fail; } } if (sysevent_attach_attributes(ev, ev_attr_list) != 0) { sysevent_free_attr(ev_attr_list); goto fail; } if ((se_err = log_sysevent(ev, SE_SLEEP, &eid)) != 0) { if (se_err == SE_NO_TRANSPORT) no_transport = 1; goto fail; } sysevent_free(ev); kmem_free(pathname, MAXPATHLEN); return (DDI_SUCCESS); fail: cmn_err(CE_WARN, "failed to log ESC_DEVFS_DEVI_ADD event for %s%s", pathname, (no_transport) ? " (syseventd not responding)" : ""); cmn_err(CE_WARN, "/dev may not be current for driver %s. " "Run devfsadm -i %s", ddi_driver_name(dip), ddi_driver_name(dip)); sysevent_free(ev); kmem_free(pathname, MAXPATHLEN); return (DDI_SUCCESS); } /* * log a notification that a dev_info node has been unconfigured. */ static int i_log_devfs_remove_devinfo(char *pathname, char *class_name, char *driver_name, int instance, uint_t flags) { sysevent_t *ev; sysevent_id_t eid; sysevent_value_t se_val; sysevent_attr_list_t *ev_attr_list = NULL; int se_err; int no_transport = 0; if (!i_ddi_io_initialized()) return (DDI_SUCCESS); /* Invalidate the devinfo snapshot cache */ i_ddi_di_cache_invalidate(); ev = sysevent_alloc(EC_DEVFS, ESC_DEVFS_DEVI_REMOVE, EP_DDI, SE_SLEEP); se_val.value_type = SE_DATA_TYPE_STRING; se_val.value.sv_string = pathname; if (sysevent_add_attr(&ev_attr_list, DEVFS_PATHNAME, &se_val, SE_SLEEP) != 0) { goto fail; } if (class_name) { /* add the device class, driver name and instance attributes */ se_val.value_type = SE_DATA_TYPE_STRING; se_val.value.sv_string = class_name; if (sysevent_add_attr(&ev_attr_list, DEVFS_DEVI_CLASS, &se_val, SE_SLEEP) != 0) { sysevent_free_attr(ev_attr_list); goto fail; } se_val.value_type = SE_DATA_TYPE_STRING; se_val.value.sv_string = driver_name; if (sysevent_add_attr(&ev_attr_list, DEVFS_DRIVER_NAME, &se_val, SE_SLEEP) != 0) { sysevent_free_attr(ev_attr_list); goto fail; } se_val.value_type = SE_DATA_TYPE_INT32; se_val.value.sv_int32 = instance; if (sysevent_add_attr(&ev_attr_list, DEVFS_INSTANCE, &se_val, SE_SLEEP) != 0) { sysevent_free_attr(ev_attr_list); goto fail; } } /* * must log a branch event too unless NDI_BRANCH_EVENT_OP is set, * in which case the branch event will be logged by the caller * after the entire branch has been unconfigured. */ if ((flags & NDI_BRANCH_EVENT_OP) == 0) { /* * Instead of logging a separate branch event just add * DEVFS_BRANCH_EVENT attribute. It indicates devfsadmd to * generate a EC_DEV_BRANCH event. */ se_val.value_type = SE_DATA_TYPE_INT32; se_val.value.sv_int32 = 1; if (sysevent_add_attr(&ev_attr_list, DEVFS_BRANCH_EVENT, &se_val, SE_SLEEP) != 0) { sysevent_free_attr(ev_attr_list); goto fail; } } if (sysevent_attach_attributes(ev, ev_attr_list) != 0) { sysevent_free_attr(ev_attr_list); goto fail; } if ((se_err = log_sysevent(ev, SE_SLEEP, &eid)) != 0) { if (se_err == SE_NO_TRANSPORT) no_transport = 1; goto fail; } sysevent_free(ev); return (DDI_SUCCESS); fail: sysevent_free(ev); cmn_err(CE_WARN, "failed to log ESC_DEVFS_DEVI_REMOVE event for %s%s", pathname, (no_transport) ? " (syseventd not responding)" : ""); return (DDI_SUCCESS); } static void i_ddi_log_devfs_device_remove(dev_info_t *dip) { char *path; ASSERT(dip && ddi_get_parent(dip) && DEVI_BUSY_OWNED(ddi_get_parent(dip))); ASSERT(DEVI_IS_DEVICE_REMOVED(dip)); ASSERT(i_ddi_node_state(dip) >= DS_INITIALIZED); if (i_ddi_node_state(dip) < DS_INITIALIZED) return; /* Inform LDI_EV_DEVICE_REMOVE callbacks. */ ldi_invoke_finalize(dip, DDI_DEV_T_ANY, 0, LDI_EV_DEVICE_REMOVE, LDI_EV_SUCCESS, NULL); /* Generate EC_DEVFS_DEVI_REMOVE sysevent. */ path = kmem_alloc(MAXPATHLEN, KM_SLEEP); (void) i_log_devfs_remove_devinfo(ddi_pathname(dip, path), i_ddi_devi_class(dip), (char *)ddi_driver_name(dip), ddi_get_instance(dip), 0); kmem_free(path, MAXPATHLEN); } static void i_ddi_log_devfs_device_insert(dev_info_t *dip) { ASSERT(dip && ddi_get_parent(dip) && DEVI_BUSY_OWNED(ddi_get_parent(dip))); ASSERT(!DEVI_IS_DEVICE_REMOVED(dip)); (void) i_log_devfs_add_devinfo(dip, 0); } /* * log an event that a dev_info branch has been configured or unconfigured. */ static int i_log_devfs_branch(char *node_path, char *subclass) { int se_err; sysevent_t *ev; sysevent_id_t eid; sysevent_value_t se_val; sysevent_attr_list_t *ev_attr_list = NULL; int no_transport = 0; /* do not generate the event during boot */ if (!i_ddi_io_initialized()) return (DDI_SUCCESS); /* Invalidate the devinfo snapshot cache */ i_ddi_di_cache_invalidate(); ev = sysevent_alloc(EC_DEVFS, subclass, EP_DDI, SE_SLEEP); se_val.value_type = SE_DATA_TYPE_STRING; se_val.value.sv_string = node_path; if (sysevent_add_attr(&ev_attr_list, DEVFS_PATHNAME, &se_val, SE_SLEEP) != 0) { goto fail; } if (sysevent_attach_attributes(ev, ev_attr_list) != 0) { sysevent_free_attr(ev_attr_list); goto fail; } if ((se_err = log_sysevent(ev, SE_SLEEP, &eid)) != 0) { if (se_err == SE_NO_TRANSPORT) no_transport = 1; goto fail; } sysevent_free(ev); return (DDI_SUCCESS); fail: cmn_err(CE_WARN, "failed to log %s branch event for %s%s", subclass, node_path, (no_transport) ? " (syseventd not responding)" : ""); sysevent_free(ev); return (DDI_FAILURE); } /* * log an event that a dev_info tree branch has been configured. */ static int i_log_devfs_branch_add(dev_info_t *dip) { char *node_path; int rv; node_path = kmem_alloc(MAXPATHLEN, KM_SLEEP); (void) ddi_pathname(dip, node_path); rv = i_log_devfs_branch(node_path, ESC_DEVFS_BRANCH_ADD); kmem_free(node_path, MAXPATHLEN); return (rv); } /* * log an event that a dev_info tree branch has been unconfigured. */ static int i_log_devfs_branch_remove(char *node_path) { return (i_log_devfs_branch(node_path, ESC_DEVFS_BRANCH_REMOVE)); } /* * enqueue the dip's deviname on the branch event queue. */ static struct brevq_node * brevq_enqueue(struct brevq_node **brevqp, dev_info_t *dip, struct brevq_node *child) { struct brevq_node *brn; char *deviname; deviname = kmem_alloc(MAXNAMELEN, KM_SLEEP); (void) ddi_deviname(dip, deviname); brn = kmem_zalloc(sizeof (*brn), KM_SLEEP); brn->brn_deviname = i_ddi_strdup(deviname, KM_SLEEP); kmem_free(deviname, MAXNAMELEN); brn->brn_child = child; brn->brn_sibling = *brevqp; *brevqp = brn; return (brn); } /* * free the memory allocated for the elements on the branch event queue. */ static void free_brevq(struct brevq_node *brevq) { struct brevq_node *brn, *next_brn; for (brn = brevq; brn != NULL; brn = next_brn) { next_brn = brn->brn_sibling; ASSERT(brn->brn_child == NULL); kmem_free(brn->brn_deviname, strlen(brn->brn_deviname) + 1); kmem_free(brn, sizeof (*brn)); } } /* * log the events queued up on the branch event queue and free the * associated memory. * * node_path must have been allocated with at least MAXPATHLEN bytes. */ static void log_and_free_brevq(char *node_path, struct brevq_node *brevq) { struct brevq_node *brn; char *p; p = node_path + strlen(node_path); for (brn = brevq; brn != NULL; brn = brn->brn_sibling) { (void) strcpy(p, brn->brn_deviname); (void) i_log_devfs_branch_remove(node_path); } *p = '\0'; free_brevq(brevq); } /* * log the events queued up on the branch event queue and free the * associated memory. Same as the previous function but operates on dip. */ static void log_and_free_brevq_dip(dev_info_t *dip, struct brevq_node *brevq) { char *path; path = kmem_alloc(MAXPATHLEN, KM_SLEEP); (void) ddi_pathname(dip, path); log_and_free_brevq(path, brevq); kmem_free(path, MAXPATHLEN); } /* * log the outstanding branch remove events for the grand children of the dip * and free the associated memory. */ static void log_and_free_br_events_on_grand_children(dev_info_t *dip, struct brevq_node *brevq) { struct brevq_node *brn; char *path; char *p; path = kmem_alloc(MAXPATHLEN, KM_SLEEP); (void) ddi_pathname(dip, path); p = path + strlen(path); for (brn = brevq; brn != NULL; brn = brn->brn_sibling) { if (brn->brn_child) { (void) strcpy(p, brn->brn_deviname); /* now path contains the node path to the dip's child */ log_and_free_brevq(path, brn->brn_child); brn->brn_child = NULL; } } kmem_free(path, MAXPATHLEN); } /* * log and cleanup branch remove events for the grand children of the dip. */ static void cleanup_br_events_on_grand_children(dev_info_t *dip, struct brevq_node **brevqp) { dev_info_t *child; struct brevq_node *brevq, *brn, *prev_brn, *next_brn; char *path; int circ; path = kmem_alloc(MAXPATHLEN, KM_SLEEP); prev_brn = NULL; brevq = *brevqp; ndi_devi_enter(dip, &circ); for (brn = brevq; brn != NULL; brn = next_brn) { next_brn = brn->brn_sibling; for (child = ddi_get_child(dip); child != NULL; child = ddi_get_next_sibling(child)) { if (i_ddi_node_state(child) >= DS_INITIALIZED) { (void) ddi_deviname(child, path); if (strcmp(path, brn->brn_deviname) == 0) break; } } if (child != NULL && !(DEVI_EVREMOVE(child))) { /* * Event state is not REMOVE. So branch remove event * is not going be generated on brn->brn_child. * If any branch remove events were queued up on * brn->brn_child log them and remove the brn * from the queue. */ if (brn->brn_child) { (void) ddi_pathname(dip, path); (void) strcat(path, brn->brn_deviname); log_and_free_brevq(path, brn->brn_child); } if (prev_brn) prev_brn->brn_sibling = next_brn; else *brevqp = next_brn; kmem_free(brn->brn_deviname, strlen(brn->brn_deviname) + 1); kmem_free(brn, sizeof (*brn)); } else { /* * Free up the outstanding branch remove events * queued on brn->brn_child since brn->brn_child * itself is eligible for branch remove event. */ if (brn->brn_child) { free_brevq(brn->brn_child); brn->brn_child = NULL; } prev_brn = brn; } } ndi_devi_exit(dip, circ); kmem_free(path, MAXPATHLEN); } static int need_remove_event(dev_info_t *dip, int flags) { if ((flags & (NDI_NO_EVENT | NDI_AUTODETACH)) == 0 && (flags & (NDI_DEVI_OFFLINE | NDI_UNCONFIG | NDI_DEVI_REMOVE)) && !(DEVI_EVREMOVE(dip))) return (1); else return (0); } /* * Unconfigure children/descendants of the dip. * * If the operation involves a branch event NDI_BRANCH_EVENT_OP is set * through out the unconfiguration. On successful return *brevqp is set to * a queue of dip's child devinames for which branch remove events need * to be generated. */ static int devi_unconfig_branch(dev_info_t *dip, dev_info_t **dipp, int flags, struct brevq_node **brevqp) { int rval; *brevqp = NULL; if ((!(flags & NDI_BRANCH_EVENT_OP)) && need_remove_event(dip, flags)) flags |= NDI_BRANCH_EVENT_OP; if (flags & NDI_BRANCH_EVENT_OP) { rval = devi_unconfig_common(dip, dipp, flags, DDI_MAJOR_T_NONE, brevqp); if (rval != NDI_SUCCESS && (*brevqp)) { log_and_free_brevq_dip(dip, *brevqp); *brevqp = NULL; } } else rval = devi_unconfig_common(dip, dipp, flags, DDI_MAJOR_T_NONE, NULL); return (rval); } /* * If the dip is already bound to a driver transition to DS_INITIALIZED * in order to generate an event in the case where the node was left in * DS_BOUND state since boot (never got attached) and the node is now * being offlined. */ static void init_bound_node_ev(dev_info_t *pdip, dev_info_t *dip, int flags) { if (need_remove_event(dip, flags) && i_ddi_node_state(dip) == DS_BOUND && i_ddi_devi_attached(pdip) && !DEVI_IS_DEVICE_OFFLINE(dip)) (void) ddi_initchild(pdip, dip); } /* * attach a node/branch with parent already held busy */ static int devi_attach_node(dev_info_t *dip, uint_t flags) { dev_info_t *pdip = ddi_get_parent(dip); ASSERT(pdip && DEVI_BUSY_OWNED(pdip)); mutex_enter(&(DEVI(dip)->devi_lock)); if (flags & NDI_DEVI_ONLINE) { if (!i_ddi_devi_attached(dip)) DEVI_SET_REPORT(dip); DEVI_SET_DEVICE_ONLINE(dip); } if (DEVI_IS_DEVICE_OFFLINE(dip)) { mutex_exit(&(DEVI(dip)->devi_lock)); return (NDI_FAILURE); } mutex_exit(&(DEVI(dip)->devi_lock)); if (i_ddi_attachchild(dip) != DDI_SUCCESS) { mutex_enter(&(DEVI(dip)->devi_lock)); DEVI_SET_EVUNINIT(dip); mutex_exit(&(DEVI(dip)->devi_lock)); if (ndi_dev_is_persistent_node(dip)) (void) ddi_uninitchild(dip); else { /* * Delete .conf nodes and nodes that are not * well formed. */ (void) ddi_remove_child(dip, 0); } return (NDI_FAILURE); } i_ndi_devi_report_status_change(dip, NULL); /* * log an event, but not during devfs lookups in which case * NDI_NO_EVENT is set. */ if ((flags & NDI_NO_EVENT) == 0 && !(DEVI_EVADD(dip))) { (void) i_log_devfs_add_devinfo(dip, flags); mutex_enter(&(DEVI(dip)->devi_lock)); DEVI_SET_EVADD(dip); mutex_exit(&(DEVI(dip)->devi_lock)); } else if (!(flags & NDI_NO_EVENT_STATE_CHNG)) { mutex_enter(&(DEVI(dip)->devi_lock)); DEVI_SET_EVADD(dip); mutex_exit(&(DEVI(dip)->devi_lock)); } return (NDI_SUCCESS); } /* internal function to config immediate children */ static int config_immediate_children(dev_info_t *pdip, uint_t flags, major_t major) { dev_info_t *child, *next; int circ; ASSERT(i_ddi_devi_attached(pdip)); if (!NEXUS_DRV(ddi_get_driver(pdip))) return (NDI_SUCCESS); NDI_CONFIG_DEBUG((CE_CONT, "config_immediate_children: %s%d (%p), flags=%x\n", ddi_driver_name(pdip), ddi_get_instance(pdip), (void *)pdip, flags)); ndi_devi_enter(pdip, &circ); if (flags & NDI_CONFIG_REPROBE) { mutex_enter(&DEVI(pdip)->devi_lock); DEVI(pdip)->devi_flags &= ~DEVI_MADE_CHILDREN; mutex_exit(&DEVI(pdip)->devi_lock); } (void) i_ndi_make_spec_children(pdip, flags); i_ndi_init_hw_children(pdip, flags); child = ddi_get_child(pdip); while (child) { /* NOTE: devi_attach_node() may remove the dip */ next = ddi_get_next_sibling(child); /* * Configure all nexus nodes or leaf nodes with * matching driver major */ if ((major == DDI_MAJOR_T_NONE) || (major == ddi_driver_major(child)) || ((flags & NDI_CONFIG) && (is_leaf_node(child) == 0))) (void) devi_attach_node(child, flags); child = next; } ndi_devi_exit(pdip, circ); return (NDI_SUCCESS); } /* internal function to config grand children */ static int config_grand_children(dev_info_t *pdip, uint_t flags, major_t major) { struct mt_config_handle *hdl; /* multi-threaded configuration of child nexus */ hdl = mt_config_init(pdip, NULL, flags, major, MT_CONFIG_OP, NULL); mt_config_children(hdl); return (mt_config_fini(hdl)); /* wait for threads to exit */ } /* * Common function for device tree configuration, * either BUS_CONFIG_ALL or BUS_CONFIG_DRIVER. * The NDI_CONFIG flag causes recursive configuration of * grandchildren, devfs usage should not recurse. */ static int devi_config_common(dev_info_t *dip, int flags, major_t major) { int error; int (*f)(); if (!i_ddi_devi_attached(dip)) return (NDI_FAILURE); if (pm_pre_config(dip, NULL) != DDI_SUCCESS) return (NDI_FAILURE); if ((DEVI(dip)->devi_ops->devo_bus_ops == NULL) || (DEVI(dip)->devi_ops->devo_bus_ops->busops_rev < BUSO_REV_5) || (f = DEVI(dip)->devi_ops->devo_bus_ops->bus_config) == NULL) { error = config_immediate_children(dip, flags, major); } else { /* call bus_config entry point */ ddi_bus_config_op_t bus_op = (major == DDI_MAJOR_T_NONE) ? BUS_CONFIG_ALL : BUS_CONFIG_DRIVER; error = (*f)(dip, flags, bus_op, (void *)(uintptr_t)major, NULL, 0); } if (error) { pm_post_config(dip, NULL); return (error); } /* * Some callers, notably SCSI, need to mark the devfs cache * to be rebuilt together with the config operation. */ if (flags & NDI_DEVFS_CLEAN) (void) devfs_clean(dip, NULL, 0); if (flags & NDI_CONFIG) (void) config_grand_children(dip, flags, major); pm_post_config(dip, NULL); return (NDI_SUCCESS); } /* * Framework entry point for BUS_CONFIG_ALL */ int ndi_devi_config(dev_info_t *dip, int flags) { NDI_CONFIG_DEBUG((CE_CONT, "ndi_devi_config: par = %s%d (%p), flags = 0x%x\n", ddi_driver_name(dip), ddi_get_instance(dip), (void *)dip, flags)); return (devi_config_common(dip, flags, DDI_MAJOR_T_NONE)); } /* * Framework entry point for BUS_CONFIG_DRIVER, bound to major */ int ndi_devi_config_driver(dev_info_t *dip, int flags, major_t major) { /* don't abuse this function */ ASSERT(major != DDI_MAJOR_T_NONE); NDI_CONFIG_DEBUG((CE_CONT, "ndi_devi_config_driver: par = %s%d (%p), flags = 0x%x\n", ddi_driver_name(dip), ddi_get_instance(dip), (void *)dip, flags)); return (devi_config_common(dip, flags, major)); } /* * Called by nexus drivers to configure its children. */ static int devi_config_one(dev_info_t *pdip, char *devnm, dev_info_t **cdipp, uint_t flags, clock_t timeout) { dev_info_t *vdip = NULL; char *drivername = NULL; int find_by_addr = 0; char *name, *addr; int v_circ, p_circ; clock_t end_time; /* 60 sec */ int probed; dev_info_t *cdip; mdi_pathinfo_t *cpip; *cdipp = NULL; if (!NEXUS_DRV(ddi_get_driver(pdip))) return (NDI_FAILURE); /* split name into "name@addr" parts */ i_ddi_parse_name(devnm, &name, &addr, NULL); /* * If the nexus is a pHCI and we are not processing a pHCI from * mdi bus_config code then we need to know the vHCI. */ if (MDI_PHCI(pdip)) vdip = mdi_devi_get_vdip(pdip); /* * We may have a genericname on a system that creates drivername * nodes (from .conf files). Find the drivername by nodeid. If we * can't find a node with devnm as the node name then we search by * drivername. This allows an implementation to supply a genericly * named boot path (disk) and locate drivename nodes (sd). The * NDI_PROMNAME flag does not apply to /devices/pseudo paths. */ if ((flags & NDI_PROMNAME) && (pdip != pseudo_dip)) { drivername = child_path_to_driver(pdip, name, addr); find_by_addr = 1; } /* * Determine end_time: This routine should *not* be called with a * constant non-zero timeout argument, the caller should be adjusting * the timeout argument relative to when it *started* its asynchronous * enumeration. */ if (timeout > 0) end_time = ddi_get_lbolt() + timeout; for (;;) { /* * For pHCI, enter (vHCI, pHCI) and search for pathinfo/client * child - break out of for(;;) loop if child found. * NOTE: Lock order for ndi_devi_enter is (vHCI, pHCI). */ if (vdip) { /* use mdi_devi_enter ordering */ ndi_devi_enter(vdip, &v_circ); ndi_devi_enter(pdip, &p_circ); cpip = mdi_pi_find(pdip, NULL, addr); cdip = mdi_pi_get_client(cpip); if (cdip) break; } else ndi_devi_enter(pdip, &p_circ); /* * When not a vHCI or not all pHCI devices are required to * enumerated under the vHCI (NDI_MDI_FALLBACK) search for * devinfo child. */ if ((vdip == NULL) || (flags & NDI_MDI_FALLBACK)) { /* determine if .conf nodes already built */ probed = (DEVI(pdip)->devi_flags & DEVI_MADE_CHILDREN); /* * Search for child by name, if not found then search * for a node bound to the drivername driver with the * specified "@addr". Break out of for(;;) loop if * child found. To support path-oriented aliases * binding on boot-device, we do a search_by_addr too. */ again: (void) i_ndi_make_spec_children(pdip, flags); cdip = find_child_by_name(pdip, name, addr); if ((cdip == NULL) && drivername) cdip = find_child_by_driver(pdip, drivername, addr); if ((cdip == NULL) && find_by_addr) cdip = find_child_by_addr(pdip, addr); if (cdip) break; /* * determine if we should reenumerate .conf nodes * and look for child again. */ if (probed && i_ddi_io_initialized() && (flags & NDI_CONFIG_REPROBE) && ((timeout <= 0) || (ddi_get_lbolt() >= end_time))) { probed = 0; mutex_enter(&DEVI(pdip)->devi_lock); DEVI(pdip)->devi_flags &= ~DEVI_MADE_CHILDREN; mutex_exit(&DEVI(pdip)->devi_lock); goto again; } } /* break out of for(;;) if time expired */ if ((timeout <= 0) || (ddi_get_lbolt() >= end_time)) break; /* * Child not found, exit and wait for asynchronous enumeration * to add child (or timeout). The addition of a new child (vhci * or phci) requires the asynchronous enumeration thread to * ndi_devi_enter/ndi_devi_exit. This exit will signal devi_cv * and cause us to return from ndi_devi_exit_and_wait, after * which we loop and search for the requested child again. */ NDI_DEBUG(flags, (CE_CONT, "%s%d: waiting for child %s@%s, timeout %ld", ddi_driver_name(pdip), ddi_get_instance(pdip), name, addr, timeout)); if (vdip) { /* * Mark vHCI for pHCI ndi_devi_exit broadcast. */ mutex_enter(&DEVI(vdip)->devi_lock); DEVI(vdip)->devi_flags |= DEVI_PHCI_SIGNALS_VHCI; mutex_exit(&DEVI(vdip)->devi_lock); ndi_devi_exit(pdip, p_circ); /* * NB: There is a small race window from above * ndi_devi_exit() of pdip to cv_wait() in * ndi_devi_exit_and_wait() which can result in * not immediately finding a new pHCI child * of a pHCI that uses NDI_MDI_FAILBACK. */ ndi_devi_exit_and_wait(vdip, v_circ, end_time); } else { ndi_devi_exit_and_wait(pdip, p_circ, end_time); } } /* done with paddr, fixup i_ddi_parse_name '@'->'\0' change */ if (addr && *addr != '\0') *(addr - 1) = '@'; /* attach and hold the child, returning pointer to child */ if (cdip && (devi_attach_node(cdip, flags) == NDI_SUCCESS)) { ndi_hold_devi(cdip); *cdipp = cdip; } ndi_devi_exit(pdip, p_circ); if (vdip) ndi_devi_exit(vdip, v_circ); return (*cdipp ? NDI_SUCCESS : NDI_FAILURE); } /* * Enumerate and attach a child specified by name 'devnm'. * Called by devfs lookup and DR to perform a BUS_CONFIG_ONE. * Note: devfs does not make use of NDI_CONFIG to configure * an entire branch. */ int ndi_devi_config_one(dev_info_t *pdip, char *devnm, dev_info_t **dipp, int flags) { int error; int (*f)(); char *nmdup; int duplen; int branch_event = 0; ASSERT(pdip); ASSERT(devnm); ASSERT(dipp); ASSERT(i_ddi_devi_attached(pdip)); NDI_CONFIG_DEBUG((CE_CONT, "ndi_devi_config_one: par = %s%d (%p), child = %s\n", ddi_driver_name(pdip), ddi_get_instance(pdip), (void *)pdip, devnm)); *dipp = NULL; if (pm_pre_config(pdip, devnm) != DDI_SUCCESS) { cmn_err(CE_WARN, "preconfig failed: %s", devnm); return (NDI_FAILURE); } if ((flags & (NDI_NO_EVENT | NDI_BRANCH_EVENT_OP)) == 0 && (flags & NDI_CONFIG)) { flags |= NDI_BRANCH_EVENT_OP; branch_event = 1; } nmdup = strdup(devnm); duplen = strlen(devnm) + 1; if ((DEVI(pdip)->devi_ops->devo_bus_ops == NULL) || (DEVI(pdip)->devi_ops->devo_bus_ops->busops_rev < BUSO_REV_5) || (f = DEVI(pdip)->devi_ops->devo_bus_ops->bus_config) == NULL) { error = devi_config_one(pdip, devnm, dipp, flags, 0); } else { /* call bus_config entry point */ error = (*f)(pdip, flags, BUS_CONFIG_ONE, (void *)devnm, dipp); } if (error) { *dipp = NULL; } /* * if we fail to lookup and this could be an alias, lookup currdip * To prevent recursive lookups into the same hash table, only * do the currdip lookups once the hash table init is complete. * Use tsd so that redirection doesn't recurse */ if (error) { char *alias = kmem_alloc(MAXPATHLEN, KM_NOSLEEP); if (alias == NULL) { ddi_err(DER_PANIC, pdip, "alias alloc failed: %s", nmdup); } (void) ddi_pathname(pdip, alias); (void) strlcat(alias, "/", MAXPATHLEN); (void) strlcat(alias, nmdup, MAXPATHLEN); *dipp = ddi_alias_redirect(alias); error = (*dipp ? NDI_SUCCESS : NDI_FAILURE); kmem_free(alias, MAXPATHLEN); } kmem_free(nmdup, duplen); if (error || !(flags & NDI_CONFIG)) { pm_post_config(pdip, devnm); return (error); } /* * DR usage (i.e. call with NDI_CONFIG) recursively configures * grandchildren, performing a BUS_CONFIG_ALL from the node attached * by the BUS_CONFIG_ONE. */ ASSERT(*dipp); error = devi_config_common(*dipp, flags, DDI_MAJOR_T_NONE); pm_post_config(pdip, devnm); if (branch_event) (void) i_log_devfs_branch_add(*dipp); return (error); } /* * Enumerate and attach a child specified by name 'devnm'. * Called during configure the OBP options. This configures * only one node. */ static int ndi_devi_config_obp_args(dev_info_t *parent, char *devnm, dev_info_t **childp, int flags) { int error; int (*f)(); ASSERT(childp); ASSERT(i_ddi_devi_attached(parent)); NDI_CONFIG_DEBUG((CE_CONT, "ndi_devi_config_obp_args: " "par = %s%d (%p), child = %s\n", ddi_driver_name(parent), ddi_get_instance(parent), (void *)parent, devnm)); if ((DEVI(parent)->devi_ops->devo_bus_ops == NULL) || (DEVI(parent)->devi_ops->devo_bus_ops->busops_rev < BUSO_REV_5) || (f = DEVI(parent)->devi_ops->devo_bus_ops->bus_config) == NULL) { error = NDI_FAILURE; } else { /* call bus_config entry point */ error = (*f)(parent, flags, BUS_CONFIG_OBP_ARGS, (void *)devnm, childp); } return (error); } /* * Pay attention, the following is a bit tricky: * There are three possible cases when constraints are applied * * - A constraint is applied and the offline is disallowed. * Simply return failure and block the offline * * - A constraint is applied and the offline is allowed. * Mark the dip as having passed the constraint and allow * offline to proceed. * * - A constraint is not applied. Allow the offline to proceed for now. * * In the latter two cases we allow the offline to proceed. If the * offline succeeds (no users) everything is fine. It is ok for an unused * device to be offlined even if no constraints were imposed on the offline. * If the offline fails because there are users, we look at the constraint * flag on the dip. If the constraint flag is set (implying that it passed * a constraint) we allow the dip to be retired. If not, we don't allow * the retire. This ensures that we don't allow unconstrained retire. */ int e_ddi_offline_notify(dev_info_t *dip) { int retval; int constraint; int failure; RIO_VERBOSE((CE_NOTE, "e_ddi_offline_notify(): entered: dip=%p", (void *) dip)); constraint = 0; failure = 0; /* * Start with userland constraints first - applied via device contracts */ retval = contract_device_offline(dip, DDI_DEV_T_ANY, 0); switch (retval) { case CT_NACK: RIO_DEBUG((CE_NOTE, "Received NACK for dip=%p", (void *)dip)); failure = 1; goto out; case CT_ACK: constraint = 1; RIO_DEBUG((CE_NOTE, "Received ACK for dip=%p", (void *)dip)); break; case CT_NONE: /* no contracts */ RIO_DEBUG((CE_NOTE, "No contracts on dip=%p", (void *)dip)); break; default: ASSERT(retval == CT_NONE); } /* * Next, use LDI to impose kernel constraints */ retval = ldi_invoke_notify(dip, DDI_DEV_T_ANY, 0, LDI_EV_OFFLINE, NULL); switch (retval) { case LDI_EV_FAILURE: contract_device_negend(dip, DDI_DEV_T_ANY, 0, CT_EV_FAILURE); RIO_DEBUG((CE_NOTE, "LDI callback failed on dip=%p", (void *)dip)); failure = 1; goto out; case LDI_EV_SUCCESS: constraint = 1; RIO_DEBUG((CE_NOTE, "LDI callback success on dip=%p", (void *)dip)); break; case LDI_EV_NONE: /* no matching LDI callbacks */ RIO_DEBUG((CE_NOTE, "No LDI callbacks for dip=%p", (void *)dip)); break; default: ASSERT(retval == LDI_EV_NONE); } out: mutex_enter(&(DEVI(dip)->devi_lock)); if ((DEVI(dip)->devi_flags & DEVI_RETIRING) && failure) { RIO_VERBOSE((CE_NOTE, "e_ddi_offline_notify(): setting " "BLOCKED flag. dip=%p", (void *)dip)); DEVI(dip)->devi_flags |= DEVI_R_BLOCKED; if (DEVI(dip)->devi_flags & DEVI_R_CONSTRAINT) { RIO_VERBOSE((CE_NOTE, "e_ddi_offline_notify(): " "blocked. clearing RCM CONSTRAINT flag. dip=%p", (void *)dip)); DEVI(dip)->devi_flags &= ~DEVI_R_CONSTRAINT; } } else if ((DEVI(dip)->devi_flags & DEVI_RETIRING) && constraint) { RIO_VERBOSE((CE_NOTE, "e_ddi_offline_notify(): setting " "CONSTRAINT flag. dip=%p", (void *)dip)); DEVI(dip)->devi_flags |= DEVI_R_CONSTRAINT; } else if ((DEVI(dip)->devi_flags & DEVI_RETIRING) && ((DEVI(dip)->devi_ops != NULL && DEVI(dip)->devi_ops->devo_bus_ops != NULL) || DEVI(dip)->devi_ref == 0)) { /* also allow retire if nexus or if device is not in use */ RIO_VERBOSE((CE_NOTE, "e_ddi_offline_notify(): device not in " "use. Setting CONSTRAINT flag. dip=%p", (void *)dip)); DEVI(dip)->devi_flags |= DEVI_R_CONSTRAINT; } else { /* * Note: We cannot ASSERT here that DEVI_R_CONSTRAINT is * not set, since other sources (such as RCM) may have * set the flag. */ RIO_VERBOSE((CE_NOTE, "e_ddi_offline_notify(): not setting " "constraint flag. dip=%p", (void *)dip)); } mutex_exit(&(DEVI(dip)->devi_lock)); RIO_VERBOSE((CE_NOTE, "e_ddi_offline_notify(): exit: dip=%p", (void *) dip)); return (failure ? DDI_FAILURE : DDI_SUCCESS); } void e_ddi_offline_finalize(dev_info_t *dip, int result) { RIO_DEBUG((CE_NOTE, "e_ddi_offline_finalize(): entry: result=%s, " "dip=%p", result == DDI_SUCCESS ? "SUCCESS" : "FAILURE", (void *)dip)); contract_device_negend(dip, DDI_DEV_T_ANY, 0, result == DDI_SUCCESS ? CT_EV_SUCCESS : CT_EV_FAILURE); ldi_invoke_finalize(dip, DDI_DEV_T_ANY, 0, LDI_EV_OFFLINE, result == DDI_SUCCESS ? LDI_EV_SUCCESS : LDI_EV_FAILURE, NULL); RIO_VERBOSE((CE_NOTE, "e_ddi_offline_finalize(): exit: dip=%p", (void *)dip)); } void e_ddi_degrade_finalize(dev_info_t *dip) { RIO_DEBUG((CE_NOTE, "e_ddi_degrade_finalize(): entry: " "result always = DDI_SUCCESS, dip=%p", (void *)dip)); contract_device_degrade(dip, DDI_DEV_T_ANY, 0); contract_device_negend(dip, DDI_DEV_T_ANY, 0, CT_EV_SUCCESS); ldi_invoke_finalize(dip, DDI_DEV_T_ANY, 0, LDI_EV_DEGRADE, LDI_EV_SUCCESS, NULL); RIO_VERBOSE((CE_NOTE, "e_ddi_degrade_finalize(): exit: dip=%p", (void *)dip)); } void e_ddi_undegrade_finalize(dev_info_t *dip) { RIO_DEBUG((CE_NOTE, "e_ddi_undegrade_finalize(): entry: " "result always = DDI_SUCCESS, dip=%p", (void *)dip)); contract_device_undegrade(dip, DDI_DEV_T_ANY, 0); contract_device_negend(dip, DDI_DEV_T_ANY, 0, CT_EV_SUCCESS); RIO_VERBOSE((CE_NOTE, "e_ddi_undegrade_finalize(): exit: dip=%p", (void *)dip)); } /* * detach a node with parent already held busy */ static int devi_detach_node(dev_info_t *dip, uint_t flags) { dev_info_t *pdip = ddi_get_parent(dip); int ret = NDI_SUCCESS; ddi_eventcookie_t cookie; char *path = NULL; char *class = NULL; char *driver = NULL; int instance = -1; int post_event = 0; ASSERT(pdip && DEVI_BUSY_OWNED(pdip)); /* * Invoke notify if offlining */ if (flags & NDI_DEVI_OFFLINE) { RIO_DEBUG((CE_NOTE, "devi_detach_node: offlining dip=%p", (void *)dip)); if (e_ddi_offline_notify(dip) != DDI_SUCCESS) { RIO_DEBUG((CE_NOTE, "devi_detach_node: offline NACKed" "dip=%p", (void *)dip)); return (NDI_FAILURE); } } if (flags & NDI_POST_EVENT) { if (i_ddi_devi_attached(pdip)) { if (ddi_get_eventcookie(dip, DDI_DEVI_REMOVE_EVENT, &cookie) == NDI_SUCCESS) (void) ndi_post_event(dip, dip, cookie, NULL); } } if (i_ddi_detachchild(dip, flags) != DDI_SUCCESS) { if (flags & NDI_DEVI_OFFLINE) { RIO_DEBUG((CE_NOTE, "devi_detach_node: offline failed." " Calling e_ddi_offline_finalize with result=%d. " "dip=%p", DDI_FAILURE, (void *)dip)); e_ddi_offline_finalize(dip, DDI_FAILURE); } return (NDI_FAILURE); } if (flags & NDI_DEVI_OFFLINE) { RIO_DEBUG((CE_NOTE, "devi_detach_node: offline succeeded." " Calling e_ddi_offline_finalize with result=%d, " "dip=%p", DDI_SUCCESS, (void *)dip)); e_ddi_offline_finalize(dip, DDI_SUCCESS); } if (flags & NDI_AUTODETACH) return (NDI_SUCCESS); /* * For DR, even bound nodes may need to have offline * flag set. */ if (flags & NDI_DEVI_OFFLINE) { mutex_enter(&(DEVI(dip)->devi_lock)); DEVI_SET_DEVICE_OFFLINE(dip); mutex_exit(&(DEVI(dip)->devi_lock)); } if (i_ddi_node_state(dip) == DS_INITIALIZED) { path = kmem_alloc(MAXPATHLEN, KM_SLEEP); (void) ddi_pathname(dip, path); if (flags & NDI_DEVI_OFFLINE) i_ndi_devi_report_status_change(dip, path); if (need_remove_event(dip, flags)) { post_event = 1; class = i_ddi_strdup(i_ddi_devi_class(dip), KM_SLEEP); driver = i_ddi_strdup((char *)ddi_driver_name(dip), KM_SLEEP); instance = ddi_get_instance(dip); mutex_enter(&(DEVI(dip)->devi_lock)); DEVI_SET_EVREMOVE(dip); mutex_exit(&(DEVI(dip)->devi_lock)); } } if (flags & (NDI_UNCONFIG | NDI_DEVI_REMOVE)) { ret = ddi_uninitchild(dip); if (ret == NDI_SUCCESS) { /* * Remove uninitialized pseudo nodes because * system props are lost and the node cannot be * reattached. */ if (!ndi_dev_is_persistent_node(dip)) flags |= NDI_DEVI_REMOVE; if (flags & NDI_DEVI_REMOVE) { /* * NOTE: If there is a consumer of LDI events, * ddi_uninitchild above would have failed * because of active devi_ref from ldi_open(). */ ret = ddi_remove_child(dip, 0); if (post_event && ret == NDI_SUCCESS) { /* Generate EC_DEVFS_DEVI_REMOVE */ (void) i_log_devfs_remove_devinfo(path, class, driver, instance, flags); } } } } if (path) kmem_free(path, MAXPATHLEN); if (class) kmem_free(class, strlen(class) + 1); if (driver) kmem_free(driver, strlen(driver) + 1); return (ret); } /* * unconfigure immediate children of bus nexus device */ static int unconfig_immediate_children( dev_info_t *dip, dev_info_t **dipp, int flags, major_t major) { int rv = NDI_SUCCESS; int circ, vcirc; dev_info_t *child; dev_info_t *vdip = NULL; dev_info_t *next; ASSERT(dipp == NULL || *dipp == NULL); /* * Scan forward to see if we will be processing a pHCI child. If we * have a child that is a pHCI and vHCI and pHCI are not siblings then * enter vHCI before parent(pHCI) to prevent deadlock with mpxio * Client power management operations. */ ndi_devi_enter(dip, &circ); for (child = ddi_get_child(dip); child; child = ddi_get_next_sibling(child)) { /* skip same nodes we skip below */ if (((major != DDI_MAJOR_T_NONE) && (major != ddi_driver_major(child))) || ((flags & NDI_AUTODETACH) && !is_leaf_node(child))) continue; if (MDI_PHCI(child)) { vdip = mdi_devi_get_vdip(child); /* * If vHCI and vHCI is not a sibling of pHCI * then enter in (vHCI, parent(pHCI)) order. */ if (vdip && (ddi_get_parent(vdip) != dip)) { ndi_devi_exit(dip, circ); /* use mdi_devi_enter ordering */ ndi_devi_enter(vdip, &vcirc); ndi_devi_enter(dip, &circ); break; } else vdip = NULL; } } child = ddi_get_child(dip); while (child) { next = ddi_get_next_sibling(child); if ((major != DDI_MAJOR_T_NONE) && (major != ddi_driver_major(child))) { child = next; continue; } /* skip nexus nodes during autodetach */ if ((flags & NDI_AUTODETACH) && !is_leaf_node(child)) { child = next; continue; } if (devi_detach_node(child, flags) != NDI_SUCCESS) { if (dipp && *dipp == NULL) { ndi_hold_devi(child); *dipp = child; } rv = NDI_FAILURE; } /* * Continue upon failure--best effort algorithm */ child = next; } ndi_devi_exit(dip, circ); if (vdip) ndi_devi_exit(vdip, vcirc); return (rv); } /* * unconfigure grand children of bus nexus device */ static int unconfig_grand_children( dev_info_t *dip, dev_info_t **dipp, int flags, major_t major, struct brevq_node **brevqp) { struct mt_config_handle *hdl; if (brevqp) *brevqp = NULL; /* multi-threaded configuration of child nexus */ hdl = mt_config_init(dip, dipp, flags, major, MT_UNCONFIG_OP, brevqp); mt_config_children(hdl); return (mt_config_fini(hdl)); /* wait for threads to exit */ } /* * Unconfigure children/descendants of the dip. * * If brevqp is not NULL, on return *brevqp is set to a queue of dip's * child devinames for which branch remove events need to be generated. */ static int devi_unconfig_common( dev_info_t *dip, dev_info_t **dipp, int flags, major_t major, struct brevq_node **brevqp) { int rv; int pm_cookie; int (*f)(); ddi_bus_config_op_t bus_op; if (dipp) *dipp = NULL; if (brevqp) *brevqp = NULL; /* * Power up the dip if it is powered off. If the flag bit * NDI_AUTODETACH is set and the dip is not at its full power, * skip the rest of the branch. */ if (pm_pre_unconfig(dip, flags, &pm_cookie, NULL) != DDI_SUCCESS) return ((flags & NDI_AUTODETACH) ? NDI_SUCCESS : NDI_FAILURE); /* * Some callers, notably SCSI, need to clear out the devfs * cache together with the unconfig to prevent stale entries. */ if (flags & NDI_DEVFS_CLEAN) (void) devfs_clean(dip, NULL, 0); rv = unconfig_grand_children(dip, dipp, flags, major, brevqp); if ((rv != NDI_SUCCESS) && ((flags & NDI_AUTODETACH) == 0)) { if (brevqp && *brevqp) { log_and_free_br_events_on_grand_children(dip, *brevqp); free_brevq(*brevqp); *brevqp = NULL; } pm_post_unconfig(dip, pm_cookie, NULL); return (rv); } if (dipp && *dipp) { ndi_rele_devi(*dipp); *dipp = NULL; } /* * It is possible to have a detached nexus with children * and grandchildren (for example: a branch consisting * entirely of bound nodes.) Since the nexus is detached * the bus_unconfig entry point cannot be used to remove * or unconfigure the descendants. */ if (!i_ddi_devi_attached(dip) || (DEVI(dip)->devi_ops->devo_bus_ops == NULL) || (DEVI(dip)->devi_ops->devo_bus_ops->busops_rev < BUSO_REV_5) || (f = DEVI(dip)->devi_ops->devo_bus_ops->bus_unconfig) == NULL) { rv = unconfig_immediate_children(dip, dipp, flags, major); } else { /* * call bus_unconfig entry point * It should reset nexus flags if unconfigure succeeds. */ bus_op = (major == DDI_MAJOR_T_NONE) ? BUS_UNCONFIG_ALL : BUS_UNCONFIG_DRIVER; rv = (*f)(dip, flags, bus_op, (void *)(uintptr_t)major); } pm_post_unconfig(dip, pm_cookie, NULL); if (brevqp && *brevqp) cleanup_br_events_on_grand_children(dip, brevqp); return (rv); } /* * called by devfs/framework to unconfigure children bound to major * If NDI_AUTODETACH is specified, this is invoked by either the * moduninstall daemon or the modunload -i 0 command. */ int ndi_devi_unconfig_driver(dev_info_t *dip, int flags, major_t major) { NDI_CONFIG_DEBUG((CE_CONT, "ndi_devi_unconfig_driver: par = %s%d (%p), flags = 0x%x\n", ddi_driver_name(dip), ddi_get_instance(dip), (void *)dip, flags)); return (devi_unconfig_common(dip, NULL, flags, major, NULL)); } int ndi_devi_unconfig(dev_info_t *dip, int flags) { NDI_CONFIG_DEBUG((CE_CONT, "ndi_devi_unconfig: par = %s%d (%p), flags = 0x%x\n", ddi_driver_name(dip), ddi_get_instance(dip), (void *)dip, flags)); return (devi_unconfig_common(dip, NULL, flags, DDI_MAJOR_T_NONE, NULL)); } int e_ddi_devi_unconfig(dev_info_t *dip, dev_info_t **dipp, int flags) { NDI_CONFIG_DEBUG((CE_CONT, "e_ddi_devi_unconfig: par = %s%d (%p), flags = 0x%x\n", ddi_driver_name(dip), ddi_get_instance(dip), (void *)dip, flags)); return (devi_unconfig_common(dip, dipp, flags, DDI_MAJOR_T_NONE, NULL)); } /* * Unconfigure child by name */ static int devi_unconfig_one(dev_info_t *pdip, char *devnm, int flags) { int rv, circ; dev_info_t *child; dev_info_t *vdip = NULL; int v_circ; ndi_devi_enter(pdip, &circ); child = ndi_devi_findchild(pdip, devnm); /* * If child is pHCI and vHCI and pHCI are not siblings then enter vHCI * before parent(pHCI) to avoid deadlock with mpxio Client power * management operations. */ if (child && MDI_PHCI(child)) { vdip = mdi_devi_get_vdip(child); if (vdip && (ddi_get_parent(vdip) != pdip)) { ndi_devi_exit(pdip, circ); /* use mdi_devi_enter ordering */ ndi_devi_enter(vdip, &v_circ); ndi_devi_enter(pdip, &circ); child = ndi_devi_findchild(pdip, devnm); } else vdip = NULL; } if (child) { rv = devi_detach_node(child, flags); } else { NDI_CONFIG_DEBUG((CE_CONT, "devi_unconfig_one: %s not found\n", devnm)); rv = NDI_SUCCESS; } ndi_devi_exit(pdip, circ); if (vdip) ndi_devi_exit(vdip, v_circ); return (rv); } int ndi_devi_unconfig_one( dev_info_t *pdip, char *devnm, dev_info_t **dipp, int flags) { int (*f)(); int circ, rv; int pm_cookie; dev_info_t *child; dev_info_t *vdip = NULL; int v_circ; struct brevq_node *brevq = NULL; ASSERT(i_ddi_devi_attached(pdip)); NDI_CONFIG_DEBUG((CE_CONT, "ndi_devi_unconfig_one: par = %s%d (%p), child = %s\n", ddi_driver_name(pdip), ddi_get_instance(pdip), (void *)pdip, devnm)); if (pm_pre_unconfig(pdip, flags, &pm_cookie, devnm) != DDI_SUCCESS) return (NDI_FAILURE); if (dipp) *dipp = NULL; ndi_devi_enter(pdip, &circ); child = ndi_devi_findchild(pdip, devnm); /* * If child is pHCI and vHCI and pHCI are not siblings then enter vHCI * before parent(pHCI) to avoid deadlock with mpxio Client power * management operations. */ if (child && MDI_PHCI(child)) { vdip = mdi_devi_get_vdip(child); if (vdip && (ddi_get_parent(vdip) != pdip)) { ndi_devi_exit(pdip, circ); /* use mdi_devi_enter ordering */ ndi_devi_enter(vdip, &v_circ); ndi_devi_enter(pdip, &circ); child = ndi_devi_findchild(pdip, devnm); } else vdip = NULL; } if (child == NULL) { NDI_CONFIG_DEBUG((CE_CONT, "ndi_devi_unconfig_one: %s" " not found\n", devnm)); rv = NDI_SUCCESS; goto out; } /* * Unconfigure children/descendants of named child */ rv = devi_unconfig_branch(child, dipp, flags | NDI_UNCONFIG, &brevq); if (rv != NDI_SUCCESS) goto out; init_bound_node_ev(pdip, child, flags); if ((DEVI(pdip)->devi_ops->devo_bus_ops == NULL) || (DEVI(pdip)->devi_ops->devo_bus_ops->busops_rev < BUSO_REV_5) || (f = DEVI(pdip)->devi_ops->devo_bus_ops->bus_unconfig) == NULL) { rv = devi_detach_node(child, flags); } else { /* call bus_config entry point */ rv = (*f)(pdip, flags, BUS_UNCONFIG_ONE, (void *)devnm); } if (brevq) { if (rv != NDI_SUCCESS) log_and_free_brevq_dip(child, brevq); else free_brevq(brevq); } if (dipp && rv != NDI_SUCCESS) { ndi_hold_devi(child); ASSERT(*dipp == NULL); *dipp = child; } out: ndi_devi_exit(pdip, circ); if (vdip) ndi_devi_exit(vdip, v_circ); pm_post_unconfig(pdip, pm_cookie, devnm); return (rv); } struct async_arg { dev_info_t *dip; uint_t flags; }; /* * Common async handler for: * ndi_devi_bind_driver_async * ndi_devi_online_async */ static int i_ndi_devi_async_common(dev_info_t *dip, uint_t flags, void (*func)()) { int tqflag; int kmflag; struct async_arg *arg; dev_info_t *pdip = ddi_get_parent(dip); ASSERT(pdip); ASSERT(DEVI(pdip)->devi_taskq); ASSERT(ndi_dev_is_persistent_node(dip)); if (flags & NDI_NOSLEEP) { kmflag = KM_NOSLEEP; tqflag = TQ_NOSLEEP; } else { kmflag = KM_SLEEP; tqflag = TQ_SLEEP; } arg = kmem_alloc(sizeof (*arg), kmflag); if (arg == NULL) goto fail; arg->flags = flags; arg->dip = dip; if (ddi_taskq_dispatch(DEVI(pdip)->devi_taskq, func, arg, tqflag) == DDI_SUCCESS) { return (NDI_SUCCESS); } fail: NDI_CONFIG_DEBUG((CE_CONT, "%s%d: ddi_taskq_dispatch failed", ddi_driver_name(pdip), ddi_get_instance(pdip))); if (arg) kmem_free(arg, sizeof (*arg)); return (NDI_FAILURE); } static void i_ndi_devi_bind_driver_cb(struct async_arg *arg) { (void) ndi_devi_bind_driver(arg->dip, arg->flags); kmem_free(arg, sizeof (*arg)); } int ndi_devi_bind_driver_async(dev_info_t *dip, uint_t flags) { return (i_ndi_devi_async_common(dip, flags, (void (*)())i_ndi_devi_bind_driver_cb)); } /* * place the devinfo in the ONLINE state. */ int ndi_devi_online(dev_info_t *dip, uint_t flags) { int circ, rv; dev_info_t *pdip = ddi_get_parent(dip); int branch_event = 0; ASSERT(pdip); NDI_CONFIG_DEBUG((CE_CONT, "ndi_devi_online: %s%d (%p)\n", ddi_driver_name(dip), ddi_get_instance(dip), (void *)dip)); ndi_devi_enter(pdip, &circ); /* bind child before merging .conf nodes */ rv = i_ndi_config_node(dip, DS_BOUND, flags); if (rv != NDI_SUCCESS) { ndi_devi_exit(pdip, circ); return (rv); } /* merge .conf properties */ (void) i_ndi_make_spec_children(pdip, flags); flags |= (NDI_DEVI_ONLINE | NDI_CONFIG); if (flags & NDI_NO_EVENT) { /* * Caller is specifically asking for not to generate an event. * Set the following flag so that devi_attach_node() don't * change the event state. */ flags |= NDI_NO_EVENT_STATE_CHNG; } if ((flags & (NDI_NO_EVENT | NDI_BRANCH_EVENT_OP)) == 0 && ((flags & NDI_CONFIG) || DEVI_NEED_NDI_CONFIG(dip))) { flags |= NDI_BRANCH_EVENT_OP; branch_event = 1; } /* * devi_attach_node() may remove dip on failure */ if ((rv = devi_attach_node(dip, flags)) == NDI_SUCCESS) { if ((flags & NDI_CONFIG) || DEVI_NEED_NDI_CONFIG(dip)) { /* * Hold the attached dip, and exit the parent while * we drive configuration of children below the * attached dip. */ ndi_hold_devi(dip); ndi_devi_exit(pdip, circ); (void) ndi_devi_config(dip, flags); ndi_devi_enter(pdip, &circ); ndi_rele_devi(dip); } if (branch_event) (void) i_log_devfs_branch_add(dip); } ndi_devi_exit(pdip, circ); /* * Notify devfs that we have a new node. Devfs needs to invalidate * cached directory contents. * * For PCMCIA devices, it is possible the pdip is not fully * attached. In this case, calling back into devfs will * result in a loop or assertion error. Hence, the check * on node state. * * If we own parent lock, this is part of a branch operation. * We skip the devfs_clean() step because the cache invalidation * is done higher up in the device tree. */ if (rv == NDI_SUCCESS && i_ddi_devi_attached(pdip) && !DEVI_BUSY_OWNED(pdip)) (void) devfs_clean(pdip, NULL, 0); return (rv); } static void i_ndi_devi_online_cb(struct async_arg *arg) { (void) ndi_devi_online(arg->dip, arg->flags); kmem_free(arg, sizeof (*arg)); } int ndi_devi_online_async(dev_info_t *dip, uint_t flags) { /* mark child as need config if requested. */ if (flags & NDI_CONFIG) { mutex_enter(&(DEVI(dip)->devi_lock)); DEVI_SET_NDI_CONFIG(dip); mutex_exit(&(DEVI(dip)->devi_lock)); } return (i_ndi_devi_async_common(dip, flags, (void (*)())i_ndi_devi_online_cb)); } /* * Take a device node Offline * To take a device Offline means to detach the device instance from * the driver and prevent devfs requests from re-attaching the device * instance. * * The flag NDI_DEVI_REMOVE causes removes the device node from * the driver list and the device tree. In this case, the device * is assumed to be removed from the system. */ int ndi_devi_offline(dev_info_t *dip, uint_t flags) { int circ, rval = 0; dev_info_t *pdip = ddi_get_parent(dip); dev_info_t *vdip = NULL; int v_circ; struct brevq_node *brevq = NULL; ASSERT(pdip); flags |= NDI_DEVI_OFFLINE; /* * If child is pHCI and vHCI and pHCI are not siblings then enter vHCI * before parent(pHCI) to avoid deadlock with mpxio Client power * management operations. */ if (MDI_PHCI(dip)) { vdip = mdi_devi_get_vdip(dip); if (vdip && (ddi_get_parent(vdip) != pdip)) ndi_devi_enter(vdip, &v_circ); else vdip = NULL; } ndi_devi_enter(pdip, &circ); if (i_ddi_devi_attached(dip)) { /* * If dip is in DS_READY state, there may be cached dv_nodes * referencing this dip, so we invoke devfs code path. * Note that we must release busy changing on pdip to * avoid deadlock against devfs. */ char *devname = kmem_alloc(MAXNAMELEN + 1, KM_SLEEP); (void) ddi_deviname(dip, devname); ndi_devi_exit(pdip, circ); if (vdip) ndi_devi_exit(vdip, v_circ); /* * If we are explictly told to clean, then clean. If we own the * parent lock then this is part of a branch operation, and we * skip the devfs_clean() step. * * NOTE: A thread performing a devfs file system lookup/ * bus_config can't call devfs_clean to unconfig without * causing rwlock problems in devfs. For ndi_devi_offline, this * means that the NDI_DEVFS_CLEAN flag is safe from ioctl code * or from an async hotplug thread, but is not safe from a * nexus driver's bus_config implementation. */ if ((flags & NDI_DEVFS_CLEAN) || (!DEVI_BUSY_OWNED(pdip))) (void) devfs_clean(pdip, devname + 1, DV_CLEAN_FORCE); kmem_free(devname, MAXNAMELEN + 1); rval = devi_unconfig_branch(dip, NULL, flags|NDI_UNCONFIG, &brevq); if (rval) return (NDI_FAILURE); if (vdip) ndi_devi_enter(vdip, &v_circ); ndi_devi_enter(pdip, &circ); } init_bound_node_ev(pdip, dip, flags); rval = devi_detach_node(dip, flags); if (brevq) { if (rval != NDI_SUCCESS) log_and_free_brevq_dip(dip, brevq); else free_brevq(brevq); } ndi_devi_exit(pdip, circ); if (vdip) ndi_devi_exit(vdip, v_circ); return (rval); } /* * Find the child dev_info node of parent nexus 'p' whose unit address * matches "cname@caddr". Recommend use of ndi_devi_findchild() instead. */ dev_info_t * ndi_devi_find(dev_info_t *pdip, char *cname, char *caddr) { dev_info_t *child; int circ; if (pdip == NULL || cname == NULL || caddr == NULL) return ((dev_info_t *)NULL); ndi_devi_enter(pdip, &circ); child = find_sibling(ddi_get_child(pdip), cname, caddr, FIND_NODE_BY_NODENAME, NULL); ndi_devi_exit(pdip, circ); return (child); } /* * Find the child dev_info node of parent nexus 'p' whose unit address * matches devname "name@addr". Permits caller to hold the parent. */ dev_info_t * ndi_devi_findchild(dev_info_t *pdip, char *devname) { dev_info_t *child; char *cname, *caddr; char *devstr; ASSERT(DEVI_BUSY_OWNED(pdip)); devstr = i_ddi_strdup(devname, KM_SLEEP); i_ddi_parse_name(devstr, &cname, &caddr, NULL); if (cname == NULL || caddr == NULL) { kmem_free(devstr, strlen(devname)+1); return ((dev_info_t *)NULL); } child = find_sibling(ddi_get_child(pdip), cname, caddr, FIND_NODE_BY_NODENAME, NULL); kmem_free(devstr, strlen(devname)+1); return (child); } /* * Misc. routines called by framework only */ /* * Clear the DEVI_MADE_CHILDREN/DEVI_ATTACHED_CHILDREN flags * if new child spec has been added. */ static int reset_nexus_flags(dev_info_t *dip, void *arg) { struct hwc_spec *list; int circ; if (((DEVI(dip)->devi_flags & DEVI_MADE_CHILDREN) == 0) || ((list = hwc_get_child_spec(dip, (major_t)(uintptr_t)arg)) == NULL)) return (DDI_WALK_CONTINUE); hwc_free_spec_list(list); /* coordinate child state update */ ndi_devi_enter(dip, &circ); mutex_enter(&DEVI(dip)->devi_lock); DEVI(dip)->devi_flags &= ~(DEVI_MADE_CHILDREN | DEVI_ATTACHED_CHILDREN); mutex_exit(&DEVI(dip)->devi_lock); ndi_devi_exit(dip, circ); return (DDI_WALK_CONTINUE); } /* * Helper functions, returns NULL if no memory. */ /* * path_to_major: * * Return an alternate driver name binding for the leaf device * of the given pathname, if there is one. The purpose of this * function is to deal with generic pathnames. The default action * for platforms that can't do this (ie: x86 or any platform that * does not have prom_finddevice functionality, which matches * nodenames and unit-addresses without the drivers participation) * is to return DDI_MAJOR_T_NONE. * * Used in loadrootmodules() in the swapgeneric module to * associate a given pathname with a given leaf driver. * */ major_t path_to_major(char *path) { dev_info_t *dip; char *p, *q; pnode_t nodeid; major_t major; /* check for path-oriented alias */ major = ddi_name_to_major(path); if (driver_active(major)) { NDI_CONFIG_DEBUG((CE_NOTE, "path_to_major: %s path bound %s\n", path, ddi_major_to_name(major))); return (major); } /* * Get the nodeid of the given pathname, if such a mapping exists. */ dip = NULL; nodeid = prom_finddevice(path); if (nodeid != OBP_BADNODE) { /* * Find the nodeid in our copy of the device tree and return * whatever name we used to bind this node to a driver. */ dip = e_ddi_nodeid_to_dip(nodeid); } if (dip == NULL) { NDI_CONFIG_DEBUG((CE_WARN, "path_to_major: can't bind <%s>\n", path)); return (DDI_MAJOR_T_NONE); } /* * If we're bound to something other than the nodename, * note that in the message buffer and system log. */ p = ddi_binding_name(dip); q = ddi_node_name(dip); if (p && q && (strcmp(p, q) != 0)) NDI_CONFIG_DEBUG((CE_NOTE, "path_to_major: %s bound to %s\n", path, p)); major = ddi_name_to_major(p); ndi_rele_devi(dip); /* release e_ddi_nodeid_to_dip hold */ return (major); } /* * Return the held dip for the specified major and instance, attempting to do * an attach if specified. Return NULL if the devi can't be found or put in * the proper state. The caller must release the hold via ddi_release_devi if * a non-NULL value is returned. * * Some callers expect to be able to perform a hold_devi() while in a context * where using ndi_devi_enter() to ensure the hold might cause deadlock (see * open-from-attach code in consconfig_dacf.c). Such special-case callers * must ensure that an ndi_devi_enter(parent)/ndi_hold_devi() from a safe * context is already active. The hold_devi() implementation must accommodate * these callers. */ static dev_info_t * hold_devi(major_t major, int instance, int flags) { struct devnames *dnp; dev_info_t *dip; char *path; char *vpath; if ((major >= devcnt) || (instance == -1)) return (NULL); /* try to find the instance in the per driver list */ dnp = &(devnamesp[major]); LOCK_DEV_OPS(&(dnp->dn_lock)); for (dip = dnp->dn_head; dip; dip = (dev_info_t *)DEVI(dip)->devi_next) { /* skip node if instance field is not valid */ if (i_ddi_node_state(dip) < DS_INITIALIZED) continue; /* look for instance match */ if (DEVI(dip)->devi_instance == instance) { /* * To accommodate callers that can't block in * ndi_devi_enter() we do an ndi_hold_devi(), and * afterwards check that the node is in a state where * the hold prevents detach(). If we did not manage to * prevent detach then we ndi_rele_devi() and perform * the slow path below (which can result in a blocking * ndi_devi_enter() while driving attach top-down). * This code depends on the ordering of * DEVI_SET_DETACHING and the devi_ref check in the * detach_node() code path. */ ndi_hold_devi(dip); if (i_ddi_devi_attached(dip) && !DEVI_IS_DETACHING(dip)) { UNLOCK_DEV_OPS(&(dnp->dn_lock)); return (dip); /* fast-path with devi held */ } ndi_rele_devi(dip); /* try slow-path */ dip = NULL; break; } } ASSERT(dip == NULL); UNLOCK_DEV_OPS(&(dnp->dn_lock)); if (flags & E_DDI_HOLD_DEVI_NOATTACH) return (NULL); /* told not to drive attach */ /* slow-path may block, so it should not occur from interrupt */ ASSERT(!servicing_interrupt()); if (servicing_interrupt()) return (NULL); /* reconstruct the path and drive attach by path through devfs. */ path = kmem_alloc(MAXPATHLEN, KM_SLEEP); if (e_ddi_majorinstance_to_path(major, instance, path) == 0) { dip = e_ddi_hold_devi_by_path(path, flags); /* * Verify that we got the correct device - a path_to_inst file * with a bogus/corrupt path (or a nexus that changes its * unit-address format) could result in an incorrect answer * * Verify major, instance, and path. */ vpath = kmem_alloc(MAXPATHLEN, KM_SLEEP); if (dip && ((DEVI(dip)->devi_major != major) || ((DEVI(dip)->devi_instance != instance)) || (strcmp(path, ddi_pathname(dip, vpath)) != 0))) { ndi_rele_devi(dip); dip = NULL; /* no answer better than wrong answer */ } kmem_free(vpath, MAXPATHLEN); } kmem_free(path, MAXPATHLEN); return (dip); /* with devi held */ } /* * The {e_}ddi_hold_devi{_by_{instance|dev|path}} hold the devinfo node * associated with the specified arguments. This hold should be released * by calling ddi_release_devi. * * The E_DDI_HOLD_DEVI_NOATTACH flag argument allows the caller to to specify * a failure return if the node is not already attached. * * NOTE: by the time we make e_ddi_hold_devi public, we should be able to reuse * ddi_hold_devi again. */ dev_info_t * ddi_hold_devi_by_instance(major_t major, int instance, int flags) { return (hold_devi(major, instance, flags)); } dev_info_t * e_ddi_hold_devi_by_dev(dev_t dev, int flags) { major_t major = getmajor(dev); dev_info_t *dip; struct dev_ops *ops; dev_info_t *ddip = NULL; dip = hold_devi(major, dev_to_instance(dev), flags); /* * The rest of this routine is legacy support for drivers that * have broken DDI_INFO_DEVT2INSTANCE implementations but may have * functional DDI_INFO_DEVT2DEVINFO implementations. This code will * diagnose inconsistency and, for maximum compatibility with legacy * drivers, give preference to the drivers DDI_INFO_DEVT2DEVINFO * implementation over the above derived dip based the driver's * DDI_INFO_DEVT2INSTANCE implementation. This legacy support should * be removed when DDI_INFO_DEVT2DEVINFO is deprecated. * * NOTE: The following code has a race condition. DEVT2DEVINFO * returns a dip which is not held. By the time we ref ddip, * it could have been freed. The saving grace is that for * most drivers, the dip returned from hold_devi() is the * same one as the one returned by DEVT2DEVINFO, so we are * safe for drivers with the correct getinfo(9e) impl. */ if (((ops = ddi_hold_driver(major)) != NULL) && CB_DRV_INSTALLED(ops) && ops->devo_getinfo) { if ((*ops->devo_getinfo)(NULL, DDI_INFO_DEVT2DEVINFO, (void *)dev, (void **)&ddip) != DDI_SUCCESS) ddip = NULL; } /* give preference to the driver returned DEVT2DEVINFO dip */ if (ddip && (dip != ddip)) { #ifdef DEBUG cmn_err(CE_WARN, "%s: inconsistent getinfo(9E) implementation", ddi_driver_name(ddip)); #endif /* DEBUG */ ndi_hold_devi(ddip); if (dip) ndi_rele_devi(dip); dip = ddip; } if (ops) ddi_rele_driver(major); return (dip); } /* * For compatibility only. Do not call this function! */ dev_info_t * e_ddi_get_dev_info(dev_t dev, vtype_t type) { dev_info_t *dip = NULL; if (getmajor(dev) >= devcnt) return (NULL); switch (type) { case VCHR: case VBLK: dip = e_ddi_hold_devi_by_dev(dev, 0); default: break; } /* * For compatibility reasons, we can only return the dip with * the driver ref count held. This is not a safe thing to do. * For certain broken third-party software, we are willing * to venture into unknown territory. */ if (dip) { (void) ndi_hold_driver(dip); ndi_rele_devi(dip); } return (dip); } dev_info_t * e_ddi_hold_devi_by_path(char *path, int flags) { dev_info_t *dip; /* can't specify NOATTACH by path */ ASSERT(!(flags & E_DDI_HOLD_DEVI_NOATTACH)); return (resolve_pathname(path, &dip, NULL, NULL) ? NULL : dip); } void e_ddi_hold_devi(dev_info_t *dip) { ndi_hold_devi(dip); } void ddi_release_devi(dev_info_t *dip) { ndi_rele_devi(dip); } /* * Associate a streams queue with a devinfo node * NOTE: This function is called by STREAM driver's put procedure. * It cannot block. */ void ddi_assoc_queue_with_devi(queue_t *q, dev_info_t *dip) { queue_t *rq = _RD(q); struct stdata *stp; vnode_t *vp; /* set flag indicating that ddi_assoc_queue_with_devi was called */ mutex_enter(QLOCK(rq)); rq->q_flag |= _QASSOCIATED; mutex_exit(QLOCK(rq)); /* get the vnode associated with the queue */ stp = STREAM(rq); vp = stp->sd_vnode; ASSERT(vp); /* change the hardware association of the vnode */ spec_assoc_vp_with_devi(vp, dip); } /* * ddi_install_driver(name) * * Driver installation is currently a byproduct of driver loading. This * may change. */ int ddi_install_driver(char *name) { major_t major = ddi_name_to_major(name); if ((major == DDI_MAJOR_T_NONE) || (ddi_hold_installed_driver(major) == NULL)) { return (DDI_FAILURE); } ddi_rele_driver(major); return (DDI_SUCCESS); } struct dev_ops * ddi_hold_driver(major_t major) { return (mod_hold_dev_by_major(major)); } void ddi_rele_driver(major_t major) { mod_rele_dev_by_major(major); } /* * This is called during boot to force attachment order of special dips * dip must be referenced via ndi_hold_devi() */ int i_ddi_attach_node_hierarchy(dev_info_t *dip) { dev_info_t *parent; int ret, circ; /* * Recurse up until attached parent is found. */ if (i_ddi_devi_attached(dip)) return (DDI_SUCCESS); parent = ddi_get_parent(dip); if (i_ddi_attach_node_hierarchy(parent) != DDI_SUCCESS) return (DDI_FAILURE); /* * Come top-down, expanding .conf nodes under this parent * and driving attach. */ ndi_devi_enter(parent, &circ); (void) i_ndi_make_spec_children(parent, 0); ret = i_ddi_attachchild(dip); ndi_devi_exit(parent, circ); return (ret); } /* keep this function static */ static int attach_driver_nodes(major_t major) { struct devnames *dnp; dev_info_t *dip; int error = DDI_FAILURE; dnp = &devnamesp[major]; LOCK_DEV_OPS(&dnp->dn_lock); dip = dnp->dn_head; while (dip) { ndi_hold_devi(dip); UNLOCK_DEV_OPS(&dnp->dn_lock); if (i_ddi_attach_node_hierarchy(dip) == DDI_SUCCESS) error = DDI_SUCCESS; /* * Set the 'ddi-config-driver-node' property on a nexus * node to cause attach_driver_nodes() to configure all * immediate children of the nexus. This property should * be set on nodes with immediate children that bind to * the same driver as parent. */ if ((error == DDI_SUCCESS) && (ddi_prop_exists(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, "ddi-config-driver-node"))) { (void) ndi_devi_config(dip, NDI_NO_EVENT); } LOCK_DEV_OPS(&dnp->dn_lock); ndi_rele_devi(dip); dip = ddi_get_next(dip); } if (error == DDI_SUCCESS) dnp->dn_flags |= DN_NO_AUTODETACH; UNLOCK_DEV_OPS(&dnp->dn_lock); return (error); } /* * i_ddi_attach_hw_nodes configures and attaches all hw nodes * bound to a specific driver. This function replaces calls to * ddi_hold_installed_driver() for drivers with no .conf * enumerated nodes. * * This facility is typically called at boot time to attach * platform-specific hardware nodes, such as ppm nodes on xcal * and grover and keyswitch nodes on cherrystone. It does not * deal with .conf enumerated node. Calling it beyond the boot * process is strongly discouraged. */ int i_ddi_attach_hw_nodes(char *driver) { major_t major; major = ddi_name_to_major(driver); if (major == DDI_MAJOR_T_NONE) return (DDI_FAILURE); return (attach_driver_nodes(major)); } /* * i_ddi_attach_pseudo_node configures pseudo drivers which * has a single node. The .conf nodes must be enumerated * before calling this interface. The dip is held attached * upon returning. * * This facility should only be called only at boot time * by the I/O framework. */ dev_info_t * i_ddi_attach_pseudo_node(char *driver) { major_t major; dev_info_t *dip; major = ddi_name_to_major(driver); if (major == DDI_MAJOR_T_NONE) return (NULL); if (attach_driver_nodes(major) != DDI_SUCCESS) return (NULL); dip = devnamesp[major].dn_head; ASSERT(dip && ddi_get_next(dip) == NULL); ndi_hold_devi(dip); return (dip); } static void diplist_to_parent_major(dev_info_t *head, char parents[]) { major_t major; dev_info_t *dip, *pdip; for (dip = head; dip != NULL; dip = ddi_get_next(dip)) { pdip = ddi_get_parent(dip); ASSERT(pdip); /* disallow rootnex.conf nodes */ major = ddi_driver_major(pdip); if ((major != DDI_MAJOR_T_NONE) && parents[major] == 0) parents[major] = 1; } } /* * Call ddi_hold_installed_driver() on each parent major * and invoke mt_config_driver() to attach child major. * This is part of the implementation of ddi_hold_installed_driver. */ static int attach_driver_by_parent(major_t child_major, char parents[]) { major_t par_major; struct mt_config_handle *hdl; int flags = NDI_DEVI_PERSIST | NDI_NO_EVENT; hdl = mt_config_init(NULL, NULL, flags, child_major, MT_CONFIG_OP, NULL); for (par_major = 0; par_major < devcnt; par_major++) { /* disallow recursion on the same driver */ if (parents[par_major] == 0 || par_major == child_major) continue; if (ddi_hold_installed_driver(par_major) == NULL) continue; hdl->mtc_parmajor = par_major; mt_config_driver(hdl); ddi_rele_driver(par_major); } (void) mt_config_fini(hdl); return (i_ddi_devs_attached(child_major)); } int i_ddi_devs_attached(major_t major) { dev_info_t *dip; struct devnames *dnp; int error = DDI_FAILURE; /* check for attached instances */ dnp = &devnamesp[major]; LOCK_DEV_OPS(&dnp->dn_lock); for (dip = dnp->dn_head; dip != NULL; dip = ddi_get_next(dip)) { if (i_ddi_devi_attached(dip)) { error = DDI_SUCCESS; break; } } UNLOCK_DEV_OPS(&dnp->dn_lock); return (error); } int i_ddi_minor_node_count(dev_info_t *ddip, const char *node_type) { int circ; struct ddi_minor_data *dp; int count = 0; ndi_devi_enter(ddip, &circ); for (dp = DEVI(ddip)->devi_minor; dp != NULL; dp = dp->next) { if (strcmp(dp->ddm_node_type, node_type) == 0) count++; } ndi_devi_exit(ddip, circ); return (count); } /* * ddi_hold_installed_driver configures and attaches all * instances of the specified driver. To accomplish this * it configures and attaches all possible parents of * the driver, enumerated both in h/w nodes and in the * driver's .conf file. * * NOTE: This facility is for compatibility purposes only and will * eventually go away. Its usage is strongly discouraged. */ static void enter_driver(struct devnames *dnp) { mutex_enter(&dnp->dn_lock); ASSERT(dnp->dn_busy_thread != curthread); while (dnp->dn_flags & DN_DRIVER_BUSY) cv_wait(&dnp->dn_wait, &dnp->dn_lock); dnp->dn_flags |= DN_DRIVER_BUSY; dnp->dn_busy_thread = curthread; mutex_exit(&dnp->dn_lock); } static void exit_driver(struct devnames *dnp) { mutex_enter(&dnp->dn_lock); ASSERT(dnp->dn_busy_thread == curthread); dnp->dn_flags &= ~DN_DRIVER_BUSY; dnp->dn_busy_thread = NULL; cv_broadcast(&dnp->dn_wait); mutex_exit(&dnp->dn_lock); } struct dev_ops * ddi_hold_installed_driver(major_t major) { struct dev_ops *ops; struct devnames *dnp; char *parents; int error; ops = ddi_hold_driver(major); if (ops == NULL) return (NULL); /* * Return immediately if all the attach operations associated * with a ddi_hold_installed_driver() call have already been done. */ dnp = &devnamesp[major]; enter_driver(dnp); ASSERT(driver_active(major)); if (dnp->dn_flags & DN_DRIVER_HELD) { exit_driver(dnp); if (i_ddi_devs_attached(major) == DDI_SUCCESS) return (ops); ddi_rele_driver(major); return (NULL); } LOCK_DEV_OPS(&dnp->dn_lock); dnp->dn_flags |= (DN_DRIVER_HELD | DN_NO_AUTODETACH); UNLOCK_DEV_OPS(&dnp->dn_lock); DCOMPATPRINTF((CE_CONT, "ddi_hold_installed_driver: %s\n", dnp->dn_name)); /* * When the driver has no .conf children, it is sufficient * to attach existing nodes in the device tree. Nodes not * enumerated by the OBP are not attached. */ if (dnp->dn_pl == NULL) { if (attach_driver_nodes(major) == DDI_SUCCESS) { exit_driver(dnp); return (ops); } exit_driver(dnp); ddi_rele_driver(major); return (NULL); } /* * Driver has .conf nodes. We find all possible parents * and recursively all ddi_hold_installed_driver on the * parent driver; then we invoke ndi_config_driver() * on all possible parent node in parallel to speed up * performance. */ parents = kmem_zalloc(devcnt * sizeof (char), KM_SLEEP); LOCK_DEV_OPS(&dnp->dn_lock); /* find .conf parents */ (void) impl_parlist_to_major(dnp->dn_pl, parents); /* find hw node parents */ diplist_to_parent_major(dnp->dn_head, parents); UNLOCK_DEV_OPS(&dnp->dn_lock); error = attach_driver_by_parent(major, parents); kmem_free(parents, devcnt * sizeof (char)); if (error == DDI_SUCCESS) { exit_driver(dnp); return (ops); } exit_driver(dnp); ddi_rele_driver(major); return (NULL); } /* * Default bus_config entry point for nexus drivers */ int ndi_busop_bus_config(dev_info_t *pdip, uint_t flags, ddi_bus_config_op_t op, void *arg, dev_info_t **child, clock_t timeout) { major_t major; /* * A timeout of 30 minutes or more is probably a mistake * This is intended to catch uses where timeout is in * the wrong units. timeout must be in units of ticks. */ ASSERT(timeout < SEC_TO_TICK(1800)); major = DDI_MAJOR_T_NONE; switch (op) { case BUS_CONFIG_ONE: NDI_DEBUG(flags, (CE_CONT, "%s%d: bus config %s timeout=%ld\n", ddi_driver_name(pdip), ddi_get_instance(pdip), (char *)arg, timeout)); return (devi_config_one(pdip, (char *)arg, child, flags, timeout)); case BUS_CONFIG_DRIVER: major = (major_t)(uintptr_t)arg; /*FALLTHROUGH*/ case BUS_CONFIG_ALL: NDI_DEBUG(flags, (CE_CONT, "%s%d: bus config timeout=%ld\n", ddi_driver_name(pdip), ddi_get_instance(pdip), timeout)); if (timeout > 0) { NDI_DEBUG(flags, (CE_CONT, "%s%d: bus config all timeout=%ld\n", ddi_driver_name(pdip), ddi_get_instance(pdip), timeout)); delay(timeout); } return (config_immediate_children(pdip, flags, major)); default: return (NDI_FAILURE); } /*NOTREACHED*/ } /* * Default busop bus_unconfig handler for nexus drivers */ int ndi_busop_bus_unconfig(dev_info_t *pdip, uint_t flags, ddi_bus_config_op_t op, void *arg) { major_t major; major = DDI_MAJOR_T_NONE; switch (op) { case BUS_UNCONFIG_ONE: NDI_DEBUG(flags, (CE_CONT, "%s%d: bus unconfig %s\n", ddi_driver_name(pdip), ddi_get_instance(pdip), (char *)arg)); return (devi_unconfig_one(pdip, (char *)arg, flags)); case BUS_UNCONFIG_DRIVER: major = (major_t)(uintptr_t)arg; /*FALLTHROUGH*/ case BUS_UNCONFIG_ALL: NDI_DEBUG(flags, (CE_CONT, "%s%d: bus unconfig all\n", ddi_driver_name(pdip), ddi_get_instance(pdip))); return (unconfig_immediate_children(pdip, NULL, flags, major)); default: return (NDI_FAILURE); } /*NOTREACHED*/ } /* * dummy functions to be removed */ void impl_rem_dev_props(dev_info_t *dip) { _NOTE(ARGUNUSED(dip)) /* do nothing */ } /* * Determine if a node is a leaf node. If not sure, return false (0). */ static int is_leaf_node(dev_info_t *dip) { major_t major = ddi_driver_major(dip); if (major == DDI_MAJOR_T_NONE) return (0); return (devnamesp[major].dn_flags & DN_LEAF_DRIVER); } /* * Multithreaded [un]configuration */ static struct mt_config_handle * mt_config_init(dev_info_t *pdip, dev_info_t **dipp, int flags, major_t major, int op, struct brevq_node **brevqp) { struct mt_config_handle *hdl = kmem_alloc(sizeof (*hdl), KM_SLEEP); mutex_init(&hdl->mtc_lock, NULL, MUTEX_DEFAULT, NULL); cv_init(&hdl->mtc_cv, NULL, CV_DEFAULT, NULL); hdl->mtc_pdip = pdip; hdl->mtc_fdip = dipp; hdl->mtc_parmajor = DDI_MAJOR_T_NONE; hdl->mtc_flags = flags; hdl->mtc_major = major; hdl->mtc_thr_count = 0; hdl->mtc_op = op; hdl->mtc_error = 0; hdl->mtc_brevqp = brevqp; #ifdef DEBUG gethrestime(&hdl->start_time); hdl->total_time = 0; #endif /* DEBUG */ return (hdl); } #ifdef DEBUG static int time_diff_in_msec(timestruc_t start, timestruc_t end) { int nsec, sec; sec = end.tv_sec - start.tv_sec; nsec = end.tv_nsec - start.tv_nsec; if (nsec < 0) { nsec += NANOSEC; sec -= 1; } return (sec * (NANOSEC >> 20) + (nsec >> 20)); } #endif /* DEBUG */ static int mt_config_fini(struct mt_config_handle *hdl) { int rv; #ifdef DEBUG int real_time; timestruc_t end_time; #endif /* DEBUG */ mutex_enter(&hdl->mtc_lock); while (hdl->mtc_thr_count > 0) cv_wait(&hdl->mtc_cv, &hdl->mtc_lock); rv = hdl->mtc_error; mutex_exit(&hdl->mtc_lock); #ifdef DEBUG gethrestime(&end_time); real_time = time_diff_in_msec(hdl->start_time, end_time); if ((ddidebug & DDI_MTCONFIG) && hdl->mtc_pdip) cmn_err(CE_NOTE, "config %s%d: total time %d msec, real time %d msec", ddi_driver_name(hdl->mtc_pdip), ddi_get_instance(hdl->mtc_pdip), hdl->total_time, real_time); #endif /* DEBUG */ cv_destroy(&hdl->mtc_cv); mutex_destroy(&hdl->mtc_lock); kmem_free(hdl, sizeof (*hdl)); return (rv); } struct mt_config_data { struct mt_config_handle *mtc_hdl; dev_info_t *mtc_dip; major_t mtc_major; int mtc_flags; struct brevq_node *mtc_brn; struct mt_config_data *mtc_next; }; static void mt_config_thread(void *arg) { struct mt_config_data *mcd = (struct mt_config_data *)arg; struct mt_config_handle *hdl = mcd->mtc_hdl; dev_info_t *dip = mcd->mtc_dip; dev_info_t *rdip, **dipp; major_t major = mcd->mtc_major; int flags = mcd->mtc_flags; int rv = 0; #ifdef DEBUG timestruc_t start_time, end_time; gethrestime(&start_time); #endif /* DEBUG */ rdip = NULL; dipp = hdl->mtc_fdip ? &rdip : NULL; switch (hdl->mtc_op) { case MT_CONFIG_OP: rv = devi_config_common(dip, flags, major); break; case MT_UNCONFIG_OP: if (mcd->mtc_brn) { struct brevq_node *brevq = NULL; rv = devi_unconfig_common(dip, dipp, flags, major, &brevq); mcd->mtc_brn->brn_child = brevq; } else rv = devi_unconfig_common(dip, dipp, flags, major, NULL); break; } mutex_enter(&hdl->mtc_lock); #ifdef DEBUG gethrestime(&end_time); hdl->total_time += time_diff_in_msec(start_time, end_time); #endif /* DEBUG */ if ((rv != NDI_SUCCESS) && (hdl->mtc_error == 0)) { hdl->mtc_error = rv; #ifdef DEBUG if ((ddidebug & DDI_DEBUG) && (major != DDI_MAJOR_T_NONE)) { char *path = kmem_alloc(MAXPATHLEN, KM_SLEEP); (void) ddi_pathname(dip, path); cmn_err(CE_NOTE, "mt_config_thread: " "op %d.%d.%x at %s failed %d", hdl->mtc_op, major, flags, path, rv); kmem_free(path, MAXPATHLEN); } #endif /* DEBUG */ } if (hdl->mtc_fdip && *hdl->mtc_fdip == NULL) { *hdl->mtc_fdip = rdip; rdip = NULL; } if (rdip) { ASSERT(rv != NDI_SUCCESS); ndi_rele_devi(rdip); } ndi_rele_devi(dip); if (--hdl->mtc_thr_count == 0) cv_broadcast(&hdl->mtc_cv); mutex_exit(&hdl->mtc_lock); kmem_free(mcd, sizeof (*mcd)); } /* * Multi-threaded config/unconfig of child nexus */ static void mt_config_children(struct mt_config_handle *hdl) { dev_info_t *pdip = hdl->mtc_pdip; major_t major = hdl->mtc_major; dev_info_t *dip; int circ; struct brevq_node *brn; struct mt_config_data *mcd_head = NULL; struct mt_config_data *mcd_tail = NULL; struct mt_config_data *mcd; #ifdef DEBUG timestruc_t end_time; /* Update total_time in handle */ gethrestime(&end_time); hdl->total_time += time_diff_in_msec(hdl->start_time, end_time); #endif ndi_devi_enter(pdip, &circ); dip = ddi_get_child(pdip); while (dip) { if (hdl->mtc_op == MT_UNCONFIG_OP && hdl->mtc_brevqp && !(DEVI_EVREMOVE(dip)) && i_ddi_node_state(dip) >= DS_INITIALIZED) { /* * Enqueue this dip's deviname. * No need to hold a lock while enqueuing since this * is the only thread doing the enqueue and no one * walks the queue while we are in multithreaded * unconfiguration. */ brn = brevq_enqueue(hdl->mtc_brevqp, dip, NULL); } else brn = NULL; /* * Hold the child that we are processing so he does not get * removed. The corrisponding ndi_rele_devi() for children * that are not being skipped is done at the end of * mt_config_thread(). */ ndi_hold_devi(dip); /* * skip leaf nodes and (for configure) nodes not * fully attached. */ if (is_leaf_node(dip) || (hdl->mtc_op == MT_CONFIG_OP && i_ddi_node_state(dip) < DS_READY)) { ndi_rele_devi(dip); dip = ddi_get_next_sibling(dip); continue; } mcd = kmem_alloc(sizeof (*mcd), KM_SLEEP); mcd->mtc_dip = dip; mcd->mtc_hdl = hdl; mcd->mtc_brn = brn; /* * Switch a 'driver' operation to an 'all' operation below a * node bound to the driver. */ if ((major == DDI_MAJOR_T_NONE) || (major == ddi_driver_major(dip))) mcd->mtc_major = DDI_MAJOR_T_NONE; else mcd->mtc_major = major; /* * The unconfig-driver to unconfig-all conversion above * constitutes an autodetach for NDI_DETACH_DRIVER calls, * set NDI_AUTODETACH. */ mcd->mtc_flags = hdl->mtc_flags; if ((mcd->mtc_flags & NDI_DETACH_DRIVER) && (hdl->mtc_op == MT_UNCONFIG_OP) && (major == ddi_driver_major(pdip))) mcd->mtc_flags |= NDI_AUTODETACH; mutex_enter(&hdl->mtc_lock); hdl->mtc_thr_count++; mutex_exit(&hdl->mtc_lock); /* * Add to end of list to process after ndi_devi_exit to avoid * locking differences depending on value of mtc_off. */ mcd->mtc_next = NULL; if (mcd_head == NULL) mcd_head = mcd; else mcd_tail->mtc_next = mcd; mcd_tail = mcd; dip = ddi_get_next_sibling(dip); } ndi_devi_exit(pdip, circ); /* go through the list of held children */ for (mcd = mcd_head; mcd; mcd = mcd_head) { mcd_head = mcd->mtc_next; if (mtc_off || (mcd->mtc_flags & NDI_MTC_OFF)) mt_config_thread(mcd); else (void) thread_create(NULL, 0, mt_config_thread, mcd, 0, &p0, TS_RUN, minclsyspri); } } static void mt_config_driver(struct mt_config_handle *hdl) { major_t par_major = hdl->mtc_parmajor; major_t major = hdl->mtc_major; struct devnames *dnp = &devnamesp[par_major]; dev_info_t *dip; struct mt_config_data *mcd_head = NULL; struct mt_config_data *mcd_tail = NULL; struct mt_config_data *mcd; #ifdef DEBUG timestruc_t end_time; /* Update total_time in handle */ gethrestime(&end_time); hdl->total_time += time_diff_in_msec(hdl->start_time, end_time); #endif ASSERT(par_major != DDI_MAJOR_T_NONE); ASSERT(major != DDI_MAJOR_T_NONE); LOCK_DEV_OPS(&dnp->dn_lock); dip = devnamesp[par_major].dn_head; while (dip) { /* * Hold the child that we are processing so he does not get * removed. The corrisponding ndi_rele_devi() for children * that are not being skipped is done at the end of * mt_config_thread(). */ ndi_hold_devi(dip); /* skip leaf nodes and nodes not fully attached */ if (!i_ddi_devi_attached(dip) || is_leaf_node(dip)) { ndi_rele_devi(dip); dip = ddi_get_next(dip); continue; } mcd = kmem_alloc(sizeof (*mcd), KM_SLEEP); mcd->mtc_dip = dip; mcd->mtc_hdl = hdl; mcd->mtc_major = major; mcd->mtc_flags = hdl->mtc_flags; mutex_enter(&hdl->mtc_lock); hdl->mtc_thr_count++; mutex_exit(&hdl->mtc_lock); /* * Add to end of list to process after UNLOCK_DEV_OPS to avoid * locking differences depending on value of mtc_off. */ mcd->mtc_next = NULL; if (mcd_head == NULL) mcd_head = mcd; else mcd_tail->mtc_next = mcd; mcd_tail = mcd; dip = ddi_get_next(dip); } UNLOCK_DEV_OPS(&dnp->dn_lock); /* go through the list of held children */ for (mcd = mcd_head; mcd; mcd = mcd_head) { mcd_head = mcd->mtc_next; if (mtc_off || (mcd->mtc_flags & NDI_MTC_OFF)) mt_config_thread(mcd); else (void) thread_create(NULL, 0, mt_config_thread, mcd, 0, &p0, TS_RUN, minclsyspri); } } /* * Given the nodeid for a persistent (PROM or SID) node, return * the corresponding devinfo node * NOTE: This function will return NULL for .conf nodeids. */ dev_info_t * e_ddi_nodeid_to_dip(pnode_t nodeid) { dev_info_t *dip = NULL; struct devi_nodeid *prev, *elem; mutex_enter(&devimap->dno_lock); prev = NULL; for (elem = devimap->dno_head; elem; elem = elem->next) { if (elem->nodeid == nodeid) { ndi_hold_devi(elem->dip); dip = elem->dip; break; } prev = elem; } /* * Move to head for faster lookup next time */ if (elem && prev) { prev->next = elem->next; elem->next = devimap->dno_head; devimap->dno_head = elem; } mutex_exit(&devimap->dno_lock); return (dip); } static void free_cache_task(void *arg) { ASSERT(arg == NULL); mutex_enter(&di_cache.cache_lock); /* * The cache can be invalidated without holding the lock * but it can be made valid again only while the lock is held. * So if the cache is invalid when the lock is held, it will * stay invalid until lock is released. */ if (!di_cache.cache_valid) i_ddi_di_cache_free(&di_cache); mutex_exit(&di_cache.cache_lock); if (di_cache_debug) cmn_err(CE_NOTE, "system_taskq: di_cache freed"); } extern int modrootloaded; void i_ddi_di_cache_free(struct di_cache *cache) { int error; extern int sys_shutdown; ASSERT(mutex_owned(&cache->cache_lock)); if (cache->cache_size) { ASSERT(cache->cache_size > 0); ASSERT(cache->cache_data); kmem_free(cache->cache_data, cache->cache_size); cache->cache_data = NULL; cache->cache_size = 0; if (di_cache_debug) cmn_err(CE_NOTE, "i_ddi_di_cache_free: freed cachemem"); } else { ASSERT(cache->cache_data == NULL); if (di_cache_debug) cmn_err(CE_NOTE, "i_ddi_di_cache_free: NULL cache"); } if (!modrootloaded || rootvp == NULL || vn_is_readonly(rootvp) || sys_shutdown) { if (di_cache_debug) { cmn_err(CE_WARN, "/ not mounted/RDONLY. Skip unlink"); } return; } error = vn_remove(DI_CACHE_FILE, UIO_SYSSPACE, RMFILE); if (di_cache_debug && error && error != ENOENT) { cmn_err(CE_WARN, "%s: unlink failed: %d", DI_CACHE_FILE, error); } else if (di_cache_debug && !error) { cmn_err(CE_NOTE, "i_ddi_di_cache_free: unlinked cache file"); } } void i_ddi_di_cache_invalidate() { int cache_valid; if (!modrootloaded || !i_ddi_io_initialized()) { if (di_cache_debug) cmn_err(CE_NOTE, "I/O not inited. Skipping invalidate"); return; } /* Increment devtree generation number. */ atomic_inc_ulong(&devtree_gen); /* Invalidate the in-core cache and dispatch free on valid->invalid */ cache_valid = atomic_swap_uint(&di_cache.cache_valid, 0); if (cache_valid) { /* * This is an optimization to start cleaning up a cached * snapshot early. For this reason, it is OK for * taskq_dispatach to fail (and it is OK to not track calling * context relative to sleep, and assume NOSLEEP). */ (void) taskq_dispatch(system_taskq, free_cache_task, NULL, TQ_NOSLEEP); } if (di_cache_debug) { cmn_err(CE_NOTE, "invalidation"); } } static void i_bind_vhci_node(dev_info_t *dip) { DEVI(dip)->devi_major = ddi_name_to_major(ddi_node_name(dip)); i_ddi_set_node_state(dip, DS_BOUND); } static char vhci_node_addr[2]; static int i_init_vhci_node(dev_info_t *dip) { add_global_props(dip); DEVI(dip)->devi_ops = ndi_hold_driver(dip); if (DEVI(dip)->devi_ops == NULL) return (-1); DEVI(dip)->devi_instance = e_ddi_assign_instance(dip); e_ddi_keep_instance(dip); vhci_node_addr[0] = '\0'; ddi_set_name_addr(dip, vhci_node_addr); i_ddi_set_node_state(dip, DS_INITIALIZED); return (0); } static void i_link_vhci_node(dev_info_t *dip) { ASSERT(MUTEX_HELD(&global_vhci_lock)); /* * scsi_vhci should be kept left most of the device tree. */ if (scsi_vhci_dip) { DEVI(dip)->devi_sibling = DEVI(scsi_vhci_dip)->devi_sibling; DEVI(scsi_vhci_dip)->devi_sibling = DEVI(dip); } else { DEVI(dip)->devi_sibling = DEVI(top_devinfo)->devi_child; DEVI(top_devinfo)->devi_child = DEVI(dip); } } /* * This a special routine to enumerate vhci node (child of rootnex * node) without holding the ndi_devi_enter() lock. The device node * is allocated, initialized and brought into DS_READY state before * inserting into the device tree. The VHCI node is handcrafted * here to bring the node to DS_READY, similar to rootnex node. * * The global_vhci_lock protects linking the node into the device * as same lock is held before linking/unlinking any direct child * of rootnex children. * * This routine is a workaround to handle a possible deadlock * that occurs while trying to enumerate node in a different sub-tree * during _init/_attach entry points. */ /*ARGSUSED*/ dev_info_t * ndi_devi_config_vhci(char *drvname, int flags) { struct devnames *dnp; dev_info_t *dip; major_t major = ddi_name_to_major(drvname); if (major == -1) return (NULL); /* Make sure we create the VHCI node only once */ dnp = &devnamesp[major]; LOCK_DEV_OPS(&dnp->dn_lock); if (dnp->dn_head) { dip = dnp->dn_head; UNLOCK_DEV_OPS(&dnp->dn_lock); return (dip); } UNLOCK_DEV_OPS(&dnp->dn_lock); /* Allocate the VHCI node */ ndi_devi_alloc_sleep(top_devinfo, drvname, DEVI_SID_NODEID, &dip); ndi_hold_devi(dip); /* Mark the node as VHCI */ DEVI(dip)->devi_node_attributes |= DDI_VHCI_NODE; i_ddi_add_devimap(dip); i_bind_vhci_node(dip); if (i_init_vhci_node(dip) == -1) { ndi_rele_devi(dip); (void) ndi_devi_free(dip); return (NULL); } mutex_enter(&(DEVI(dip)->devi_lock)); DEVI_SET_ATTACHING(dip); mutex_exit(&(DEVI(dip)->devi_lock)); if (devi_attach(dip, DDI_ATTACH) != DDI_SUCCESS) { cmn_err(CE_CONT, "Could not attach %s driver", drvname); e_ddi_free_instance(dip, vhci_node_addr); ndi_rele_devi(dip); (void) ndi_devi_free(dip); return (NULL); } mutex_enter(&(DEVI(dip)->devi_lock)); DEVI_CLR_ATTACHING(dip); mutex_exit(&(DEVI(dip)->devi_lock)); mutex_enter(&global_vhci_lock); i_link_vhci_node(dip); mutex_exit(&global_vhci_lock); i_ddi_set_node_state(dip, DS_READY); LOCK_DEV_OPS(&dnp->dn_lock); dnp->dn_flags |= DN_DRIVER_HELD; dnp->dn_head = dip; UNLOCK_DEV_OPS(&dnp->dn_lock); i_ndi_devi_report_status_change(dip, NULL); return (dip); } /* * Maintain DEVI_DEVICE_REMOVED hotplug devi_state for remove/reinsert hotplug * of open devices. Currently, because of tight coupling between the devfs file * system and the Solaris device tree, a driver can't always make the device * tree state (esp devi_node_state) match device hardware hotplug state. Until * resolved, to overcome this deficiency we use the following interfaces that * maintain the DEVI_DEVICE_REMOVED devi_state status bit. These interface * report current state, and drive operation (like events and cache * invalidation) when a driver changes remove/insert state of an open device. * * The ndi_devi_device_isremoved() returns 1 if the device is currently removed. * * The ndi_devi_device_remove() interface declares the device as removed, and * returns 1 if there was a state change associated with this declaration. * * The ndi_devi_device_insert() declares the device as inserted, and returns 1 * if there was a state change associated with this declaration. */ int ndi_devi_device_isremoved(dev_info_t *dip) { return (DEVI_IS_DEVICE_REMOVED(dip)); } int ndi_devi_device_remove(dev_info_t *dip) { ASSERT(dip && ddi_get_parent(dip) && DEVI_BUSY_OWNED(ddi_get_parent(dip))); /* Return if already marked removed. */ if (ndi_devi_device_isremoved(dip)) return (0); /* Mark the device as having been physically removed. */ mutex_enter(&(DEVI(dip)->devi_lock)); ndi_devi_set_hidden(dip); /* invisible: lookup/snapshot */ DEVI_SET_DEVICE_REMOVED(dip); DEVI_SET_EVREMOVE(dip); /* this clears EVADD too */ mutex_exit(&(DEVI(dip)->devi_lock)); /* report remove (as 'removed') */ i_ndi_devi_report_status_change(dip, NULL); /* * Invalidate the cache to ensure accurate * (di_state() & DI_DEVICE_REMOVED). */ i_ddi_di_cache_invalidate(); /* * Generate sysevent for those interested in removal (either * directly via private EC_DEVFS or indirectly via devfsadmd * generated EC_DEV). This will generate LDI DEVICE_REMOVE * event too. */ i_ddi_log_devfs_device_remove(dip); return (1); /* DEVICE_REMOVED state changed */ } int ndi_devi_device_insert(dev_info_t *dip) { ASSERT(dip && ddi_get_parent(dip) && DEVI_BUSY_OWNED(ddi_get_parent(dip))); /* Return if not marked removed. */ if (!ndi_devi_device_isremoved(dip)) return (0); /* Mark the device as having been physically reinserted. */ mutex_enter(&(DEVI(dip)->devi_lock)); ndi_devi_clr_hidden(dip); /* visible: lookup/snapshot */ DEVI_SET_DEVICE_REINSERTED(dip); DEVI_SET_EVADD(dip); /* this clears EVREMOVE too */ mutex_exit(&(DEVI(dip)->devi_lock)); /* report insert (as 'online') */ i_ndi_devi_report_status_change(dip, NULL); /* * Invalidate the cache to ensure accurate * (di_state() & DI_DEVICE_REMOVED). */ i_ddi_di_cache_invalidate(); /* * Generate sysevent for those interested in removal (either directly * via EC_DEVFS or indirectly via devfsadmd generated EC_DEV). */ i_ddi_log_devfs_device_insert(dip); return (1); /* DEVICE_REMOVED state changed */ } /* * ibt_hw_is_present() returns 0 when there is no IB hardware actively * running. This is primarily useful for modules like rpcmod which * needs a quick check to decide whether or not it should try to use * InfiniBand */ int ib_hw_status = 0; int ibt_hw_is_present() { return (ib_hw_status); } /* * ASSERT that constraint flag is not set and then set the "retire attempt" * flag. */ int e_ddi_mark_retiring(dev_info_t *dip, void *arg) { char **cons_array = (char **)arg; char *path; int constraint; int i; constraint = 0; if (cons_array) { path = kmem_alloc(MAXPATHLEN, KM_SLEEP); (void) ddi_pathname(dip, path); for (i = 0; cons_array[i] != NULL; i++) { if (strcmp(path, cons_array[i]) == 0) { constraint = 1; break; } } kmem_free(path, MAXPATHLEN); } mutex_enter(&DEVI(dip)->devi_lock); ASSERT(!(DEVI(dip)->devi_flags & DEVI_R_CONSTRAINT)); DEVI(dip)->devi_flags |= DEVI_RETIRING; if (constraint) DEVI(dip)->devi_flags |= DEVI_R_CONSTRAINT; mutex_exit(&DEVI(dip)->devi_lock); RIO_VERBOSE((CE_NOTE, "marked dip as undergoing retire process dip=%p", (void *)dip)); if (constraint) RIO_DEBUG((CE_NOTE, "marked dip as constrained, dip=%p", (void *)dip)); if (MDI_PHCI(dip)) mdi_phci_mark_retiring(dip, cons_array); return (DDI_WALK_CONTINUE); } static void free_array(char **cons_array) { int i; if (cons_array == NULL) return; for (i = 0; cons_array[i] != NULL; i++) { kmem_free(cons_array[i], strlen(cons_array[i]) + 1); } kmem_free(cons_array, (i+1) * sizeof (char *)); } /* * Walk *every* node in subtree and check if it blocks, allows or has no * comment on a proposed retire. */ int e_ddi_retire_notify(dev_info_t *dip, void *arg) { int *constraint = (int *)arg; RIO_DEBUG((CE_NOTE, "retire notify: dip = %p", (void *)dip)); (void) e_ddi_offline_notify(dip); mutex_enter(&(DEVI(dip)->devi_lock)); if (!(DEVI(dip)->devi_flags & DEVI_RETIRING)) { RIO_DEBUG((CE_WARN, "retire notify: dip in retire " "subtree is not marked: dip = %p", (void *)dip)); *constraint = 0; } else if (DEVI(dip)->devi_flags & DEVI_R_BLOCKED) { ASSERT(!(DEVI(dip)->devi_flags & DEVI_R_CONSTRAINT)); RIO_DEBUG((CE_NOTE, "retire notify: BLOCKED: dip = %p", (void *)dip)); *constraint = 0; } else if (!(DEVI(dip)->devi_flags & DEVI_R_CONSTRAINT)) { RIO_DEBUG((CE_NOTE, "retire notify: NO CONSTRAINT: " "dip = %p", (void *)dip)); *constraint = 0; } else { RIO_DEBUG((CE_NOTE, "retire notify: CONSTRAINT set: " "dip = %p", (void *)dip)); } mutex_exit(&DEVI(dip)->devi_lock); if (MDI_PHCI(dip)) mdi_phci_retire_notify(dip, constraint); return (DDI_WALK_CONTINUE); } int e_ddi_retire_finalize(dev_info_t *dip, void *arg) { int constraint = *(int *)arg; int finalize; int phci_only; mutex_enter(&DEVI(dip)->devi_lock); if (!(DEVI(dip)->devi_flags & DEVI_RETIRING)) { RIO_DEBUG((CE_WARN, "retire: unmarked dip(%p) in retire subtree", (void *)dip)); ASSERT(!(DEVI(dip)->devi_flags & DEVI_RETIRED)); ASSERT(!(DEVI(dip)->devi_flags & DEVI_R_CONSTRAINT)); ASSERT(!(DEVI(dip)->devi_flags & DEVI_R_BLOCKED)); mutex_exit(&DEVI(dip)->devi_lock); return (DDI_WALK_CONTINUE); } /* * retire the device if constraints have been applied * or if the device is not in use */ finalize = 0; if (constraint) { ASSERT(DEVI_BUSY_OWNED(ddi_get_parent(dip))); ASSERT(DEVI(dip)->devi_flags & DEVI_R_CONSTRAINT); ASSERT(!(DEVI(dip)->devi_flags & DEVI_R_BLOCKED)); DEVI(dip)->devi_flags &= ~DEVI_R_CONSTRAINT; DEVI(dip)->devi_flags &= ~DEVI_RETIRING; DEVI(dip)->devi_flags |= DEVI_RETIRED; mutex_exit(&DEVI(dip)->devi_lock); (void) spec_fence_snode(dip, NULL); RIO_DEBUG((CE_NOTE, "Fenced off: dip = %p", (void *)dip)); e_ddi_offline_finalize(dip, DDI_SUCCESS); } else { if (DEVI(dip)->devi_flags & DEVI_R_BLOCKED) { ASSERT(!(DEVI(dip)->devi_flags & DEVI_R_CONSTRAINT)); DEVI(dip)->devi_flags &= ~DEVI_R_BLOCKED; DEVI(dip)->devi_flags &= ~DEVI_RETIRING; /* we have already finalized during notify */ } else if (DEVI(dip)->devi_flags & DEVI_R_CONSTRAINT) { DEVI(dip)->devi_flags &= ~DEVI_R_CONSTRAINT; DEVI(dip)->devi_flags &= ~DEVI_RETIRING; finalize = 1; } else { DEVI(dip)->devi_flags &= ~DEVI_RETIRING; /* * even if no contracts, need to call finalize * to clear the contract barrier on the dip */ finalize = 1; } mutex_exit(&DEVI(dip)->devi_lock); RIO_DEBUG((CE_NOTE, "finalize: NOT retired: dip = %p", (void *)dip)); if (finalize) e_ddi_offline_finalize(dip, DDI_FAILURE); } /* * phci_only variable indicates no client checking, just * offline the PHCI. We set that to 0 to enable client * checking */ phci_only = 0; if (MDI_PHCI(dip)) mdi_phci_retire_finalize(dip, phci_only, arg); return (DDI_WALK_CONTINUE); } /* * Returns * DDI_SUCCESS if constraints allow retire * DDI_FAILURE if constraints don't allow retire. * cons_array is a NULL terminated array of node paths for * which constraints have already been applied. */ int e_ddi_retire_device(char *path, char **cons_array) { dev_info_t *dip; dev_info_t *pdip; int circ; int circ2; int constraint; char *devnm; /* * First, lookup the device */ dip = e_ddi_hold_devi_by_path(path, 0); if (dip == NULL) { /* * device does not exist. This device cannot be * a critical device since it is not in use. Thus * this device is always retireable. Return DDI_SUCCESS * to indicate this. If this device is ever * instantiated, I/O framework will consult the * the persistent retire store, mark it as * retired and fence it off. */ RIO_DEBUG((CE_NOTE, "Retire device: device doesn't exist." " NOP. Just returning SUCCESS. path=%s", path)); free_array(cons_array); return (DDI_SUCCESS); } RIO_DEBUG((CE_NOTE, "Retire device: found dip = %p.", (void *)dip)); pdip = ddi_get_parent(dip); ndi_hold_devi(pdip); /* * Run devfs_clean() in case dip has no constraints and is * not in use, so is retireable but there are dv_nodes holding * ref-count on the dip. Note that devfs_clean() always returns * success. */ devnm = kmem_alloc(MAXNAMELEN + 1, KM_SLEEP); (void) ddi_deviname(dip, devnm); (void) devfs_clean(pdip, devnm + 1, DV_CLEAN_FORCE); kmem_free(devnm, MAXNAMELEN + 1); ndi_devi_enter(pdip, &circ); /* release hold from e_ddi_hold_devi_by_path */ ndi_rele_devi(dip); /* * If it cannot make a determination, is_leaf_node() assumes * dip is a nexus. */ (void) e_ddi_mark_retiring(dip, cons_array); if (!is_leaf_node(dip)) { ndi_devi_enter(dip, &circ2); ddi_walk_devs(ddi_get_child(dip), e_ddi_mark_retiring, cons_array); ndi_devi_exit(dip, circ2); } free_array(cons_array); /* * apply constraints */ RIO_DEBUG((CE_NOTE, "retire: subtree retire notify: path = %s", path)); constraint = 1; /* assume constraints allow retire */ (void) e_ddi_retire_notify(dip, &constraint); if (!is_leaf_node(dip)) { ndi_devi_enter(dip, &circ2); ddi_walk_devs(ddi_get_child(dip), e_ddi_retire_notify, &constraint); ndi_devi_exit(dip, circ2); } /* * Now finalize the retire */ (void) e_ddi_retire_finalize(dip, &constraint); if (!is_leaf_node(dip)) { ndi_devi_enter(dip, &circ2); ddi_walk_devs(ddi_get_child(dip), e_ddi_retire_finalize, &constraint); ndi_devi_exit(dip, circ2); } if (!constraint) { RIO_DEBUG((CE_WARN, "retire failed: path = %s", path)); } else { RIO_DEBUG((CE_NOTE, "retire succeeded: path = %s", path)); } ndi_devi_exit(pdip, circ); ndi_rele_devi(pdip); return (constraint ? DDI_SUCCESS : DDI_FAILURE); } static int unmark_and_unfence(dev_info_t *dip, void *arg) { char *path = (char *)arg; ASSERT(path); (void) ddi_pathname(dip, path); mutex_enter(&DEVI(dip)->devi_lock); DEVI(dip)->devi_flags &= ~DEVI_RETIRED; DEVI_SET_DEVICE_ONLINE(dip); mutex_exit(&DEVI(dip)->devi_lock); RIO_VERBOSE((CE_NOTE, "Cleared RETIRED flag: dip=%p, path=%s", (void *)dip, path)); (void) spec_unfence_snode(dip); RIO_DEBUG((CE_NOTE, "Unfenced device: %s", path)); if (MDI_PHCI(dip)) mdi_phci_unretire(dip); return (DDI_WALK_CONTINUE); } struct find_dip { char *fd_buf; char *fd_path; dev_info_t *fd_dip; }; static int find_dip_fcn(dev_info_t *dip, void *arg) { struct find_dip *findp = (struct find_dip *)arg; (void) ddi_pathname(dip, findp->fd_buf); if (strcmp(findp->fd_path, findp->fd_buf) != 0) return (DDI_WALK_CONTINUE); ndi_hold_devi(dip); findp->fd_dip = dip; return (DDI_WALK_TERMINATE); } int e_ddi_unretire_device(char *path) { int circ; int circ2; char *path2; dev_info_t *pdip; dev_info_t *dip; struct find_dip find_dip; ASSERT(path); ASSERT(*path == '/'); if (strcmp(path, "/") == 0) { cmn_err(CE_WARN, "Root node cannot be retired. Skipping " "device unretire: %s", path); return (0); } /* * We can't lookup the dip (corresponding to path) via * e_ddi_hold_devi_by_path() because the dip may be offline * and may not attach. Use ddi_walk_devs() instead; */ find_dip.fd_buf = kmem_alloc(MAXPATHLEN, KM_SLEEP); find_dip.fd_path = path; find_dip.fd_dip = NULL; pdip = ddi_root_node(); ndi_devi_enter(pdip, &circ); ddi_walk_devs(ddi_get_child(pdip), find_dip_fcn, &find_dip); ndi_devi_exit(pdip, circ); kmem_free(find_dip.fd_buf, MAXPATHLEN); if (find_dip.fd_dip == NULL) { cmn_err(CE_WARN, "Device not found in device tree. Skipping " "device unretire: %s", path); return (0); } dip = find_dip.fd_dip; pdip = ddi_get_parent(dip); ndi_hold_devi(pdip); ndi_devi_enter(pdip, &circ); path2 = kmem_alloc(MAXPATHLEN, KM_SLEEP); (void) unmark_and_unfence(dip, path2); if (!is_leaf_node(dip)) { ndi_devi_enter(dip, &circ2); ddi_walk_devs(ddi_get_child(dip), unmark_and_unfence, path2); ndi_devi_exit(dip, circ2); } kmem_free(path2, MAXPATHLEN); /* release hold from find_dip_fcn() */ ndi_rele_devi(dip); ndi_devi_exit(pdip, circ); ndi_rele_devi(pdip); return (0); } /* * Called before attach on a dip that has been retired. */ static int mark_and_fence(dev_info_t *dip, void *arg) { char *fencepath = (char *)arg; /* * We have already decided to retire this device. The various * constraint checking should not be set. * NOTE that the retire flag may already be set due to * fenced -> detach -> fenced transitions. */ mutex_enter(&DEVI(dip)->devi_lock); ASSERT(!(DEVI(dip)->devi_flags & DEVI_R_CONSTRAINT)); ASSERT(!(DEVI(dip)->devi_flags & DEVI_R_BLOCKED)); ASSERT(!(DEVI(dip)->devi_flags & DEVI_RETIRING)); DEVI(dip)->devi_flags |= DEVI_RETIRED; mutex_exit(&DEVI(dip)->devi_lock); RIO_VERBOSE((CE_NOTE, "marked as RETIRED dip=%p", (void *)dip)); if (fencepath) { (void) spec_fence_snode(dip, NULL); RIO_DEBUG((CE_NOTE, "Fenced: %s", ddi_pathname(dip, fencepath))); } return (DDI_WALK_CONTINUE); } /* * Checks the retire database and: * * - if device is present in the retire database, marks the device retired * and fences it off. * - if device is not in retire database, allows the device to attach normally * * To be called only by framework attach code on first attach attempt. * */ static void i_ddi_check_retire(dev_info_t *dip) { char *path; dev_info_t *pdip; int circ; int phci_only; int constraint; pdip = ddi_get_parent(dip); /* * Root dip is treated special and doesn't take this code path. * Also root can never be retired. */ ASSERT(pdip); ASSERT(DEVI_BUSY_OWNED(pdip)); ASSERT(i_ddi_node_state(dip) < DS_ATTACHED); path = kmem_alloc(MAXPATHLEN, KM_SLEEP); (void) ddi_pathname(dip, path); RIO_VERBOSE((CE_NOTE, "Checking if dip should attach: dip=%p, path=%s", (void *)dip, path)); /* * Check if this device is in the "retired" store i.e. should * be retired. If not, we have nothing to do. */ if (e_ddi_device_retired(path) == 0) { RIO_VERBOSE((CE_NOTE, "device is NOT retired: path=%s", path)); kmem_free(path, MAXPATHLEN); return; } RIO_DEBUG((CE_NOTE, "attach: device is retired: path=%s", path)); /* * Mark dips and fence off snodes (if any) */ RIO_DEBUG((CE_NOTE, "attach: Mark and fence subtree: path=%s", path)); (void) mark_and_fence(dip, path); if (!is_leaf_node(dip)) { ndi_devi_enter(dip, &circ); ddi_walk_devs(ddi_get_child(dip), mark_and_fence, path); ndi_devi_exit(dip, circ); } kmem_free(path, MAXPATHLEN); /* * We don't want to check the client. We just want to * offline the PHCI */ phci_only = 1; constraint = 1; if (MDI_PHCI(dip)) mdi_phci_retire_finalize(dip, phci_only, &constraint); } #define VAL_ALIAS(array, x) (strlen(array[x].pair_alias)) #define VAL_CURR(array, x) (strlen(array[x].pair_curr)) #define SWAP(array, x, y) \ { \ alias_pair_t tmpair = array[x]; \ array[x] = array[y]; \ array[y] = tmpair; \ } static int partition_curr(alias_pair_t *array, int start, int end) { int i = start - 1; int j = end + 1; int pivot = start; for (;;) { do { j--; } while (VAL_CURR(array, j) > VAL_CURR(array, pivot)); do { i++; } while (VAL_CURR(array, i) < VAL_CURR(array, pivot)); if (i < j) SWAP(array, i, j) else return (j); } } static int partition_aliases(alias_pair_t *array, int start, int end) { int i = start - 1; int j = end + 1; int pivot = start; for (;;) { do { j--; } while (VAL_ALIAS(array, j) > VAL_ALIAS(array, pivot)); do { i++; } while (VAL_ALIAS(array, i) < VAL_ALIAS(array, pivot)); if (i < j) SWAP(array, i, j) else return (j); } } static void sort_alias_pairs(alias_pair_t *array, int start, int end) { int mid; if (start < end) { mid = partition_aliases(array, start, end); sort_alias_pairs(array, start, mid); sort_alias_pairs(array, mid + 1, end); } } static void sort_curr_pairs(alias_pair_t *array, int start, int end) { int mid; if (start < end) { mid = partition_curr(array, start, end); sort_curr_pairs(array, start, mid); sort_curr_pairs(array, mid + 1, end); } } static void create_sorted_pairs(plat_alias_t *pali, int npali) { int i; int j; int k; int count; count = 0; for (i = 0; i < npali; i++) { count += pali[i].pali_naliases; } ddi_aliases.dali_alias_pairs = kmem_zalloc( (sizeof (alias_pair_t)) * count, KM_NOSLEEP); if (ddi_aliases.dali_alias_pairs == NULL) { cmn_err(CE_PANIC, "alias path-pair alloc failed"); /*NOTREACHED*/ } ddi_aliases.dali_curr_pairs = kmem_zalloc( (sizeof (alias_pair_t)) * count, KM_NOSLEEP); if (ddi_aliases.dali_curr_pairs == NULL) { cmn_err(CE_PANIC, "curr path-pair alloc failed"); /*NOTREACHED*/ } for (i = 0, k = 0; i < npali; i++) { for (j = 0; j < pali[i].pali_naliases; j++, k++) { ddi_aliases.dali_alias_pairs[k].pair_curr = ddi_aliases.dali_curr_pairs[k].pair_curr = pali[i].pali_current; ddi_aliases.dali_alias_pairs[k].pair_alias = ddi_aliases.dali_curr_pairs[k].pair_alias = pali[i].pali_aliases[j]; } } ASSERT(k == count); ddi_aliases.dali_num_pairs = count; /* Now sort the array based on length of pair_alias */ sort_alias_pairs(ddi_aliases.dali_alias_pairs, 0, count - 1); sort_curr_pairs(ddi_aliases.dali_curr_pairs, 0, count - 1); } void ddi_register_aliases(plat_alias_t *pali, uint64_t npali) { ASSERT((pali == NULL) ^ (npali != 0)); if (npali == 0) { ddi_err(DER_PANIC, NULL, "npali == 0"); /*NOTREACHED*/ } if (ddi_aliases_present == B_TRUE) { ddi_err(DER_PANIC, NULL, "multiple init"); /*NOTREACHED*/ } ddi_aliases.dali_alias_TLB = mod_hash_create_strhash( "ddi-alias-tlb", DDI_ALIAS_HASH_SIZE, mod_hash_null_valdtor); if (ddi_aliases.dali_alias_TLB == NULL) { ddi_err(DER_PANIC, NULL, "alias TLB hash alloc failed"); /*NOTREACHED*/ } ddi_aliases.dali_curr_TLB = mod_hash_create_strhash( "ddi-curr-tlb", DDI_ALIAS_HASH_SIZE, mod_hash_null_valdtor); if (ddi_aliases.dali_curr_TLB == NULL) { ddi_err(DER_PANIC, NULL, "curr TLB hash alloc failed"); /*NOTREACHED*/ } create_sorted_pairs(pali, npali); tsd_create(&tsd_ddi_redirect, NULL); ddi_aliases_present = B_TRUE; } static dev_info_t * path_to_dip(char *path) { dev_info_t *currdip; int error; char *pdup; pdup = ddi_strdup(path, KM_NOSLEEP); if (pdup == NULL) { cmn_err(CE_PANIC, "path strdup failed: %s", path); /*NOTREACHED*/ } error = resolve_pathname(pdup, &currdip, NULL, NULL); kmem_free(pdup, strlen(path) + 1); return (error ? NULL : currdip); } dev_info_t * ddi_alias_to_currdip(char *alias, int i) { alias_pair_t *pair; char *curr; dev_info_t *currdip = NULL; char *aliasdup; int rv, len; pair = &(ddi_aliases.dali_alias_pairs[i]); len = strlen(pair->pair_alias); curr = NULL; aliasdup = ddi_strdup(alias, KM_NOSLEEP); if (aliasdup == NULL) { cmn_err(CE_PANIC, "aliasdup alloc failed"); /*NOTREACHED*/ } if (strncmp(alias, pair->pair_alias, len) != 0) goto out; if (alias[len] != '/' && alias[len] != '\0') goto out; curr = kmem_alloc(MAXPATHLEN, KM_NOSLEEP); if (curr == NULL) { cmn_err(CE_PANIC, "curr alloc failed"); /*NOTREACHED*/ } (void) strlcpy(curr, pair->pair_curr, MAXPATHLEN); if (alias[len] == '/') { (void) strlcat(curr, "/", MAXPATHLEN); (void) strlcat(curr, &alias[len + 1], MAXPATHLEN); } currdip = path_to_dip(curr); out: if (currdip) { rv = mod_hash_insert(ddi_aliases.dali_alias_TLB, (mod_hash_key_t)aliasdup, (mod_hash_val_t)curr); if (rv != 0) { kmem_free(curr, MAXPATHLEN); strfree(aliasdup); } } else { rv = mod_hash_insert(ddi_aliases.dali_alias_TLB, (mod_hash_key_t)aliasdup, (mod_hash_val_t)NULL); if (rv != 0) { strfree(aliasdup); } if (curr) kmem_free(curr, MAXPATHLEN); } return (currdip); } char * ddi_curr_to_alias(char *curr, int i) { alias_pair_t *pair; char *alias; char *currdup; int len; int rv; pair = &(ddi_aliases.dali_curr_pairs[i]); len = strlen(pair->pair_curr); alias = NULL; currdup = ddi_strdup(curr, KM_NOSLEEP); if (currdup == NULL) { cmn_err(CE_PANIC, "currdup alloc failed"); /*NOTREACHED*/ } if (strncmp(curr, pair->pair_curr, len) != 0) goto out; if (curr[len] != '/' && curr[len] != '\0') goto out; alias = kmem_alloc(MAXPATHLEN, KM_NOSLEEP); if (alias == NULL) { cmn_err(CE_PANIC, "alias alloc failed"); /*NOTREACHED*/ } (void) strlcpy(alias, pair->pair_alias, MAXPATHLEN); if (curr[len] == '/') { (void) strlcat(alias, "/", MAXPATHLEN); (void) strlcat(alias, &curr[len + 1], MAXPATHLEN); } if (e_ddi_path_to_instance(alias) == NULL) { kmem_free(alias, MAXPATHLEN); alias = NULL; } out: rv = mod_hash_insert(ddi_aliases.dali_curr_TLB, (mod_hash_key_t)currdup, (mod_hash_val_t)alias); if (rv != 0) { strfree(currdup); } return (alias); } dev_info_t * ddi_alias_redirect(char *alias) { char *curr; dev_info_t *currdip; int i; if (ddi_aliases_present == B_FALSE) return (NULL); if (tsd_get(tsd_ddi_redirect)) return (NULL); (void) tsd_set(tsd_ddi_redirect, (void *)1); ASSERT(ddi_aliases.dali_alias_TLB); ASSERT(ddi_aliases.dali_alias_pairs); curr = NULL; if (mod_hash_find(ddi_aliases.dali_alias_TLB, (mod_hash_key_t)alias, (mod_hash_val_t *)&curr) == 0) { currdip = curr ? path_to_dip(curr) : NULL; goto out; } /* The TLB has no translation, do it the hard way */ currdip = NULL; for (i = ddi_aliases.dali_num_pairs - 1; i >= 0; i--) { currdip = ddi_alias_to_currdip(alias, i); if (currdip) break; } out: (void) tsd_set(tsd_ddi_redirect, NULL); return (currdip); } char * ddi_curr_redirect(char *curr) { char *alias; int i; if (ddi_aliases_present == B_FALSE) return (NULL); if (tsd_get(tsd_ddi_redirect)) return (NULL); (void) tsd_set(tsd_ddi_redirect, (void *)1); ASSERT(ddi_aliases.dali_curr_TLB); ASSERT(ddi_aliases.dali_curr_pairs); alias = NULL; if (mod_hash_find(ddi_aliases.dali_curr_TLB, (mod_hash_key_t)curr, (mod_hash_val_t *)&alias) == 0) { goto out; } /* The TLB has no translation, do it the slow way */ alias = NULL; for (i = ddi_aliases.dali_num_pairs - 1; i >= 0; i--) { alias = ddi_curr_to_alias(curr, i); if (alias) break; } out: (void) tsd_set(tsd_ddi_redirect, NULL); return (alias); } void ddi_err(ddi_err_t ade, dev_info_t *rdip, const char *fmt, ...) { va_list ap; char strbuf[256]; char *buf; size_t buflen, tlen; int ce; int de; const char *fmtbad = "Invalid arguments to ddi_err()"; de = DER_CONT; strbuf[1] = '\0'; switch (ade) { case DER_CONS: strbuf[0] = '^'; break; case DER_LOG: strbuf[0] = '!'; break; case DER_VERB: strbuf[0] = '?'; break; default: strbuf[0] = '\0'; de = ade; break; } tlen = strlen(strbuf); buf = strbuf + tlen; buflen = sizeof (strbuf) - tlen; if (rdip && ddi_get_instance(rdip) == -1) { (void) snprintf(buf, buflen, "%s: ", ddi_driver_name(rdip)); } else if (rdip) { (void) snprintf(buf, buflen, "%s%d: ", ddi_driver_name(rdip), ddi_get_instance(rdip)); } tlen = strlen(strbuf); buf = strbuf + tlen; buflen = sizeof (strbuf) - tlen; va_start(ap, fmt); switch (de) { case DER_CONT: (void) vsnprintf(buf, buflen, fmt, ap); if (ade != DER_CONT) { (void) strlcat(strbuf, "\n", sizeof (strbuf)); } ce = CE_CONT; break; case DER_NOTE: (void) vsnprintf(buf, buflen, fmt, ap); ce = CE_NOTE; break; case DER_WARN: (void) vsnprintf(buf, buflen, fmt, ap); ce = CE_WARN; break; case DER_MODE: (void) vsnprintf(buf, buflen, fmt, ap); if (ddi_err_panic == B_TRUE) { ce = CE_PANIC; } else { ce = CE_WARN; } break; case DER_DEBUG: (void) snprintf(buf, buflen, "DEBUG: "); tlen = strlen("DEBUG: "); (void) vsnprintf(buf + tlen, buflen - tlen, fmt, ap); ce = CE_CONT; break; case DER_PANIC: (void) vsnprintf(buf, buflen, fmt, ap); ce = CE_PANIC; break; case DER_INVALID: default: (void) snprintf(buf, buflen, fmtbad); tlen = strlen(fmtbad); (void) vsnprintf(buf + tlen, buflen - tlen, fmt, ap); ce = CE_PANIC; break; } va_end(ap); cmn_err(ce, strbuf); } /*ARGSUSED*/ void ddi_mem_update(uint64_t addr, uint64_t size) { #if defined(__x86) && !defined(__xpv) extern void immu_physmem_update(uint64_t addr, uint64_t size); immu_physmem_update(addr, size); #else /*LINTED*/ ; #endif }