/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright(c) 2007-2010 Intel Corporation. All rights reserved. */ /* * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright 2012 Nexenta Systems, Inc. All rights reserved. * Copyright 2016 OmniTI Computer Consulting, Inc. All rights reserved. * Copyright (c) 2017, Joyent, Inc. */ #include "ixgbe_sw.h" /* * Bring the device out of the reset/quiesced state that it * was in when the interface was registered. */ int ixgbe_m_start(void *arg) { ixgbe_t *ixgbe = (ixgbe_t *)arg; mutex_enter(&ixgbe->gen_lock); if (ixgbe->ixgbe_state & IXGBE_SUSPENDED) { mutex_exit(&ixgbe->gen_lock); return (ECANCELED); } if (ixgbe_start(ixgbe, B_TRUE) != IXGBE_SUCCESS) { mutex_exit(&ixgbe->gen_lock); return (EIO); } atomic_or_32(&ixgbe->ixgbe_state, IXGBE_STARTED); mutex_exit(&ixgbe->gen_lock); /* * Enable and start the watchdog timer */ ixgbe_enable_watchdog_timer(ixgbe); return (0); } /* * Stop the device and put it in a reset/quiesced state such * that the interface can be unregistered. */ void ixgbe_m_stop(void *arg) { ixgbe_t *ixgbe = (ixgbe_t *)arg; mutex_enter(&ixgbe->gen_lock); if (ixgbe->ixgbe_state & IXGBE_SUSPENDED) { mutex_exit(&ixgbe->gen_lock); return; } atomic_and_32(&ixgbe->ixgbe_state, ~IXGBE_STARTED); ixgbe_stop(ixgbe, B_TRUE); mutex_exit(&ixgbe->gen_lock); /* * Disable and stop the watchdog timer */ ixgbe_disable_watchdog_timer(ixgbe); } /* * Set the promiscuity of the device. */ int ixgbe_m_promisc(void *arg, boolean_t on) { ixgbe_t *ixgbe = (ixgbe_t *)arg; uint32_t reg_val; struct ixgbe_hw *hw = &ixgbe->hw; mutex_enter(&ixgbe->gen_lock); if (ixgbe->ixgbe_state & IXGBE_SUSPENDED) { mutex_exit(&ixgbe->gen_lock); return (ECANCELED); } reg_val = IXGBE_READ_REG(hw, IXGBE_FCTRL); if (on) reg_val |= (IXGBE_FCTRL_UPE | IXGBE_FCTRL_MPE); else reg_val &= (~(IXGBE_FCTRL_UPE | IXGBE_FCTRL_MPE)); IXGBE_WRITE_REG(&ixgbe->hw, IXGBE_FCTRL, reg_val); mutex_exit(&ixgbe->gen_lock); return (0); } /* * Add/remove the addresses to/from the set of multicast * addresses for which the device will receive packets. */ int ixgbe_m_multicst(void *arg, boolean_t add, const uint8_t *mcst_addr) { ixgbe_t *ixgbe = (ixgbe_t *)arg; int result; mutex_enter(&ixgbe->gen_lock); if (ixgbe->ixgbe_state & IXGBE_SUSPENDED) { mutex_exit(&ixgbe->gen_lock); return (ECANCELED); } result = (add) ? ixgbe_multicst_add(ixgbe, mcst_addr) : ixgbe_multicst_remove(ixgbe, mcst_addr); mutex_exit(&ixgbe->gen_lock); return (result); } /* * Pass on M_IOCTL messages passed to the DLD, and support * private IOCTLs for debugging and ndd. */ void ixgbe_m_ioctl(void *arg, queue_t *q, mblk_t *mp) { ixgbe_t *ixgbe = (ixgbe_t *)arg; struct iocblk *iocp; enum ioc_reply status; iocp = (struct iocblk *)(uintptr_t)mp->b_rptr; iocp->ioc_error = 0; mutex_enter(&ixgbe->gen_lock); if (ixgbe->ixgbe_state & IXGBE_SUSPENDED) { mutex_exit(&ixgbe->gen_lock); miocnak(q, mp, 0, EINVAL); return; } mutex_exit(&ixgbe->gen_lock); switch (iocp->ioc_cmd) { case LB_GET_INFO_SIZE: case LB_GET_INFO: case LB_GET_MODE: case LB_SET_MODE: status = ixgbe_loopback_ioctl(ixgbe, iocp, mp); break; default: status = IOC_INVAL; break; } /* * Decide how to reply */ switch (status) { default: case IOC_INVAL: /* * Error, reply with a NAK and EINVAL or the specified error */ miocnak(q, mp, 0, iocp->ioc_error == 0 ? EINVAL : iocp->ioc_error); break; case IOC_DONE: /* * OK, reply already sent */ break; case IOC_ACK: /* * OK, reply with an ACK */ miocack(q, mp, 0, 0); break; case IOC_REPLY: /* * OK, send prepared reply as ACK or NAK */ mp->b_datap->db_type = iocp->ioc_error == 0 ? M_IOCACK : M_IOCNAK; qreply(q, mp); break; } } /* * Obtain the MAC's capabilities and associated data from * the driver. */ boolean_t ixgbe_m_getcapab(void *arg, mac_capab_t cap, void *cap_data) { ixgbe_t *ixgbe = (ixgbe_t *)arg; switch (cap) { case MAC_CAPAB_HCKSUM: { uint32_t *tx_hcksum_flags = cap_data; /* * We advertise our capabilities only if tx hcksum offload is * enabled. On receive, the stack will accept checksummed * packets anyway, even if we haven't said we can deliver * them. */ if (!ixgbe->tx_hcksum_enable) return (B_FALSE); *tx_hcksum_flags = HCKSUM_INET_PARTIAL | HCKSUM_IPHDRCKSUM; break; } case MAC_CAPAB_LSO: { mac_capab_lso_t *cap_lso = cap_data; if (ixgbe->lso_enable) { cap_lso->lso_flags = LSO_TX_BASIC_TCP_IPV4; cap_lso->lso_basic_tcp_ipv4.lso_max = IXGBE_LSO_MAXLEN; break; } else { return (B_FALSE); } } case MAC_CAPAB_RINGS: { mac_capab_rings_t *cap_rings = cap_data; switch (cap_rings->mr_type) { case MAC_RING_TYPE_RX: cap_rings->mr_group_type = MAC_GROUP_TYPE_STATIC; cap_rings->mr_rnum = ixgbe->num_rx_rings; cap_rings->mr_gnum = ixgbe->num_rx_groups; cap_rings->mr_rget = ixgbe_fill_ring; cap_rings->mr_gget = ixgbe_fill_group; cap_rings->mr_gaddring = NULL; cap_rings->mr_gremring = NULL; break; case MAC_RING_TYPE_TX: cap_rings->mr_group_type = MAC_GROUP_TYPE_STATIC; cap_rings->mr_rnum = ixgbe->num_tx_rings; cap_rings->mr_gnum = 0; cap_rings->mr_rget = ixgbe_fill_ring; cap_rings->mr_gget = NULL; break; default: break; } break; } case MAC_CAPAB_TRANSCEIVER: { mac_capab_transceiver_t *mct = cap_data; /* * Rather than try and guess based on the media type whether or * not we have a transceiver we can read, we instead will let * the actual function calls figure that out for us. */ mct->mct_flags = 0; mct->mct_ntransceivers = 1; mct->mct_info = ixgbe_transceiver_info; mct->mct_read = ixgbe_transceiver_read; return (B_TRUE); } default: return (B_FALSE); } return (B_TRUE); } int ixgbe_m_setprop(void *arg, const char *pr_name, mac_prop_id_t pr_num, uint_t pr_valsize, const void *pr_val) { ixgbe_t *ixgbe = (ixgbe_t *)arg; struct ixgbe_hw *hw = &ixgbe->hw; int err = 0; uint32_t flow_control; uint32_t cur_mtu, new_mtu; uint32_t rx_size; uint32_t tx_size; ixgbe_link_speed speeds = 0; mutex_enter(&ixgbe->gen_lock); if (ixgbe->ixgbe_state & IXGBE_SUSPENDED) { mutex_exit(&ixgbe->gen_lock); return (ECANCELED); } /* * We cannot always rely on the common code maintaining * hw->phy.speeds_supported, therefore we fall back to use the recorded * supported speeds which were obtained during instance init in * ixgbe_init_params(). */ speeds = hw->phy.speeds_supported; if (speeds == 0) speeds = ixgbe->speeds_supported; if (ixgbe->loopback_mode != IXGBE_LB_NONE && ixgbe_param_locked(pr_num)) { /* * All en_* parameters are locked (read-only) * while the device is in any sort of loopback mode. */ mutex_exit(&ixgbe->gen_lock); return (EBUSY); } /* * We allow speed changes only on baseT PHYs. MAC_PROP_EN_* are marked * read-only on non-baseT PHYs. */ switch (pr_num) { case MAC_PROP_EN_10GFDX_CAP: if (hw->phy.media_type == ixgbe_media_type_copper && speeds & IXGBE_LINK_SPEED_10GB_FULL) { ixgbe->param_en_10000fdx_cap = *(uint8_t *)pr_val; goto setup_link; } else { err = ENOTSUP; break; } case MAC_PROP_EN_5000FDX_CAP: if (hw->phy.media_type == ixgbe_media_type_copper && speeds & IXGBE_LINK_SPEED_5GB_FULL) { ixgbe->param_en_5000fdx_cap = *(uint8_t *)pr_val; goto setup_link; } else { err = ENOTSUP; break; } case MAC_PROP_EN_2500FDX_CAP: if (hw->phy.media_type == ixgbe_media_type_copper && speeds & IXGBE_LINK_SPEED_2_5GB_FULL) { ixgbe->param_en_2500fdx_cap = *(uint8_t *)pr_val; goto setup_link; } else { err = ENOTSUP; break; } case MAC_PROP_EN_1000FDX_CAP: if (hw->phy.media_type == ixgbe_media_type_copper && speeds & IXGBE_LINK_SPEED_1GB_FULL) { ixgbe->param_en_1000fdx_cap = *(uint8_t *)pr_val; goto setup_link; } else { err = ENOTSUP; break; } case MAC_PROP_EN_100FDX_CAP: if (hw->phy.media_type == ixgbe_media_type_copper && speeds & IXGBE_LINK_SPEED_100_FULL) { ixgbe->param_en_100fdx_cap = *(uint8_t *)pr_val; goto setup_link; } else { err = ENOTSUP; break; } case MAC_PROP_AUTONEG: if (ixgbe->hw.phy.media_type != ixgbe_media_type_copper) { err = ENOTSUP; break; } else { ixgbe->param_adv_autoneg_cap = *(uint8_t *)pr_val; goto setup_link; } case MAC_PROP_FLOWCTRL: bcopy(pr_val, &flow_control, sizeof (flow_control)); switch (flow_control) { default: err = EINVAL; break; case LINK_FLOWCTRL_NONE: hw->fc.requested_mode = ixgbe_fc_none; break; case LINK_FLOWCTRL_RX: hw->fc.requested_mode = ixgbe_fc_rx_pause; break; case LINK_FLOWCTRL_TX: hw->fc.requested_mode = ixgbe_fc_tx_pause; break; case LINK_FLOWCTRL_BI: hw->fc.requested_mode = ixgbe_fc_full; break; } setup_link: if (err == 0) { if (ixgbe_driver_setup_link(ixgbe, B_TRUE) != IXGBE_SUCCESS) err = EINVAL; } break; case MAC_PROP_ADV_10GFDX_CAP: case MAC_PROP_ADV_5000FDX_CAP: case MAC_PROP_ADV_2500FDX_CAP: case MAC_PROP_ADV_1000FDX_CAP: case MAC_PROP_ADV_100FDX_CAP: case MAC_PROP_STATUS: case MAC_PROP_SPEED: case MAC_PROP_DUPLEX: err = ENOTSUP; /* read-only prop. Can't set this. */ break; case MAC_PROP_MTU: cur_mtu = ixgbe->default_mtu; bcopy(pr_val, &new_mtu, sizeof (new_mtu)); if (new_mtu == cur_mtu) { err = 0; break; } if (new_mtu < DEFAULT_MTU || new_mtu > ixgbe->capab->max_mtu) { err = EINVAL; break; } if (ixgbe->ixgbe_state & IXGBE_STARTED) { err = EBUSY; break; } err = mac_maxsdu_update(ixgbe->mac_hdl, new_mtu); if (err == 0) { ixgbe->default_mtu = new_mtu; ixgbe->max_frame_size = ixgbe->default_mtu + sizeof (struct ether_vlan_header) + ETHERFCSL; /* * Set rx buffer size */ rx_size = ixgbe->max_frame_size + IPHDR_ALIGN_ROOM; ixgbe->rx_buf_size = ((rx_size >> 10) + ((rx_size & (((uint32_t)1 << 10) - 1)) > 0 ? 1 : 0)) << 10; /* * Set tx buffer size */ tx_size = ixgbe->max_frame_size; ixgbe->tx_buf_size = ((tx_size >> 10) + ((tx_size & (((uint32_t)1 << 10) - 1)) > 0 ? 1 : 0)) << 10; } break; case MAC_PROP_PRIVATE: err = ixgbe_set_priv_prop(ixgbe, pr_name, pr_valsize, pr_val); break; default: err = ENOTSUP; break; } mutex_exit(&ixgbe->gen_lock); return (err); } int ixgbe_m_getprop(void *arg, const char *pr_name, mac_prop_id_t pr_num, uint_t pr_valsize, void *pr_val) { ixgbe_t *ixgbe = (ixgbe_t *)arg; struct ixgbe_hw *hw = &ixgbe->hw; int err = 0; uint32_t flow_control; uint64_t tmp = 0; ixgbe_link_speed speeds = 0; /* * We cannot always rely on the common code maintaining * hw->phy.speeds_supported, therefore we fall back to use the recorded * supported speeds which were obtained during instance init in * ixgbe_init_params(). */ speeds = hw->phy.speeds_supported; if (speeds == 0) speeds = ixgbe->speeds_supported; switch (pr_num) { case MAC_PROP_DUPLEX: ASSERT(pr_valsize >= sizeof (link_duplex_t)); bcopy(&ixgbe->link_duplex, pr_val, sizeof (link_duplex_t)); break; case MAC_PROP_SPEED: ASSERT(pr_valsize >= sizeof (uint64_t)); tmp = ixgbe->link_speed * 1000000ull; bcopy(&tmp, pr_val, sizeof (tmp)); break; case MAC_PROP_AUTONEG: *(uint8_t *)pr_val = ixgbe->param_adv_autoneg_cap; break; case MAC_PROP_FLOWCTRL: ASSERT(pr_valsize >= sizeof (uint32_t)); switch (hw->fc.requested_mode) { case ixgbe_fc_none: flow_control = LINK_FLOWCTRL_NONE; break; case ixgbe_fc_rx_pause: flow_control = LINK_FLOWCTRL_RX; break; case ixgbe_fc_tx_pause: flow_control = LINK_FLOWCTRL_TX; break; case ixgbe_fc_full: flow_control = LINK_FLOWCTRL_BI; break; } bcopy(&flow_control, pr_val, sizeof (flow_control)); break; case MAC_PROP_ADV_10GFDX_CAP: if (speeds & IXGBE_LINK_SPEED_10GB_FULL) *(uint8_t *)pr_val = ixgbe->param_adv_10000fdx_cap; else err = ENOTSUP; break; case MAC_PROP_EN_10GFDX_CAP: if (speeds & IXGBE_LINK_SPEED_10GB_FULL) *(uint8_t *)pr_val = ixgbe->param_en_10000fdx_cap; else err = ENOTSUP; break; case MAC_PROP_ADV_5000FDX_CAP: if (speeds & IXGBE_LINK_SPEED_5GB_FULL) *(uint8_t *)pr_val = ixgbe->param_adv_5000fdx_cap; else err = ENOTSUP; break; case MAC_PROP_EN_5000FDX_CAP: if (speeds & IXGBE_LINK_SPEED_5GB_FULL) *(uint8_t *)pr_val = ixgbe->param_en_5000fdx_cap; else err = ENOTSUP; break; case MAC_PROP_ADV_2500FDX_CAP: if (speeds & IXGBE_LINK_SPEED_2_5GB_FULL) *(uint8_t *)pr_val = ixgbe->param_adv_2500fdx_cap; else err = ENOTSUP; break; case MAC_PROP_EN_2500FDX_CAP: if (speeds & IXGBE_LINK_SPEED_2_5GB_FULL) *(uint8_t *)pr_val = ixgbe->param_en_2500fdx_cap; else err = ENOTSUP; break; case MAC_PROP_ADV_1000FDX_CAP: if (speeds & IXGBE_LINK_SPEED_1GB_FULL) *(uint8_t *)pr_val = ixgbe->param_adv_1000fdx_cap; else err = ENOTSUP; break; case MAC_PROP_EN_1000FDX_CAP: if (speeds & IXGBE_LINK_SPEED_1GB_FULL) *(uint8_t *)pr_val = ixgbe->param_en_1000fdx_cap; else err = ENOTSUP; break; case MAC_PROP_ADV_100FDX_CAP: if (speeds & IXGBE_LINK_SPEED_100_FULL) *(uint8_t *)pr_val = ixgbe->param_adv_100fdx_cap; else err = ENOTSUP; break; case MAC_PROP_EN_100FDX_CAP: if (speeds & IXGBE_LINK_SPEED_100_FULL) *(uint8_t *)pr_val = ixgbe->param_en_100fdx_cap; else err = ENOTSUP; break; case MAC_PROP_PRIVATE: err = ixgbe_get_priv_prop(ixgbe, pr_name, pr_valsize, pr_val); break; default: err = ENOTSUP; break; } return (err); } void ixgbe_m_propinfo(void *arg, const char *pr_name, mac_prop_id_t pr_num, mac_prop_info_handle_t prh) { ixgbe_t *ixgbe = (ixgbe_t *)arg; struct ixgbe_hw *hw = &ixgbe->hw; uint_t perm; uint8_t value; ixgbe_link_speed speeds = 0; /* * We cannot always rely on the common code maintaining * hw->phy.speeds_supported, therefore we fall back to use the * recorded supported speeds which were obtained during instance init in * ixgbe_init_params(). */ speeds = hw->phy.speeds_supported; if (speeds == 0) speeds = ixgbe->speeds_supported; switch (pr_num) { case MAC_PROP_DUPLEX: case MAC_PROP_SPEED: mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ); break; case MAC_PROP_ADV_100FDX_CAP: mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ); value = (speeds & IXGBE_LINK_SPEED_100_FULL) ? 1 : 0; mac_prop_info_set_default_uint8(prh, value); break; case MAC_PROP_ADV_1000FDX_CAP: mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ); value = (speeds & IXGBE_LINK_SPEED_1GB_FULL) ? 1 : 0; mac_prop_info_set_default_uint8(prh, value); break; case MAC_PROP_ADV_2500FDX_CAP: mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ); value = (speeds & IXGBE_LINK_SPEED_2_5GB_FULL) ? 1 : 0; mac_prop_info_set_default_uint8(prh, value); break; case MAC_PROP_ADV_5000FDX_CAP: mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ); value = (speeds & IXGBE_LINK_SPEED_5GB_FULL) ? 1 : 0; mac_prop_info_set_default_uint8(prh, value); break; case MAC_PROP_ADV_10GFDX_CAP: mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ); value = (speeds & IXGBE_LINK_SPEED_10GB_FULL) ? 1 : 0; mac_prop_info_set_default_uint8(prh, value); break; /* * We allow speed changes only on baseT PHYs. MAC_PROP_EN_* are marked * read-only on non-baseT (SFP) PHYs. */ case MAC_PROP_AUTONEG: perm = (hw->phy.media_type == ixgbe_media_type_copper) ? MAC_PROP_PERM_RW : MAC_PROP_PERM_READ; mac_prop_info_set_perm(prh, perm); mac_prop_info_set_default_uint8(prh, 1); break; case MAC_PROP_EN_10GFDX_CAP: if (speeds & IXGBE_LINK_SPEED_10GB_FULL) { perm = (hw->phy.media_type == ixgbe_media_type_copper) ? MAC_PROP_PERM_RW : MAC_PROP_PERM_READ; mac_prop_info_set_perm(prh, perm); mac_prop_info_set_default_uint8(prh, 1); } break; case MAC_PROP_EN_5000FDX_CAP: if (speeds & IXGBE_LINK_SPEED_5GB_FULL) { perm = (hw->phy.media_type == ixgbe_media_type_copper) ? MAC_PROP_PERM_RW : MAC_PROP_PERM_READ; mac_prop_info_set_perm(prh, perm); mac_prop_info_set_default_uint8(prh, 1); } break; case MAC_PROP_EN_2500FDX_CAP: if (speeds & IXGBE_LINK_SPEED_2_5GB_FULL) { perm = (hw->phy.media_type == ixgbe_media_type_copper) ? MAC_PROP_PERM_RW : MAC_PROP_PERM_READ; mac_prop_info_set_perm(prh, perm); mac_prop_info_set_default_uint8(prh, 1); } break; case MAC_PROP_EN_1000FDX_CAP: if (speeds & IXGBE_LINK_SPEED_1GB_FULL) { perm = (hw->phy.media_type == ixgbe_media_type_copper) ? MAC_PROP_PERM_RW : MAC_PROP_PERM_READ; mac_prop_info_set_perm(prh, perm); mac_prop_info_set_default_uint8(prh, 1); } break; case MAC_PROP_EN_100FDX_CAP: if (speeds & IXGBE_LINK_SPEED_100_FULL) { perm = (hw->phy.media_type == ixgbe_media_type_copper) ? MAC_PROP_PERM_RW : MAC_PROP_PERM_READ; mac_prop_info_set_perm(prh, perm); mac_prop_info_set_default_uint8(prh, 1); } break; case MAC_PROP_FLOWCTRL: mac_prop_info_set_default_link_flowctrl(prh, LINK_FLOWCTRL_NONE); break; case MAC_PROP_MTU: mac_prop_info_set_range_uint32(prh, DEFAULT_MTU, ixgbe->capab->max_mtu); break; case MAC_PROP_PRIVATE: { char valstr[64]; int value; bzero(valstr, sizeof (valstr)); if (strcmp(pr_name, "_adv_pause_cap") == 0 || strcmp(pr_name, "_adv_asym_pause_cap") == 0) { mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ); return; } if (strcmp(pr_name, "_tx_copy_thresh") == 0) { value = DEFAULT_TX_COPY_THRESHOLD; } else if (strcmp(pr_name, "_tx_recycle_thresh") == 0) { value = DEFAULT_TX_RECYCLE_THRESHOLD; } else if (strcmp(pr_name, "_tx_overload_thresh") == 0) { value = DEFAULT_TX_OVERLOAD_THRESHOLD; } else if (strcmp(pr_name, "_tx_resched_thresh") == 0) { value = DEFAULT_TX_RESCHED_THRESHOLD; } else if (strcmp(pr_name, "_rx_copy_thresh") == 0) { value = DEFAULT_RX_COPY_THRESHOLD; } else if (strcmp(pr_name, "_rx_limit_per_intr") == 0) { value = DEFAULT_RX_LIMIT_PER_INTR; } if (strcmp(pr_name, "_intr_throttling") == 0) { value = ixgbe->capab->def_intr_throttle; } else { return; } (void) snprintf(valstr, sizeof (valstr), "%x", value); } } } boolean_t ixgbe_param_locked(mac_prop_id_t pr_num) { /* * All en_* parameters are locked (read-only) while * the device is in any sort of loopback mode ... */ switch (pr_num) { case MAC_PROP_EN_10GFDX_CAP: case MAC_PROP_EN_5000FDX_CAP: case MAC_PROP_EN_2500FDX_CAP: case MAC_PROP_EN_1000FDX_CAP: case MAC_PROP_EN_100FDX_CAP: case MAC_PROP_AUTONEG: case MAC_PROP_FLOWCTRL: return (B_TRUE); } return (B_FALSE); } /* ARGSUSED */ int ixgbe_set_priv_prop(ixgbe_t *ixgbe, const char *pr_name, uint_t pr_valsize, const void *pr_val) { int err = 0; long result; struct ixgbe_hw *hw = &ixgbe->hw; int i; if (strcmp(pr_name, "_tx_copy_thresh") == 0) { if (pr_val == NULL) { err = EINVAL; return (err); } (void) ddi_strtol(pr_val, (char **)NULL, 0, &result); if (result < MIN_TX_COPY_THRESHOLD || result > MAX_TX_COPY_THRESHOLD) err = EINVAL; else { ixgbe->tx_copy_thresh = (uint32_t)result; } return (err); } if (strcmp(pr_name, "_tx_recycle_thresh") == 0) { if (pr_val == NULL) { err = EINVAL; return (err); } (void) ddi_strtol(pr_val, (char **)NULL, 0, &result); if (result < MIN_TX_RECYCLE_THRESHOLD || result > MAX_TX_RECYCLE_THRESHOLD) err = EINVAL; else { ixgbe->tx_recycle_thresh = (uint32_t)result; } return (err); } if (strcmp(pr_name, "_tx_overload_thresh") == 0) { if (pr_val == NULL) { err = EINVAL; return (err); } (void) ddi_strtol(pr_val, (char **)NULL, 0, &result); if (result < MIN_TX_OVERLOAD_THRESHOLD || result > MAX_TX_OVERLOAD_THRESHOLD) err = EINVAL; else { ixgbe->tx_overload_thresh = (uint32_t)result; } return (err); } if (strcmp(pr_name, "_tx_resched_thresh") == 0) { if (pr_val == NULL) { err = EINVAL; return (err); } (void) ddi_strtol(pr_val, (char **)NULL, 0, &result); if (result < MIN_TX_RESCHED_THRESHOLD || result > MAX_TX_RESCHED_THRESHOLD) err = EINVAL; else { ixgbe->tx_resched_thresh = (uint32_t)result; } return (err); } if (strcmp(pr_name, "_rx_copy_thresh") == 0) { if (pr_val == NULL) { err = EINVAL; return (err); } (void) ddi_strtol(pr_val, (char **)NULL, 0, &result); if (result < MIN_RX_COPY_THRESHOLD || result > MAX_RX_COPY_THRESHOLD) err = EINVAL; else { ixgbe->rx_copy_thresh = (uint32_t)result; } return (err); } if (strcmp(pr_name, "_rx_limit_per_intr") == 0) { if (pr_val == NULL) { err = EINVAL; return (err); } (void) ddi_strtol(pr_val, (char **)NULL, 0, &result); if (result < MIN_RX_LIMIT_PER_INTR || result > MAX_RX_LIMIT_PER_INTR) err = EINVAL; else { ixgbe->rx_limit_per_intr = (uint32_t)result; } return (err); } if (strcmp(pr_name, "_intr_throttling") == 0) { if (pr_val == NULL) { err = EINVAL; return (err); } (void) ddi_strtol(pr_val, (char **)NULL, 0, &result); if (result < ixgbe->capab->min_intr_throttle || result > ixgbe->capab->max_intr_throttle) err = EINVAL; else { ixgbe->intr_throttling[0] = (uint32_t)result; /* * 82599, X540 and X550 require the interrupt throttling * rate is a multiple of 8. This is enforced by the * register definiton. */ if (hw->mac.type == ixgbe_mac_82599EB || hw->mac.type == ixgbe_mac_X540 || hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X550EM_x) { ixgbe->intr_throttling[0] = ixgbe->intr_throttling[0] & 0xFF8; } for (i = 0; i < MAX_INTR_VECTOR; i++) ixgbe->intr_throttling[i] = ixgbe->intr_throttling[0]; /* Set interrupt throttling rate */ for (i = 0; i < ixgbe->intr_cnt; i++) IXGBE_WRITE_REG(hw, IXGBE_EITR(i), ixgbe->intr_throttling[i]); } return (err); } return (ENOTSUP); } int ixgbe_get_priv_prop(ixgbe_t *ixgbe, const char *pr_name, uint_t pr_valsize, void *pr_val) { int err = ENOTSUP; int value; if (strcmp(pr_name, "_adv_pause_cap") == 0) { value = ixgbe->param_adv_pause_cap; err = 0; goto done; } if (strcmp(pr_name, "_adv_asym_pause_cap") == 0) { value = ixgbe->param_adv_asym_pause_cap; err = 0; goto done; } if (strcmp(pr_name, "_tx_copy_thresh") == 0) { value = ixgbe->tx_copy_thresh; err = 0; goto done; } if (strcmp(pr_name, "_tx_recycle_thresh") == 0) { value = ixgbe->tx_recycle_thresh; err = 0; goto done; } if (strcmp(pr_name, "_tx_overload_thresh") == 0) { value = ixgbe->tx_overload_thresh; err = 0; goto done; } if (strcmp(pr_name, "_tx_resched_thresh") == 0) { value = ixgbe->tx_resched_thresh; err = 0; goto done; } if (strcmp(pr_name, "_rx_copy_thresh") == 0) { value = ixgbe->rx_copy_thresh; err = 0; goto done; } if (strcmp(pr_name, "_rx_limit_per_intr") == 0) { value = ixgbe->rx_limit_per_intr; err = 0; goto done; } if (strcmp(pr_name, "_intr_throttling") == 0) { value = ixgbe->intr_throttling[0]; err = 0; goto done; } done: if (err == 0) { (void) snprintf(pr_val, pr_valsize, "%d", value); } return (err); }