/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #include #include #include #include #include #define _SUN_TPI_VERSION 2 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "sctp_impl.h" #include "sctp_asconf.h" #include "sctp_addr.h" static struct kmem_cache *sctp_kmem_set_cache; /* * PR-SCTP comments. * * When we get a valid Forward TSN chunk, we check the fragment list for this * SSN and preceeding SSNs free all them. Further, if this Forward TSN causes * the next expected SSN to be present in the stream queue, we deliver any * such stranded messages upstream. We also update the SACK info. appropriately. * When checking for advancing the cumulative ack (in sctp_cumack()) we must * check for abandoned chunks and messages. While traversing the tramsmit * list if we come across an abandoned chunk, we can skip the message (i.e. * take it out of the (re)transmit list) since this message, and hence this * chunk, has been marked abandoned by sctp_rexmit(). If we come across an * unsent chunk for a message this now abandoned we need to check if a * Forward TSN needs to be sent, this could be a case where we deferred sending * a Forward TSN in sctp_get_msg_to_send(). Further, after processing a * SACK we check if the Advanced peer ack point can be moved ahead, i.e. * if we can send a Forward TSN via sctp_check_abandoned_data(). */ void sctp_free_set(sctp_set_t *s) { sctp_set_t *p; while (s) { p = s->next; kmem_cache_free(sctp_kmem_set_cache, s); s = p; } } static void sctp_ack_add(sctp_set_t **head, uint32_t tsn, int *num) { sctp_set_t *p, *t; if (head == NULL || num == NULL) return; ASSERT(*num >= 0); ASSERT((*num == 0 && *head == NULL) || (*num > 0 && *head != NULL)); if (*head == NULL) { *head = kmem_cache_alloc(sctp_kmem_set_cache, KM_NOSLEEP); if (*head == NULL) return; (*head)->prev = (*head)->next = NULL; (*head)->begin = tsn; (*head)->end = tsn; *num = 1; return; } ASSERT((*head)->prev == NULL); /* * Handle this special case here so we don't have to check * for it each time in the loop. */ if (SEQ_LT(tsn + 1, (*head)->begin)) { /* add a new set, and move the head pointer */ t = kmem_cache_alloc(sctp_kmem_set_cache, KM_NOSLEEP); if (t == NULL) return; t->next = *head; t->prev = NULL; (*head)->prev = t; t->begin = tsn; t->end = tsn; (*num)++; *head = t; return; } /* * We need to handle the following cases, where p points to * the current set (as we walk through the loop): * * 1. tsn is entirely less than p; create a new set before p. * 2. tsn borders p from less; coalesce p with tsn. * 3. tsn is withing p; do nothing. * 4. tsn borders p from greater; coalesce p with tsn. * 4a. p may now border p->next from less; if so, coalesce those * two sets. * 5. tsn is entirely greater then all sets; add a new set at * the end. */ for (p = *head; ; p = p->next) { if (SEQ_LT(tsn + 1, p->begin)) { /* 1: add a new set before p. */ t = kmem_cache_alloc(sctp_kmem_set_cache, KM_NOSLEEP); if (t == NULL) return; t->next = p; t->prev = NULL; t->begin = tsn; t->end = tsn; if (p->prev) { t->prev = p->prev; p->prev->next = t; } p->prev = t; (*num)++; return; } if ((tsn + 1) == p->begin) { /* 2: adjust p->begin */ p->begin = tsn; return; } if (SEQ_GEQ(tsn, p->begin) && SEQ_LEQ(tsn, p->end)) { /* 3; do nothing */ return; } if ((p->end + 1) == tsn) { /* 4; adjust p->end */ p->end = tsn; if (p->next != NULL && (tsn + 1) == p->next->begin) { /* 4a: coalesce p and p->next */ t = p->next; p->end = t->end; p->next = t->next; if (t->next != NULL) t->next->prev = p; kmem_cache_free(sctp_kmem_set_cache, t); (*num)--; } return; } if (p->next == NULL) { /* 5: add new set at the end */ t = kmem_cache_alloc(sctp_kmem_set_cache, KM_NOSLEEP); if (t == NULL) return; t->next = NULL; t->prev = p; t->begin = tsn; t->end = tsn; p->next = t; (*num)++; return; } if (SEQ_GT(tsn, p->end + 1)) continue; } } static void sctp_ack_rem(sctp_set_t **head, uint32_t end, int *num) { sctp_set_t *p, *t; if (head == NULL || *head == NULL || num == NULL) return; /* Nothing to remove */ if (SEQ_LT(end, (*head)->begin)) return; /* Find out where to start removing sets */ for (p = *head; p->next; p = p->next) { if (SEQ_LEQ(end, p->end)) break; } if (SEQ_LT(end, p->end) && SEQ_GEQ(end, p->begin)) { /* adjust p */ p->begin = end + 1; /* all done */ if (p == *head) return; } else if (SEQ_GEQ(end, p->end)) { /* remove this set too */ p = p->next; } /* unlink everything before this set */ t = *head; *head = p; if (p != NULL && p->prev != NULL) { p->prev->next = NULL; p->prev = NULL; } sctp_free_set(t); /* recount the number of sets */ *num = 0; for (p = *head; p != NULL; p = p->next) (*num)++; } void sctp_sets_init() { sctp_kmem_set_cache = kmem_cache_create("sctp_set_cache", sizeof (sctp_set_t), 0, NULL, NULL, NULL, NULL, NULL, 0); } void sctp_sets_fini() { kmem_cache_destroy(sctp_kmem_set_cache); } sctp_chunk_hdr_t * sctp_first_chunk(uchar_t *rptr, ssize_t remaining) { sctp_chunk_hdr_t *ch; uint16_t ch_len; if (remaining < sizeof (*ch)) { return (NULL); } ch = (sctp_chunk_hdr_t *)rptr; ch_len = ntohs(ch->sch_len); if (ch_len < sizeof (*ch) || remaining < ch_len) { return (NULL); } return (ch); } sctp_chunk_hdr_t * sctp_next_chunk(sctp_chunk_hdr_t *ch, ssize_t *remaining) { int pad; uint16_t ch_len; if (!ch) { return (NULL); } ch_len = ntohs(ch->sch_len); if ((pad = ch_len & (SCTP_ALIGN - 1)) != 0) { pad = SCTP_ALIGN - pad; } *remaining -= (ch_len + pad); ch = (sctp_chunk_hdr_t *)((char *)ch + ch_len + pad); return (sctp_first_chunk((uchar_t *)ch, *remaining)); } /* * Attach ancillary data to a received SCTP segments. * If the source address (fp) is not the primary, send up a * unitdata_ind so recvfrom() can populate the msg_name field. * If ancillary data is also requested, we append it to the * unitdata_req. Otherwise, we just send up an optdata_ind. */ static int sctp_input_add_ancillary(sctp_t *sctp, mblk_t **mp, sctp_data_hdr_t *dcp, sctp_faddr_t *fp, ip6_pkt_t *ipp) { struct T_unitdata_ind *tudi; int optlen; int hdrlen; uchar_t *optptr; struct cmsghdr *cmsg; mblk_t *mp1; struct sockaddr_in6 sin_buf[1]; struct sockaddr_in6 *sin6; struct sockaddr_in *sin4; uint_t addflag = 0; sin4 = NULL; sin6 = NULL; optlen = hdrlen = 0; /* Figure out address size */ if (sctp->sctp_ipversion == IPV4_VERSION) { sin4 = (struct sockaddr_in *)sin_buf; sin4->sin_family = AF_INET; sin4->sin_port = sctp->sctp_fport; IN6_V4MAPPED_TO_IPADDR(&fp->faddr, sin4->sin_addr.s_addr); hdrlen = sizeof (*tudi) + sizeof (*sin4); } else { sin6 = sin_buf; sin6->sin6_family = AF_INET6; sin6->sin6_port = sctp->sctp_fport; sin6->sin6_addr = fp->faddr; hdrlen = sizeof (*tudi) + sizeof (*sin6); } /* If app asked to receive send / recv info */ if (sctp->sctp_recvsndrcvinfo) { optlen += sizeof (*cmsg) + sizeof (struct sctp_sndrcvinfo); if (hdrlen == 0) hdrlen = sizeof (struct T_optdata_ind); } if (sctp->sctp_ipv6_recvancillary == 0) goto noancillary; if ((ipp->ipp_fields & IPPF_IFINDEX) && ipp->ipp_ifindex != sctp->sctp_recvifindex && (sctp->sctp_ipv6_recvancillary & SCTP_IPV6_RECVPKTINFO)) { optlen += sizeof (*cmsg) + sizeof (struct in6_pktinfo); if (hdrlen == 0) hdrlen = sizeof (struct T_unitdata_ind); addflag |= SCTP_IPV6_RECVPKTINFO; } /* If app asked for hoplimit and it has changed ... */ if ((ipp->ipp_fields & IPPF_HOPLIMIT) && ipp->ipp_hoplimit != sctp->sctp_recvhops && (sctp->sctp_ipv6_recvancillary & SCTP_IPV6_RECVHOPLIMIT)) { optlen += sizeof (*cmsg) + sizeof (uint_t); if (hdrlen == 0) hdrlen = sizeof (struct T_unitdata_ind); addflag |= SCTP_IPV6_RECVHOPLIMIT; } /* If app asked for hopbyhop headers and it has changed ... */ if ((sctp->sctp_ipv6_recvancillary & SCTP_IPV6_RECVHOPOPTS) && ip_cmpbuf(sctp->sctp_hopopts, sctp->sctp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS), ipp->ipp_hopopts, ipp->ipp_hopoptslen)) { optlen += sizeof (*cmsg) + ipp->ipp_hopoptslen - sctp->sctp_v6label_len; if (hdrlen == 0) hdrlen = sizeof (struct T_unitdata_ind); addflag |= SCTP_IPV6_RECVHOPOPTS; if (!ip_allocbuf((void **)&sctp->sctp_hopopts, &sctp->sctp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS), ipp->ipp_hopopts, ipp->ipp_hopoptslen)) return (-1); } /* If app asked for dst headers before routing headers ... */ if ((sctp->sctp_ipv6_recvancillary & SCTP_IPV6_RECVRTDSTOPTS) && ip_cmpbuf(sctp->sctp_rtdstopts, sctp->sctp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS), ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) { optlen += sizeof (*cmsg) + ipp->ipp_rtdstoptslen; if (hdrlen == 0) hdrlen = sizeof (struct T_unitdata_ind); addflag |= SCTP_IPV6_RECVRTDSTOPTS; if (!ip_allocbuf((void **)&sctp->sctp_rtdstopts, &sctp->sctp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS), ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) return (-1); } /* If app asked for routing headers and it has changed ... */ if (sctp->sctp_ipv6_recvancillary & SCTP_IPV6_RECVRTHDR) { if (ip_cmpbuf(sctp->sctp_rthdr, sctp->sctp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR), ipp->ipp_rthdr, ipp->ipp_rthdrlen)) { optlen += sizeof (*cmsg) + ipp->ipp_rthdrlen; if (hdrlen == 0) hdrlen = sizeof (struct T_unitdata_ind); addflag |= SCTP_IPV6_RECVRTHDR; if (!ip_allocbuf((void **)&sctp->sctp_rthdr, &sctp->sctp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR), ipp->ipp_rthdr, ipp->ipp_rthdrlen)) return (-1); } } /* If app asked for dest headers and it has changed ... */ if ((sctp->sctp_ipv6_recvancillary & SCTP_IPV6_RECVDSTOPTS) && ip_cmpbuf(sctp->sctp_dstopts, sctp->sctp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS), ipp->ipp_dstopts, ipp->ipp_dstoptslen)) { optlen += sizeof (*cmsg) + ipp->ipp_dstoptslen; if (hdrlen == 0) hdrlen = sizeof (struct T_unitdata_ind); addflag |= SCTP_IPV6_RECVDSTOPTS; if (!ip_allocbuf((void **)&sctp->sctp_dstopts, &sctp->sctp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS), ipp->ipp_dstopts, ipp->ipp_dstoptslen)) return (-1); } noancillary: /* Nothing to add */ if (hdrlen == 0) return (-1); mp1 = allocb(hdrlen + optlen + sizeof (void *), BPRI_MED); if (mp1 == NULL) return (-1); mp1->b_cont = *mp; *mp = mp1; mp1->b_rptr += sizeof (void *); /* pointer worth of padding */ mp1->b_wptr = mp1->b_rptr + hdrlen + optlen; DB_TYPE(mp1) = M_PROTO; tudi = (struct T_unitdata_ind *)mp1->b_rptr; tudi->PRIM_type = T_UNITDATA_IND; tudi->SRC_length = sin4 ? sizeof (*sin4) : sizeof (*sin6); tudi->SRC_offset = sizeof (*tudi); tudi->OPT_offset = sizeof (*tudi) + tudi->SRC_length; tudi->OPT_length = optlen; if (sin4) { bcopy(sin4, tudi + 1, sizeof (*sin4)); } else { bcopy(sin6, tudi + 1, sizeof (*sin6)); } optptr = (uchar_t *)tudi + tudi->OPT_offset; if (sctp->sctp_recvsndrcvinfo) { /* XXX need backout method if memory allocation fails. */ struct sctp_sndrcvinfo *sri; cmsg = (struct cmsghdr *)optptr; cmsg->cmsg_level = IPPROTO_SCTP; cmsg->cmsg_type = SCTP_SNDRCV; cmsg->cmsg_len = sizeof (*cmsg) + sizeof (*sri); optptr += sizeof (*cmsg); sri = (struct sctp_sndrcvinfo *)(cmsg + 1); ASSERT(OK_32PTR(sri)); sri->sinfo_stream = ntohs(dcp->sdh_sid); sri->sinfo_ssn = ntohs(dcp->sdh_ssn); if (SCTP_DATA_GET_UBIT(dcp)) { sri->sinfo_flags = MSG_UNORDERED; } else { sri->sinfo_flags = 0; } sri->sinfo_ppid = dcp->sdh_payload_id; sri->sinfo_context = 0; sri->sinfo_timetolive = 0; sri->sinfo_tsn = ntohl(dcp->sdh_tsn); sri->sinfo_cumtsn = sctp->sctp_ftsn; sri->sinfo_assoc_id = 0; optptr += sizeof (*sri); } /* * If app asked for pktinfo and the index has changed ... * Note that the local address never changes for the connection. */ if (addflag & SCTP_IPV6_RECVPKTINFO) { struct in6_pktinfo *pkti; cmsg = (struct cmsghdr *)optptr; cmsg->cmsg_level = IPPROTO_IPV6; cmsg->cmsg_type = IPV6_PKTINFO; cmsg->cmsg_len = sizeof (*cmsg) + sizeof (*pkti); optptr += sizeof (*cmsg); pkti = (struct in6_pktinfo *)optptr; if (sctp->sctp_ipversion == IPV6_VERSION) pkti->ipi6_addr = sctp->sctp_ip6h->ip6_src; else IN6_IPADDR_TO_V4MAPPED(sctp->sctp_ipha->ipha_src, &pkti->ipi6_addr); pkti->ipi6_ifindex = ipp->ipp_ifindex; optptr += sizeof (*pkti); ASSERT(OK_32PTR(optptr)); /* Save as "last" value */ sctp->sctp_recvifindex = ipp->ipp_ifindex; } /* If app asked for hoplimit and it has changed ... */ if (addflag & SCTP_IPV6_RECVHOPLIMIT) { cmsg = (struct cmsghdr *)optptr; cmsg->cmsg_level = IPPROTO_IPV6; cmsg->cmsg_type = IPV6_HOPLIMIT; cmsg->cmsg_len = sizeof (*cmsg) + sizeof (uint_t); optptr += sizeof (*cmsg); *(uint_t *)optptr = ipp->ipp_hoplimit; optptr += sizeof (uint_t); ASSERT(OK_32PTR(optptr)); /* Save as "last" value */ sctp->sctp_recvhops = ipp->ipp_hoplimit; } if (addflag & SCTP_IPV6_RECVHOPOPTS) { cmsg = (struct cmsghdr *)optptr; cmsg->cmsg_level = IPPROTO_IPV6; cmsg->cmsg_type = IPV6_HOPOPTS; cmsg->cmsg_len = sizeof (*cmsg) + ipp->ipp_hopoptslen; optptr += sizeof (*cmsg); bcopy(ipp->ipp_hopopts, optptr, ipp->ipp_hopoptslen); optptr += ipp->ipp_hopoptslen; ASSERT(OK_32PTR(optptr)); /* Save as last value */ ip_savebuf((void **)&sctp->sctp_hopopts, &sctp->sctp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS), ipp->ipp_hopopts, ipp->ipp_hopoptslen); } if (addflag & SCTP_IPV6_RECVRTDSTOPTS) { cmsg = (struct cmsghdr *)optptr; cmsg->cmsg_level = IPPROTO_IPV6; cmsg->cmsg_type = IPV6_RTHDRDSTOPTS; cmsg->cmsg_len = sizeof (*cmsg) + ipp->ipp_rtdstoptslen; optptr += sizeof (*cmsg); bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen); optptr += ipp->ipp_rtdstoptslen; ASSERT(OK_32PTR(optptr)); /* Save as last value */ ip_savebuf((void **)&sctp->sctp_rtdstopts, &sctp->sctp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS), ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); } if (addflag & SCTP_IPV6_RECVRTHDR) { cmsg = (struct cmsghdr *)optptr; cmsg->cmsg_level = IPPROTO_IPV6; cmsg->cmsg_type = IPV6_RTHDR; cmsg->cmsg_len = sizeof (*cmsg) + ipp->ipp_rthdrlen; optptr += sizeof (*cmsg); bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen); optptr += ipp->ipp_rthdrlen; ASSERT(OK_32PTR(optptr)); /* Save as last value */ ip_savebuf((void **)&sctp->sctp_rthdr, &sctp->sctp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR), ipp->ipp_rthdr, ipp->ipp_rthdrlen); } if (addflag & SCTP_IPV6_RECVDSTOPTS) { cmsg = (struct cmsghdr *)optptr; cmsg->cmsg_level = IPPROTO_IPV6; cmsg->cmsg_type = IPV6_DSTOPTS; cmsg->cmsg_len = sizeof (*cmsg) + ipp->ipp_dstoptslen; optptr += sizeof (*cmsg); bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen); optptr += ipp->ipp_dstoptslen; ASSERT(OK_32PTR(optptr)); /* Save as last value */ ip_savebuf((void **)&sctp->sctp_dstopts, &sctp->sctp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS), ipp->ipp_dstopts, ipp->ipp_dstoptslen); } ASSERT(optptr == mp1->b_wptr); return (0); } void sctp_free_reass(sctp_instr_t *sip) { mblk_t *mp, *mpnext, *mctl; for (mp = sip->istr_reass; mp != NULL; mp = mpnext) { mpnext = mp->b_next; mp->b_next = NULL; mp->b_prev = NULL; if (DB_TYPE(mp) == M_CTL) { mctl = mp; ASSERT(mp->b_cont != NULL); mp = mp->b_cont; mctl->b_cont = NULL; freeb(mctl); } freemsg(mp); } } /* * If the series of data fragments of which dmp is a part is successfully * reassembled, the first mblk in the series is returned. dc is adjusted * to point at the data chunk in the lead mblk, and b_rptr also points to * the data chunk; the following mblk's b_rptr's point at the actual payload. * * If the series is not yet reassembled, NULL is returned. dc is not changed. * XXX should probably move this up into the state machine. */ /* Fragment list for un-ordered messages. Partial delivery is not supported */ static mblk_t * sctp_uodata_frag(sctp_t *sctp, mblk_t *dmp, sctp_data_hdr_t **dc) { mblk_t *hmp; mblk_t *begin = NULL; mblk_t *end = NULL; sctp_data_hdr_t *qdc; uint32_t ntsn; uint32_t tsn = ntohl((*dc)->sdh_tsn); #ifdef DEBUG mblk_t *mp1; #endif /* First frag. */ if (sctp->sctp_uo_frags == NULL) { sctp->sctp_uo_frags = dmp; return (NULL); } hmp = sctp->sctp_uo_frags; /* * Insert the segment according to the TSN, fragmented unordered * chunks are sequenced by TSN. */ while (hmp != NULL) { qdc = (sctp_data_hdr_t *)hmp->b_rptr; ntsn = ntohl(qdc->sdh_tsn); if (SEQ_GT(ntsn, tsn)) { if (hmp->b_prev == NULL) { dmp->b_next = hmp; hmp->b_prev = dmp; sctp->sctp_uo_frags = dmp; } else { dmp->b_next = hmp; dmp->b_prev = hmp->b_prev; hmp->b_prev->b_next = dmp; hmp->b_prev = dmp; } break; } if (hmp->b_next == NULL) { hmp->b_next = dmp; dmp->b_prev = hmp; break; } hmp = hmp->b_next; } /* check if we completed a msg */ if (SCTP_DATA_GET_BBIT(*dc)) { begin = dmp; } else if (SCTP_DATA_GET_EBIT(*dc)) { end = dmp; } /* * We walk consecutive TSNs backwards till we get a seg. with * the B bit */ if (begin == NULL) { for (hmp = dmp->b_prev; hmp != NULL; hmp = hmp->b_prev) { qdc = (sctp_data_hdr_t *)hmp->b_rptr; ntsn = ntohl(qdc->sdh_tsn); if ((int32_t)(tsn - ntsn) > 1) { return (NULL); } if (SCTP_DATA_GET_BBIT(qdc)) { begin = hmp; break; } tsn = ntsn; } } tsn = ntohl((*dc)->sdh_tsn); /* * We walk consecutive TSNs till we get a seg. with the E bit */ if (end == NULL) { for (hmp = dmp->b_next; hmp != NULL; hmp = hmp->b_next) { qdc = (sctp_data_hdr_t *)hmp->b_rptr; ntsn = ntohl(qdc->sdh_tsn); if ((int32_t)(ntsn - tsn) > 1) { return (NULL); } if (SCTP_DATA_GET_EBIT(qdc)) { end = hmp; break; } tsn = ntsn; } } if (begin == NULL || end == NULL) { return (NULL); } /* Got one!, Remove the msg from the list */ if (sctp->sctp_uo_frags == begin) { ASSERT(begin->b_prev == NULL); sctp->sctp_uo_frags = end->b_next; if (end->b_next != NULL) end->b_next->b_prev = NULL; } else { begin->b_prev->b_next = end->b_next; if (end->b_next != NULL) end->b_next->b_prev = begin->b_prev; } begin->b_prev = NULL; end->b_next = NULL; /* * Null out b_next and b_prev and chain using b_cont. */ dmp = end = begin; hmp = begin->b_next; *dc = (sctp_data_hdr_t *)begin->b_rptr; begin->b_next = NULL; while (hmp != NULL) { qdc = (sctp_data_hdr_t *)hmp->b_rptr; hmp->b_rptr = (uchar_t *)(qdc + 1); end = hmp->b_next; dmp->b_cont = hmp; dmp = hmp; if (end != NULL) hmp->b_next = NULL; hmp->b_prev = NULL; hmp = end; } BUMP_LOCAL(sctp->sctp_reassmsgs); #ifdef DEBUG mp1 = begin; while (mp1 != NULL) { ASSERT(mp1->b_next == NULL); ASSERT(mp1->b_prev == NULL); mp1 = mp1->b_cont; } #endif return (begin); } /* * Try partial delivery. */ static mblk_t * sctp_try_partial_delivery(sctp_t *sctp, mblk_t *hmp, sctp_reass_t *srp, sctp_data_hdr_t **dc) { mblk_t *first_mp; mblk_t *mp; mblk_t *dmp; mblk_t *qmp; mblk_t *prev; sctp_data_hdr_t *qdc; uint32_t tsn; ASSERT(DB_TYPE(hmp) == M_CTL); dprint(4, ("trypartial: got=%d, needed=%d\n", (int)(srp->got), (int)(srp->needed))); first_mp = hmp->b_cont; mp = first_mp; qdc = (sctp_data_hdr_t *)mp->b_rptr; ASSERT(SCTP_DATA_GET_BBIT(qdc) && srp->hasBchunk); tsn = ntohl(qdc->sdh_tsn) + 1; /* * This loop has two exit conditions: the * end of received chunks has been reached, or * there is a break in the sequence. We want * to chop the reassembly list as follows (the * numbers are TSNs): * 10 -> 11 -> (end of chunks) * 10 -> 11 -> | 13 (break in sequence) */ prev = mp; mp = mp->b_cont; while (mp != NULL) { qdc = (sctp_data_hdr_t *)mp->b_rptr; if (ntohl(qdc->sdh_tsn) != tsn) break; prev = mp; mp = mp->b_cont; tsn++; } /* * We are sending all the fragments upstream, we have to retain * the srp info for further fragments. */ if (mp == NULL) { dmp = hmp->b_cont; hmp->b_cont = NULL; srp->nexttsn = tsn; srp->msglen = 0; srp->needed = 0; srp->got = 0; srp->partial_delivered = B_TRUE; srp->tail = NULL; } else { dmp = hmp->b_cont; hmp->b_cont = mp; } srp->hasBchunk = B_FALSE; /* * mp now points at the last chunk in the sequence, * and prev points to mp's previous in the list. * We chop the list at prev, and convert mp into the * new list head by setting the B bit. Subsequence * fragment deliveries will follow the normal reassembly * path. */ prev->b_cont = NULL; srp->partial_delivered = B_TRUE; dprint(4, ("trypartial: got some, got=%d, needed=%d\n", (int)(srp->got), (int)(srp->needed))); /* * Adjust all mblk's except the lead so their rptr's point to the * payload. sctp_data_chunk() will need to process the lead's * data chunk section, so leave it's rptr pointing at the data chunk. */ *dc = (sctp_data_hdr_t *)dmp->b_rptr; if (srp->tail != NULL) { srp->got--; ASSERT(srp->got != 0); if (srp->needed != 0) { srp->needed--; ASSERT(srp->needed != 0); } srp->msglen -= ntohs((*dc)->sdh_len); } for (qmp = dmp->b_cont; qmp != NULL; qmp = qmp->b_cont) { qdc = (sctp_data_hdr_t *)qmp->b_rptr; qmp->b_rptr = (uchar_t *)(qdc + 1); /* * Deduct the balance from got and needed here, now that * we know we are actually delivering these data. */ if (srp->tail != NULL) { srp->got--; ASSERT(srp->got != 0); if (srp->needed != 0) { srp->needed--; ASSERT(srp->needed != 0); } srp->msglen -= ntohs(qdc->sdh_len); } } ASSERT(srp->msglen == 0); BUMP_LOCAL(sctp->sctp_reassmsgs); return (dmp); } /* * Fragment list for ordered messages. * If no error occures, error is set to 0. If we run out of memory, error * is set to 1. If the peer commits a fatal error (like using different * sequence numbers for the same data fragment series), the association is * aborted and error is set to 2. tpfinished indicates whether we have * assembled a complete message, this is used in sctp_data_chunk() to * see if we can try to send any queued message for this stream. */ static mblk_t * sctp_data_frag(sctp_t *sctp, mblk_t *dmp, sctp_data_hdr_t **dc, int *error, sctp_instr_t *sip, boolean_t *tpfinished) { mblk_t *hmp; mblk_t *pmp; mblk_t *qmp; mblk_t *first_mp; sctp_reass_t *srp; sctp_data_hdr_t *qdc; sctp_data_hdr_t *bdc; sctp_data_hdr_t *edc; uint32_t tsn; uint16_t fraglen = 0; *error = 0; /* find the reassembly queue for this data chunk */ hmp = qmp = sip->istr_reass; for (; hmp != NULL; hmp = hmp->b_next) { srp = (sctp_reass_t *)DB_BASE(hmp); if (ntohs((*dc)->sdh_ssn) == srp->ssn) goto foundit; else if (SSN_GT(srp->ssn, ntohs((*dc)->sdh_ssn))) break; qmp = hmp; } /* * Allocate a M_CTL that will contain information about this * fragmented message. */ if ((pmp = allocb(sizeof (*srp), BPRI_MED)) == NULL) { *error = 1; return (NULL); } DB_TYPE(pmp) = M_CTL; srp = (sctp_reass_t *)DB_BASE(pmp); pmp->b_cont = dmp; if (hmp != NULL) { if (sip->istr_reass == hmp) { sip->istr_reass = pmp; pmp->b_next = hmp; pmp->b_prev = NULL; hmp->b_prev = pmp; } else { qmp->b_next = pmp; pmp->b_prev = qmp; pmp->b_next = hmp; hmp->b_prev = pmp; } } else { /* make a new reass head and stick it on the end */ if (sip->istr_reass == NULL) { sip->istr_reass = pmp; pmp->b_prev = NULL; } else { qmp->b_next = pmp; pmp->b_prev = qmp; } pmp->b_next = NULL; } srp->partial_delivered = B_FALSE; srp->ssn = ntohs((*dc)->sdh_ssn); empty_srp: srp->needed = 0; srp->got = 1; srp->tail = dmp; if (SCTP_DATA_GET_BBIT(*dc)) { srp->msglen = ntohs((*dc)->sdh_len); srp->nexttsn = ntohl((*dc)->sdh_tsn) + 1; srp->hasBchunk = B_TRUE; } else if (srp->partial_delivered && srp->nexttsn == ntohl((*dc)->sdh_tsn)) { SCTP_DATA_SET_BBIT(*dc); /* Last fragment */ if (SCTP_DATA_GET_EBIT(*dc)) { srp->needed = 1; goto frag_done; } srp->hasBchunk = B_TRUE; srp->msglen = ntohs((*dc)->sdh_len); srp->nexttsn++; } return (NULL); foundit: /* * else already have a reassembly queue. Insert the new data chunk * in the reassemble queue. Try the tail first, on the assumption * that the fragments are coming in in order. */ qmp = srp->tail; /* * This means the message was partially delivered. */ if (qmp == NULL) { ASSERT(srp->got == 0 && srp->needed == 0 && srp->partial_delivered); ASSERT(hmp->b_cont == NULL); hmp->b_cont = dmp; goto empty_srp; } qdc = (sctp_data_hdr_t *)qmp->b_rptr; ASSERT(qmp->b_cont == NULL); /* XXXIs it fine to do this just here? */ if ((*dc)->sdh_sid != qdc->sdh_sid) { /* our peer is fatally confused; XXX abort the assc */ *error = 2; return (NULL); } if (SEQ_GT(ntohl((*dc)->sdh_tsn), ntohl(qdc->sdh_tsn))) { qmp->b_cont = dmp; srp->tail = dmp; dmp->b_cont = NULL; if (srp->hasBchunk && srp->nexttsn == ntohl((*dc)->sdh_tsn)) { srp->msglen += ntohs((*dc)->sdh_len); srp->nexttsn++; } goto inserted; } /* Next check for insertion at the beginning */ qmp = hmp->b_cont; qdc = (sctp_data_hdr_t *)qmp->b_rptr; if (SEQ_LT(ntohl((*dc)->sdh_tsn), ntohl(qdc->sdh_tsn))) { dmp->b_cont = qmp; hmp->b_cont = dmp; if (SCTP_DATA_GET_BBIT(*dc)) { srp->hasBchunk = B_TRUE; srp->nexttsn = ntohl((*dc)->sdh_tsn); } goto preinserted; } /* Insert somewhere in the middle */ for (;;) { /* Tail check above should have caught this */ ASSERT(qmp->b_cont != NULL); qdc = (sctp_data_hdr_t *)qmp->b_cont->b_rptr; if (SEQ_LT(ntohl((*dc)->sdh_tsn), ntohl(qdc->sdh_tsn))) { /* insert here */ dmp->b_cont = qmp->b_cont; qmp->b_cont = dmp; break; } qmp = qmp->b_cont; } preinserted: if (!srp->hasBchunk || ntohl((*dc)->sdh_tsn) != srp->nexttsn) goto inserted; /* * fraglen contains the length of consecutive chunks of fragments. * starting from the chunk inserted recently. */ tsn = srp->nexttsn; for (qmp = dmp; qmp != NULL; qmp = qmp->b_cont) { qdc = (sctp_data_hdr_t *)qmp->b_rptr; if (tsn != ntohl(qdc->sdh_tsn)) break; fraglen += ntohs(qdc->sdh_len); tsn++; } srp->nexttsn = tsn; srp->msglen += fraglen; inserted: srp->got++; first_mp = hmp->b_cont; if (srp->needed == 0) { /* check if we have the first and last fragments */ bdc = (sctp_data_hdr_t *)first_mp->b_rptr; edc = (sctp_data_hdr_t *)srp->tail->b_rptr; /* calculate how many fragments are needed, if possible */ if (SCTP_DATA_GET_BBIT(bdc) && SCTP_DATA_GET_EBIT(edc)) { srp->needed = ntohl(edc->sdh_tsn) - ntohl(bdc->sdh_tsn) + 1; } } /* * Try partial delivery if the message length has exceeded the * partial delivery point. Only do this if we can immediately * deliver the partially assembled message, and only partially * deliver one message at a time (i.e. messages cannot be * intermixed arriving at the upper layer). A simple way to * enforce this is to only try partial delivery if this TSN is * the next expected TSN. Partial Delivery not supported * for un-ordered message. */ if (srp->needed != srp->got) { dmp = NULL; if (ntohl((*dc)->sdh_tsn) == sctp->sctp_ftsn && srp->msglen >= sctp->sctp_pd_point) { dmp = sctp_try_partial_delivery(sctp, hmp, srp, dc); *tpfinished = B_FALSE; } return (dmp); } frag_done: /* * else reassembly done; prepare the data for delivery. * First unlink hmp from the ssn list. */ if (sip->istr_reass == hmp) { sip->istr_reass = hmp->b_next; if (hmp->b_next) hmp->b_next->b_prev = NULL; } else { ASSERT(hmp->b_prev != NULL); hmp->b_prev->b_next = hmp->b_next; if (hmp->b_next) hmp->b_next->b_prev = hmp->b_prev; } /* * Using b_prev and b_next was a little sinful, but OK since * this mblk is never put*'d. However, freeb() will still * ASSERT that they are unused, so we need to NULL them out now. */ hmp->b_next = NULL; hmp->b_prev = NULL; dmp = hmp; dmp = dmp->b_cont; hmp->b_cont = NULL; freeb(hmp); *tpfinished = B_TRUE; /* * Adjust all mblk's except the lead so their rptr's point to the * payload. sctp_data_chunk() will need to process the lead's * data chunk section, so leave it's rptr pointing at the data chunk. */ *dc = (sctp_data_hdr_t *)dmp->b_rptr; for (qmp = dmp->b_cont; qmp != NULL; qmp = qmp->b_cont) { qdc = (sctp_data_hdr_t *)qmp->b_rptr; qmp->b_rptr = (uchar_t *)(qdc + 1); } BUMP_LOCAL(sctp->sctp_reassmsgs); return (dmp); } static void sctp_add_dup(uint32_t tsn, mblk_t **dups) { mblk_t *mp; size_t bsize = SCTP_DUP_MBLK_SZ * sizeof (tsn); if (dups == NULL) { return; } /* first time? */ if (*dups == NULL) { *dups = allocb(bsize, BPRI_MED); if (*dups == NULL) { return; } } mp = *dups; if ((mp->b_wptr - mp->b_rptr) >= bsize) { /* maximum reached */ return; } /* add the duplicate tsn */ bcopy(&tsn, mp->b_wptr, sizeof (tsn)); mp->b_wptr += sizeof (tsn); ASSERT((mp->b_wptr - mp->b_rptr) <= bsize); } static void sctp_data_chunk(sctp_t *sctp, sctp_chunk_hdr_t *ch, mblk_t *mp, mblk_t **dups, sctp_faddr_t *fp, ip6_pkt_t *ipp) { sctp_data_hdr_t *dc; mblk_t *dmp, *pmp; sctp_instr_t *instr; int ubit; int isfrag; uint16_t ssn; uint32_t oftsn; boolean_t can_deliver = B_TRUE; uint32_t tsn; int dlen; boolean_t tpfinished = B_TRUE; int32_t new_rwnd; sctp_stack_t *sctps = sctp->sctp_sctps; int error; /* The following are used multiple times, so we inline them */ #define SCTP_ACK_IT(sctp, tsn) \ if (tsn == sctp->sctp_ftsn) { \ dprint(2, ("data_chunk: acking next %x\n", tsn)); \ (sctp)->sctp_ftsn++; \ if ((sctp)->sctp_sack_gaps > 0) \ (sctp)->sctp_force_sack = 1; \ } else if (SEQ_GT(tsn, sctp->sctp_ftsn)) { \ /* Got a gap; record it */ \ dprint(2, ("data_chunk: acking gap %x\n", tsn)); \ sctp_ack_add(&sctp->sctp_sack_info, tsn, \ &sctp->sctp_sack_gaps); \ sctp->sctp_force_sack = 1; \ } dmp = NULL; dc = (sctp_data_hdr_t *)ch; tsn = ntohl(dc->sdh_tsn); dprint(3, ("sctp_data_chunk: mp=%p tsn=%x\n", (void *)mp, tsn)); /* Check for duplicates */ if (SEQ_LT(tsn, sctp->sctp_ftsn)) { dprint(4, ("sctp_data_chunk: dropping duplicate\n")); sctp->sctp_force_sack = 1; sctp_add_dup(dc->sdh_tsn, dups); return; } if (sctp->sctp_sack_info != NULL) { sctp_set_t *sp; for (sp = sctp->sctp_sack_info; sp; sp = sp->next) { if (SEQ_GEQ(tsn, sp->begin) && SEQ_LEQ(tsn, sp->end)) { dprint(4, ("sctp_data_chunk: dropping dup > " "cumtsn\n")); sctp->sctp_force_sack = 1; sctp_add_dup(dc->sdh_tsn, dups); return; } } } /* We cannot deliver anything up now but we still need to handle it. */ if (SCTP_IS_DETACHED(sctp)) { BUMP_MIB(&sctps->sctps_mib, sctpInClosed); can_deliver = B_FALSE; } dlen = ntohs(dc->sdh_len) - sizeof (*dc); /* Check for buffer space */ if (sctp->sctp_rwnd - sctp->sctp_rxqueued < dlen) { /* Drop and SACK, but don't advance the cumulative TSN. */ sctp->sctp_force_sack = 1; dprint(0, ("sctp_data_chunk: exceed rwnd %d rxqueued %d " "dlen %d ssn %d tsn %x\n", sctp->sctp_rwnd, sctp->sctp_rxqueued, dlen, ntohs(dc->sdh_ssn), ntohl(dc->sdh_tsn))); return; } if (ntohs(dc->sdh_sid) >= sctp->sctp_num_istr) { uint16_t inval_parm[2]; inval_parm[0] = dc->sdh_sid; /* RESERVED to be ignored at the receiving end */ inval_parm[1] = 0; /* ack and drop it */ sctp_add_err(sctp, SCTP_ERR_BAD_SID, inval_parm, sizeof (inval_parm), fp); SCTP_ACK_IT(sctp, tsn); return; } ubit = SCTP_DATA_GET_UBIT(dc); ASSERT(sctp->sctp_instr != NULL); instr = &sctp->sctp_instr[ntohs(dc->sdh_sid)]; /* Initialize the stream, if not yet used */ if (instr->sctp == NULL) instr->sctp = sctp; isfrag = !(SCTP_DATA_GET_BBIT(dc) && SCTP_DATA_GET_EBIT(dc)); ssn = ntohs(dc->sdh_ssn); dmp = dupb(mp); if (dmp == NULL) { /* drop it and don't ack it, causing the peer to retransmit */ return; } dmp->b_wptr = (uchar_t *)ch + ntohs(ch->sch_len); sctp->sctp_rxqueued += dlen; oftsn = sctp->sctp_ftsn; if (isfrag) { error = 0; /* fragmented data chunk */ dmp->b_rptr = (uchar_t *)dc; if (ubit) { dmp = sctp_uodata_frag(sctp, dmp, &dc); #if DEBUG if (dmp != NULL) { ASSERT(instr == &sctp->sctp_instr[ntohs(dc->sdh_sid)]); } #endif } else { dmp = sctp_data_frag(sctp, dmp, &dc, &error, instr, &tpfinished); } if (error != 0) { sctp->sctp_rxqueued -= dlen; if (error == 1) { /* * out of memory; don't ack it so * the peer retransmits */ return; } else if (error == 2) { /* * fatal error (i.e. peer used different * ssn's for same fragmented data) -- * the association has been aborted. * XXX need to return errval so state * machine can also abort processing. */ dprint(0, ("error 2: must not happen!\n")); return; } } if (dmp == NULL) { /* * Can't process this data now, but the cumulative * TSN may be advanced, so do the checks at done. */ SCTP_ACK_IT(sctp, tsn); goto done; } } /* * Insert complete messages in correct order for ordered delivery. * tpfinished is true when the incoming chunk contains a complete * message or is the final missing fragment which completed a message. */ if (!ubit && tpfinished && ssn != instr->nextseq) { /* Adjust rptr to point at the data chunk for compares */ dmp->b_rptr = (uchar_t *)dc; dprint(2, ("data_chunk: inserted %x in pq (ssn %d expected %d)\n", ntohl(dc->sdh_tsn), (int)(ssn), (int)(instr->nextseq))); if (instr->istr_msgs == NULL) { instr->istr_msgs = dmp; ASSERT(dmp->b_prev == NULL && dmp->b_next == NULL); } else { mblk_t *imblk = instr->istr_msgs; sctp_data_hdr_t *idc; /* * XXXNeed to take sequence wraps into account, * ... and a more efficient insertion algo. */ for (;;) { idc = (sctp_data_hdr_t *)imblk->b_rptr; if (SSN_GT(ntohs(idc->sdh_ssn), ntohs(dc->sdh_ssn))) { if (instr->istr_msgs == imblk) { instr->istr_msgs = dmp; dmp->b_next = imblk; imblk->b_prev = dmp; } else { ASSERT(imblk->b_prev != NULL); imblk->b_prev->b_next = dmp; dmp->b_prev = imblk->b_prev; imblk->b_prev = dmp; dmp->b_next = imblk; } break; } if (imblk->b_next == NULL) { imblk->b_next = dmp; dmp->b_prev = imblk; break; } imblk = imblk->b_next; } } (instr->istr_nmsgs)++; (sctp->sctp_istr_nmsgs)++; SCTP_ACK_IT(sctp, tsn); return; } /* * Else we can deliver the data directly. Recalculate * dlen now since we may have reassembled data. */ dlen = dmp->b_wptr - (uchar_t *)dc - sizeof (*dc); for (pmp = dmp->b_cont; pmp != NULL; pmp = pmp->b_cont) dlen += pmp->b_wptr - pmp->b_rptr; ASSERT(sctp->sctp_rxqueued >= dlen); ASSERT(sctp->sctp_rwnd >= dlen); /* Deliver the message. */ sctp->sctp_rxqueued -= dlen; if (can_deliver) { dmp->b_rptr = (uchar_t *)(dc + 1); if (sctp_input_add_ancillary(sctp, &dmp, dc, fp, ipp) == 0) { dprint(1, ("sctp_data_chunk: delivering %lu bytes\n", msgdsize(dmp))); sctp->sctp_rwnd -= dlen; /* * Override b_flag for SCTP sockfs internal use */ dmp->b_flag = tpfinished ? 0 : SCTP_PARTIAL_DATA; new_rwnd = sctp->sctp_ulp_recv(sctp->sctp_ulpd, dmp, msgdsize(dmp), 0, &error, NULL); if (new_rwnd > sctp->sctp_rwnd) { sctp->sctp_rwnd = new_rwnd; } SCTP_ACK_IT(sctp, tsn); } else { /* Just free the message if we don't have memory. */ freemsg(dmp); return; } } else { /* About to free the data */ freemsg(dmp); SCTP_ACK_IT(sctp, tsn); } /* * data, now enqueued, may already have been processed and free'd * by the ULP (or we may have just freed it above, if we could not * deliver it), so we must not reference it (this is why we kept * the ssn and ubit above). */ if (ubit != 0) { BUMP_LOCAL(sctp->sctp_iudchunks); goto done; } BUMP_LOCAL(sctp->sctp_idchunks); /* * If there was a partial delivery and it has not finished, * don't pull anything from the pqueues. */ if (!tpfinished) { goto done; } instr->nextseq = ssn + 1; /* Deliver any successive data chunks in the instr queue */ while (instr->istr_nmsgs > 0) { dmp = (mblk_t *)instr->istr_msgs; dc = (sctp_data_hdr_t *)dmp->b_rptr; ssn = ntohs(dc->sdh_ssn); /* Gap in the sequence */ if (ssn != instr->nextseq) break; /* Else deliver the data */ (instr->istr_nmsgs)--; (instr->nextseq)++; (sctp->sctp_istr_nmsgs)--; instr->istr_msgs = instr->istr_msgs->b_next; if (instr->istr_msgs != NULL) instr->istr_msgs->b_prev = NULL; dmp->b_next = dmp->b_prev = NULL; dprint(2, ("data_chunk: pulling %x from pq (ssn %d)\n", ntohl(dc->sdh_tsn), (int)ssn)); /* * If this chunk was reassembled, each b_cont represents * another TSN; advance ftsn now. */ dlen = dmp->b_wptr - dmp->b_rptr - sizeof (*dc); for (pmp = dmp->b_cont; pmp; pmp = pmp->b_cont) dlen += pmp->b_wptr - pmp->b_rptr; ASSERT(sctp->sctp_rxqueued >= dlen); ASSERT(sctp->sctp_rwnd >= dlen); sctp->sctp_rxqueued -= dlen; if (can_deliver) { dmp->b_rptr = (uchar_t *)(dc + 1); if (sctp_input_add_ancillary(sctp, &dmp, dc, fp, ipp) == 0) { dprint(1, ("sctp_data_chunk: delivering %lu " "bytes\n", msgdsize(dmp))); sctp->sctp_rwnd -= dlen; /* * Override b_flag for SCTP sockfs internal use */ dmp->b_flag = tpfinished ? 0 : SCTP_PARTIAL_DATA; new_rwnd = sctp->sctp_ulp_recv(sctp->sctp_ulpd, dmp, msgdsize(dmp), 0, &error, NULL); if (new_rwnd > sctp->sctp_rwnd) { sctp->sctp_rwnd = new_rwnd; } SCTP_ACK_IT(sctp, tsn); } else { freemsg(dmp); return; } } else { /* About to free the data */ freemsg(dmp); SCTP_ACK_IT(sctp, tsn); } } done: /* * If there are gap reports pending, check if advancing * the ftsn here closes a gap. If so, we can advance * ftsn to the end of the set. */ if (sctp->sctp_sack_info != NULL && sctp->sctp_ftsn == sctp->sctp_sack_info->begin) { sctp->sctp_ftsn = sctp->sctp_sack_info->end + 1; } /* * If ftsn has moved forward, maybe we can remove gap reports. * NB: dmp may now be NULL, so don't dereference it here. */ if (oftsn != sctp->sctp_ftsn && sctp->sctp_sack_info != NULL) { sctp_ack_rem(&sctp->sctp_sack_info, sctp->sctp_ftsn - 1, &sctp->sctp_sack_gaps); dprint(2, ("data_chunk: removed acks before %x (num=%d)\n", sctp->sctp_ftsn - 1, sctp->sctp_sack_gaps)); } #ifdef DEBUG if (sctp->sctp_sack_info != NULL) { ASSERT(sctp->sctp_ftsn != sctp->sctp_sack_info->begin); } #endif #undef SCTP_ACK_IT } void sctp_fill_sack(sctp_t *sctp, unsigned char *dst, int sacklen) { sctp_chunk_hdr_t *sch; sctp_sack_chunk_t *sc; sctp_sack_frag_t *sf; uint16_t num_gaps = sctp->sctp_sack_gaps; sctp_set_t *sp; /* Chunk hdr */ sch = (sctp_chunk_hdr_t *)dst; sch->sch_id = CHUNK_SACK; sch->sch_flags = 0; sch->sch_len = htons(sacklen); /* SACK chunk */ sctp->sctp_lastacked = sctp->sctp_ftsn - 1; sc = (sctp_sack_chunk_t *)(sch + 1); sc->ssc_cumtsn = htonl(sctp->sctp_lastacked); if (sctp->sctp_rxqueued < sctp->sctp_rwnd) { sc->ssc_a_rwnd = htonl(sctp->sctp_rwnd - sctp->sctp_rxqueued); } else { sc->ssc_a_rwnd = 0; } sc->ssc_numfrags = htons(num_gaps); sc->ssc_numdups = 0; /* lay in gap reports */ sf = (sctp_sack_frag_t *)(sc + 1); for (sp = sctp->sctp_sack_info; sp; sp = sp->next) { uint16_t offset; /* start */ if (sp->begin > sctp->sctp_lastacked) { offset = (uint16_t)(sp->begin - sctp->sctp_lastacked); } else { /* sequence number wrap */ offset = (uint16_t)(UINT32_MAX - sctp->sctp_lastacked + sp->begin); } sf->ssf_start = htons(offset); /* end */ if (sp->end >= sp->begin) { offset += (uint16_t)(sp->end - sp->begin); } else { /* sequence number wrap */ offset += (uint16_t)(UINT32_MAX - sp->begin + sp->end); } sf->ssf_end = htons(offset); sf++; /* This is just for debugging (a la the following assertion) */ num_gaps--; } ASSERT(num_gaps == 0); /* If the SACK timer is running, stop it */ if (sctp->sctp_ack_timer_running) { sctp_timer_stop(sctp->sctp_ack_mp); sctp->sctp_ack_timer_running = B_FALSE; } BUMP_LOCAL(sctp->sctp_obchunks); } mblk_t * sctp_make_sack(sctp_t *sctp, sctp_faddr_t *sendto, mblk_t *dups) { mblk_t *smp; size_t slen; sctp_chunk_hdr_t *sch; sctp_sack_chunk_t *sc; int32_t acks_max; sctp_stack_t *sctps = sctp->sctp_sctps; uint32_t dups_len; sctp_faddr_t *fp; if (sctp->sctp_force_sack) { sctp->sctp_force_sack = 0; goto checks_done; } acks_max = sctps->sctps_deferred_acks_max; if (sctp->sctp_state == SCTPS_ESTABLISHED) { if (sctp->sctp_sack_toggle < acks_max) { /* no need to SACK right now */ dprint(2, ("sctp_make_sack: %p no sack (toggle)\n", (void *)sctp)); return (NULL); } else if (sctp->sctp_sack_toggle >= acks_max) { sctp->sctp_sack_toggle = 0; } } if (sctp->sctp_ftsn == sctp->sctp_lastacked + 1) { dprint(2, ("sctp_make_sack: %p no sack (already)\n", (void *)sctp)); return (NULL); } checks_done: dprint(2, ("sctp_make_sack: acking %x\n", sctp->sctp_ftsn - 1)); if (dups != NULL) dups_len = MBLKL(dups); else dups_len = 0; slen = sizeof (*sch) + sizeof (*sc) + (sizeof (sctp_sack_frag_t) * sctp->sctp_sack_gaps); /* * If there are error chunks, check and see if we can send the * SACK chunk and error chunks together in one packet. If not, * send the error chunks out now. */ if (sctp->sctp_err_chunks != NULL) { fp = SCTP_CHUNK_DEST(sctp->sctp_err_chunks); if (sctp->sctp_err_len + slen + dups_len > fp->sfa_pmss) { if ((smp = sctp_make_mp(sctp, fp, 0)) == NULL) { SCTP_KSTAT(sctps, sctp_send_err_failed); SCTP_KSTAT(sctps, sctp_send_sack_failed); freemsg(sctp->sctp_err_chunks); sctp->sctp_err_chunks = NULL; sctp->sctp_err_len = 0; return (NULL); } smp->b_cont = sctp->sctp_err_chunks; sctp_set_iplen(sctp, smp); sctp_add_sendq(sctp, smp); sctp->sctp_err_chunks = NULL; sctp->sctp_err_len = 0; } } smp = sctp_make_mp(sctp, sendto, slen); if (smp == NULL) { SCTP_KSTAT(sctps, sctp_send_sack_failed); return (NULL); } sch = (sctp_chunk_hdr_t *)smp->b_wptr; sctp_fill_sack(sctp, smp->b_wptr, slen); smp->b_wptr += slen; if (dups != NULL) { sc = (sctp_sack_chunk_t *)(sch + 1); sc->ssc_numdups = htons(MBLKL(dups) / sizeof (uint32_t)); sch->sch_len = htons(slen + dups_len); smp->b_cont = dups; } if (sctp->sctp_err_chunks != NULL) { linkb(smp, sctp->sctp_err_chunks); sctp->sctp_err_chunks = NULL; sctp->sctp_err_len = 0; } return (smp); } /* * Check and see if we need to send a SACK chunk. If it is needed, * send it out. Return true if a SACK chunk is sent, false otherwise. */ boolean_t sctp_sack(sctp_t *sctp, mblk_t *dups) { mblk_t *smp; sctp_stack_t *sctps = sctp->sctp_sctps; /* If we are shutting down, let send_shutdown() bundle the SACK */ if (sctp->sctp_state == SCTPS_SHUTDOWN_SENT) { sctp_send_shutdown(sctp, 0); } ASSERT(sctp->sctp_lastdata != NULL); if ((smp = sctp_make_sack(sctp, sctp->sctp_lastdata, dups)) == NULL) { /* The caller of sctp_sack() will not free the dups mblk. */ if (dups != NULL) freeb(dups); return (B_FALSE); } sctp_set_iplen(sctp, smp); dprint(2, ("sctp_sack: sending to %p %x:%x:%x:%x\n", (void *)sctp->sctp_lastdata, SCTP_PRINTADDR(sctp->sctp_lastdata->faddr))); sctp->sctp_active = lbolt64; BUMP_MIB(&sctps->sctps_mib, sctpOutAck); sctp_add_sendq(sctp, smp); return (B_TRUE); } /* * This is called if we have a message that was partially sent and is * abandoned. The cum TSN will be the last chunk sent for this message, * subsequent chunks will be marked ABANDONED. We send a Forward TSN * chunk in this case with the TSN of the last sent chunk so that the * peer can clean up its fragment list for this message. This message * will be removed from the transmit list when the peer sends a SACK * back. */ int sctp_check_abandoned_msg(sctp_t *sctp, mblk_t *meta) { sctp_data_hdr_t *dh; mblk_t *nmp; mblk_t *head; int32_t unsent = 0; mblk_t *mp1 = meta->b_cont; uint32_t adv_pap = sctp->sctp_adv_pap; sctp_faddr_t *fp = sctp->sctp_current; sctp_stack_t *sctps = sctp->sctp_sctps; dh = (sctp_data_hdr_t *)mp1->b_rptr; if (SEQ_GEQ(sctp->sctp_lastack_rxd, ntohl(dh->sdh_tsn))) { sctp_ftsn_set_t *sets = NULL; uint_t nsets = 0; uint32_t seglen = sizeof (uint32_t); boolean_t ubit = SCTP_DATA_GET_UBIT(dh); while (mp1->b_next != NULL && SCTP_CHUNK_ISSENT(mp1->b_next)) mp1 = mp1->b_next; dh = (sctp_data_hdr_t *)mp1->b_rptr; sctp->sctp_adv_pap = ntohl(dh->sdh_tsn); if (!ubit && !sctp_add_ftsn_set(&sets, fp, meta, &nsets, &seglen)) { sctp->sctp_adv_pap = adv_pap; return (ENOMEM); } nmp = sctp_make_ftsn_chunk(sctp, fp, sets, nsets, seglen); sctp_free_ftsn_set(sets); if (nmp == NULL) { sctp->sctp_adv_pap = adv_pap; return (ENOMEM); } head = sctp_add_proto_hdr(sctp, fp, nmp, 0, NULL); if (head == NULL) { sctp->sctp_adv_pap = adv_pap; freemsg(nmp); SCTP_KSTAT(sctps, sctp_send_ftsn_failed); return (ENOMEM); } SCTP_MSG_SET_ABANDONED(meta); sctp_set_iplen(sctp, head); sctp_add_sendq(sctp, head); if (!fp->timer_running) SCTP_FADDR_TIMER_RESTART(sctp, fp, fp->rto); mp1 = mp1->b_next; while (mp1 != NULL) { ASSERT(!SCTP_CHUNK_ISSENT(mp1)); ASSERT(!SCTP_CHUNK_ABANDONED(mp1)); SCTP_ABANDON_CHUNK(mp1); dh = (sctp_data_hdr_t *)mp1->b_rptr; unsent += ntohs(dh->sdh_len) - sizeof (*dh); mp1 = mp1->b_next; } ASSERT(sctp->sctp_unsent >= unsent); sctp->sctp_unsent -= unsent; /* * Update ULP the amount of queued data, which is * sent-unack'ed + unsent. */ if (!SCTP_IS_DETACHED(sctp)) SCTP_TXQ_UPDATE(sctp); return (0); } return (-1); } uint32_t sctp_cumack(sctp_t *sctp, uint32_t tsn, mblk_t **first_unacked) { mblk_t *ump, *nump, *mp = NULL; uint16_t chunklen; uint32_t xtsn; sctp_faddr_t *fp; sctp_data_hdr_t *sdc; uint32_t cumack_forward = 0; sctp_msg_hdr_t *mhdr; sctp_stack_t *sctps = sctp->sctp_sctps; ump = sctp->sctp_xmit_head; /* * Free messages only when they're completely acked. */ while (ump != NULL) { mhdr = (sctp_msg_hdr_t *)ump->b_rptr; for (mp = ump->b_cont; mp != NULL; mp = mp->b_next) { if (SCTP_CHUNK_ABANDONED(mp)) { ASSERT(SCTP_IS_MSG_ABANDONED(ump)); mp = NULL; break; } /* * We check for abandoned message if we are PR-SCTP * aware, if this is not the first chunk in the * message (b_cont) and if the message is marked * abandoned. */ if (!SCTP_CHUNK_ISSENT(mp)) { if (sctp->sctp_prsctp_aware && mp != ump->b_cont && (SCTP_IS_MSG_ABANDONED(ump) || SCTP_MSG_TO_BE_ABANDONED(ump, mhdr, sctp))) { (void) sctp_check_abandoned_msg(sctp, ump); } goto cum_ack_done; } sdc = (sctp_data_hdr_t *)mp->b_rptr; xtsn = ntohl(sdc->sdh_tsn); if (SEQ_GEQ(sctp->sctp_lastack_rxd, xtsn)) continue; if (SEQ_GEQ(tsn, xtsn)) { fp = SCTP_CHUNK_DEST(mp); chunklen = ntohs(sdc->sdh_len); if (sctp->sctp_out_time != 0 && xtsn == sctp->sctp_rtt_tsn) { /* Got a new RTT measurement */ sctp_update_rtt(sctp, fp, lbolt64 - sctp->sctp_out_time); sctp->sctp_out_time = 0; } if (SCTP_CHUNK_ISACKED(mp)) continue; SCTP_CHUNK_SET_SACKCNT(mp, 0); SCTP_CHUNK_ACKED(mp); ASSERT(fp->suna >= chunklen); fp->suna -= chunklen; fp->acked += chunklen; cumack_forward += chunklen; ASSERT(sctp->sctp_unacked >= (chunklen - sizeof (*sdc))); sctp->sctp_unacked -= (chunklen - sizeof (*sdc)); if (fp->suna == 0) { /* all outstanding data acked */ fp->pba = 0; SCTP_FADDR_TIMER_STOP(fp); } else { SCTP_FADDR_TIMER_RESTART(sctp, fp, fp->rto); } } else { goto cum_ack_done; } } nump = ump->b_next; if (nump != NULL) nump->b_prev = NULL; if (ump == sctp->sctp_xmit_tail) sctp->sctp_xmit_tail = nump; if (SCTP_IS_MSG_ABANDONED(ump)) { BUMP_LOCAL(sctp->sctp_prsctpdrop); ump->b_next = NULL; sctp_sendfail_event(sctp, ump, 0, B_TRUE); } else { sctp_free_msg(ump); } sctp->sctp_xmit_head = ump = nump; } cum_ack_done: *first_unacked = mp; if (cumack_forward > 0) { BUMP_MIB(&sctps->sctps_mib, sctpInAck); if (SEQ_GT(sctp->sctp_lastack_rxd, sctp->sctp_recovery_tsn)) { sctp->sctp_recovery_tsn = sctp->sctp_lastack_rxd; } /* * Update ULP the amount of queued data, which is * sent-unack'ed + unsent. */ if (!SCTP_IS_DETACHED(sctp)) SCTP_TXQ_UPDATE(sctp); /* Time to send a shutdown? */ if (sctp->sctp_state == SCTPS_SHUTDOWN_PENDING) { sctp_send_shutdown(sctp, 0); } sctp->sctp_xmit_unacked = mp; } else { /* dup ack */ BUMP_MIB(&sctps->sctps_mib, sctpInDupAck); } sctp->sctp_lastack_rxd = tsn; if (SEQ_LT(sctp->sctp_adv_pap, sctp->sctp_lastack_rxd)) sctp->sctp_adv_pap = sctp->sctp_lastack_rxd; ASSERT(sctp->sctp_xmit_head || sctp->sctp_unacked == 0); return (cumack_forward); } static int sctp_set_frwnd(sctp_t *sctp, uint32_t frwnd) { uint32_t orwnd; if (sctp->sctp_unacked > frwnd) { sctp->sctp_frwnd = 0; return (0); } orwnd = sctp->sctp_frwnd; sctp->sctp_frwnd = frwnd - sctp->sctp_unacked; if (orwnd < sctp->sctp_frwnd) { return (1); } else { return (0); } } /* * For un-ordered messages. * Walk the sctp->sctp_uo_frag list and remove any fragments with TSN * less than/equal to ftsn. Fragments for un-ordered messages are * strictly in sequence (w.r.t TSN). */ static int sctp_ftsn_check_uo_frag(sctp_t *sctp, uint32_t ftsn) { mblk_t *hmp; mblk_t *hmp_next; sctp_data_hdr_t *dc; int dlen = 0; hmp = sctp->sctp_uo_frags; while (hmp != NULL) { hmp_next = hmp->b_next; dc = (sctp_data_hdr_t *)hmp->b_rptr; if (SEQ_GT(ntohl(dc->sdh_tsn), ftsn)) return (dlen); sctp->sctp_uo_frags = hmp_next; if (hmp_next != NULL) hmp_next->b_prev = NULL; hmp->b_next = NULL; dlen += ntohs(dc->sdh_len) - sizeof (*dc); freeb(hmp); hmp = hmp_next; } return (dlen); } /* * For ordered messages. * Check for existing fragments for an sid-ssn pair reported as abandoned, * hence will not receive, in the Forward TSN. If there are fragments, then * we just nuke them. If and when Partial Delivery API is supported, we * would need to send a notification to the upper layer about this. */ static int sctp_ftsn_check_frag(sctp_t *sctp, uint16_t ssn, sctp_instr_t *sip) { sctp_reass_t *srp; mblk_t *hmp; mblk_t *dmp; mblk_t *hmp_next; sctp_data_hdr_t *dc; int dlen = 0; hmp = sip->istr_reass; while (hmp != NULL) { hmp_next = hmp->b_next; srp = (sctp_reass_t *)DB_BASE(hmp); if (SSN_GT(srp->ssn, ssn)) return (dlen); /* * If we had sent part of this message up, send a partial * delivery event. Since this is ordered delivery, we should * have sent partial message only for the next in sequence, * hence the ASSERT. See comments in sctp_data_chunk() for * trypartial. */ if (srp->partial_delivered) { ASSERT(sip->nextseq == srp->ssn); sctp_partial_delivery_event(sctp); } /* Take it out of the reass queue */ sip->istr_reass = hmp_next; if (hmp_next != NULL) hmp_next->b_prev = NULL; hmp->b_next = NULL; ASSERT(hmp->b_prev == NULL); dmp = hmp; ASSERT(DB_TYPE(hmp) == M_CTL); dmp = hmp->b_cont; hmp->b_cont = NULL; freeb(hmp); hmp = dmp; while (dmp != NULL) { dc = (sctp_data_hdr_t *)dmp->b_rptr; dlen += ntohs(dc->sdh_len) - sizeof (*dc); dmp = dmp->b_cont; } freemsg(hmp); hmp = hmp_next; } return (dlen); } /* * Update sctp_ftsn to the cumulative TSN from the Forward TSN chunk. Remove * any SACK gaps less than the newly updated sctp_ftsn. Walk through the * sid-ssn pair in the Forward TSN and for each, clean the fragment list * for this pair, if needed, and check if we can deliver subsequent * messages, if any, from the instream queue (that were waiting for this * sid-ssn message to show up). Once we are done try to update the SACK * info. We could get a duplicate Forward TSN, in which case just send * a SACK. If any of the sid values in the the Forward TSN is invalid, * send back an "Invalid Stream Identifier" error and continue processing * the rest. */ static void sctp_process_forward_tsn(sctp_t *sctp, sctp_chunk_hdr_t *ch, sctp_faddr_t *fp, ip6_pkt_t *ipp) { uint32_t *ftsn = (uint32_t *)(ch + 1); ftsn_entry_t *ftsn_entry; sctp_instr_t *instr; boolean_t can_deliver = B_TRUE; size_t dlen; int flen; mblk_t *dmp; mblk_t *pmp; sctp_data_hdr_t *dc; ssize_t remaining; sctp_stack_t *sctps = sctp->sctp_sctps; *ftsn = ntohl(*ftsn); remaining = ntohs(ch->sch_len) - sizeof (*ch) - sizeof (*ftsn); if (SCTP_IS_DETACHED(sctp)) { BUMP_MIB(&sctps->sctps_mib, sctpInClosed); can_deliver = B_FALSE; } /* * un-ordered messages don't have SID-SSN pair entries, we check * for any fragments (for un-ordered message) to be discarded using * the cumulative FTSN. */ flen = sctp_ftsn_check_uo_frag(sctp, *ftsn); if (flen > 0) { ASSERT(sctp->sctp_rxqueued >= flen); sctp->sctp_rxqueued -= flen; } ftsn_entry = (ftsn_entry_t *)(ftsn + 1); while (remaining >= sizeof (*ftsn_entry)) { ftsn_entry->ftsn_sid = ntohs(ftsn_entry->ftsn_sid); ftsn_entry->ftsn_ssn = ntohs(ftsn_entry->ftsn_ssn); if (ftsn_entry->ftsn_sid >= sctp->sctp_num_istr) { uint16_t inval_parm[2]; inval_parm[0] = htons(ftsn_entry->ftsn_sid); /* RESERVED to be ignored at the receiving end */ inval_parm[1] = 0; sctp_add_err(sctp, SCTP_ERR_BAD_SID, inval_parm, sizeof (inval_parm), fp); ftsn_entry++; remaining -= sizeof (*ftsn_entry); continue; } instr = &sctp->sctp_instr[ftsn_entry->ftsn_sid]; flen = sctp_ftsn_check_frag(sctp, ftsn_entry->ftsn_ssn, instr); /* Indicates frags were nuked, update rxqueued */ if (flen > 0) { ASSERT(sctp->sctp_rxqueued >= flen); sctp->sctp_rxqueued -= flen; } /* * It is possible to receive an FTSN chunk with SSN smaller * than then nextseq if this chunk is a retransmission because * of incomplete processing when it was first processed. */ if (SSN_GE(ftsn_entry->ftsn_ssn, instr->nextseq)) instr->nextseq = ftsn_entry->ftsn_ssn + 1; while (instr->istr_nmsgs > 0) { mblk_t *next; dmp = (mblk_t *)instr->istr_msgs; dc = (sctp_data_hdr_t *)dmp->b_rptr; if (ntohs(dc->sdh_ssn) != instr->nextseq) break; next = dmp->b_next; dlen = dmp->b_wptr - dmp->b_rptr - sizeof (*dc); for (pmp = dmp->b_cont; pmp != NULL; pmp = pmp->b_cont) { dlen += pmp->b_wptr - pmp->b_rptr; } if (can_deliver) { int32_t nrwnd; int error; dmp->b_rptr = (uchar_t *)(dc + 1); dmp->b_next = NULL; ASSERT(dmp->b_prev == NULL); if (sctp_input_add_ancillary(sctp, &dmp, dc, fp, ipp) == 0) { sctp->sctp_rxqueued -= dlen; sctp->sctp_rwnd -= dlen; /* * Override b_flag for SCTP sockfs * internal use */ dmp->b_flag = 0; nrwnd = sctp->sctp_ulp_recv( sctp->sctp_ulpd, dmp, msgdsize(dmp), 0, &error, NULL); if (nrwnd > sctp->sctp_rwnd) sctp->sctp_rwnd = nrwnd; } else { /* * We will resume processing when * the FTSN chunk is re-xmitted. */ dmp->b_rptr = (uchar_t *)dc; dmp->b_next = next; dprint(0, ("FTSN dequeuing %u failed\n", ntohs(dc->sdh_ssn))); return; } } else { sctp->sctp_rxqueued -= dlen; ASSERT(dmp->b_prev == NULL); dmp->b_next = NULL; freemsg(dmp); } instr->istr_nmsgs--; instr->nextseq++; sctp->sctp_istr_nmsgs--; if (next != NULL) next->b_prev = NULL; instr->istr_msgs = next; } ftsn_entry++; remaining -= sizeof (*ftsn_entry); } /* Duplicate FTSN */ if (*ftsn <= (sctp->sctp_ftsn - 1)) { sctp->sctp_force_sack = 1; return; } /* Advance cum TSN to that reported in the Forward TSN chunk */ sctp->sctp_ftsn = *ftsn + 1; /* Remove all the SACK gaps before the new cum TSN */ if (sctp->sctp_sack_info != NULL) { sctp_ack_rem(&sctp->sctp_sack_info, sctp->sctp_ftsn - 1, &sctp->sctp_sack_gaps); } /* * If there are gap reports pending, check if advancing * the ftsn here closes a gap. If so, we can advance * ftsn to the end of the set. * If ftsn has moved forward, maybe we can remove gap reports. */ if (sctp->sctp_sack_info != NULL && sctp->sctp_ftsn == sctp->sctp_sack_info->begin) { sctp->sctp_ftsn = sctp->sctp_sack_info->end + 1; sctp_ack_rem(&sctp->sctp_sack_info, sctp->sctp_ftsn - 1, &sctp->sctp_sack_gaps); } } /* * When we have processed a SACK we check to see if we can advance the * cumulative TSN if there are abandoned chunks immediately following * the updated cumulative TSN. If there are, we attempt to send a * Forward TSN chunk. */ static void sctp_check_abandoned_data(sctp_t *sctp, sctp_faddr_t *fp) { mblk_t *meta = sctp->sctp_xmit_head; mblk_t *mp; mblk_t *nmp; uint32_t seglen; uint32_t adv_pap = sctp->sctp_adv_pap; /* * We only check in the first meta since otherwise we can't * advance the cumulative ack point. We just look for chunks * marked for retransmission, else we might prematurely * send an FTSN for a sent, but unacked, chunk. */ for (mp = meta->b_cont; mp != NULL; mp = mp->b_next) { if (!SCTP_CHUNK_ISSENT(mp)) return; if (SCTP_CHUNK_WANT_REXMIT(mp)) break; } if (mp == NULL) return; sctp_check_adv_ack_pt(sctp, meta, mp); if (SEQ_GT(sctp->sctp_adv_pap, adv_pap)) { sctp_make_ftsns(sctp, meta, mp, &nmp, fp, &seglen); if (nmp == NULL) { sctp->sctp_adv_pap = adv_pap; if (!fp->timer_running) SCTP_FADDR_TIMER_RESTART(sctp, fp, fp->rto); return; } sctp_set_iplen(sctp, nmp); sctp_add_sendq(sctp, nmp); if (!fp->timer_running) SCTP_FADDR_TIMER_RESTART(sctp, fp, fp->rto); } } /* * The processing here follows the same logic in sctp_got_sack(), the reason * we do this separately is because, usually, gap blocks are ordered and * we can process it in sctp_got_sack(). However if they aren't we would * need to do some additional non-optimal stuff when we start processing the * unordered gaps. To that effect sctp_got_sack() does the processing in the * simple case and this does the same in the more involved case. */ static uint32_t sctp_process_uo_gaps(sctp_t *sctp, uint32_t ctsn, sctp_sack_frag_t *ssf, int num_gaps, mblk_t *umphead, mblk_t *mphead, int *trysend, boolean_t *fast_recovery, uint32_t fr_xtsn) { uint32_t xtsn; uint32_t gapstart = 0; uint32_t gapend = 0; int gapcnt; uint16_t chunklen; sctp_data_hdr_t *sdc; int gstart; mblk_t *ump = umphead; mblk_t *mp = mphead; sctp_faddr_t *fp; uint32_t acked = 0; sctp_stack_t *sctps = sctp->sctp_sctps; /* * gstart tracks the last (in the order of TSN) gapstart that * we process in this SACK gaps walk. */ gstart = ctsn; sdc = (sctp_data_hdr_t *)mp->b_rptr; xtsn = ntohl(sdc->sdh_tsn); for (gapcnt = 0; gapcnt < num_gaps; gapcnt++, ssf++) { if (gapstart != 0) { /* * If we have reached the end of the transmit list or * hit an unsent chunk or encountered an unordered gap * block start from the ctsn again. */ if (ump == NULL || !SCTP_CHUNK_ISSENT(mp) || SEQ_LT(ctsn + ntohs(ssf->ssf_start), xtsn)) { ump = umphead; mp = mphead; sdc = (sctp_data_hdr_t *)mp->b_rptr; xtsn = ntohl(sdc->sdh_tsn); } } gapstart = ctsn + ntohs(ssf->ssf_start); gapend = ctsn + ntohs(ssf->ssf_end); /* SACK for TSN we have not sent - ABORT */ if (SEQ_GT(gapstart, sctp->sctp_ltsn - 1) || SEQ_GT(gapend, sctp->sctp_ltsn - 1)) { BUMP_MIB(&sctps->sctps_mib, sctpInAckUnsent); *trysend = -1; return (acked); } else if (SEQ_LT(gapend, gapstart)) { break; } /* * The xtsn can be the TSN processed for the last gap * (gapend) or it could be the cumulative TSN. We continue * with the last xtsn as long as the gaps are ordered, when * we hit an unordered gap, we re-start from the cumulative * TSN. For the first gap it is always the cumulative TSN. */ while (xtsn != gapstart) { /* * We can't reliably check for reneged chunks * when walking the unordered list, so we don't. * In case the peer reneges then we will end up * sending the reneged chunk via timeout. */ mp = mp->b_next; if (mp == NULL) { ump = ump->b_next; /* * ump can't be NULL because of the sanity * check above. */ ASSERT(ump != NULL); mp = ump->b_cont; } /* * mp can't be unsent because of the sanity check * above. */ ASSERT(SCTP_CHUNK_ISSENT(mp)); sdc = (sctp_data_hdr_t *)mp->b_rptr; xtsn = ntohl(sdc->sdh_tsn); } /* * Now that we have found the chunk with TSN == 'gapstart', * let's walk till we hit the chunk with TSN == 'gapend'. * All intermediate chunks will be marked ACKED, if they * haven't already been. */ while (SEQ_LEQ(xtsn, gapend)) { /* * SACKed */ SCTP_CHUNK_SET_SACKCNT(mp, 0); if (!SCTP_CHUNK_ISACKED(mp)) { SCTP_CHUNK_ACKED(mp); fp = SCTP_CHUNK_DEST(mp); chunklen = ntohs(sdc->sdh_len); ASSERT(fp->suna >= chunklen); fp->suna -= chunklen; if (fp->suna == 0) { /* All outstanding data acked. */ fp->pba = 0; SCTP_FADDR_TIMER_STOP(fp); } fp->acked += chunklen; acked += chunklen; sctp->sctp_unacked -= chunklen - sizeof (*sdc); ASSERT(sctp->sctp_unacked >= 0); } /* * Move to the next message in the transmit list * if we are done with all the chunks from the current * message. Note, it is possible to hit the end of the * transmit list here, i.e. if we have already completed * processing the gap block. */ mp = mp->b_next; if (mp == NULL) { ump = ump->b_next; if (ump == NULL) { ASSERT(xtsn == gapend); break; } mp = ump->b_cont; } /* * Likewise, we can hit an unsent chunk once we have * completed processing the gap block. */ if (!SCTP_CHUNK_ISSENT(mp)) { ASSERT(xtsn == gapend); break; } sdc = (sctp_data_hdr_t *)mp->b_rptr; xtsn = ntohl(sdc->sdh_tsn); } /* * We keep track of the last gap we successfully processed * so that we can terminate the walk below for incrementing * the SACK count. */ if (SEQ_LT(gstart, gapstart)) gstart = gapstart; } /* * Check if have incremented the SACK count for all unacked TSNs in * sctp_got_sack(), if so we are done. */ if (SEQ_LEQ(gstart, fr_xtsn)) return (acked); ump = umphead; mp = mphead; sdc = (sctp_data_hdr_t *)mp->b_rptr; xtsn = ntohl(sdc->sdh_tsn); while (SEQ_LT(xtsn, gstart)) { /* * We have incremented SACK count for TSNs less than fr_tsn * in sctp_got_sack(), so don't increment them again here. */ if (SEQ_GT(xtsn, fr_xtsn) && !SCTP_CHUNK_ISACKED(mp)) { SCTP_CHUNK_SET_SACKCNT(mp, SCTP_CHUNK_SACKCNT(mp) + 1); if (SCTP_CHUNK_SACKCNT(mp) == sctps->sctps_fast_rxt_thresh) { SCTP_CHUNK_REXMIT(mp); sctp->sctp_chk_fast_rexmit = B_TRUE; *trysend = 1; if (!*fast_recovery) { /* * Entering fast recovery. */ fp = SCTP_CHUNK_DEST(mp); fp->ssthresh = fp->cwnd / 2; if (fp->ssthresh < 2 * fp->sfa_pmss) { fp->ssthresh = 2 * fp->sfa_pmss; } fp->cwnd = fp->ssthresh; fp->pba = 0; sctp->sctp_recovery_tsn = sctp->sctp_ltsn - 1; *fast_recovery = B_TRUE; } } } mp = mp->b_next; if (mp == NULL) { ump = ump->b_next; /* We can't get to the end of the transmit list here */ ASSERT(ump != NULL); mp = ump->b_cont; } /* We can't hit an unsent chunk here */ ASSERT(SCTP_CHUNK_ISSENT(mp)); sdc = (sctp_data_hdr_t *)mp->b_rptr; xtsn = ntohl(sdc->sdh_tsn); } return (acked); } static int sctp_got_sack(sctp_t *sctp, sctp_chunk_hdr_t *sch) { sctp_sack_chunk_t *sc; sctp_data_hdr_t *sdc; sctp_sack_frag_t *ssf; mblk_t *ump; mblk_t *mp; mblk_t *mp1; uint32_t cumtsn; uint32_t xtsn; uint32_t gapstart = 0; uint32_t gapend = 0; uint32_t acked = 0; uint16_t chunklen; sctp_faddr_t *fp; int num_gaps; int trysend = 0; int i; boolean_t fast_recovery = B_FALSE; boolean_t cumack_forward = B_FALSE; boolean_t fwd_tsn = B_FALSE; sctp_stack_t *sctps = sctp->sctp_sctps; BUMP_LOCAL(sctp->sctp_ibchunks); chunklen = ntohs(sch->sch_len); if (chunklen < (sizeof (*sch) + sizeof (*sc))) return (0); sc = (sctp_sack_chunk_t *)(sch + 1); cumtsn = ntohl(sc->ssc_cumtsn); dprint(2, ("got sack cumtsn %x -> %x\n", sctp->sctp_lastack_rxd, cumtsn)); /* out of order */ if (SEQ_LT(cumtsn, sctp->sctp_lastack_rxd)) return (0); if (SEQ_GT(cumtsn, sctp->sctp_ltsn - 1)) { BUMP_MIB(&sctps->sctps_mib, sctpInAckUnsent); /* Send an ABORT */ return (-1); } /* * Cwnd only done when not in fast recovery mode. */ if (SEQ_LT(sctp->sctp_lastack_rxd, sctp->sctp_recovery_tsn)) fast_recovery = B_TRUE; /* * .. and if the cum TSN is not moving ahead on account Forward TSN */ if (SEQ_LT(sctp->sctp_lastack_rxd, sctp->sctp_adv_pap)) fwd_tsn = B_TRUE; if (cumtsn == sctp->sctp_lastack_rxd && (sctp->sctp_xmit_unacked == NULL || !SCTP_CHUNK_ABANDONED(sctp->sctp_xmit_unacked))) { if (sctp->sctp_xmit_unacked != NULL) mp = sctp->sctp_xmit_unacked; else if (sctp->sctp_xmit_head != NULL) mp = sctp->sctp_xmit_head->b_cont; else mp = NULL; BUMP_MIB(&sctps->sctps_mib, sctpInDupAck); /* * If we were doing a zero win probe and the win * has now opened to at least MSS, re-transmit the * zero win probe via sctp_rexmit_packet(). */ if (mp != NULL && sctp->sctp_zero_win_probe && ntohl(sc->ssc_a_rwnd) >= sctp->sctp_current->sfa_pmss) { mblk_t *pkt; uint_t pkt_len; mblk_t *mp1 = mp; mblk_t *meta = sctp->sctp_xmit_head; /* * Reset the RTO since we have been backing-off * to send the ZWP. */ fp = sctp->sctp_current; fp->rto = fp->srtt + 4 * fp->rttvar; /* Resend the ZWP */ pkt = sctp_rexmit_packet(sctp, &meta, &mp1, fp, &pkt_len); if (pkt == NULL) { SCTP_KSTAT(sctps, sctp_ss_rexmit_failed); return (0); } ASSERT(pkt_len <= fp->sfa_pmss); sctp->sctp_zero_win_probe = B_FALSE; sctp->sctp_rxt_nxttsn = sctp->sctp_ltsn; sctp->sctp_rxt_maxtsn = sctp->sctp_ltsn; sctp_set_iplen(sctp, pkt); sctp_add_sendq(sctp, pkt); } } else { if (sctp->sctp_zero_win_probe) { /* * Reset the RTO since we have been backing-off * to send the ZWP. */ fp = sctp->sctp_current; fp->rto = fp->srtt + 4 * fp->rttvar; sctp->sctp_zero_win_probe = B_FALSE; /* This is probably not required */ if (!sctp->sctp_rexmitting) { sctp->sctp_rxt_nxttsn = sctp->sctp_ltsn; sctp->sctp_rxt_maxtsn = sctp->sctp_ltsn; } } acked = sctp_cumack(sctp, cumtsn, &mp); sctp->sctp_xmit_unacked = mp; if (acked > 0) { trysend = 1; cumack_forward = B_TRUE; if (fwd_tsn && SEQ_GEQ(sctp->sctp_lastack_rxd, sctp->sctp_adv_pap)) { cumack_forward = B_FALSE; } } } num_gaps = ntohs(sc->ssc_numfrags); if (num_gaps == 0 || mp == NULL || !SCTP_CHUNK_ISSENT(mp) || chunklen < (sizeof (*sch) + sizeof (*sc) + num_gaps * sizeof (*ssf))) { goto ret; } #ifdef DEBUG /* * Since we delete any message that has been acked completely, * the unacked chunk must belong to sctp_xmit_head (as * we don't have a back pointer from the mp to the meta data * we do this). */ { mblk_t *mp2 = sctp->sctp_xmit_head->b_cont; while (mp2 != NULL) { if (mp2 == mp) break; mp2 = mp2->b_next; } ASSERT(mp2 != NULL); } #endif ump = sctp->sctp_xmit_head; /* * Just remember where we started from, in case we need to call * sctp_process_uo_gaps() if the gap blocks are unordered. */ mp1 = mp; sdc = (sctp_data_hdr_t *)mp->b_rptr; xtsn = ntohl(sdc->sdh_tsn); ASSERT(xtsn == cumtsn + 1); /* * Go through SACK gaps. They are ordered based on start TSN. */ ssf = (sctp_sack_frag_t *)(sc + 1); for (i = 0; i < num_gaps; i++, ssf++) { if (gapstart != 0) { /* check for unordered gap */ if (SEQ_LEQ(cumtsn + ntohs(ssf->ssf_start), gapstart)) { acked += sctp_process_uo_gaps(sctp, cumtsn, ssf, num_gaps - i, sctp->sctp_xmit_head, mp1, &trysend, &fast_recovery, gapstart); if (trysend < 0) { BUMP_MIB(&sctps->sctps_mib, sctpInAckUnsent); return (-1); } break; } } gapstart = cumtsn + ntohs(ssf->ssf_start); gapend = cumtsn + ntohs(ssf->ssf_end); /* SACK for TSN we have not sent - ABORT */ if (SEQ_GT(gapstart, sctp->sctp_ltsn - 1) || SEQ_GT(gapend, sctp->sctp_ltsn - 1)) { BUMP_MIB(&sctps->sctps_mib, sctpInAckUnsent); return (-1); } else if (SEQ_LT(gapend, gapstart)) { break; } /* * Let's start at the current TSN (for the 1st gap we start * from the cumulative TSN, for subsequent ones we start from * where the previous gapend was found - second while loop * below) and walk the transmit list till we find the TSN * corresponding to gapstart. All the unacked chunks till we * get to the chunk with TSN == gapstart will have their * SACKCNT incremented by 1. Note since the gap blocks are * ordered, we won't be incrementing the SACKCNT for an * unacked chunk by more than one while processing the gap * blocks. If the SACKCNT for any unacked chunk exceeds * the fast retransmit threshold, we will fast retransmit * after processing all the gap blocks. */ ASSERT(SEQ_LT(xtsn, gapstart)); while (xtsn != gapstart) { SCTP_CHUNK_SET_SACKCNT(mp, SCTP_CHUNK_SACKCNT(mp) + 1); if (SCTP_CHUNK_SACKCNT(mp) == sctps->sctps_fast_rxt_thresh) { SCTP_CHUNK_REXMIT(mp); sctp->sctp_chk_fast_rexmit = B_TRUE; trysend = 1; if (!fast_recovery) { /* * Entering fast recovery. */ fp = SCTP_CHUNK_DEST(mp); fp->ssthresh = fp->cwnd / 2; if (fp->ssthresh < 2 * fp->sfa_pmss) { fp->ssthresh = 2 * fp->sfa_pmss; } fp->cwnd = fp->ssthresh; fp->pba = 0; sctp->sctp_recovery_tsn = sctp->sctp_ltsn - 1; fast_recovery = B_TRUE; } } /* * Peer may have reneged on this chunk, so un-sack * it now. If the peer did renege, we need to * readjust unacked. */ if (SCTP_CHUNK_ISACKED(mp)) { chunklen = ntohs(sdc->sdh_len); fp = SCTP_CHUNK_DEST(mp); fp->suna += chunklen; sctp->sctp_unacked += chunklen - sizeof (*sdc); SCTP_CHUNK_CLEAR_ACKED(mp); if (!fp->timer_running) { SCTP_FADDR_TIMER_RESTART(sctp, fp, fp->rto); } } mp = mp->b_next; if (mp == NULL) { ump = ump->b_next; /* * ump can't be NULL given the sanity check * above. */ ASSERT(ump != NULL); mp = ump->b_cont; } /* * mp can't be unsent given the sanity check above. */ ASSERT(SCTP_CHUNK_ISSENT(mp)); sdc = (sctp_data_hdr_t *)mp->b_rptr; xtsn = ntohl(sdc->sdh_tsn); } /* * Now that we have found the chunk with TSN == 'gapstart', * let's walk till we hit the chunk with TSN == 'gapend'. * All intermediate chunks will be marked ACKED, if they * haven't already been. */ while (SEQ_LEQ(xtsn, gapend)) { /* * SACKed */ SCTP_CHUNK_SET_SACKCNT(mp, 0); if (!SCTP_CHUNK_ISACKED(mp)) { SCTP_CHUNK_ACKED(mp); fp = SCTP_CHUNK_DEST(mp); chunklen = ntohs(sdc->sdh_len); ASSERT(fp->suna >= chunklen); fp->suna -= chunklen; if (fp->suna == 0) { /* All outstanding data acked. */ fp->pba = 0; SCTP_FADDR_TIMER_STOP(fp); } fp->acked += chunklen; acked += chunklen; sctp->sctp_unacked -= chunklen - sizeof (*sdc); ASSERT(sctp->sctp_unacked >= 0); } /* Go to the next chunk of the current message */ mp = mp->b_next; /* * Move to the next message in the transmit list * if we are done with all the chunks from the current * message. Note, it is possible to hit the end of the * transmit list here, i.e. if we have already completed * processing the gap block. * Also, note that we break here, which means we * continue processing gap blocks, if any. In case of * ordered gap blocks there can't be any following * this (if there is it will fail the sanity check * above). In case of un-ordered gap blocks we will * switch to sctp_process_uo_gaps(). In either case * it should be fine to continue with NULL ump/mp, * but we just reset it to xmit_head. */ if (mp == NULL) { ump = ump->b_next; if (ump == NULL) { ASSERT(xtsn == gapend); ump = sctp->sctp_xmit_head; mp = mp1; sdc = (sctp_data_hdr_t *)mp->b_rptr; xtsn = ntohl(sdc->sdh_tsn); break; } mp = ump->b_cont; } /* * Likewise, we could hit an unsent chunk once we have * completed processing the gap block. Again, it is * fine to continue processing gap blocks with mp * pointing to the unsent chunk, because if there * are more ordered gap blocks, they will fail the * sanity check, and if there are un-ordered gap blocks, * we will continue processing in sctp_process_uo_gaps() * We just reset the mp to the one we started with. */ if (!SCTP_CHUNK_ISSENT(mp)) { ASSERT(xtsn == gapend); ump = sctp->sctp_xmit_head; mp = mp1; sdc = (sctp_data_hdr_t *)mp->b_rptr; xtsn = ntohl(sdc->sdh_tsn); break; } sdc = (sctp_data_hdr_t *)mp->b_rptr; xtsn = ntohl(sdc->sdh_tsn); } } if (sctp->sctp_prsctp_aware) sctp_check_abandoned_data(sctp, sctp->sctp_current); if (sctp->sctp_chk_fast_rexmit) sctp_fast_rexmit(sctp); ret: trysend += sctp_set_frwnd(sctp, ntohl(sc->ssc_a_rwnd)); /* * If receive window is closed while there is unsent data, * set a timer for doing zero window probes. */ if (sctp->sctp_frwnd == 0 && sctp->sctp_unacked == 0 && sctp->sctp_unsent != 0) { SCTP_FADDR_TIMER_RESTART(sctp, sctp->sctp_current, sctp->sctp_current->rto); } /* * Set cwnd for all destinations. * Congestion window gets increased only when cumulative * TSN moves forward, we're not in fast recovery, and * cwnd has been fully utilized (almost fully, need to allow * some leeway due to non-MSS sized messages). */ if (sctp->sctp_current->acked == acked) { /* * Fast-path, only data sent to sctp_current got acked. */ fp = sctp->sctp_current; if (cumack_forward && !fast_recovery && (fp->acked + fp->suna > fp->cwnd - fp->sfa_pmss)) { if (fp->cwnd < fp->ssthresh) { /* * Slow start */ if (fp->acked > fp->sfa_pmss) { fp->cwnd += fp->sfa_pmss; } else { fp->cwnd += fp->acked; } fp->cwnd = MIN(fp->cwnd, sctp->sctp_cwnd_max); } else { /* * Congestion avoidance */ fp->pba += fp->acked; if (fp->pba >= fp->cwnd) { fp->pba -= fp->cwnd; fp->cwnd += fp->sfa_pmss; fp->cwnd = MIN(fp->cwnd, sctp->sctp_cwnd_max); } } } /* * Limit the burst of transmitted data segments. */ if (fp->suna + sctps->sctps_maxburst * fp->sfa_pmss < fp->cwnd) { fp->cwnd = fp->suna + sctps->sctps_maxburst * fp->sfa_pmss; } fp->acked = 0; goto check_ss_rxmit; } for (fp = sctp->sctp_faddrs; fp != NULL; fp = fp->next) { if (cumack_forward && fp->acked && !fast_recovery && (fp->acked + fp->suna > fp->cwnd - fp->sfa_pmss)) { if (fp->cwnd < fp->ssthresh) { if (fp->acked > fp->sfa_pmss) { fp->cwnd += fp->sfa_pmss; } else { fp->cwnd += fp->acked; } fp->cwnd = MIN(fp->cwnd, sctp->sctp_cwnd_max); } else { fp->pba += fp->acked; if (fp->pba >= fp->cwnd) { fp->pba -= fp->cwnd; fp->cwnd += fp->sfa_pmss; fp->cwnd = MIN(fp->cwnd, sctp->sctp_cwnd_max); } } } if (fp->suna + sctps->sctps_maxburst * fp->sfa_pmss < fp->cwnd) { fp->cwnd = fp->suna + sctps->sctps_maxburst * fp->sfa_pmss; } fp->acked = 0; } fp = sctp->sctp_current; check_ss_rxmit: /* * If this is a SACK following a timeout, check if there are * still unacked chunks (sent before the timeout) that we can * send. */ if (sctp->sctp_rexmitting) { if (SEQ_LT(sctp->sctp_lastack_rxd, sctp->sctp_rxt_maxtsn)) { /* * As we are in retransmission phase, we may get a * SACK which indicates some new chunks are received * but cum_tsn does not advance. During this * phase, the other side advances cum_tsn only because * it receives our retransmitted chunks. Only * this signals that some chunks are still * missing. */ if (cumack_forward) { fp->rxt_unacked -= acked; sctp_ss_rexmit(sctp); } } else { sctp->sctp_rexmitting = B_FALSE; sctp->sctp_rxt_nxttsn = sctp->sctp_ltsn; sctp->sctp_rxt_maxtsn = sctp->sctp_ltsn; fp->rxt_unacked = 0; } } return (trysend); } /* * Returns 0 if the caller should stop processing any more chunks, * 1 if the caller should skip this chunk and continue processing. */ static int sctp_strange_chunk(sctp_t *sctp, sctp_chunk_hdr_t *ch, sctp_faddr_t *fp) { size_t len; BUMP_LOCAL(sctp->sctp_ibchunks); /* check top two bits for action required */ if (ch->sch_id & 0x40) { /* also matches 0xc0 */ len = ntohs(ch->sch_len); sctp_add_err(sctp, SCTP_ERR_UNREC_CHUNK, ch, len, fp); if ((ch->sch_id & 0xc0) == 0xc0) { /* skip and continue */ return (1); } else { /* stop processing */ return (0); } } if (ch->sch_id & 0x80) { /* skip and continue, no error */ return (1); } /* top two bits are clear; stop processing and no error */ return (0); } /* * Basic sanity checks on all input chunks and parameters: they must * be of legitimate size for their purported type, and must follow * ordering conventions as defined in rfc2960. * * Returns 1 if the chunk and all encloded params are legitimate, * 0 otherwise. */ /*ARGSUSED*/ static int sctp_check_input(sctp_t *sctp, sctp_chunk_hdr_t *ch, ssize_t len, int first) { sctp_parm_hdr_t *ph; void *p = NULL; ssize_t clen; uint16_t ch_len; ch_len = ntohs(ch->sch_len); if (ch_len > len) { return (0); } switch (ch->sch_id) { case CHUNK_DATA: if (ch_len < sizeof (sctp_data_hdr_t)) { return (0); } return (1); case CHUNK_INIT: case CHUNK_INIT_ACK: { ssize_t remlen = len; /* * INIT and INIT-ACK chunks must not be bundled with * any other. */ if (!first || sctp_next_chunk(ch, &remlen) != NULL || (ch_len < (sizeof (*ch) + sizeof (sctp_init_chunk_t)))) { return (0); } /* may have params that need checking */ p = (char *)(ch + 1) + sizeof (sctp_init_chunk_t); clen = ch_len - (sizeof (*ch) + sizeof (sctp_init_chunk_t)); } break; case CHUNK_SACK: if (ch_len < (sizeof (*ch) + sizeof (sctp_sack_chunk_t))) { return (0); } /* dup and gap reports checked by got_sack() */ return (1); case CHUNK_SHUTDOWN: if (ch_len < (sizeof (*ch) + sizeof (uint32_t))) { return (0); } return (1); case CHUNK_ABORT: case CHUNK_ERROR: if (ch_len < sizeof (*ch)) { return (0); } /* may have params that need checking */ p = ch + 1; clen = ch_len - sizeof (*ch); break; case CHUNK_ECNE: case CHUNK_CWR: case CHUNK_HEARTBEAT: case CHUNK_HEARTBEAT_ACK: /* Full ASCONF chunk and parameter checks are in asconf.c */ case CHUNK_ASCONF: case CHUNK_ASCONF_ACK: if (ch_len < sizeof (*ch)) { return (0); } /* heartbeat data checked by process_heartbeat() */ return (1); case CHUNK_SHUTDOWN_COMPLETE: { ssize_t remlen = len; /* * SHUTDOWN-COMPLETE chunk must not be bundled with any * other */ if (!first || sctp_next_chunk(ch, &remlen) != NULL || ch_len < sizeof (*ch)) { return (0); } } return (1); case CHUNK_COOKIE: case CHUNK_COOKIE_ACK: case CHUNK_SHUTDOWN_ACK: if (ch_len < sizeof (*ch) || !first) { return (0); } return (1); case CHUNK_FORWARD_TSN: if (ch_len < (sizeof (*ch) + sizeof (uint32_t))) return (0); return (1); default: return (1); /* handled by strange_chunk() */ } /* check and byteorder parameters */ if (clen <= 0) { return (1); } ASSERT(p != NULL); ph = p; while (ph != NULL && clen > 0) { ch_len = ntohs(ph->sph_len); if (ch_len > len || ch_len < sizeof (*ph)) { return (0); } ph = sctp_next_parm(ph, &clen); } /* All OK */ return (1); } /* ARGSUSED */ static sctp_hdr_t * find_sctp_hdrs(mblk_t *mp, in6_addr_t *src, in6_addr_t *dst, uint_t *ifindex, uint_t *ip_hdr_len, ip6_pkt_t *ipp, ip_pktinfo_t *pinfo) { uchar_t *rptr; ipha_t *ip4h; ip6_t *ip6h; mblk_t *mp1; rptr = mp->b_rptr; if (IPH_HDR_VERSION(rptr) == IPV4_VERSION) { *ip_hdr_len = IPH_HDR_LENGTH(rptr); ip4h = (ipha_t *)rptr; IN6_IPADDR_TO_V4MAPPED(ip4h->ipha_src, src); IN6_IPADDR_TO_V4MAPPED(ip4h->ipha_dst, dst); ipp->ipp_fields |= IPPF_HOPLIMIT; ipp->ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl; if (pinfo != NULL && (pinfo->ip_pkt_flags & IPF_RECVIF)) { ipp->ipp_fields |= IPPF_IFINDEX; ipp->ipp_ifindex = pinfo->ip_pkt_ifindex; } } else { ASSERT(IPH_HDR_VERSION(rptr) == IPV6_VERSION); ip6h = (ip6_t *)rptr; ipp->ipp_fields = IPPF_HOPLIMIT; ipp->ipp_hoplimit = ip6h->ip6_hops; if (ip6h->ip6_nxt != IPPROTO_SCTP) { /* Look for ifindex information */ if (ip6h->ip6_nxt == IPPROTO_RAW) { ip6i_t *ip6i = (ip6i_t *)ip6h; if (ip6i->ip6i_flags & IP6I_IFINDEX) { ASSERT(ip6i->ip6i_ifindex != 0); ipp->ipp_fields |= IPPF_IFINDEX; ipp->ipp_ifindex = ip6i->ip6i_ifindex; } rptr = (uchar_t *)&ip6i[1]; mp->b_rptr = rptr; if (rptr == mp->b_wptr) { mp1 = mp->b_cont; freeb(mp); mp = mp1; rptr = mp->b_rptr; } ASSERT(mp->b_wptr - rptr >= IPV6_HDR_LEN + sizeof (sctp_hdr_t)); ip6h = (ip6_t *)rptr; } /* * Find any potentially interesting extension headers * as well as the length of the IPv6 + extension * headers. */ *ip_hdr_len = ip_find_hdr_v6(mp, ip6h, ipp, NULL); } else { *ip_hdr_len = IPV6_HDR_LEN; } *src = ip6h->ip6_src; *dst = ip6h->ip6_dst; } ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); return ((sctp_hdr_t *)&rptr[*ip_hdr_len]); #undef IPVER } static mblk_t * sctp_check_in_policy(mblk_t *mp, mblk_t *ipsec_mp) { ipsec_in_t *ii; boolean_t check = B_TRUE; boolean_t policy_present; ipha_t *ipha; ip6_t *ip6h; netstack_t *ns; ipsec_stack_t *ipss; ii = (ipsec_in_t *)ipsec_mp->b_rptr; ASSERT(ii->ipsec_in_type == IPSEC_IN); ns = ii->ipsec_in_ns; ipss = ns->netstack_ipsec; if (ii->ipsec_in_dont_check) { check = B_FALSE; if (!ii->ipsec_in_secure) { freeb(ipsec_mp); ipsec_mp = NULL; } } if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { policy_present = ipss->ipsec_inbound_v4_policy_present; ipha = (ipha_t *)mp->b_rptr; ip6h = NULL; } else { policy_present = ipss->ipsec_inbound_v6_policy_present; ipha = NULL; ip6h = (ip6_t *)mp->b_rptr; } if (check && policy_present) { /* * The conn_t parameter is NULL because we already know * nobody's home. */ ipsec_mp = ipsec_check_global_policy(ipsec_mp, (conn_t *)NULL, ipha, ip6h, B_TRUE, ns); if (ipsec_mp == NULL) return (NULL); } if (ipsec_mp != NULL) freeb(ipsec_mp); return (mp); } /* Handle out-of-the-blue packets */ void sctp_ootb_input(mblk_t *mp, ill_t *recv_ill, zoneid_t zoneid, boolean_t mctl_present) { sctp_t *sctp; sctp_chunk_hdr_t *ch; sctp_hdr_t *sctph; in6_addr_t src, dst; uint_t ip_hdr_len; uint_t ifindex; ip6_pkt_t ipp; ssize_t mlen; ip_pktinfo_t *pinfo = NULL; mblk_t *first_mp; sctp_stack_t *sctps; ip_stack_t *ipst; ASSERT(recv_ill != NULL); ipst = recv_ill->ill_ipst; sctps = ipst->ips_netstack->netstack_sctp; BUMP_MIB(&sctps->sctps_mib, sctpOutOfBlue); BUMP_MIB(&sctps->sctps_mib, sctpInSCTPPkts); if (sctps->sctps_gsctp == NULL) { /* * For non-zero stackids the default queue isn't created * until the first open, thus there can be a need to send * an error before then. But we can't do that, hence we just * drop the packet. Later during boot, when the default queue * has been setup, a retransmitted packet from the peer * will result in a error. */ ASSERT(sctps->sctps_netstack->netstack_stackid != GLOBAL_NETSTACKID); freemsg(mp); return; } first_mp = mp; if (mctl_present) mp = mp->b_cont; /* Initiate IPPf processing, if needed. */ if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { ip_process(IPP_LOCAL_IN, &mp, recv_ill->ill_phyint->phyint_ifindex); if (mp == NULL) { if (mctl_present) freeb(first_mp); return; } } if (mp->b_cont != NULL) { /* * All subsequent code is vastly simplified if it can * assume a single contiguous chunk of data. */ if (pullupmsg(mp, -1) == 0) { BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); freemsg(first_mp); return; } } /* * We don't really need to call this function... Need to * optimize later. */ sctph = find_sctp_hdrs(mp, &src, &dst, &ifindex, &ip_hdr_len, &ipp, pinfo); mlen = mp->b_wptr - (uchar_t *)(sctph + 1); if ((ch = sctp_first_chunk((uchar_t *)(sctph + 1), mlen)) == NULL) { dprint(3, ("sctp_ootb_input: invalid packet\n")); BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); freemsg(first_mp); return; } switch (ch->sch_id) { case CHUNK_INIT: /* no listener; send abort */ if (mctl_present && sctp_check_in_policy(mp, first_mp) == NULL) return; sctp_send_abort(sctps->sctps_gsctp, sctp_init2vtag(ch), 0, NULL, 0, mp, 0, B_TRUE); break; case CHUNK_INIT_ACK: /* check for changed src addr */ sctp = sctp_addrlist2sctp(mp, sctph, ch, zoneid, sctps); if (sctp != NULL) { /* success; proceed to normal path */ mutex_enter(&sctp->sctp_lock); if (sctp->sctp_running) { if (!sctp_add_recvq(sctp, mp, B_FALSE)) { BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); freemsg(mp); } mutex_exit(&sctp->sctp_lock); } else { /* * If the source address is changed, we * don't need to worry too much about * out of order processing. So we don't * check if the recvq is empty or not here. */ sctp->sctp_running = B_TRUE; mutex_exit(&sctp->sctp_lock); sctp_input_data(sctp, mp, NULL); WAKE_SCTP(sctp); sctp_process_sendq(sctp); } SCTP_REFRELE(sctp); return; } if (mctl_present) freeb(first_mp); /* else bogus init ack; drop it */ break; case CHUNK_SHUTDOWN_ACK: if (mctl_present && sctp_check_in_policy(mp, first_mp) == NULL) return; sctp_ootb_shutdown_ack(sctps->sctps_gsctp, mp, ip_hdr_len); sctp_process_sendq(sctps->sctps_gsctp); return; case CHUNK_ERROR: case CHUNK_ABORT: case CHUNK_COOKIE_ACK: case CHUNK_SHUTDOWN_COMPLETE: if (mctl_present) freeb(first_mp); break; default: if (mctl_present && sctp_check_in_policy(mp, first_mp) == NULL) return; sctp_send_abort(sctps->sctps_gsctp, sctph->sh_verf, 0, NULL, 0, mp, 0, B_TRUE); break; } sctp_process_sendq(sctps->sctps_gsctp); freemsg(mp); } void sctp_input(conn_t *connp, ipha_t *ipha, mblk_t *mp, mblk_t *first_mp, ill_t *recv_ill, boolean_t isv4, boolean_t mctl_present) { sctp_t *sctp = CONN2SCTP(connp); ip_stack_t *ipst = recv_ill->ill_ipst; ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; /* * We check some fields in conn_t without holding a lock. * This should be fine. */ if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) || mctl_present) { first_mp = ipsec_check_inbound_policy(first_mp, connp, ipha, NULL, mctl_present); if (first_mp == NULL) { BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); SCTP_REFRELE(sctp); return; } } /* Initiate IPPF processing for fastpath */ if (IPP_ENABLED(IPP_LOCAL_IN, ipst)) { ip_process(IPP_LOCAL_IN, &mp, recv_ill->ill_phyint->phyint_ifindex); if (mp == NULL) { SCTP_REFRELE(sctp); if (mctl_present) freeb(first_mp); return; } else if (mctl_present) { /* * ip_process might return a new mp. */ ASSERT(first_mp != mp); first_mp->b_cont = mp; } else { first_mp = mp; } } if (connp->conn_recvif || connp->conn_recvslla || connp->conn_ip_recvpktinfo) { int in_flags = 0; if (connp->conn_recvif || connp->conn_ip_recvpktinfo) { in_flags = IPF_RECVIF; } if (connp->conn_recvslla) { in_flags |= IPF_RECVSLLA; } if (isv4) { mp = ip_add_info(mp, recv_ill, in_flags, IPCL_ZONEID(connp), ipst); } else { mp = ip_add_info_v6(mp, recv_ill, &(((ip6_t *)ipha)->ip6_dst)); } if (mp == NULL) { BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); SCTP_REFRELE(sctp); if (mctl_present) freeb(first_mp); return; } else if (mctl_present) { /* * ip_add_info might return a new mp. */ ASSERT(first_mp != mp); first_mp->b_cont = mp; } else { first_mp = mp; } } mutex_enter(&sctp->sctp_lock); if (sctp->sctp_running) { if (mctl_present) mp->b_prev = first_mp; if (!sctp_add_recvq(sctp, mp, B_FALSE)) { BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); freemsg(first_mp); } mutex_exit(&sctp->sctp_lock); SCTP_REFRELE(sctp); return; } else { sctp->sctp_running = B_TRUE; mutex_exit(&sctp->sctp_lock); mutex_enter(&sctp->sctp_recvq_lock); if (sctp->sctp_recvq != NULL) { if (mctl_present) mp->b_prev = first_mp; if (!sctp_add_recvq(sctp, mp, B_TRUE)) { BUMP_MIB(recv_ill->ill_ip_mib, ipIfStatsInDiscards); freemsg(first_mp); } mutex_exit(&sctp->sctp_recvq_lock); WAKE_SCTP(sctp); SCTP_REFRELE(sctp); return; } } mutex_exit(&sctp->sctp_recvq_lock); sctp_input_data(sctp, mp, (mctl_present ? first_mp : NULL)); WAKE_SCTP(sctp); sctp_process_sendq(sctp); SCTP_REFRELE(sctp); } static void sctp_process_abort(sctp_t *sctp, sctp_chunk_hdr_t *ch, int err) { sctp_stack_t *sctps = sctp->sctp_sctps; BUMP_MIB(&sctps->sctps_mib, sctpAborted); BUMP_LOCAL(sctp->sctp_ibchunks); sctp_assoc_event(sctp, SCTP_COMM_LOST, ntohs(((sctp_parm_hdr_t *)(ch + 1))->sph_type), ch); sctp_clean_death(sctp, err); } void sctp_input_data(sctp_t *sctp, mblk_t *mp, mblk_t *ipsec_mp) { sctp_chunk_hdr_t *ch; ssize_t mlen; int gotdata; int trysend; sctp_faddr_t *fp; sctp_init_chunk_t *iack; uint32_t tsn; sctp_data_hdr_t *sdc; ip6_pkt_t ipp; in6_addr_t src; in6_addr_t dst; uint_t ifindex; sctp_hdr_t *sctph; uint_t ip_hdr_len; mblk_t *dups = NULL; int recv_adaptation; boolean_t wake_eager = B_FALSE; mblk_t *pinfo_mp; ip_pktinfo_t *pinfo = NULL; in6_addr_t peer_src; int64_t now; sctp_stack_t *sctps = sctp->sctp_sctps; ip_stack_t *ipst = sctps->sctps_netstack->netstack_ip; boolean_t hb_already = B_FALSE; cred_t *cr; pid_t cpid; if (DB_TYPE(mp) != M_DATA) { ASSERT(DB_TYPE(mp) == M_CTL); if (MBLKL(mp) == sizeof (ip_pktinfo_t) && ((ip_pktinfo_t *)mp->b_rptr)->ip_pkt_ulp_type == IN_PKTINFO) { pinfo = (ip_pktinfo_t *)mp->b_rptr; pinfo_mp = mp; mp = mp->b_cont; } else { if (ipsec_mp != NULL) freeb(ipsec_mp); sctp_icmp_error(sctp, mp); return; } } ASSERT(DB_TYPE(mp) == M_DATA); if (mp->b_cont != NULL) { /* * All subsequent code is vastly simplified if it can * assume a single contiguous chunk of data. */ if (pullupmsg(mp, -1) == 0) { BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); if (ipsec_mp != NULL) freeb(ipsec_mp); if (pinfo != NULL) freeb(pinfo_mp); freemsg(mp); return; } } BUMP_LOCAL(sctp->sctp_ipkts); sctph = find_sctp_hdrs(mp, &src, &dst, &ifindex, &ip_hdr_len, &ipp, pinfo); if (pinfo != NULL) freeb(pinfo_mp); mlen = mp->b_wptr - (uchar_t *)(sctph + 1); ch = sctp_first_chunk((uchar_t *)(sctph + 1), mlen); if (ch == NULL) { BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); if (ipsec_mp != NULL) freeb(ipsec_mp); freemsg(mp); return; } if (!sctp_check_input(sctp, ch, mlen, 1)) { BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); goto done; } /* * Check verfication tag (special handling for INIT, * COOKIE, SHUTDOWN_COMPLETE and SHUTDOWN_ACK chunks). * ABORTs are handled in the chunk processing loop, since * may not appear first. All other checked chunks must * appear first, or will have been dropped by check_input(). */ switch (ch->sch_id) { case CHUNK_INIT: if (sctph->sh_verf != 0) { /* drop it */ goto done; } break; case CHUNK_SHUTDOWN_COMPLETE: if (sctph->sh_verf == sctp->sctp_lvtag) break; if (sctph->sh_verf == sctp->sctp_fvtag && SCTP_GET_TBIT(ch)) { break; } /* else drop it */ goto done; case CHUNK_ABORT: case CHUNK_COOKIE: /* handled below */ break; case CHUNK_SHUTDOWN_ACK: if (sctp->sctp_state > SCTPS_BOUND && sctp->sctp_state < SCTPS_ESTABLISHED) { /* treat as OOTB */ sctp_ootb_shutdown_ack(sctp, mp, ip_hdr_len); if (ipsec_mp != NULL) freeb(ipsec_mp); return; } /* else fallthru */ default: /* * All other packets must have a valid * verification tag, however if this is a * listener, we use a refined version of * out-of-the-blue logic. */ if (sctph->sh_verf != sctp->sctp_lvtag && sctp->sctp_state != SCTPS_LISTEN) { /* drop it */ goto done; } break; } /* Have a valid sctp for this packet */ fp = sctp_lookup_faddr(sctp, &src); dprint(2, ("sctp_dispatch_rput: mp=%p fp=%p sctp=%p\n", (void *)mp, (void *)fp, (void *)sctp)); gotdata = 0; trysend = 0; now = lbolt64; /* Process the chunks */ do { dprint(3, ("sctp_dispatch_rput: state=%d, chunk id=%d\n", sctp->sctp_state, (int)(ch->sch_id))); if (ch->sch_id == CHUNK_ABORT) { if (sctph->sh_verf != sctp->sctp_lvtag && sctph->sh_verf != sctp->sctp_fvtag) { /* drop it */ goto done; } } switch (sctp->sctp_state) { case SCTPS_ESTABLISHED: case SCTPS_SHUTDOWN_PENDING: case SCTPS_SHUTDOWN_SENT: switch (ch->sch_id) { case CHUNK_DATA: /* 0-length data chunks are not allowed */ if (ntohs(ch->sch_len) == sizeof (*sdc)) { sdc = (sctp_data_hdr_t *)ch; tsn = sdc->sdh_tsn; sctp_send_abort(sctp, sctp->sctp_fvtag, SCTP_ERR_NO_USR_DATA, (char *)&tsn, sizeof (tsn), mp, 0, B_FALSE); sctp_assoc_event(sctp, SCTP_COMM_LOST, 0, NULL); sctp_clean_death(sctp, ECONNABORTED); goto done; } ASSERT(fp != NULL); sctp->sctp_lastdata = fp; sctp_data_chunk(sctp, ch, mp, &dups, fp, &ipp); gotdata = 1; /* Restart shutdown timer if shutting down */ if (sctp->sctp_state == SCTPS_SHUTDOWN_SENT) { /* * If we have exceeded our max * wait bound for waiting for a * shutdown ack from the peer, * abort the association. */ if (sctps->sctps_shutack_wait_bound != 0 && TICK_TO_MSEC(now - sctp->sctp_out_time) > sctps->sctps_shutack_wait_bound) { sctp_send_abort(sctp, sctp->sctp_fvtag, 0, NULL, 0, mp, 0, B_FALSE); sctp_assoc_event(sctp, SCTP_COMM_LOST, 0, NULL); sctp_clean_death(sctp, ECONNABORTED); goto done; } SCTP_FADDR_TIMER_RESTART(sctp, fp, fp->rto); } break; case CHUNK_SACK: ASSERT(fp != NULL); /* * Peer is real and alive if it can ack our * data. */ sctp_faddr_alive(sctp, fp); trysend = sctp_got_sack(sctp, ch); if (trysend < 0) { sctp_send_abort(sctp, sctph->sh_verf, 0, NULL, 0, mp, 0, B_FALSE); sctp_assoc_event(sctp, SCTP_COMM_LOST, 0, NULL); sctp_clean_death(sctp, ECONNABORTED); goto done; } break; case CHUNK_HEARTBEAT: if (!hb_already) { /* * In any one packet, there should * only be one heartbeat chunk. So * we should not process more than * once. */ sctp_return_heartbeat(sctp, ch, mp); hb_already = B_TRUE; } break; case CHUNK_HEARTBEAT_ACK: sctp_process_heartbeat(sctp, ch); break; case CHUNK_SHUTDOWN: sctp_shutdown_event(sctp); trysend = sctp_shutdown_received(sctp, ch, B_FALSE, B_FALSE, fp); BUMP_LOCAL(sctp->sctp_ibchunks); break; case CHUNK_SHUTDOWN_ACK: BUMP_LOCAL(sctp->sctp_ibchunks); if (sctp->sctp_state == SCTPS_SHUTDOWN_SENT) { sctp_shutdown_complete(sctp); BUMP_MIB(&sctps->sctps_mib, sctpShutdowns); sctp_assoc_event(sctp, SCTP_SHUTDOWN_COMP, 0, NULL); sctp_clean_death(sctp, 0); goto done; } break; case CHUNK_ABORT: { sctp_saddr_ipif_t *sp; /* Ignore if delete pending */ sp = sctp_saddr_lookup(sctp, &dst, 0); ASSERT(sp != NULL); if (sp->saddr_ipif_delete_pending) { BUMP_LOCAL(sctp->sctp_ibchunks); break; } sctp_process_abort(sctp, ch, ECONNRESET); goto done; } case CHUNK_INIT: sctp_send_initack(sctp, sctph, ch, mp); break; case CHUNK_COOKIE: if (sctp_process_cookie(sctp, ch, mp, &iack, sctph, &recv_adaptation, NULL) != -1) { sctp_send_cookie_ack(sctp); sctp_assoc_event(sctp, SCTP_RESTART, 0, NULL); if (recv_adaptation) { sctp->sctp_recv_adaptation = 1; sctp_adaptation_event(sctp); } } else { BUMP_MIB(&sctps->sctps_mib, sctpInInvalidCookie); } break; case CHUNK_ERROR: { int error; BUMP_LOCAL(sctp->sctp_ibchunks); error = sctp_handle_error(sctp, sctph, ch, mp); if (error != 0) { sctp_assoc_event(sctp, SCTP_COMM_LOST, 0, NULL); sctp_clean_death(sctp, error); goto done; } break; } case CHUNK_ASCONF: ASSERT(fp != NULL); sctp_input_asconf(sctp, ch, fp); BUMP_LOCAL(sctp->sctp_ibchunks); break; case CHUNK_ASCONF_ACK: ASSERT(fp != NULL); sctp_faddr_alive(sctp, fp); sctp_input_asconf_ack(sctp, ch, fp); BUMP_LOCAL(sctp->sctp_ibchunks); break; case CHUNK_FORWARD_TSN: ASSERT(fp != NULL); sctp->sctp_lastdata = fp; sctp_process_forward_tsn(sctp, ch, fp, &ipp); gotdata = 1; BUMP_LOCAL(sctp->sctp_ibchunks); break; default: if (sctp_strange_chunk(sctp, ch, fp) == 0) { goto nomorechunks; } /* else skip and continue processing */ break; } break; case SCTPS_LISTEN: switch (ch->sch_id) { case CHUNK_INIT: sctp_send_initack(sctp, sctph, ch, mp); break; case CHUNK_COOKIE: { sctp_t *eager; if (sctp_process_cookie(sctp, ch, mp, &iack, sctph, &recv_adaptation, &peer_src) == -1) { BUMP_MIB(&sctps->sctps_mib, sctpInInvalidCookie); goto done; } /* * The cookie is good; ensure that * the peer used the verification * tag from the init ack in the header. */ if (iack->sic_inittag != sctph->sh_verf) goto done; eager = sctp_conn_request(sctp, mp, ifindex, ip_hdr_len, iack, ipsec_mp); if (eager == NULL) { sctp_send_abort(sctp, sctph->sh_verf, SCTP_ERR_NO_RESOURCES, NULL, 0, mp, 0, B_FALSE); goto done; } /* * If there were extra chunks * bundled with the cookie, * they must be processed * on the eager's queue. We * accomplish this by refeeding * the whole packet into the * state machine on the right * q. The packet (mp) gets * there via the eager's * cookie_mp field (overloaded * with the active open role). * This is picked up when * processing the null bind * request put on the eager's * q by sctp_accept(). We must * first revert the cookie * chunk's length field to network * byteorder so it can be * properly reprocessed on the * eager's queue. */ BUMP_MIB(&sctps->sctps_mib, sctpPassiveEstab); if (mlen > ntohs(ch->sch_len)) { eager->sctp_cookie_mp = dupb(mp); mblk_setcred(eager->sctp_cookie_mp, CONN_CRED(eager->sctp_connp), eager->sctp_cpid); /* * If no mem, just let * the peer retransmit. */ } sctp_assoc_event(eager, SCTP_COMM_UP, 0, NULL); if (recv_adaptation) { eager->sctp_recv_adaptation = 1; eager->sctp_rx_adaptation_code = sctp->sctp_rx_adaptation_code; sctp_adaptation_event(eager); } eager->sctp_active = now; sctp_send_cookie_ack(eager); wake_eager = B_TRUE; /* * Process rest of the chunks with eager. */ sctp = eager; fp = sctp_lookup_faddr(sctp, &peer_src); /* * Confirm peer's original source. fp can * only be NULL if peer does not use the * original source as one of its addresses... */ if (fp == NULL) fp = sctp_lookup_faddr(sctp, &src); else sctp_faddr_alive(sctp, fp); /* * Validate the peer addresses. It also starts * the heartbeat timer. */ sctp_validate_peer(sctp); break; } /* Anything else is considered out-of-the-blue */ case CHUNK_ERROR: case CHUNK_ABORT: case CHUNK_COOKIE_ACK: case CHUNK_SHUTDOWN_COMPLETE: BUMP_LOCAL(sctp->sctp_ibchunks); goto done; default: BUMP_LOCAL(sctp->sctp_ibchunks); sctp_send_abort(sctp, sctph->sh_verf, 0, NULL, 0, mp, 0, B_TRUE); goto done; } break; case SCTPS_COOKIE_WAIT: switch (ch->sch_id) { case CHUNK_INIT_ACK: sctp_stop_faddr_timers(sctp); sctp_faddr_alive(sctp, sctp->sctp_current); sctp_send_cookie_echo(sctp, ch, mp); BUMP_LOCAL(sctp->sctp_ibchunks); break; case CHUNK_ABORT: sctp_process_abort(sctp, ch, ECONNREFUSED); goto done; case CHUNK_INIT: sctp_send_initack(sctp, sctph, ch, mp); break; case CHUNK_COOKIE: cr = msg_getcred(mp, &cpid); if (sctp_process_cookie(sctp, ch, mp, &iack, sctph, &recv_adaptation, NULL) == -1) { BUMP_MIB(&sctps->sctps_mib, sctpInInvalidCookie); break; } sctp_send_cookie_ack(sctp); sctp_stop_faddr_timers(sctp); if (!SCTP_IS_DETACHED(sctp)) { sctp->sctp_ulp_connected( sctp->sctp_ulpd, 0, cr, cpid); sctp_set_ulp_prop(sctp); } sctp->sctp_state = SCTPS_ESTABLISHED; sctp->sctp_assoc_start_time = (uint32_t)lbolt; BUMP_MIB(&sctps->sctps_mib, sctpActiveEstab); if (sctp->sctp_cookie_mp) { freemsg(sctp->sctp_cookie_mp); sctp->sctp_cookie_mp = NULL; } /* Validate the peer addresses. */ sctp->sctp_active = now; sctp_validate_peer(sctp); sctp_assoc_event(sctp, SCTP_COMM_UP, 0, NULL); if (recv_adaptation) { sctp->sctp_recv_adaptation = 1; sctp_adaptation_event(sctp); } /* Try sending queued data, or ASCONFs */ trysend = 1; break; default: if (sctp_strange_chunk(sctp, ch, fp) == 0) { goto nomorechunks; } /* else skip and continue processing */ break; } break; case SCTPS_COOKIE_ECHOED: switch (ch->sch_id) { case CHUNK_COOKIE_ACK: cr = msg_getcred(mp, &cpid); if (!SCTP_IS_DETACHED(sctp)) { sctp->sctp_ulp_connected( sctp->sctp_ulpd, 0, cr, cpid); sctp_set_ulp_prop(sctp); } if (sctp->sctp_unacked == 0) sctp_stop_faddr_timers(sctp); sctp->sctp_state = SCTPS_ESTABLISHED; sctp->sctp_assoc_start_time = (uint32_t)lbolt; BUMP_MIB(&sctps->sctps_mib, sctpActiveEstab); BUMP_LOCAL(sctp->sctp_ibchunks); if (sctp->sctp_cookie_mp) { freemsg(sctp->sctp_cookie_mp); sctp->sctp_cookie_mp = NULL; } sctp_faddr_alive(sctp, fp); /* Validate the peer addresses. */ sctp->sctp_active = now; sctp_validate_peer(sctp); /* Try sending queued data, or ASCONFs */ trysend = 1; sctp_assoc_event(sctp, SCTP_COMM_UP, 0, NULL); sctp_adaptation_event(sctp); break; case CHUNK_ABORT: sctp_process_abort(sctp, ch, ECONNREFUSED); goto done; case CHUNK_COOKIE: cr = msg_getcred(mp, &cpid); if (sctp_process_cookie(sctp, ch, mp, &iack, sctph, &recv_adaptation, NULL) == -1) { BUMP_MIB(&sctps->sctps_mib, sctpInInvalidCookie); break; } sctp_send_cookie_ack(sctp); if (!SCTP_IS_DETACHED(sctp)) { sctp->sctp_ulp_connected( sctp->sctp_ulpd, 0, cr, cpid); sctp_set_ulp_prop(sctp); } if (sctp->sctp_unacked == 0) sctp_stop_faddr_timers(sctp); sctp->sctp_state = SCTPS_ESTABLISHED; sctp->sctp_assoc_start_time = (uint32_t)lbolt; BUMP_MIB(&sctps->sctps_mib, sctpActiveEstab); if (sctp->sctp_cookie_mp) { freemsg(sctp->sctp_cookie_mp); sctp->sctp_cookie_mp = NULL; } /* Validate the peer addresses. */ sctp->sctp_active = now; sctp_validate_peer(sctp); sctp_assoc_event(sctp, SCTP_COMM_UP, 0, NULL); if (recv_adaptation) { sctp->sctp_recv_adaptation = 1; sctp_adaptation_event(sctp); } /* Try sending queued data, or ASCONFs */ trysend = 1; break; case CHUNK_INIT: sctp_send_initack(sctp, sctph, ch, mp); break; case CHUNK_ERROR: { sctp_parm_hdr_t *p; BUMP_LOCAL(sctp->sctp_ibchunks); /* check for a stale cookie */ if (ntohs(ch->sch_len) >= (sizeof (*p) + sizeof (*ch)) + sizeof (uint32_t)) { p = (sctp_parm_hdr_t *)(ch + 1); if (p->sph_type == htons(SCTP_ERR_STALE_COOKIE)) { BUMP_MIB(&sctps->sctps_mib, sctpAborted); sctp_error_event(sctp, ch); sctp_assoc_event(sctp, SCTP_COMM_LOST, 0, NULL); sctp_clean_death(sctp, ECONNREFUSED); goto done; } } break; } case CHUNK_HEARTBEAT: if (!hb_already) { sctp_return_heartbeat(sctp, ch, mp); hb_already = B_TRUE; } break; default: if (sctp_strange_chunk(sctp, ch, fp) == 0) { goto nomorechunks; } /* else skip and continue processing */ } /* switch (ch->sch_id) */ break; case SCTPS_SHUTDOWN_ACK_SENT: switch (ch->sch_id) { case CHUNK_ABORT: /* Pass gathered wisdom to IP for keeping */ sctp_update_ire(sctp); sctp_process_abort(sctp, ch, 0); goto done; case CHUNK_SHUTDOWN_COMPLETE: BUMP_LOCAL(sctp->sctp_ibchunks); BUMP_MIB(&sctps->sctps_mib, sctpShutdowns); sctp_assoc_event(sctp, SCTP_SHUTDOWN_COMP, 0, NULL); /* Pass gathered wisdom to IP for keeping */ sctp_update_ire(sctp); sctp_clean_death(sctp, 0); goto done; case CHUNK_SHUTDOWN_ACK: sctp_shutdown_complete(sctp); BUMP_LOCAL(sctp->sctp_ibchunks); BUMP_MIB(&sctps->sctps_mib, sctpShutdowns); sctp_assoc_event(sctp, SCTP_SHUTDOWN_COMP, 0, NULL); sctp_clean_death(sctp, 0); goto done; case CHUNK_COOKIE: (void) sctp_shutdown_received(sctp, NULL, B_TRUE, B_FALSE, fp); BUMP_LOCAL(sctp->sctp_ibchunks); break; case CHUNK_HEARTBEAT: if (!hb_already) { sctp_return_heartbeat(sctp, ch, mp); hb_already = B_TRUE; } break; default: if (sctp_strange_chunk(sctp, ch, fp) == 0) { goto nomorechunks; } /* else skip and continue processing */ break; } break; case SCTPS_SHUTDOWN_RECEIVED: switch (ch->sch_id) { case CHUNK_SHUTDOWN: trysend = sctp_shutdown_received(sctp, ch, B_FALSE, B_FALSE, fp); break; case CHUNK_SACK: trysend = sctp_got_sack(sctp, ch); if (trysend < 0) { sctp_send_abort(sctp, sctph->sh_verf, 0, NULL, 0, mp, 0, B_FALSE); sctp_assoc_event(sctp, SCTP_COMM_LOST, 0, NULL); sctp_clean_death(sctp, ECONNABORTED); goto done; } break; case CHUNK_ABORT: sctp_process_abort(sctp, ch, ECONNRESET); goto done; case CHUNK_HEARTBEAT: if (!hb_already) { sctp_return_heartbeat(sctp, ch, mp); hb_already = B_TRUE; } break; default: if (sctp_strange_chunk(sctp, ch, fp) == 0) { goto nomorechunks; } /* else skip and continue processing */ break; } break; default: /* * The only remaining states are SCTPS_IDLE and * SCTPS_BOUND, and we should not be getting here * for these. */ ASSERT(0); } /* switch (sctp->sctp_state) */ ch = sctp_next_chunk(ch, &mlen); if (ch != NULL && !sctp_check_input(sctp, ch, mlen, 0)) goto done; } while (ch != NULL); /* Finished processing all chunks in packet */ nomorechunks: /* SACK if necessary */ if (gotdata) { boolean_t sack_sent; (sctp->sctp_sack_toggle)++; sack_sent = sctp_sack(sctp, dups); dups = NULL; /* If a SACK is sent, no need to restart the timer. */ if (!sack_sent && !sctp->sctp_ack_timer_running) { sctp->sctp_ack_timer_running = B_TRUE; sctp_timer(sctp, sctp->sctp_ack_mp, MSEC_TO_TICK(sctps->sctps_deferred_ack_interval)); } } if (trysend) { sctp_output(sctp, UINT_MAX); if (sctp->sctp_cxmit_list != NULL) sctp_wput_asconf(sctp, NULL); } /* If there is unsent data, make sure a timer is running */ if (sctp->sctp_unsent > 0 && !sctp->sctp_current->timer_running) { SCTP_FADDR_TIMER_RESTART(sctp, sctp->sctp_current, sctp->sctp_current->rto); } done: if (dups != NULL) freeb(dups); if (ipsec_mp != NULL) freeb(ipsec_mp); freemsg(mp); if (sctp->sctp_err_chunks != NULL) sctp_process_err(sctp); if (wake_eager) { /* * sctp points to newly created control block, need to * release it before exiting. Before releasing it and * processing the sendq, need to grab a hold on it. * Otherwise, another thread can close it while processing * the sendq. */ SCTP_REFHOLD(sctp); WAKE_SCTP(sctp); sctp_process_sendq(sctp); SCTP_REFRELE(sctp); } } /* * Some amount of data got removed from rx q. * Check if we should send a window update. * * Due to way sctp_rwnd updates are made, ULP can give reports out-of-order. * To keep from dropping incoming data due to this, we only update * sctp_rwnd when if it's larger than what we've reported to peer earlier. */ void sctp_recvd(sctp_t *sctp, int len) { int32_t old, new; sctp_stack_t *sctps = sctp->sctp_sctps; ASSERT(sctp != NULL); RUN_SCTP(sctp); if (len < sctp->sctp_rwnd) { WAKE_SCTP(sctp); return; } ASSERT(sctp->sctp_rwnd >= sctp->sctp_rxqueued); old = sctp->sctp_rwnd - sctp->sctp_rxqueued; new = len - sctp->sctp_rxqueued; sctp->sctp_rwnd = len; if (sctp->sctp_state >= SCTPS_ESTABLISHED && ((old <= new >> 1) || (old < sctp->sctp_mss))) { sctp->sctp_force_sack = 1; BUMP_MIB(&sctps->sctps_mib, sctpOutWinUpdate); (void) sctp_sack(sctp, NULL); old = 1; } else { old = 0; } WAKE_SCTP(sctp); if (old > 0) { sctp_process_sendq(sctp); } }