/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 1990 Mentat Inc. */ /* * This file contains the interface control functions for IP. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* for various inet/mi.h and inet/nd.h needs */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* needed for icmp_stack_t */ #include /* needed for udp_stack_t */ /* The character which tells where the ill_name ends */ #define IPIF_SEPARATOR_CHAR ':' /* IP ioctl function table entry */ typedef struct ipft_s { int ipft_cmd; pfi_t ipft_pfi; int ipft_min_size; int ipft_flags; } ipft_t; #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); static int nd_ill_forward_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *ioc_cr); static boolean_t ill_is_quiescent(ill_t *); static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, boolean_t need_up); static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, boolean_t need_up); static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, queue_t *q, mblk_t *mp, boolean_t need_up); static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp); static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp); static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, queue_t *q, mblk_t *mp, boolean_t need_up); static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd, struct linkblk *li); static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *); static void ip_wput_ioctl(queue_t *q, mblk_t *mp); static void ipsq_flush(ill_t *ill); static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, mblk_t *mp, boolean_t need_up); static void ipsq_delete(ipsq_t *); static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize, boolean_t insert, int *errorp); static ire_t **ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep); static void ipif_delete_bcast_ires(ipif_t *ipif); static int ipif_add_ires_v4(ipif_t *, boolean_t); static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6); static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); static void ipif_free(ipif_t *ipif); static void ipif_free_tail(ipif_t *ipif); static void ipif_set_default(ipif_t *ipif); static int ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *ppa); static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, ip_stack_t *); static ipif_t *ipif_lookup_on_name_async(char *name, size_t namelen, boolean_t isv6, zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *); static int ill_alloc_ppa(ill_if_t *, ill_t *); static void ill_delete_interface_type(ill_if_t *); static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); static void ill_dl_down(ill_t *ill); static void ill_down(ill_t *ill); static void ill_down_ipifs(ill_t *, boolean_t); static void ill_free_mib(ill_t *ill); static void ill_glist_delete(ill_t *); static void ill_phyint_reinit(ill_t *ill); static void ill_set_nce_router_flags(ill_t *, boolean_t); static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *); static void ill_replumb_tail(ipsq_t *, queue_t *, mblk_t *, void *); static ip_v6intfid_func_t ip_ether_v6intfid, ip_ib_v6intfid; static ip_v6intfid_func_t ip_ipv4_v6intfid, ip_ipv6_v6intfid; static ip_v6intfid_func_t ip_ipmp_v6intfid, ip_nodef_v6intfid; static ip_v6intfid_func_t ip_ipv4_v6destintfid, ip_ipv6_v6destintfid; static ip_v4mapinfo_func_t ip_ether_v4_mapping; static ip_v6mapinfo_func_t ip_ether_v6_mapping; static ip_v4mapinfo_func_t ip_ib_v4_mapping; static ip_v6mapinfo_func_t ip_ib_v6_mapping; static ip_v4mapinfo_func_t ip_mbcast_mapping; static void ip_cgtp_bcast_add(ire_t *, ip_stack_t *); static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *); static void phyint_free(phyint_t *); static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *); static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); static void ill_capability_vrrp_ack(ill_t *, mblk_t *, dl_capability_sub_t *); static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); static void ill_capability_hcksum_reset_fill(ill_t *, mblk_t *); static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, dl_capability_sub_t *); static void ill_capability_zerocopy_reset_fill(ill_t *, mblk_t *); static void ill_capability_dld_reset_fill(ill_t *, mblk_t *); static void ill_capability_dld_ack(ill_t *, mblk_t *, dl_capability_sub_t *); static void ill_capability_dld_enable(ill_t *); static void ill_capability_ack_thr(void *); static void ill_capability_lso_enable(ill_t *); static ill_t *ill_prev_usesrc(ill_t *); static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); static void ill_disband_usesrc_group(ill_t *); static void ip_sioctl_garp_reply(mblk_t *, ill_t *, void *, int); #ifdef DEBUG static void ill_trace_cleanup(const ill_t *); static void ipif_trace_cleanup(const ipif_t *); #endif static void ill_dlpi_clear_deferred(ill_t *ill); /* * if we go over the memory footprint limit more than once in this msec * interval, we'll start pruning aggressively. */ int ip_min_frag_prune_time = 0; static ipft_t ip_ioctl_ftbl[] = { { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), IPFT_F_NO_REPLY }, { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, { 0 } }; /* Simple ICMP IP Header Template */ static ipha_t icmp_ipha = { IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP }; static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; static ip_m_t ip_m_tbl[] = { { DL_ETHER, IFT_ETHER, ETHERTYPE_IP, ETHERTYPE_IPV6, ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid, ip_nodef_v6intfid }, { DL_CSMACD, IFT_ISO88023, ETHERTYPE_IP, ETHERTYPE_IPV6, ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, ip_nodef_v6intfid }, { DL_TPB, IFT_ISO88024, ETHERTYPE_IP, ETHERTYPE_IPV6, ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, ip_nodef_v6intfid }, { DL_TPR, IFT_ISO88025, ETHERTYPE_IP, ETHERTYPE_IPV6, ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, ip_nodef_v6intfid }, { DL_FDDI, IFT_FDDI, ETHERTYPE_IP, ETHERTYPE_IPV6, ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid, ip_nodef_v6intfid }, { DL_IB, IFT_IB, ETHERTYPE_IP, ETHERTYPE_IPV6, ip_ib_v4_mapping, ip_ib_v6_mapping, ip_ib_v6intfid, ip_nodef_v6intfid }, { DL_IPV4, IFT_IPV4, IPPROTO_ENCAP, IPPROTO_IPV6, ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid, ip_ipv4_v6destintfid }, { DL_IPV6, IFT_IPV6, IPPROTO_ENCAP, IPPROTO_IPV6, ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv6_v6intfid, ip_ipv6_v6destintfid }, { DL_6TO4, IFT_6TO4, IPPROTO_ENCAP, IPPROTO_IPV6, ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid, ip_nodef_v6intfid }, { SUNW_DL_VNI, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, NULL, NULL, ip_nodef_v6intfid, ip_nodef_v6intfid }, { SUNW_DL_IPMP, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, NULL, NULL, ip_ipmp_v6intfid, ip_nodef_v6intfid }, { DL_OTHER, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, ip_nodef_v6intfid } }; static ill_t ill_null; /* Empty ILL for init. */ char ipif_loopback_name[] = "lo0"; /* These are used by all IP network modules. */ sin6_t sin6_null; /* Zero address for quick clears */ sin_t sin_null; /* Zero address for quick clears */ /* When set search for unused ipif_seqid */ static ipif_t ipif_zero; /* * ppa arena is created after these many * interfaces have been plumbed. */ uint_t ill_no_arena = 12; /* Setable in /etc/system */ /* * Allocate per-interface mibs. * Returns true if ok. False otherwise. * ipsq may not yet be allocated (loopback case ). */ static boolean_t ill_allocate_mibs(ill_t *ill) { /* Already allocated? */ if (ill->ill_ip_mib != NULL) { if (ill->ill_isv6) ASSERT(ill->ill_icmp6_mib != NULL); return (B_TRUE); } ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), KM_NOSLEEP); if (ill->ill_ip_mib == NULL) { return (B_FALSE); } /* Setup static information */ SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, sizeof (mib2_ipIfStatsEntry_t)); if (ill->ill_isv6) { ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, sizeof (mib2_ipv6AddrEntry_t)); SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, sizeof (mib2_ipv6RouteEntry_t)); SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, sizeof (mib2_ipv6NetToMediaEntry_t)); SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, sizeof (ipv6_member_t)); SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, sizeof (ipv6_grpsrc_t)); } else { ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, sizeof (mib2_ipAddrEntry_t)); SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, sizeof (mib2_ipRouteEntry_t)); SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, sizeof (mib2_ipNetToMediaEntry_t)); SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, sizeof (ip_member_t)); SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, sizeof (ip_grpsrc_t)); /* * For a v4 ill, we are done at this point, because per ill * icmp mibs are only used for v6. */ return (B_TRUE); } ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), KM_NOSLEEP); if (ill->ill_icmp6_mib == NULL) { kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); ill->ill_ip_mib = NULL; return (B_FALSE); } /* static icmp info */ ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = sizeof (mib2_ipv6IfIcmpEntry_t); /* * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later * after the phyint merge occurs in ipif_set_values -> ill_glist_insert * -> ill_phyint_reinit */ return (B_TRUE); } /* * Completely vaporize a lower level tap and all associated interfaces. * ill_delete is called only out of ip_close when the device control * stream is being closed. */ void ill_delete(ill_t *ill) { ipif_t *ipif; ill_t *prev_ill; ip_stack_t *ipst = ill->ill_ipst; /* * ill_delete may be forcibly entering the ipsq. The previous * ioctl may not have completed and may need to be aborted. * ipsq_flush takes care of it. If we don't need to enter the * the ipsq forcibly, the 2nd invocation of ipsq_flush in * ill_delete_tail is sufficient. */ ipsq_flush(ill); /* * Nuke all interfaces. ipif_free will take down the interface, * remove it from the list, and free the data structure. * Walk down the ipif list and remove the logical interfaces * first before removing the main ipif. We can't unplumb * zeroth interface first in the case of IPv6 as update_conn_ill * -> ip_ll_multireq de-references ill_ipif for checking * POINTOPOINT. * * If ill_ipif was not properly initialized (i.e low on memory), * then no interfaces to clean up. In this case just clean up the * ill. */ for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) ipif_free(ipif); /* * clean out all the nce_t entries that depend on this * ill for the ill_phys_addr. */ nce_flush(ill, B_TRUE); /* Clean up msgs on pending upcalls for mrouted */ reset_mrt_ill(ill); update_conn_ill(ill, ipst); /* * Remove multicast references added as a result of calls to * ip_join_allmulti(). */ ip_purge_allmulti(ill); /* * If the ill being deleted is under IPMP, boot it out of the illgrp. */ if (IS_UNDER_IPMP(ill)) ipmp_ill_leave_illgrp(ill); /* * ill_down will arrange to blow off any IRE's dependent on this * ILL, and shut down fragmentation reassembly. */ ill_down(ill); /* Let SCTP know, so that it can remove this from its list. */ sctp_update_ill(ill, SCTP_ILL_REMOVE); /* * Walk all CONNs that can have a reference on an ire or nce for this * ill (we actually walk all that now have stale references). */ ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst); /* With IPv6 we have dce_ifindex. Cleanup for neatness */ if (ill->ill_isv6) dce_cleanup(ill->ill_phyint->phyint_ifindex, ipst); /* * If an address on this ILL is being used as a source address then * clear out the pointers in other ILLs that point to this ILL. */ rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); if (ill->ill_usesrc_grp_next != NULL) { if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ ill_disband_usesrc_group(ill); } else { /* consumer of the usesrc ILL */ prev_ill = ill_prev_usesrc(ill); prev_ill->ill_usesrc_grp_next = ill->ill_usesrc_grp_next; } } rw_exit(&ipst->ips_ill_g_usesrc_lock); } static void ipif_non_duplicate(ipif_t *ipif) { ill_t *ill = ipif->ipif_ill; mutex_enter(&ill->ill_lock); if (ipif->ipif_flags & IPIF_DUPLICATE) { ipif->ipif_flags &= ~IPIF_DUPLICATE; ASSERT(ill->ill_ipif_dup_count > 0); ill->ill_ipif_dup_count--; } mutex_exit(&ill->ill_lock); } /* * ill_delete_tail is called from ip_modclose after all references * to the closing ill are gone. The wait is done in ip_modclose */ void ill_delete_tail(ill_t *ill) { mblk_t **mpp; ipif_t *ipif; ip_stack_t *ipst = ill->ill_ipst; for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { ipif_non_duplicate(ipif); (void) ipif_down_tail(ipif); } ASSERT(ill->ill_ipif_dup_count == 0); /* * If polling capability is enabled (which signifies direct * upcall into IP and driver has ill saved as a handle), * we need to make sure that unbind has completed before we * let the ill disappear and driver no longer has any reference * to this ill. */ mutex_enter(&ill->ill_lock); while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) cv_wait(&ill->ill_cv, &ill->ill_lock); mutex_exit(&ill->ill_lock); ASSERT(!(ill->ill_capabilities & (ILL_CAPAB_DLD | ILL_CAPAB_DLD_POLL | ILL_CAPAB_DLD_DIRECT))); if (ill->ill_net_type != IRE_LOOPBACK) qprocsoff(ill->ill_rq); /* * We do an ipsq_flush once again now. New messages could have * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls * could also have landed up if an ioctl thread had looked up * the ill before we set the ILL_CONDEMNED flag, but not yet * enqueued the ioctl when we did the ipsq_flush last time. */ ipsq_flush(ill); /* * Free capabilities. */ if (ill->ill_hcksum_capab != NULL) { kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); ill->ill_hcksum_capab = NULL; } if (ill->ill_zerocopy_capab != NULL) { kmem_free(ill->ill_zerocopy_capab, sizeof (ill_zerocopy_capab_t)); ill->ill_zerocopy_capab = NULL; } if (ill->ill_lso_capab != NULL) { kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); ill->ill_lso_capab = NULL; } if (ill->ill_dld_capab != NULL) { kmem_free(ill->ill_dld_capab, sizeof (ill_dld_capab_t)); ill->ill_dld_capab = NULL; } while (ill->ill_ipif != NULL) ipif_free_tail(ill->ill_ipif); /* * We have removed all references to ilm from conn and the ones joined * within the kernel. * * We don't walk conns, mrts and ires because * * 1) update_conn_ill and reset_mrt_ill cleans up conns and mrts. * 2) ill_down ->ill_downi walks all the ires and cleans up * ill references. */ /* * If this ill is an IPMP meta-interface, blow away the illgrp. This * is safe to do because the illgrp has already been unlinked from the * group by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find it. */ if (IS_IPMP(ill)) { ipmp_illgrp_destroy(ill->ill_grp); ill->ill_grp = NULL; } /* * Take us out of the list of ILLs. ill_glist_delete -> phyint_free * could free the phyint. No more reference to the phyint after this * point. */ (void) ill_glist_delete(ill); if (ill->ill_frag_ptr != NULL) { uint_t count; for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); } mi_free(ill->ill_frag_ptr); ill->ill_frag_ptr = NULL; ill->ill_frag_hash_tbl = NULL; } freemsg(ill->ill_nd_lla_mp); /* Free all retained control messages. */ mpp = &ill->ill_first_mp_to_free; do { while (mpp[0]) { mblk_t *mp; mblk_t *mp1; mp = mpp[0]; mpp[0] = mp->b_next; for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { mp1->b_next = NULL; mp1->b_prev = NULL; } freemsg(mp); } } while (mpp++ != &ill->ill_last_mp_to_free); ill_free_mib(ill); #ifdef DEBUG ill_trace_cleanup(ill); #endif /* The default multicast interface might have changed */ ire_increment_multicast_generation(ipst, ill->ill_isv6); /* Drop refcnt here */ netstack_rele(ill->ill_ipst->ips_netstack); ill->ill_ipst = NULL; } static void ill_free_mib(ill_t *ill) { ip_stack_t *ipst = ill->ill_ipst; /* * MIB statistics must not be lost, so when an interface * goes away the counter values will be added to the global * MIBs. */ if (ill->ill_ip_mib != NULL) { if (ill->ill_isv6) { ip_mib2_add_ip_stats(&ipst->ips_ip6_mib, ill->ill_ip_mib); } else { ip_mib2_add_ip_stats(&ipst->ips_ip_mib, ill->ill_ip_mib); } kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); ill->ill_ip_mib = NULL; } if (ill->ill_icmp6_mib != NULL) { ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib, ill->ill_icmp6_mib); kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); ill->ill_icmp6_mib = NULL; } } /* * Concatenate together a physical address and a sap. * * Sap_lengths are interpreted as follows: * sap_length == 0 ==> no sap * sap_length > 0 ==> sap is at the head of the dlpi address * sap_length < 0 ==> sap is at the tail of the dlpi address */ static void ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) { uint16_t sap_addr = (uint16_t)sap_src; if (sap_length == 0) { if (phys_src == NULL) bzero(dst, phys_length); else bcopy(phys_src, dst, phys_length); } else if (sap_length < 0) { if (phys_src == NULL) bzero(dst, phys_length); else bcopy(phys_src, dst, phys_length); bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); } else { bcopy(&sap_addr, dst, sizeof (sap_addr)); if (phys_src == NULL) bzero((char *)dst + sap_length, phys_length); else bcopy(phys_src, (char *)dst + sap_length, phys_length); } } /* * Generate a dl_unitdata_req mblk for the device and address given. * addr_length is the length of the physical portion of the address. * If addr is NULL include an all zero address of the specified length. * TRUE? In any case, addr_length is taken to be the entire length of the * dlpi address, including the absolute value of sap_length. */ mblk_t * ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, t_scalar_t sap_length) { dl_unitdata_req_t *dlur; mblk_t *mp; t_scalar_t abs_sap_length; /* absolute value */ abs_sap_length = ABS(sap_length); mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, DL_UNITDATA_REQ); if (mp == NULL) return (NULL); dlur = (dl_unitdata_req_t *)mp->b_rptr; /* HACK: accomodate incompatible DLPI drivers */ if (addr_length == 8) addr_length = 6; dlur->dl_dest_addr_length = addr_length + abs_sap_length; dlur->dl_dest_addr_offset = sizeof (*dlur); dlur->dl_priority.dl_min = 0; dlur->dl_priority.dl_max = 0; ill_dlur_copy_address(addr, addr_length, sap, sap_length, (uchar_t *)&dlur[1]); return (mp); } /* * Add the pending mp to the list. There can be only 1 pending mp * in the list. Any exclusive ioctl that needs to wait for a response * from another module or driver needs to use this function to set * the ipx_pending_mp to the ioctl mblk and wait for the response from * the other module/driver. This is also used while waiting for the * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. */ boolean_t ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, int waitfor) { ipxop_t *ipx = ipif->ipif_ill->ill_phyint->phyint_ipsq->ipsq_xop; ASSERT(IAM_WRITER_IPIF(ipif)); ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); ASSERT(ipx->ipx_pending_mp == NULL); /* * The caller may be using a different ipif than the one passed into * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT * that `ipx_current_ipif == ipif'. */ ASSERT(ipx->ipx_current_ipif != NULL); /* * M_IOCDATA from ioctls, M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the * driver. */ ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_ERROR) || (DB_TYPE(add_mp) == M_HANGUP) || (DB_TYPE(add_mp) == M_PROTO) || (DB_TYPE(add_mp) == M_PCPROTO)); if (connp != NULL) { ASSERT(MUTEX_HELD(&connp->conn_lock)); /* * Return error if the conn has started closing. The conn * could have finished cleaning up the pending mp list, * If so we should not add another mp to the list negating * the cleanup. */ if (connp->conn_state_flags & CONN_CLOSING) return (B_FALSE); } mutex_enter(&ipx->ipx_lock); ipx->ipx_pending_ipif = ipif; /* * Note down the queue in b_queue. This will be returned by * ipsq_pending_mp_get. Caller will then use these values to restart * the processing */ add_mp->b_next = NULL; add_mp->b_queue = q; ipx->ipx_pending_mp = add_mp; ipx->ipx_waitfor = waitfor; mutex_exit(&ipx->ipx_lock); if (connp != NULL) connp->conn_oper_pending_ill = ipif->ipif_ill; return (B_TRUE); } /* * Retrieve the ipx_pending_mp and return it. There can be only 1 mp * queued in the list. */ mblk_t * ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) { mblk_t *curr = NULL; ipxop_t *ipx = ipsq->ipsq_xop; *connpp = NULL; mutex_enter(&ipx->ipx_lock); if (ipx->ipx_pending_mp == NULL) { mutex_exit(&ipx->ipx_lock); return (NULL); } /* There can be only 1 such excl message */ curr = ipx->ipx_pending_mp; ASSERT(curr->b_next == NULL); ipx->ipx_pending_ipif = NULL; ipx->ipx_pending_mp = NULL; ipx->ipx_waitfor = 0; mutex_exit(&ipx->ipx_lock); if (CONN_Q(curr->b_queue)) { /* * This mp did a refhold on the conn, at the start of the ioctl. * So we can safely return a pointer to the conn to the caller. */ *connpp = Q_TO_CONN(curr->b_queue); } else { *connpp = NULL; } curr->b_next = NULL; curr->b_prev = NULL; return (curr); } /* * Cleanup the ioctl mp queued in ipx_pending_mp * - Called in the ill_delete path * - Called in the M_ERROR or M_HANGUP path on the ill. * - Called in the conn close path. * * Returns success on finding the pending mblk associated with the ioctl or * exclusive operation in progress, failure otherwise. */ boolean_t ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) { mblk_t *mp; ipxop_t *ipx; queue_t *q; ipif_t *ipif; int cmd; ASSERT(IAM_WRITER_ILL(ill)); ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; mutex_enter(&ipx->ipx_lock); mp = ipx->ipx_pending_mp; if (connp != NULL) { if (mp == NULL || mp->b_queue != CONNP_TO_WQ(connp)) { /* * Nothing to clean since the conn that is closing * does not have a matching pending mblk in * ipx_pending_mp. */ mutex_exit(&ipx->ipx_lock); return (B_FALSE); } } else { /* * A non-zero ill_error signifies we are called in the * M_ERROR or M_HANGUP path and we need to unconditionally * abort any current ioctl and do the corresponding cleanup. * A zero ill_error means we are in the ill_delete path and * we do the cleanup only if there is a pending mp. */ if (mp == NULL && ill->ill_error == 0) { mutex_exit(&ipx->ipx_lock); return (B_FALSE); } } /* Now remove from the ipx_pending_mp */ ipx->ipx_pending_mp = NULL; ipif = ipx->ipx_pending_ipif; ipx->ipx_pending_ipif = NULL; ipx->ipx_waitfor = 0; ipx->ipx_current_ipif = NULL; cmd = ipx->ipx_current_ioctl; ipx->ipx_current_ioctl = 0; ipx->ipx_current_done = B_TRUE; mutex_exit(&ipx->ipx_lock); if (mp == NULL) return (B_FALSE); q = mp->b_queue; mp->b_next = NULL; mp->b_prev = NULL; mp->b_queue = NULL; if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { DTRACE_PROBE4(ipif__ioctl, char *, "ipsq_pending_mp_cleanup", int, cmd, ill_t *, ipif == NULL ? NULL : ipif->ipif_ill, ipif_t *, ipif); if (connp == NULL) { ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); } else { ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL); mutex_enter(&ipif->ipif_ill->ill_lock); ipif->ipif_state_flags &= ~IPIF_CHANGING; mutex_exit(&ipif->ipif_ill->ill_lock); } } else { inet_freemsg(mp); } return (B_TRUE); } /* * Called in the conn close path and ill delete path */ static void ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) { ipsq_t *ipsq; mblk_t *prev; mblk_t *curr; mblk_t *next; queue_t *wq, *rq = NULL; mblk_t *tmp_list = NULL; ASSERT(IAM_WRITER_ILL(ill)); if (connp != NULL) wq = CONNP_TO_WQ(connp); else wq = ill->ill_wq; /* * In the case of lo0 being unplumbed, ill_wq will be NULL. Guard * against this here. */ if (wq != NULL) rq = RD(wq); ipsq = ill->ill_phyint->phyint_ipsq; /* * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. * In the case of ioctl from a conn, there can be only 1 mp * queued on the ipsq. If an ill is being unplumbed flush all * the messages. */ mutex_enter(&ipsq->ipsq_lock); for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; curr = next) { next = curr->b_next; if (connp == NULL || (curr->b_queue == wq || curr->b_queue == rq)) { /* Unlink the mblk from the pending mp list */ if (prev != NULL) { prev->b_next = curr->b_next; } else { ASSERT(ipsq->ipsq_xopq_mphead == curr); ipsq->ipsq_xopq_mphead = curr->b_next; } if (ipsq->ipsq_xopq_mptail == curr) ipsq->ipsq_xopq_mptail = prev; /* * Create a temporary list and release the ipsq lock * New elements are added to the head of the tmp_list */ curr->b_next = tmp_list; tmp_list = curr; } else { prev = curr; } } mutex_exit(&ipsq->ipsq_lock); while (tmp_list != NULL) { curr = tmp_list; tmp_list = curr->b_next; curr->b_next = NULL; curr->b_prev = NULL; wq = curr->b_queue; curr->b_queue = NULL; if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { DTRACE_PROBE4(ipif__ioctl, char *, "ipsq_xopq_mp_cleanup", int, 0, ill_t *, NULL, ipif_t *, NULL); ip_ioctl_finish(wq, curr, ENXIO, connp != NULL ? CONN_CLOSE : NO_COPYOUT, NULL); } else { /* * IP-MT XXX In the case of TLI/XTI bind / optmgmt * this can't be just inet_freemsg. we have to * restart it otherwise the thread will be stuck. */ inet_freemsg(curr); } } } /* * This conn has started closing. Cleanup any pending ioctl from this conn. * STREAMS ensures that there can be at most 1 active ioctl on a stream. */ void conn_ioctl_cleanup(conn_t *connp) { ipsq_t *ipsq; ill_t *ill; boolean_t refheld; /* * Check for a queued ioctl. If the ioctl has not yet started, the mp * is pending in the list headed by ipsq_xopq_head. If the ioctl has * started the mp could be present in ipx_pending_mp. Note that if * conn_oper_pending_ill is NULL, the ioctl may still be in flight and * not yet queued anywhere. In this case, the conn close code will wait * until the conn_ref is dropped. If the stream was a tcp stream, then * tcp_close will wait first until all ioctls have completed for this * conn. */ mutex_enter(&connp->conn_lock); ill = connp->conn_oper_pending_ill; if (ill == NULL) { mutex_exit(&connp->conn_lock); return; } /* * We may not be able to refhold the ill if the ill/ipif * is changing. But we need to make sure that the ill will * not vanish. So we just bump up the ill_waiter count. */ refheld = ill_waiter_inc(ill); mutex_exit(&connp->conn_lock); if (refheld) { if (ipsq_enter(ill, B_TRUE, NEW_OP)) { ill_waiter_dcr(ill); /* * Check whether this ioctl has started and is * pending. If it is not found there then check * whether this ioctl has not even started and is in * the ipsq_xopq list. */ if (!ipsq_pending_mp_cleanup(ill, connp)) ipsq_xopq_mp_cleanup(ill, connp); ipsq = ill->ill_phyint->phyint_ipsq; ipsq_exit(ipsq); return; } } /* * The ill is also closing and we could not bump up the * ill_waiter_count or we could not enter the ipsq. Leave * the cleanup to ill_delete */ mutex_enter(&connp->conn_lock); while (connp->conn_oper_pending_ill != NULL) cv_wait(&connp->conn_refcv, &connp->conn_lock); mutex_exit(&connp->conn_lock); if (refheld) ill_waiter_dcr(ill); } /* * ipcl_walk function for cleaning up conn_*_ill fields. * Note that we leave ixa_multicast_ifindex, conn_incoming_ifindex, and * conn_bound_if in place. We prefer dropping * packets instead of sending them out the wrong interface, or accepting * packets from the wrong ifindex. */ static void conn_cleanup_ill(conn_t *connp, caddr_t arg) { ill_t *ill = (ill_t *)arg; mutex_enter(&connp->conn_lock); if (connp->conn_dhcpinit_ill == ill) { connp->conn_dhcpinit_ill = NULL; ASSERT(ill->ill_dhcpinit != 0); atomic_dec_32(&ill->ill_dhcpinit); ill_set_inputfn(ill); } mutex_exit(&connp->conn_lock); } static int ill_down_ipifs_tail(ill_t *ill) { ipif_t *ipif; int err; ASSERT(IAM_WRITER_ILL(ill)); for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { ipif_non_duplicate(ipif); /* * ipif_down_tail will call arp_ll_down on the last ipif * and typically return EINPROGRESS when the DL_UNBIND is sent. */ if ((err = ipif_down_tail(ipif)) != 0) return (err); } return (0); } /* ARGSUSED */ void ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) { ASSERT(IAM_WRITER_IPSQ(ipsq)); (void) ill_down_ipifs_tail(q->q_ptr); freemsg(mp); ipsq_current_finish(ipsq); } /* * ill_down_start is called when we want to down this ill and bring it up again * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down * all interfaces, but don't tear down any plumbing. */ boolean_t ill_down_start(queue_t *q, mblk_t *mp) { ill_t *ill = q->q_ptr; ipif_t *ipif; ASSERT(IAM_WRITER_ILL(ill)); /* * It is possible that some ioctl is already in progress while we * received the M_ERROR / M_HANGUP in which case, we need to abort * the ioctl. ill_down_start() is being processed as CUR_OP rather * than as NEW_OP since the cause of the M_ERROR / M_HANGUP may prevent * the in progress ioctl from ever completing. * * The thread that started the ioctl (if any) must have returned, * since we are now executing as writer. After the 2 calls below, * the state of the ipsq and the ill would reflect no trace of any * pending operation. Subsequently if there is any response to the * original ioctl from the driver, it would be discarded as an * unsolicited message from the driver. */ (void) ipsq_pending_mp_cleanup(ill, NULL); ill_dlpi_clear_deferred(ill); for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) (void) ipif_down(ipif, NULL, NULL); ill_down(ill); /* * Walk all CONNs that can have a reference on an ire or nce for this * ill (we actually walk all that now have stale references). */ ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ill->ill_ipst); /* With IPv6 we have dce_ifindex. Cleanup for neatness */ if (ill->ill_isv6) dce_cleanup(ill->ill_phyint->phyint_ifindex, ill->ill_ipst); ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0); /* * Atomically test and add the pending mp if references are active. */ mutex_enter(&ill->ill_lock); if (!ill_is_quiescent(ill)) { /* call cannot fail since `conn_t *' argument is NULL */ (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, mp, ILL_DOWN); mutex_exit(&ill->ill_lock); return (B_FALSE); } mutex_exit(&ill->ill_lock); return (B_TRUE); } static void ill_down(ill_t *ill) { mblk_t *mp; ip_stack_t *ipst = ill->ill_ipst; /* * Blow off any IREs dependent on this ILL. * The caller needs to handle conn_ixa_cleanup */ ill_delete_ires(ill); ire_walk_ill(0, 0, ill_downi, ill, ill); /* Remove any conn_*_ill depending on this ill */ ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst); /* * Free state for additional IREs. */ mutex_enter(&ill->ill_saved_ire_lock); mp = ill->ill_saved_ire_mp; ill->ill_saved_ire_mp = NULL; ill->ill_saved_ire_cnt = 0; mutex_exit(&ill->ill_saved_ire_lock); freemsg(mp); } /* * ire_walk routine used to delete every IRE that depends on * 'ill'. (Always called as writer, and may only be called from ire_walk.) * * Note: since the routes added by the kernel are deleted separately, * this will only be 1) IRE_IF_CLONE and 2) manually added IRE_INTERFACE. * * We also remove references on ire_nce_cache entries that refer to the ill. */ void ill_downi(ire_t *ire, char *ill_arg) { ill_t *ill = (ill_t *)ill_arg; nce_t *nce; mutex_enter(&ire->ire_lock); nce = ire->ire_nce_cache; if (nce != NULL && nce->nce_ill == ill) ire->ire_nce_cache = NULL; else nce = NULL; mutex_exit(&ire->ire_lock); if (nce != NULL) nce_refrele(nce); if (ire->ire_ill == ill) { /* * The existing interface binding for ire must be * deleted before trying to bind the route to another * interface. However, since we are using the contents of the * ire after ire_delete, the caller has to ensure that * CONDEMNED (deleted) ire's are not removed from the list * when ire_delete() returns. Currently ill_downi() is * only called as part of ire_walk*() routines, so that * the irb_refhold() done by ire_walk*() will ensure that * ire_delete() does not lead to ire_inactive(). */ ASSERT(ire->ire_bucket->irb_refcnt > 0); ire_delete(ire); if (ire->ire_unbound) ire_rebind(ire); } } /* Remove IRE_IF_CLONE on this ill */ void ill_downi_if_clone(ire_t *ire, char *ill_arg) { ill_t *ill = (ill_t *)ill_arg; ASSERT(ire->ire_type & IRE_IF_CLONE); if (ire->ire_ill == ill) ire_delete(ire); } /* Consume an M_IOCACK of the fastpath probe. */ void ill_fastpath_ack(ill_t *ill, mblk_t *mp) { mblk_t *mp1 = mp; /* * If this was the first attempt turn on the fastpath probing. */ mutex_enter(&ill->ill_lock); if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) ill->ill_dlpi_fastpath_state = IDS_OK; mutex_exit(&ill->ill_lock); /* Free the M_IOCACK mblk, hold on to the data */ mp = mp->b_cont; freeb(mp1); if (mp == NULL) return; if (mp->b_cont != NULL) nce_fastpath_update(ill, mp); else ip0dbg(("ill_fastpath_ack: no b_cont\n")); freemsg(mp); } /* * Throw an M_IOCTL message downstream asking "do you know fastpath?" * The data portion of the request is a dl_unitdata_req_t template for * what we would send downstream in the absence of a fastpath confirmation. */ int ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) { struct iocblk *ioc; mblk_t *mp; if (dlur_mp == NULL) return (EINVAL); mutex_enter(&ill->ill_lock); switch (ill->ill_dlpi_fastpath_state) { case IDS_FAILED: /* * Driver NAKed the first fastpath ioctl - assume it doesn't * support it. */ mutex_exit(&ill->ill_lock); return (ENOTSUP); case IDS_UNKNOWN: /* This is the first probe */ ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; break; default: break; } mutex_exit(&ill->ill_lock); if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) return (EAGAIN); mp->b_cont = copyb(dlur_mp); if (mp->b_cont == NULL) { freeb(mp); return (EAGAIN); } ioc = (struct iocblk *)mp->b_rptr; ioc->ioc_count = msgdsize(mp->b_cont); DTRACE_PROBE3(ill__dlpi, char *, "ill_fastpath_probe", char *, "DL_IOC_HDR_INFO", ill_t *, ill); putnext(ill->ill_wq, mp); return (0); } void ill_capability_probe(ill_t *ill) { mblk_t *mp; ASSERT(IAM_WRITER_ILL(ill)); if (ill->ill_dlpi_capab_state != IDCS_UNKNOWN && ill->ill_dlpi_capab_state != IDCS_FAILED) return; /* * We are starting a new cycle of capability negotiation. * Free up the capab reset messages of any previous incarnation. * We will do a fresh allocation when we get the response to our probe */ if (ill->ill_capab_reset_mp != NULL) { freemsg(ill->ill_capab_reset_mp); ill->ill_capab_reset_mp = NULL; } ip1dbg(("ill_capability_probe: starting capability negotiation\n")); mp = ip_dlpi_alloc(sizeof (dl_capability_req_t), DL_CAPABILITY_REQ); if (mp == NULL) return; ill_capability_send(ill, mp); ill->ill_dlpi_capab_state = IDCS_PROBE_SENT; } void ill_capability_reset(ill_t *ill, boolean_t reneg) { ASSERT(IAM_WRITER_ILL(ill)); if (ill->ill_dlpi_capab_state != IDCS_OK) return; ill->ill_dlpi_capab_state = reneg ? IDCS_RENEG : IDCS_RESET_SENT; ill_capability_send(ill, ill->ill_capab_reset_mp); ill->ill_capab_reset_mp = NULL; /* * We turn off all capabilities except those pertaining to * direct function call capabilities viz. ILL_CAPAB_DLD* * which will be turned off by the corresponding reset functions. */ ill->ill_capabilities &= ~(ILL_CAPAB_HCKSUM | ILL_CAPAB_ZEROCOPY); } static void ill_capability_reset_alloc(ill_t *ill) { mblk_t *mp; size_t size = 0; int err; dl_capability_req_t *capb; ASSERT(IAM_WRITER_ILL(ill)); ASSERT(ill->ill_capab_reset_mp == NULL); if (ILL_HCKSUM_CAPABLE(ill)) { size += sizeof (dl_capability_sub_t) + sizeof (dl_capab_hcksum_t); } if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) { size += sizeof (dl_capability_sub_t) + sizeof (dl_capab_zerocopy_t); } if (ill->ill_capabilities & ILL_CAPAB_DLD) { size += sizeof (dl_capability_sub_t) + sizeof (dl_capab_dld_t); } mp = allocb_wait(size + sizeof (dl_capability_req_t), BPRI_MED, STR_NOSIG, &err); mp->b_datap->db_type = M_PROTO; bzero(mp->b_rptr, size + sizeof (dl_capability_req_t)); capb = (dl_capability_req_t *)mp->b_rptr; capb->dl_primitive = DL_CAPABILITY_REQ; capb->dl_sub_offset = sizeof (dl_capability_req_t); capb->dl_sub_length = size; mp->b_wptr += sizeof (dl_capability_req_t); /* * Each handler fills in the corresponding dl_capability_sub_t * inside the mblk, */ ill_capability_hcksum_reset_fill(ill, mp); ill_capability_zerocopy_reset_fill(ill, mp); ill_capability_dld_reset_fill(ill, mp); ill->ill_capab_reset_mp = mp; } static void ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) { dl_capab_id_t *id_ic; uint_t sub_dl_cap = outers->dl_cap; dl_capability_sub_t *inners; uint8_t *capend; ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); /* * Note: range checks here are not absolutely sufficient to * make us robust against malformed messages sent by drivers; * this is in keeping with the rest of IP's dlpi handling. * (Remember, it's coming from something else in the kernel * address space) */ capend = (uint8_t *)(outers + 1) + outers->dl_length; if (capend > mp->b_wptr) { cmn_err(CE_WARN, "ill_capability_id_ack: " "malformed sub-capability too long for mblk"); return; } id_ic = (dl_capab_id_t *)(outers + 1); if (outers->dl_length < sizeof (*id_ic) || (inners = &id_ic->id_subcap, inners->dl_length > (outers->dl_length - sizeof (*inners)))) { cmn_err(CE_WARN, "ill_capability_id_ack: malformed " "encapsulated capab type %d too long for mblk", inners->dl_cap); return; } if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { ip1dbg(("ill_capability_id_ack: mid token for capab type %d " "isn't as expected; pass-thru module(s) detected, " "discarding capability\n", inners->dl_cap)); return; } /* Process the encapsulated sub-capability */ ill_capability_dispatch(ill, mp, inners); } static void ill_capability_dld_reset_fill(ill_t *ill, mblk_t *mp) { dl_capability_sub_t *dl_subcap; if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) return; /* * The dl_capab_dld_t that follows the dl_capability_sub_t is not * initialized below since it is not used by DLD. */ dl_subcap = (dl_capability_sub_t *)mp->b_wptr; dl_subcap->dl_cap = DL_CAPAB_DLD; dl_subcap->dl_length = sizeof (dl_capab_dld_t); mp->b_wptr += sizeof (dl_capability_sub_t) + sizeof (dl_capab_dld_t); } static void ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp) { /* * If no ipif was brought up over this ill, this DL_CAPABILITY_REQ/ACK * is only to get the VRRP capability. * * Note that we cannot check ill_ipif_up_count here since * ill_ipif_up_count is only incremented when the resolver is setup. * That is done asynchronously, and can race with this function. */ if (!ill->ill_dl_up) { if (subp->dl_cap == DL_CAPAB_VRRP) ill_capability_vrrp_ack(ill, mp, subp); return; } switch (subp->dl_cap) { case DL_CAPAB_HCKSUM: ill_capability_hcksum_ack(ill, mp, subp); break; case DL_CAPAB_ZEROCOPY: ill_capability_zerocopy_ack(ill, mp, subp); break; case DL_CAPAB_DLD: ill_capability_dld_ack(ill, mp, subp); break; case DL_CAPAB_VRRP: break; default: ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", subp->dl_cap)); } } /* * Process the vrrp capability received from a DLS Provider. isub must point * to the sub-capability (DL_CAPAB_VRRP) of a DL_CAPABILITY_ACK message. */ static void ill_capability_vrrp_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) { dl_capab_vrrp_t *vrrp; uint_t sub_dl_cap = isub->dl_cap; uint8_t *capend; ASSERT(IAM_WRITER_ILL(ill)); ASSERT(sub_dl_cap == DL_CAPAB_VRRP); /* * Note: range checks here are not absolutely sufficient to * make us robust against malformed messages sent by drivers; * this is in keeping with the rest of IP's dlpi handling. * (Remember, it's coming from something else in the kernel * address space) */ capend = (uint8_t *)(isub + 1) + isub->dl_length; if (capend > mp->b_wptr) { cmn_err(CE_WARN, "ill_capability_vrrp_ack: " "malformed sub-capability too long for mblk"); return; } vrrp = (dl_capab_vrrp_t *)(isub + 1); /* * Compare the IP address family and set ILLF_VRRP for the right ill. */ if ((vrrp->vrrp_af == AF_INET6 && ill->ill_isv6) || (vrrp->vrrp_af == AF_INET && !ill->ill_isv6)) { ill->ill_flags |= ILLF_VRRP; } } /* * Process a hardware checksum offload capability negotiation ack received * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) * of a DL_CAPABILITY_ACK message. */ static void ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) { dl_capability_req_t *ocap; dl_capab_hcksum_t *ihck, *ohck; ill_hcksum_capab_t **ill_hcksum; mblk_t *nmp = NULL; uint_t sub_dl_cap = isub->dl_cap; uint8_t *capend; ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; /* * Note: range checks here are not absolutely sufficient to * make us robust against malformed messages sent by drivers; * this is in keeping with the rest of IP's dlpi handling. * (Remember, it's coming from something else in the kernel * address space) */ capend = (uint8_t *)(isub + 1) + isub->dl_length; if (capend > mp->b_wptr) { cmn_err(CE_WARN, "ill_capability_hcksum_ack: " "malformed sub-capability too long for mblk"); return; } /* * There are two types of acks we process here: * 1. acks in reply to a (first form) generic capability req * (no ENABLE flag set) * 2. acks in reply to a ENABLE capability req. * (ENABLE flag set) */ ihck = (dl_capab_hcksum_t *)(isub + 1); if (ihck->hcksum_version != HCKSUM_VERSION_1) { cmn_err(CE_CONT, "ill_capability_hcksum_ack: " "unsupported hardware checksum " "sub-capability (version %d, expected %d)", ihck->hcksum_version, HCKSUM_VERSION_1); return; } if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " "checksum capability isn't as expected; pass-thru " "module(s) detected, discarding capability\n")); return; } #define CURR_HCKSUM_CAPAB \ (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { /* do ENABLE processing */ if (*ill_hcksum == NULL) { *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), KM_NOSLEEP); if (*ill_hcksum == NULL) { cmn_err(CE_WARN, "ill_capability_hcksum_ack: " "could not enable hcksum version %d " "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, ill->ill_name); return; } } (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; ill->ill_capabilities |= ILL_CAPAB_HCKSUM; ip1dbg(("ill_capability_hcksum_ack: interface %s " "has enabled hardware checksumming\n ", ill->ill_name)); } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { /* * Enabling hardware checksum offload * Currently IP supports {TCP,UDP}/IPv4 * partial and full cksum offload and * IPv4 header checksum offload. * Allocate new mblk which will * contain a new capability request * to enable hardware checksum offload. */ uint_t size; uchar_t *rptr; size = sizeof (dl_capability_req_t) + sizeof (dl_capability_sub_t) + isub->dl_length; if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { cmn_err(CE_WARN, "ill_capability_hcksum_ack: " "could not enable hardware cksum for %s (ENOMEM)\n", ill->ill_name); return; } rptr = nmp->b_rptr; /* initialize dl_capability_req_t */ ocap = (dl_capability_req_t *)nmp->b_rptr; ocap->dl_sub_offset = sizeof (dl_capability_req_t); ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; nmp->b_rptr += sizeof (dl_capability_req_t); /* initialize dl_capability_sub_t */ bcopy(isub, nmp->b_rptr, sizeof (*isub)); nmp->b_rptr += sizeof (*isub); /* initialize dl_capab_hcksum_t */ ohck = (dl_capab_hcksum_t *)nmp->b_rptr; bcopy(ihck, ohck, sizeof (*ihck)); nmp->b_rptr = rptr; ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); /* Set ENABLE flag */ ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; ohck->hcksum_txflags |= HCKSUM_ENABLE; /* * nmp points to a DL_CAPABILITY_REQ message to enable * hardware checksum acceleration. */ ill_capability_send(ill, nmp); } else { ip1dbg(("ill_capability_hcksum_ack: interface %s has " "advertised %x hardware checksum capability flags\n", ill->ill_name, ihck->hcksum_txflags)); } } static void ill_capability_hcksum_reset_fill(ill_t *ill, mblk_t *mp) { dl_capab_hcksum_t *hck_subcap; dl_capability_sub_t *dl_subcap; if (!ILL_HCKSUM_CAPABLE(ill)) return; ASSERT(ill->ill_hcksum_capab != NULL); dl_subcap = (dl_capability_sub_t *)mp->b_wptr; dl_subcap->dl_cap = DL_CAPAB_HCKSUM; dl_subcap->dl_length = sizeof (*hck_subcap); hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; hck_subcap->hcksum_txflags = 0; mp->b_wptr += sizeof (*dl_subcap) + sizeof (*hck_subcap); } static void ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) { mblk_t *nmp = NULL; dl_capability_req_t *oc; dl_capab_zerocopy_t *zc_ic, *zc_oc; ill_zerocopy_capab_t **ill_zerocopy_capab; uint_t sub_dl_cap = isub->dl_cap; uint8_t *capend; ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; /* * Note: range checks here are not absolutely sufficient to * make us robust against malformed messages sent by drivers; * this is in keeping with the rest of IP's dlpi handling. * (Remember, it's coming from something else in the kernel * address space) */ capend = (uint8_t *)(isub + 1) + isub->dl_length; if (capend > mp->b_wptr) { cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " "malformed sub-capability too long for mblk"); return; } zc_ic = (dl_capab_zerocopy_t *)(isub + 1); if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " "unsupported ZEROCOPY sub-capability (version %d, " "expected %d)", zc_ic->zerocopy_version, ZEROCOPY_VERSION_1); return; } if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " "capability isn't as expected; pass-thru module(s) " "detected, discarding capability\n")); return; } if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { if (*ill_zerocopy_capab == NULL) { *ill_zerocopy_capab = kmem_zalloc(sizeof (ill_zerocopy_capab_t), KM_NOSLEEP); if (*ill_zerocopy_capab == NULL) { cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " "could not enable Zero-copy version %d " "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, ill->ill_name); return; } } ip1dbg(("ill_capability_zerocopy_ack: interface %s " "supports Zero-copy version %d\n", ill->ill_name, ZEROCOPY_VERSION_1)); (*ill_zerocopy_capab)->ill_zerocopy_version = zc_ic->zerocopy_version; (*ill_zerocopy_capab)->ill_zerocopy_flags = zc_ic->zerocopy_flags; ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; } else { uint_t size; uchar_t *rptr; size = sizeof (dl_capability_req_t) + sizeof (dl_capability_sub_t) + sizeof (dl_capab_zerocopy_t); if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " "could not enable zerocopy for %s (ENOMEM)\n", ill->ill_name); return; } rptr = nmp->b_rptr; /* initialize dl_capability_req_t */ oc = (dl_capability_req_t *)rptr; oc->dl_sub_offset = sizeof (dl_capability_req_t); oc->dl_sub_length = sizeof (dl_capability_sub_t) + sizeof (dl_capab_zerocopy_t); rptr += sizeof (dl_capability_req_t); /* initialize dl_capability_sub_t */ bcopy(isub, rptr, sizeof (*isub)); rptr += sizeof (*isub); /* initialize dl_capab_zerocopy_t */ zc_oc = (dl_capab_zerocopy_t *)rptr; *zc_oc = *zc_ic; ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " "to enable zero-copy version %d\n", ill->ill_name, ZEROCOPY_VERSION_1)); /* set VMSAFE_MEM flag */ zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ ill_capability_send(ill, nmp); } } static void ill_capability_zerocopy_reset_fill(ill_t *ill, mblk_t *mp) { dl_capab_zerocopy_t *zerocopy_subcap; dl_capability_sub_t *dl_subcap; if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) return; ASSERT(ill->ill_zerocopy_capab != NULL); dl_subcap = (dl_capability_sub_t *)mp->b_wptr; dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; dl_subcap->dl_length = sizeof (*zerocopy_subcap); zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); zerocopy_subcap->zerocopy_version = ill->ill_zerocopy_capab->ill_zerocopy_version; zerocopy_subcap->zerocopy_flags = 0; mp->b_wptr += sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); } /* * DLD capability * Refer to dld.h for more information regarding the purpose and usage * of this capability. */ static void ill_capability_dld_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) { dl_capab_dld_t *dld_ic, dld; uint_t sub_dl_cap = isub->dl_cap; uint8_t *capend; ill_dld_capab_t *idc; ASSERT(IAM_WRITER_ILL(ill)); ASSERT(sub_dl_cap == DL_CAPAB_DLD); /* * Note: range checks here are not absolutely sufficient to * make us robust against malformed messages sent by drivers; * this is in keeping with the rest of IP's dlpi handling. * (Remember, it's coming from something else in the kernel * address space) */ capend = (uint8_t *)(isub + 1) + isub->dl_length; if (capend > mp->b_wptr) { cmn_err(CE_WARN, "ill_capability_dld_ack: " "malformed sub-capability too long for mblk"); return; } dld_ic = (dl_capab_dld_t *)(isub + 1); if (dld_ic->dld_version != DLD_CURRENT_VERSION) { cmn_err(CE_CONT, "ill_capability_dld_ack: " "unsupported DLD sub-capability (version %d, " "expected %d)", dld_ic->dld_version, DLD_CURRENT_VERSION); return; } if (!dlcapabcheckqid(&dld_ic->dld_mid, ill->ill_lmod_rq)) { ip1dbg(("ill_capability_dld_ack: mid token for dld " "capability isn't as expected; pass-thru module(s) " "detected, discarding capability\n")); return; } /* * Copy locally to ensure alignment. */ bcopy(dld_ic, &dld, sizeof (dl_capab_dld_t)); if ((idc = ill->ill_dld_capab) == NULL) { idc = kmem_zalloc(sizeof (ill_dld_capab_t), KM_NOSLEEP); if (idc == NULL) { cmn_err(CE_WARN, "ill_capability_dld_ack: " "could not enable DLD version %d " "for %s (ENOMEM)\n", DLD_CURRENT_VERSION, ill->ill_name); return; } ill->ill_dld_capab = idc; } idc->idc_capab_df = (ip_capab_func_t)dld.dld_capab; idc->idc_capab_dh = (void *)dld.dld_capab_handle; ip1dbg(("ill_capability_dld_ack: interface %s " "supports DLD version %d\n", ill->ill_name, DLD_CURRENT_VERSION)); ill_capability_dld_enable(ill); } /* * Typically capability negotiation between IP and the driver happens via * DLPI message exchange. However GLD also offers a direct function call * mechanism to exchange the DLD_DIRECT_CAPAB and DLD_POLL_CAPAB capabilities, * But arbitrary function calls into IP or GLD are not permitted, since both * of them are protected by their own perimeter mechanism. The perimeter can * be viewed as a coarse lock or serialization mechanism. The hierarchy of * these perimeters is IP -> MAC. Thus for example to enable the squeue * polling, IP needs to enter its perimeter, then call ill_mac_perim_enter * to enter the mac perimeter and then do the direct function calls into * GLD to enable squeue polling. The ring related callbacks from the mac into * the stack to add, bind, quiesce, restart or cleanup a ring are all * protected by the mac perimeter. */ static void ill_mac_perim_enter(ill_t *ill, mac_perim_handle_t *mphp) { ill_dld_capab_t *idc = ill->ill_dld_capab; int err; err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mphp, DLD_ENABLE); ASSERT(err == 0); } static void ill_mac_perim_exit(ill_t *ill, mac_perim_handle_t mph) { ill_dld_capab_t *idc = ill->ill_dld_capab; int err; err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mph, DLD_DISABLE); ASSERT(err == 0); } boolean_t ill_mac_perim_held(ill_t *ill) { ill_dld_capab_t *idc = ill->ill_dld_capab; return (idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, NULL, DLD_QUERY)); } static void ill_capability_direct_enable(ill_t *ill) { ill_dld_capab_t *idc = ill->ill_dld_capab; ill_dld_direct_t *idd = &idc->idc_direct; dld_capab_direct_t direct; int rc; ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); bzero(&direct, sizeof (direct)); direct.di_rx_cf = (uintptr_t)ip_input; direct.di_rx_ch = ill; rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, &direct, DLD_ENABLE); if (rc == 0) { idd->idd_tx_df = (ip_dld_tx_t)direct.di_tx_df; idd->idd_tx_dh = direct.di_tx_dh; idd->idd_tx_cb_df = (ip_dld_callb_t)direct.di_tx_cb_df; idd->idd_tx_cb_dh = direct.di_tx_cb_dh; idd->idd_tx_fctl_df = (ip_dld_fctl_t)direct.di_tx_fctl_df; idd->idd_tx_fctl_dh = direct.di_tx_fctl_dh; ASSERT(idd->idd_tx_cb_df != NULL); ASSERT(idd->idd_tx_fctl_df != NULL); ASSERT(idd->idd_tx_df != NULL); /* * One time registration of flow enable callback function */ ill->ill_flownotify_mh = idd->idd_tx_cb_df(idd->idd_tx_cb_dh, ill_flow_enable, ill); ill->ill_capabilities |= ILL_CAPAB_DLD_DIRECT; DTRACE_PROBE1(direct_on, (ill_t *), ill); } else { cmn_err(CE_WARN, "warning: could not enable DIRECT " "capability, rc = %d\n", rc); DTRACE_PROBE2(direct_off, (ill_t *), ill, (int), rc); } } static void ill_capability_poll_enable(ill_t *ill) { ill_dld_capab_t *idc = ill->ill_dld_capab; dld_capab_poll_t poll; int rc; ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); bzero(&poll, sizeof (poll)); poll.poll_ring_add_cf = (uintptr_t)ip_squeue_add_ring; poll.poll_ring_remove_cf = (uintptr_t)ip_squeue_clean_ring; poll.poll_ring_quiesce_cf = (uintptr_t)ip_squeue_quiesce_ring; poll.poll_ring_restart_cf = (uintptr_t)ip_squeue_restart_ring; poll.poll_ring_bind_cf = (uintptr_t)ip_squeue_bind_ring; poll.poll_ring_ch = ill; rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, &poll, DLD_ENABLE); if (rc == 0) { ill->ill_capabilities |= ILL_CAPAB_DLD_POLL; DTRACE_PROBE1(poll_on, (ill_t *), ill); } else { ip1dbg(("warning: could not enable POLL " "capability, rc = %d\n", rc)); DTRACE_PROBE2(poll_off, (ill_t *), ill, (int), rc); } } /* * Enable the LSO capability. */ static void ill_capability_lso_enable(ill_t *ill) { ill_dld_capab_t *idc = ill->ill_dld_capab; dld_capab_lso_t lso; int rc; ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); if (ill->ill_lso_capab == NULL) { ill->ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), KM_NOSLEEP); if (ill->ill_lso_capab == NULL) { cmn_err(CE_WARN, "ill_capability_lso_enable: " "could not enable LSO for %s (ENOMEM)\n", ill->ill_name); return; } } bzero(&lso, sizeof (lso)); if ((rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, &lso, DLD_ENABLE)) == 0) { ill->ill_lso_capab->ill_lso_flags = lso.lso_flags; ill->ill_lso_capab->ill_lso_max = lso.lso_max; ill->ill_capabilities |= ILL_CAPAB_LSO; ip1dbg(("ill_capability_lso_enable: interface %s " "has enabled LSO\n ", ill->ill_name)); } else { kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); ill->ill_lso_capab = NULL; DTRACE_PROBE2(lso_off, (ill_t *), ill, (int), rc); } } static void ill_capability_dld_enable(ill_t *ill) { mac_perim_handle_t mph; ASSERT(IAM_WRITER_ILL(ill)); if (ill->ill_isv6) return; ill_mac_perim_enter(ill, &mph); if (!ill->ill_isv6) { ill_capability_direct_enable(ill); ill_capability_poll_enable(ill); ill_capability_lso_enable(ill); } ill->ill_capabilities |= ILL_CAPAB_DLD; ill_mac_perim_exit(ill, mph); } static void ill_capability_dld_disable(ill_t *ill) { ill_dld_capab_t *idc; ill_dld_direct_t *idd; mac_perim_handle_t mph; ASSERT(IAM_WRITER_ILL(ill)); if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) return; ill_mac_perim_enter(ill, &mph); idc = ill->ill_dld_capab; if ((ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT) != 0) { /* * For performance we avoid locks in the transmit data path * and don't maintain a count of the number of threads using * direct calls. Thus some threads could be using direct * transmit calls to GLD, even after the capability mechanism * turns it off. This is still safe since the handles used in * the direct calls continue to be valid until the unplumb is * completed. Remove the callback that was added (1-time) at * capab enable time. */ mutex_enter(&ill->ill_lock); ill->ill_capabilities &= ~ILL_CAPAB_DLD_DIRECT; mutex_exit(&ill->ill_lock); if (ill->ill_flownotify_mh != NULL) { idd = &idc->idc_direct; idd->idd_tx_cb_df(idd->idd_tx_cb_dh, NULL, ill->ill_flownotify_mh); ill->ill_flownotify_mh = NULL; } (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, NULL, DLD_DISABLE); } if ((ill->ill_capabilities & ILL_CAPAB_DLD_POLL) != 0) { ill->ill_capabilities &= ~ILL_CAPAB_DLD_POLL; ip_squeue_clean_all(ill); (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, NULL, DLD_DISABLE); } if ((ill->ill_capabilities & ILL_CAPAB_LSO) != 0) { ASSERT(ill->ill_lso_capab != NULL); /* * Clear the capability flag for LSO but retain the * ill_lso_capab structure since it's possible that another * thread is still referring to it. The structure only gets * deallocated when we destroy the ill. */ ill->ill_capabilities &= ~ILL_CAPAB_LSO; (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, NULL, DLD_DISABLE); } ill->ill_capabilities &= ~ILL_CAPAB_DLD; ill_mac_perim_exit(ill, mph); } /* * Capability Negotiation protocol * * We don't wait for DLPI capability operations to finish during interface * bringup or teardown. Doing so would introduce more asynchrony and the * interface up/down operations will need multiple return and restarts. * Instead the 'ipsq_current_ipif' of the ipsq is not cleared as long as * the 'ill_dlpi_deferred' chain is non-empty. This ensures that the next * exclusive operation won't start until the DLPI operations of the previous * exclusive operation complete. * * The capability state machine is shown below. * * state next state event, action * * IDCS_UNKNOWN IDCS_PROBE_SENT ill_capability_probe * IDCS_PROBE_SENT IDCS_OK ill_capability_ack * IDCS_PROBE_SENT IDCS_FAILED ip_rput_dlpi_writer (nack) * IDCS_OK IDCS_RENEG Receipt of DL_NOTE_CAPAB_RENEG * IDCS_OK IDCS_RESET_SENT ill_capability_reset * IDCS_RESET_SENT IDCS_UNKNOWN ill_capability_ack_thr * IDCS_RENEG IDCS_PROBE_SENT ill_capability_ack_thr -> * ill_capability_probe. */ /* * Dedicated thread started from ip_stack_init that handles capability * disable. This thread ensures the taskq dispatch does not fail by waiting * for resources using TQ_SLEEP. The taskq mechanism is used to ensure * that direct calls to DLD are done in a cv_waitable context. */ void ill_taskq_dispatch(ip_stack_t *ipst) { callb_cpr_t cprinfo; char name[64]; mblk_t *mp; (void) snprintf(name, sizeof (name), "ill_taskq_dispatch_%d", ipst->ips_netstack->netstack_stackid); CALLB_CPR_INIT(&cprinfo, &ipst->ips_capab_taskq_lock, callb_generic_cpr, name); mutex_enter(&ipst->ips_capab_taskq_lock); for (;;) { mp = ipst->ips_capab_taskq_head; while (mp != NULL) { ipst->ips_capab_taskq_head = mp->b_next; if (ipst->ips_capab_taskq_head == NULL) ipst->ips_capab_taskq_tail = NULL; mutex_exit(&ipst->ips_capab_taskq_lock); mp->b_next = NULL; VERIFY(taskq_dispatch(system_taskq, ill_capability_ack_thr, mp, TQ_SLEEP) != 0); mutex_enter(&ipst->ips_capab_taskq_lock); mp = ipst->ips_capab_taskq_head; } if (ipst->ips_capab_taskq_quit) break; CALLB_CPR_SAFE_BEGIN(&cprinfo); cv_wait(&ipst->ips_capab_taskq_cv, &ipst->ips_capab_taskq_lock); CALLB_CPR_SAFE_END(&cprinfo, &ipst->ips_capab_taskq_lock); } VERIFY(ipst->ips_capab_taskq_head == NULL); VERIFY(ipst->ips_capab_taskq_tail == NULL); CALLB_CPR_EXIT(&cprinfo); thread_exit(); } /* * Consume a new-style hardware capabilities negotiation ack. * Called via taskq on receipt of DL_CAPABILITY_ACK. */ static void ill_capability_ack_thr(void *arg) { mblk_t *mp = arg; dl_capability_ack_t *capp; dl_capability_sub_t *subp, *endp; ill_t *ill; boolean_t reneg; ill = (ill_t *)mp->b_prev; mp->b_prev = NULL; VERIFY(ipsq_enter(ill, B_FALSE, CUR_OP) == B_TRUE); if (ill->ill_dlpi_capab_state == IDCS_RESET_SENT || ill->ill_dlpi_capab_state == IDCS_RENEG) { /* * We have received the ack for our DL_CAPAB reset request. * There isnt' anything in the message that needs processing. * All message based capabilities have been disabled, now * do the function call based capability disable. */ reneg = ill->ill_dlpi_capab_state == IDCS_RENEG; ill_capability_dld_disable(ill); ill->ill_dlpi_capab_state = IDCS_UNKNOWN; if (reneg) ill_capability_probe(ill); goto done; } if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) ill->ill_dlpi_capab_state = IDCS_OK; capp = (dl_capability_ack_t *)mp->b_rptr; if (capp->dl_sub_length == 0) { /* no new-style capabilities */ goto done; } /* make sure the driver supplied correct dl_sub_length */ if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); goto done; } #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) /* * There are sub-capabilities. Process the ones we know about. * Loop until we don't have room for another sub-cap header.. */ for (subp = SC(capp, capp->dl_sub_offset), endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); subp <= endp; subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { switch (subp->dl_cap) { case DL_CAPAB_ID_WRAPPER: ill_capability_id_ack(ill, mp, subp); break; default: ill_capability_dispatch(ill, mp, subp); break; } } #undef SC done: inet_freemsg(mp); ill_capability_done(ill); ipsq_exit(ill->ill_phyint->phyint_ipsq); } /* * This needs to be started in a taskq thread to provide a cv_waitable * context. */ void ill_capability_ack(ill_t *ill, mblk_t *mp) { ip_stack_t *ipst = ill->ill_ipst; mp->b_prev = (mblk_t *)ill; ASSERT(mp->b_next == NULL); if (taskq_dispatch(system_taskq, ill_capability_ack_thr, mp, TQ_NOSLEEP) != 0) return; /* * The taskq dispatch failed. Signal the ill_taskq_dispatch thread * which will do the dispatch using TQ_SLEEP to guarantee success. */ mutex_enter(&ipst->ips_capab_taskq_lock); if (ipst->ips_capab_taskq_head == NULL) { ASSERT(ipst->ips_capab_taskq_tail == NULL); ipst->ips_capab_taskq_head = mp; } else { ipst->ips_capab_taskq_tail->b_next = mp; } ipst->ips_capab_taskq_tail = mp; cv_signal(&ipst->ips_capab_taskq_cv); mutex_exit(&ipst->ips_capab_taskq_lock); } /* * This routine is called to scan the fragmentation reassembly table for * the specified ILL for any packets that are starting to smell. * dead_interval is the maximum time in seconds that will be tolerated. It * will either be the value specified in ip_g_frag_timeout, or zero if the * ILL is shutting down and it is time to blow everything off. * * It returns the number of seconds (as a time_t) that the next frag timer * should be scheduled for, 0 meaning that the timer doesn't need to be * re-started. Note that the method of calculating next_timeout isn't * entirely accurate since time will flow between the time we grab * current_time and the time we schedule the next timeout. This isn't a * big problem since this is the timer for sending an ICMP reassembly time * exceeded messages, and it doesn't have to be exactly accurate. * * This function is * sometimes called as writer, although this is not required. */ time_t ill_frag_timeout(ill_t *ill, time_t dead_interval) { ipfb_t *ipfb; ipfb_t *endp; ipf_t *ipf; ipf_t *ipfnext; mblk_t *mp; time_t current_time = gethrestime_sec(); time_t next_timeout = 0; uint32_t hdr_length; mblk_t *send_icmp_head; mblk_t *send_icmp_head_v6; ip_stack_t *ipst = ill->ill_ipst; ip_recv_attr_t iras; bzero(&iras, sizeof (iras)); iras.ira_flags = 0; iras.ira_ill = iras.ira_rill = ill; iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; iras.ira_rifindex = iras.ira_ruifindex; ipfb = ill->ill_frag_hash_tbl; if (ipfb == NULL) return (B_FALSE); endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; /* Walk the frag hash table. */ for (; ipfb < endp; ipfb++) { send_icmp_head = NULL; send_icmp_head_v6 = NULL; mutex_enter(&ipfb->ipfb_lock); while ((ipf = ipfb->ipfb_ipf) != 0) { time_t frag_time = current_time - ipf->ipf_timestamp; time_t frag_timeout; if (frag_time < dead_interval) { /* * There are some outstanding fragments * that will timeout later. Make note of * the time so that we can reschedule the * next timeout appropriately. */ frag_timeout = dead_interval - frag_time; if (next_timeout == 0 || frag_timeout < next_timeout) { next_timeout = frag_timeout; } break; } /* Time's up. Get it out of here. */ hdr_length = ipf->ipf_nf_hdr_len; ipfnext = ipf->ipf_hash_next; if (ipfnext) ipfnext->ipf_ptphn = ipf->ipf_ptphn; *ipf->ipf_ptphn = ipfnext; mp = ipf->ipf_mp->b_cont; for (; mp; mp = mp->b_cont) { /* Extra points for neatness. */ IP_REASS_SET_START(mp, 0); IP_REASS_SET_END(mp, 0); } mp = ipf->ipf_mp->b_cont; atomic_add_32(&ill->ill_frag_count, -ipf->ipf_count); ASSERT(ipfb->ipfb_count >= ipf->ipf_count); ipfb->ipfb_count -= ipf->ipf_count; ASSERT(ipfb->ipfb_frag_pkts > 0); ipfb->ipfb_frag_pkts--; /* * We do not send any icmp message from here because * we currently are holding the ipfb_lock for this * hash chain. If we try and send any icmp messages * from here we may end up via a put back into ip * trying to get the same lock, causing a recursive * mutex panic. Instead we build a list and send all * the icmp messages after we have dropped the lock. */ if (ill->ill_isv6) { if (hdr_length != 0) { mp->b_next = send_icmp_head_v6; send_icmp_head_v6 = mp; } else { freemsg(mp); } } else { if (hdr_length != 0) { mp->b_next = send_icmp_head; send_icmp_head = mp; } else { freemsg(mp); } } BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); ip_drop_input("ipIfStatsReasmFails", ipf->ipf_mp, ill); freeb(ipf->ipf_mp); } mutex_exit(&ipfb->ipfb_lock); /* * Now need to send any icmp messages that we delayed from * above. */ while (send_icmp_head_v6 != NULL) { ip6_t *ip6h; mp = send_icmp_head_v6; send_icmp_head_v6 = send_icmp_head_v6->b_next; mp->b_next = NULL; ip6h = (ip6_t *)mp->b_rptr; iras.ira_flags = 0; /* * This will result in an incorrect ALL_ZONES zoneid * for multicast packets, but we * don't send ICMP errors for those in any case. */ iras.ira_zoneid = ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, ill, ipst); ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill); icmp_time_exceeded_v6(mp, ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, &iras); ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); } while (send_icmp_head != NULL) { ipaddr_t dst; mp = send_icmp_head; send_icmp_head = send_icmp_head->b_next; mp->b_next = NULL; dst = ((ipha_t *)mp->b_rptr)->ipha_dst; iras.ira_flags = IRAF_IS_IPV4; /* * This will result in an incorrect ALL_ZONES zoneid * for broadcast and multicast packets, but we * don't send ICMP errors for those in any case. */ iras.ira_zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill); icmp_time_exceeded(mp, ICMP_REASSEMBLY_TIME_EXCEEDED, &iras); ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); } } /* * A non-dying ILL will use the return value to decide whether to * restart the frag timer, and for how long. */ return (next_timeout); } /* * This routine is called when the approximate count of mblk memory used * for the specified ILL has exceeded max_count. */ void ill_frag_prune(ill_t *ill, uint_t max_count) { ipfb_t *ipfb; ipf_t *ipf; size_t count; clock_t now; /* * If we are here within ip_min_frag_prune_time msecs remove * ill_frag_free_num_pkts oldest packets from each bucket and increment * ill_frag_free_num_pkts. */ mutex_enter(&ill->ill_lock); now = ddi_get_lbolt(); if (TICK_TO_MSEC(now - ill->ill_last_frag_clean_time) <= (ip_min_frag_prune_time != 0 ? ip_min_frag_prune_time : msec_per_tick)) { ill->ill_frag_free_num_pkts++; } else { ill->ill_frag_free_num_pkts = 0; } ill->ill_last_frag_clean_time = now; mutex_exit(&ill->ill_lock); /* * free ill_frag_free_num_pkts oldest packets from each bucket. */ if (ill->ill_frag_free_num_pkts != 0) { int ix; for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { ipfb = &ill->ill_frag_hash_tbl[ix]; mutex_enter(&ipfb->ipfb_lock); if (ipfb->ipfb_ipf != NULL) { ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, ill->ill_frag_free_num_pkts); } mutex_exit(&ipfb->ipfb_lock); } } /* * While the reassembly list for this ILL is too big, prune a fragment * queue by age, oldest first. */ while (ill->ill_frag_count > max_count) { int ix; ipfb_t *oipfb = NULL; uint_t oldest = UINT_MAX; count = 0; for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { ipfb = &ill->ill_frag_hash_tbl[ix]; mutex_enter(&ipfb->ipfb_lock); ipf = ipfb->ipfb_ipf; if (ipf != NULL && ipf->ipf_gen < oldest) { oldest = ipf->ipf_gen; oipfb = ipfb; } count += ipfb->ipfb_count; mutex_exit(&ipfb->ipfb_lock); } if (oipfb == NULL) break; if (count <= max_count) return; /* Somebody beat us to it, nothing to do */ mutex_enter(&oipfb->ipfb_lock); ipf = oipfb->ipfb_ipf; if (ipf != NULL) { ill_frag_free_pkts(ill, oipfb, ipf, 1); } mutex_exit(&oipfb->ipfb_lock); } } /* * free 'free_cnt' fragmented packets starting at ipf. */ void ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) { size_t count; mblk_t *mp; mblk_t *tmp; ipf_t **ipfp = ipf->ipf_ptphn; ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); ASSERT(ipfp != NULL); ASSERT(ipf != NULL); while (ipf != NULL && free_cnt-- > 0) { count = ipf->ipf_count; mp = ipf->ipf_mp; ipf = ipf->ipf_hash_next; for (tmp = mp; tmp; tmp = tmp->b_cont) { IP_REASS_SET_START(tmp, 0); IP_REASS_SET_END(tmp, 0); } atomic_add_32(&ill->ill_frag_count, -count); ASSERT(ipfb->ipfb_count >= count); ipfb->ipfb_count -= count; ASSERT(ipfb->ipfb_frag_pkts > 0); ipfb->ipfb_frag_pkts--; BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); ip_drop_input("ipIfStatsReasmFails", mp, ill); freemsg(mp); } if (ipf) ipf->ipf_ptphn = ipfp; ipfp[0] = ipf; } /* * Helper function for ill_forward_set(). */ static void ill_forward_set_on_ill(ill_t *ill, boolean_t enable) { ip_stack_t *ipst = ill->ill_ipst; ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); ip1dbg(("ill_forward_set: %s %s forwarding on %s", (enable ? "Enabling" : "Disabling"), (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); mutex_enter(&ill->ill_lock); if (enable) ill->ill_flags |= ILLF_ROUTER; else ill->ill_flags &= ~ILLF_ROUTER; mutex_exit(&ill->ill_lock); if (ill->ill_isv6) ill_set_nce_router_flags(ill, enable); /* Notify routing socket listeners of this change. */ if (ill->ill_ipif != NULL) ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); } /* * Set an ill's ILLF_ROUTER flag appropriately. Send up RTS_IFINFO routing * socket messages for each interface whose flags we change. */ int ill_forward_set(ill_t *ill, boolean_t enable) { ipmp_illgrp_t *illg; ip_stack_t *ipst = ill->ill_ipst; ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); if ((enable && (ill->ill_flags & ILLF_ROUTER)) || (!enable && !(ill->ill_flags & ILLF_ROUTER))) return (0); if (IS_LOOPBACK(ill)) return (EINVAL); if (IS_IPMP(ill) || IS_UNDER_IPMP(ill)) { /* * Update all of the interfaces in the group. */ illg = ill->ill_grp; ill = list_head(&illg->ig_if); for (; ill != NULL; ill = list_next(&illg->ig_if, ill)) ill_forward_set_on_ill(ill, enable); /* * Update the IPMP meta-interface. */ ill_forward_set_on_ill(ipmp_illgrp_ipmp_ill(illg), enable); return (0); } ill_forward_set_on_ill(ill, enable); return (0); } /* * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately * set or clear. */ static void ill_set_nce_router_flags(ill_t *ill, boolean_t enable) { ipif_t *ipif; ncec_t *ncec; nce_t *nce; for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { /* * NOTE: we match across the illgrp because nce's for * addresses on IPMP interfaces have an nce_ill that points to * the bound underlying ill. */ nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr); if (nce != NULL) { ncec = nce->nce_common; mutex_enter(&ncec->ncec_lock); if (enable) ncec->ncec_flags |= NCE_F_ISROUTER; else ncec->ncec_flags &= ~NCE_F_ISROUTER; mutex_exit(&ncec->ncec_lock); nce_refrele(nce); } } } /* * Intializes the context structure and returns the first ill in the list * cuurently start_list and end_list can have values: * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. * IP_V4_G_HEAD Traverse IPV4 list only. * IP_V6_G_HEAD Traverse IPV6 list only. */ /* * We don't check for CONDEMNED ills here. Caller must do that if * necessary under the ill lock. */ ill_t * ill_first(int start_list, int end_list, ill_walk_context_t *ctx, ip_stack_t *ipst) { ill_if_t *ifp; ill_t *ill; avl_tree_t *avl_tree; ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); /* * setup the lists to search */ if (end_list != MAX_G_HEADS) { ctx->ctx_current_list = start_list; ctx->ctx_last_list = end_list; } else { ctx->ctx_last_list = MAX_G_HEADS - 1; ctx->ctx_current_list = 0; } while (ctx->ctx_current_list <= ctx->ctx_last_list) { ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); if (ifp != (ill_if_t *) &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { avl_tree = &ifp->illif_avl_by_ppa; ill = avl_first(avl_tree); /* * ill is guaranteed to be non NULL or ifp should have * not existed. */ ASSERT(ill != NULL); return (ill); } ctx->ctx_current_list++; } return (NULL); } /* * returns the next ill in the list. ill_first() must have been called * before calling ill_next() or bad things will happen. */ /* * We don't check for CONDEMNED ills here. Caller must do that if * necessary under the ill lock. */ ill_t * ill_next(ill_walk_context_t *ctx, ill_t *lastill) { ill_if_t *ifp; ill_t *ill; ip_stack_t *ipst = lastill->ill_ipst; ASSERT(lastill->ill_ifptr != (ill_if_t *) &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)); if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, AVL_AFTER)) != NULL) { return (ill); } /* goto next ill_ifp in the list. */ ifp = lastill->ill_ifptr->illif_next; /* make sure not at end of circular list */ while (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { if (++ctx->ctx_current_list > ctx->ctx_last_list) return (NULL); ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); } return (avl_first(&ifp->illif_avl_by_ppa)); } /* * Check interface name for correct format: [a-zA-Z]+[a-zA-Z0-9._]*[0-9]+ * The final number (PPA) must not have any leading zeros. Upon success, a * pointer to the start of the PPA is returned; otherwise NULL is returned. */ static char * ill_get_ppa_ptr(char *name) { int namelen = strlen(name); int end_ndx = namelen - 1; int ppa_ndx, i; /* * Check that the first character is [a-zA-Z], and that the last * character is [0-9]. */ if (namelen == 0 || !isalpha(name[0]) || !isdigit(name[end_ndx])) return (NULL); /* * Set `ppa_ndx' to the PPA start, and check for leading zeroes. */ for (ppa_ndx = end_ndx; ppa_ndx > 0; ppa_ndx--) if (!isdigit(name[ppa_ndx - 1])) break; if (name[ppa_ndx] == '0' && ppa_ndx < end_ndx) return (NULL); /* * Check that the intermediate characters are [a-z0-9.] */ for (i = 1; i < ppa_ndx; i++) { if (!isalpha(name[i]) && !isdigit(name[i]) && name[i] != '.' && name[i] != '_') { return (NULL); } } return (name + ppa_ndx); } /* * use avl tree to locate the ill. */ static ill_t * ill_find_by_name(char *name, boolean_t isv6, ip_stack_t *ipst) { char *ppa_ptr = NULL; int len; uint_t ppa; ill_t *ill = NULL; ill_if_t *ifp; int list; /* * get ppa ptr */ if (isv6) list = IP_V6_G_HEAD; else list = IP_V4_G_HEAD; if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { return (NULL); } len = ppa_ptr - name + 1; ppa = stoi(&ppa_ptr); ifp = IP_VX_ILL_G_LIST(list, ipst); while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { /* * match is done on len - 1 as the name is not null * terminated it contains ppa in addition to the interface * name. */ if ((ifp->illif_name_len == len) && bcmp(ifp->illif_name, name, len - 1) == 0) { break; } else { ifp = ifp->illif_next; } } if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { /* * Even the interface type does not exist. */ return (NULL); } ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); if (ill != NULL) { mutex_enter(&ill->ill_lock); if (ILL_CAN_LOOKUP(ill)) { ill_refhold_locked(ill); mutex_exit(&ill->ill_lock); return (ill); } mutex_exit(&ill->ill_lock); } return (NULL); } /* * comparison function for use with avl. */ static int ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) { uint_t ppa; uint_t ill_ppa; ASSERT(ppa_ptr != NULL && ill_ptr != NULL); ppa = *((uint_t *)ppa_ptr); ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; /* * We want the ill with the lowest ppa to be on the * top. */ if (ill_ppa < ppa) return (1); if (ill_ppa > ppa) return (-1); return (0); } /* * remove an interface type from the global list. */ static void ill_delete_interface_type(ill_if_t *interface) { ASSERT(interface != NULL); ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); avl_destroy(&interface->illif_avl_by_ppa); if (interface->illif_ppa_arena != NULL) vmem_destroy(interface->illif_ppa_arena); remque(interface); mi_free(interface); } /* * remove ill from the global list. */ static void ill_glist_delete(ill_t *ill) { ip_stack_t *ipst; phyint_t *phyi; if (ill == NULL) return; ipst = ill->ill_ipst; rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); /* * If the ill was never inserted into the AVL tree * we skip the if branch. */ if (ill->ill_ifptr != NULL) { /* * remove from AVL tree and free ppa number */ avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); if (ill->ill_ifptr->illif_ppa_arena != NULL) { vmem_free(ill->ill_ifptr->illif_ppa_arena, (void *)(uintptr_t)(ill->ill_ppa+1), 1); } if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { ill_delete_interface_type(ill->ill_ifptr); } /* * Indicate ill is no longer in the list. */ ill->ill_ifptr = NULL; ill->ill_name_length = 0; ill->ill_name[0] = '\0'; ill->ill_ppa = UINT_MAX; } /* Generate one last event for this ill. */ ill_nic_event_dispatch(ill, 0, NE_UNPLUMB, ill->ill_name, ill->ill_name_length); ASSERT(ill->ill_phyint != NULL); phyi = ill->ill_phyint; ill->ill_phyint = NULL; /* * ill_init allocates a phyint always to store the copy * of flags relevant to phyint. At that point in time, we could * not assign the name and hence phyint_illv4/v6 could not be * initialized. Later in ipif_set_values, we assign the name to * the ill, at which point in time we assign phyint_illv4/v6. * Thus we don't rely on phyint_illv6 to be initialized always. */ if (ill->ill_flags & ILLF_IPV6) phyi->phyint_illv6 = NULL; else phyi->phyint_illv4 = NULL; if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) { rw_exit(&ipst->ips_ill_g_lock); return; } /* * There are no ills left on this phyint; pull it out of the phyint * avl trees, and free it. */ if (phyi->phyint_ifindex > 0) { avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, phyi); avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, phyi); } rw_exit(&ipst->ips_ill_g_lock); phyint_free(phyi); } /* * allocate a ppa, if the number of plumbed interfaces of this type are * less than ill_no_arena do a linear search to find a unused ppa. * When the number goes beyond ill_no_arena switch to using an arena. * Note: ppa value of zero cannot be allocated from vmem_arena as it * is the return value for an error condition, so allocation starts at one * and is decremented by one. */ static int ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) { ill_t *tmp_ill; uint_t start, end; int ppa; if (ifp->illif_ppa_arena == NULL && (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { /* * Create an arena. */ ifp->illif_ppa_arena = vmem_create(ifp->illif_name, (void *)1, UINT_MAX - 1, 1, NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER); /* allocate what has already been assigned */ for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER)) { ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 1, /* size */ 1, /* align/quantum */ 0, /* phase */ 0, /* nocross */ /* minaddr */ (void *)((uintptr_t)tmp_ill->ill_ppa + 1), /* maxaddr */ (void *)((uintptr_t)tmp_ill->ill_ppa + 2), VM_NOSLEEP|VM_FIRSTFIT); if (ppa == 0) { ip1dbg(("ill_alloc_ppa: ppa allocation" " failed while switching")); vmem_destroy(ifp->illif_ppa_arena); ifp->illif_ppa_arena = NULL; break; } } } if (ifp->illif_ppa_arena != NULL) { if (ill->ill_ppa == UINT_MAX) { ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 1, VM_NOSLEEP|VM_FIRSTFIT); if (ppa == 0) return (EAGAIN); ill->ill_ppa = --ppa; } else { ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 1, /* size */ 1, /* align/quantum */ 0, /* phase */ 0, /* nocross */ (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ VM_NOSLEEP|VM_FIRSTFIT); /* * Most likely the allocation failed because * the requested ppa was in use. */ if (ppa == 0) return (EEXIST); } return (0); } /* * No arena is in use and not enough (>ill_no_arena) interfaces have * been plumbed to create one. Do a linear search to get a unused ppa. */ if (ill->ill_ppa == UINT_MAX) { end = UINT_MAX - 1; start = 0; } else { end = start = ill->ill_ppa; } tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { if (start++ >= end) { if (ill->ill_ppa == UINT_MAX) return (EAGAIN); else return (EEXIST); } tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); } ill->ill_ppa = start; return (0); } /* * Insert ill into the list of configured ill's. Once this function completes, * the ill is globally visible and is available through lookups. More precisely * this happens after the caller drops the ill_g_lock. */ static int ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) { ill_if_t *ill_interface; avl_index_t where = 0; int error; int name_length; int index; boolean_t check_length = B_FALSE; ip_stack_t *ipst = ill->ill_ipst; ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); name_length = mi_strlen(name) + 1; if (isv6) index = IP_V6_G_HEAD; else index = IP_V4_G_HEAD; ill_interface = IP_VX_ILL_G_LIST(index, ipst); /* * Search for interface type based on name */ while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { if ((ill_interface->illif_name_len == name_length) && (strcmp(ill_interface->illif_name, name) == 0)) { break; } ill_interface = ill_interface->illif_next; } /* * Interface type not found, create one. */ if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { ill_g_head_t ghead; /* * allocate ill_if_t structure */ ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); if (ill_interface == NULL) { return (ENOMEM); } (void) strcpy(ill_interface->illif_name, name); ill_interface->illif_name_len = name_length; avl_create(&ill_interface->illif_avl_by_ppa, ill_compare_ppa, sizeof (ill_t), offsetof(struct ill_s, ill_avl_byppa)); /* * link the structure in the back to maintain order * of configuration for ifconfig output. */ ghead = ipst->ips_ill_g_heads[index]; insque(ill_interface, ghead.ill_g_list_tail); } if (ill->ill_ppa == UINT_MAX) check_length = B_TRUE; error = ill_alloc_ppa(ill_interface, ill); if (error != 0) { if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) ill_delete_interface_type(ill->ill_ifptr); return (error); } /* * When the ppa is choosen by the system, check that there is * enough space to insert ppa. if a specific ppa was passed in this * check is not required as the interface name passed in will have * the right ppa in it. */ if (check_length) { /* * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. */ char buf[sizeof (uint_t) * 3]; /* * convert ppa to string to calculate the amount of space * required for it in the name. */ numtos(ill->ill_ppa, buf); /* Do we have enough space to insert ppa ? */ if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { /* Free ppa and interface type struct */ if (ill_interface->illif_ppa_arena != NULL) { vmem_free(ill_interface->illif_ppa_arena, (void *)(uintptr_t)(ill->ill_ppa+1), 1); } if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) ill_delete_interface_type(ill->ill_ifptr); return (EINVAL); } } (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); ill->ill_name_length = mi_strlen(ill->ill_name) + 1; (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, &where); ill->ill_ifptr = ill_interface; avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); ill_phyint_reinit(ill); return (0); } /* Initialize the per phyint ipsq used for serialization */ static boolean_t ipsq_init(ill_t *ill, boolean_t enter) { ipsq_t *ipsq; ipxop_t *ipx; if ((ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP)) == NULL) return (B_FALSE); ill->ill_phyint->phyint_ipsq = ipsq; ipx = ipsq->ipsq_xop = &ipsq->ipsq_ownxop; ipx->ipx_ipsq = ipsq; ipsq->ipsq_next = ipsq; ipsq->ipsq_phyint = ill->ill_phyint; mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); mutex_init(&ipx->ipx_lock, NULL, MUTEX_DEFAULT, 0); ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */ if (enter) { ipx->ipx_writer = curthread; ipx->ipx_forced = B_FALSE; ipx->ipx_reentry_cnt = 1; #ifdef DEBUG ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); #endif } return (B_TRUE); } /* * ill_init is called by ip_open when a device control stream is opened. * It does a few initializations, and shoots a DL_INFO_REQ message down * to the driver. The response is later picked up in ip_rput_dlpi and * used to set up default mechanisms for talking to the driver. (Always * called as writer.) * * If this function returns error, ip_open will call ip_close which in * turn will call ill_delete to clean up any memory allocated here that * is not yet freed. */ int ill_init(queue_t *q, ill_t *ill) { int count; dl_info_req_t *dlir; mblk_t *info_mp; uchar_t *frag_ptr; /* * The ill is initialized to zero by mi_alloc*(). In addition * some fields already contain valid values, initialized in * ip_open(), before we reach here. */ mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); mutex_init(&ill->ill_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); ill->ill_saved_ire_cnt = 0; ill->ill_rq = q; ill->ill_wq = WR(q); info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), BPRI_HI); if (info_mp == NULL) return (ENOMEM); /* * Allocate sufficient space to contain our fragment hash table and * the device name. */ frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 2 * LIFNAMSIZ); if (frag_ptr == NULL) { freemsg(info_mp); return (ENOMEM); } ill->ill_frag_ptr = frag_ptr; ill->ill_frag_free_num_pkts = 0; ill->ill_last_frag_clean_time = 0; ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, NULL, MUTEX_DEFAULT, NULL); } ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); if (ill->ill_phyint == NULL) { freemsg(info_mp); mi_free(frag_ptr); return (ENOMEM); } mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); /* * For now pretend this is a v4 ill. We need to set phyint_ill* * at this point because of the following reason. If we can't * enter the ipsq at some point and cv_wait, the writer that * wakes us up tries to locate us using the list of all phyints * in an ipsq and the ills from the phyint thru the phyint_ill*. * If we don't set it now, we risk a missed wakeup. */ ill->ill_phyint->phyint_illv4 = ill; ill->ill_ppa = UINT_MAX; list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node)); ill_set_inputfn(ill); if (!ipsq_init(ill, B_TRUE)) { freemsg(info_mp); mi_free(frag_ptr); mi_free(ill->ill_phyint); return (ENOMEM); } ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; /* Frag queue limit stuff */ ill->ill_frag_count = 0; ill->ill_ipf_gen = 0; rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL); mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL); ill->ill_global_timer = INFINITY; ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; /* * Initialize IPv6 configuration variables. The IP module is always * opened as an IPv4 module. Instead tracking down the cases where * it switches to do ipv6, we'll just initialize the IPv6 configuration * here for convenience, this has no effect until the ill is set to do * IPv6. */ ill->ill_reachable_time = ND_REACHABLE_TIME; ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; ill->ill_max_buf = ND_MAX_Q; ill->ill_refcnt = 0; /* Send down the Info Request to the driver. */ info_mp->b_datap->db_type = M_PCPROTO; dlir = (dl_info_req_t *)info_mp->b_rptr; info_mp->b_wptr = (uchar_t *)&dlir[1]; dlir->dl_primitive = DL_INFO_REQ; ill->ill_dlpi_pending = DL_PRIM_INVAL; qprocson(q); ill_dlpi_send(ill, info_mp); return (0); } /* * ill_dls_info * creates datalink socket info from the device. */ int ill_dls_info(struct sockaddr_dl *sdl, const ill_t *ill) { size_t len; sdl->sdl_family = AF_LINK; sdl->sdl_index = ill_get_upper_ifindex(ill); sdl->sdl_type = ill->ill_type; ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data)); len = strlen(sdl->sdl_data); ASSERT(len < 256); sdl->sdl_nlen = (uchar_t)len; sdl->sdl_alen = ill->ill_phys_addr_length; sdl->sdl_slen = 0; if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen); return (sizeof (struct sockaddr_dl)); } /* * ill_xarp_info * creates xarp info from the device. */ static int ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) { sdl->sdl_family = AF_LINK; sdl->sdl_index = ill->ill_phyint->phyint_ifindex; sdl->sdl_type = ill->ill_type; ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data)); sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); sdl->sdl_alen = ill->ill_phys_addr_length; sdl->sdl_slen = 0; return (sdl->sdl_nlen); } static int loopback_kstat_update(kstat_t *ksp, int rw) { kstat_named_t *kn; netstackid_t stackid; netstack_t *ns; ip_stack_t *ipst; if (ksp == NULL || ksp->ks_data == NULL) return (EIO); if (rw == KSTAT_WRITE) return (EACCES); kn = KSTAT_NAMED_PTR(ksp); stackid = (zoneid_t)(uintptr_t)ksp->ks_private; ns = netstack_find_by_stackid(stackid); if (ns == NULL) return (-1); ipst = ns->netstack_ip; if (ipst == NULL) { netstack_rele(ns); return (-1); } kn[0].value.ui32 = ipst->ips_loopback_packets; kn[1].value.ui32 = ipst->ips_loopback_packets; netstack_rele(ns); return (0); } /* * Has ifindex been plumbed already? */ static boolean_t phyint_exists(uint_t index, ip_stack_t *ipst) { ASSERT(index != 0); ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); return (avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, &index, NULL) != NULL); } /* Pick a unique ifindex */ boolean_t ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst) { uint_t starting_index; if (!ipst->ips_ill_index_wrap) { *indexp = ipst->ips_ill_index++; if (ipst->ips_ill_index == 0) { /* Reached the uint_t limit Next time wrap */ ipst->ips_ill_index_wrap = B_TRUE; } return (B_TRUE); } /* * Start reusing unused indexes. Note that we hold the ill_g_lock * at this point and don't want to call any function that attempts * to get the lock again. */ starting_index = ipst->ips_ill_index++; for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) { if (ipst->ips_ill_index != 0 && !phyint_exists(ipst->ips_ill_index, ipst)) { /* found unused index - use it */ *indexp = ipst->ips_ill_index; return (B_TRUE); } } /* * all interface indicies are inuse. */ return (B_FALSE); } /* * Assign a unique interface index for the phyint. */ static boolean_t phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst) { ASSERT(phyi->phyint_ifindex == 0); return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst)); } /* * Initialize the flags on `phyi' as per the provided mactype. */ static void phyint_flags_init(phyint_t *phyi, t_uscalar_t mactype) { uint64_t flags = 0; /* * Initialize PHYI_RUNNING and PHYI_FAILED. For non-IPMP interfaces, * we always presume the underlying hardware is working and set * PHYI_RUNNING (if it's not, the driver will subsequently send a * DL_NOTE_LINK_DOWN message). For IPMP interfaces, at initialization * there are no active interfaces in the group so we set PHYI_FAILED. */ if (mactype == SUNW_DL_IPMP) flags |= PHYI_FAILED; else flags |= PHYI_RUNNING; switch (mactype) { case SUNW_DL_VNI: flags |= PHYI_VIRTUAL; break; case SUNW_DL_IPMP: flags |= PHYI_IPMP; break; case DL_LOOP: flags |= (PHYI_LOOPBACK | PHYI_VIRTUAL); break; } mutex_enter(&phyi->phyint_lock); phyi->phyint_flags |= flags; mutex_exit(&phyi->phyint_lock); } /* * Return a pointer to the ill which matches the supplied name. Note that * the ill name length includes the null termination character. (May be * called as writer.) * If do_alloc and the interface is "lo0" it will be automatically created. * Cannot bump up reference on condemned ills. So dup detect can't be done * using this func. */ ill_t * ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, boolean_t *did_alloc, ip_stack_t *ipst) { ill_t *ill; ipif_t *ipif; ipsq_t *ipsq; kstat_named_t *kn; boolean_t isloopback; in6_addr_t ov6addr; isloopback = mi_strcmp(name, ipif_loopback_name) == 0; rw_enter(&ipst->ips_ill_g_lock, RW_READER); ill = ill_find_by_name(name, isv6, ipst); rw_exit(&ipst->ips_ill_g_lock); if (ill != NULL) return (ill); /* * Couldn't find it. Does this happen to be a lookup for the * loopback device and are we allowed to allocate it? */ if (!isloopback || !do_alloc) return (NULL); rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); ill = ill_find_by_name(name, isv6, ipst); if (ill != NULL) { rw_exit(&ipst->ips_ill_g_lock); return (ill); } /* Create the loopback device on demand */ ill = (ill_t *)(mi_alloc(sizeof (ill_t) + sizeof (ipif_loopback_name), BPRI_MED)); if (ill == NULL) goto done; *ill = ill_null; mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); ill->ill_ipst = ipst; list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node)); netstack_hold(ipst->ips_netstack); /* * For exclusive stacks we set the zoneid to zero * to make IP operate as if in the global zone. */ ill->ill_zoneid = GLOBAL_ZONEID; ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); if (ill->ill_phyint == NULL) goto done; if (isv6) ill->ill_phyint->phyint_illv6 = ill; else ill->ill_phyint->phyint_illv4 = ill; mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); phyint_flags_init(ill->ill_phyint, DL_LOOP); if (isv6) { ill->ill_isv6 = B_TRUE; ill->ill_max_frag = ip_loopback_mtu_v6plus; } else { ill->ill_max_frag = ip_loopback_mtuplus; } if (!ill_allocate_mibs(ill)) goto done; ill->ill_current_frag = ill->ill_max_frag; ill->ill_mtu = ill->ill_max_frag; /* Initial value */ /* * ipif_loopback_name can't be pointed at directly because its used * by both the ipv4 and ipv6 interfaces. When the ill is removed * from the glist, ill_glist_delete() sets the first character of * ill_name to '\0'. */ ill->ill_name = (char *)ill + sizeof (*ill); (void) strcpy(ill->ill_name, ipif_loopback_name); ill->ill_name_length = sizeof (ipif_loopback_name); /* Set ill_dlpi_pending for ipsq_current_finish() to work properly */ ill->ill_dlpi_pending = DL_PRIM_INVAL; rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL); mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL); ill->ill_global_timer = INFINITY; ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; /* No resolver here. */ ill->ill_net_type = IRE_LOOPBACK; /* Initialize the ipsq */ if (!ipsq_init(ill, B_FALSE)) goto done; ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE, B_TRUE, NULL); if (ipif == NULL) goto done; ill->ill_flags = ILLF_MULTICAST; ov6addr = ipif->ipif_v6lcl_addr; /* Set up default loopback address and mask. */ if (!isv6) { ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, ipif->ipif_v6subnet); ill->ill_flags |= ILLF_IPV4; } else { ipif->ipif_v6lcl_addr = ipv6_loopback; ipif->ipif_v6net_mask = ipv6_all_ones; V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, ipif->ipif_v6subnet); ill->ill_flags |= ILLF_IPV6; } /* * Chain us in at the end of the ill list. hold the ill * before we make it globally visible. 1 for the lookup. */ ill->ill_refcnt = 0; ill_refhold(ill); ill->ill_frag_count = 0; ill->ill_frag_free_num_pkts = 0; ill->ill_last_frag_clean_time = 0; ipsq = ill->ill_phyint->phyint_ipsq; ill_set_inputfn(ill); if (ill_glist_insert(ill, "lo", isv6) != 0) cmn_err(CE_PANIC, "cannot insert loopback interface"); /* Let SCTP know so that it can add this to its list */ sctp_update_ill(ill, SCTP_ILL_INSERT); /* * We have already assigned ipif_v6lcl_addr above, but we need to * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which * requires to be after ill_glist_insert() since we need the * ill_index set. Pass on ipv6_loopback as the old address. */ sctp_update_ipif_addr(ipif, ov6addr); ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT); /* * ill_glist_insert() -> ill_phyint_reinit() may have merged IPSQs. * If so, free our original one. */ if (ipsq != ill->ill_phyint->phyint_ipsq) ipsq_delete(ipsq); if (ipst->ips_loopback_ksp == NULL) { /* Export loopback interface statistics */ ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0, ipif_loopback_name, "net", KSTAT_TYPE_NAMED, 2, 0, ipst->ips_netstack->netstack_stackid); if (ipst->ips_loopback_ksp != NULL) { ipst->ips_loopback_ksp->ks_update = loopback_kstat_update; kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp); kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); ipst->ips_loopback_ksp->ks_private = (void *)(uintptr_t)ipst->ips_netstack-> netstack_stackid; kstat_install(ipst->ips_loopback_ksp); } } *did_alloc = B_TRUE; rw_exit(&ipst->ips_ill_g_lock); ill_nic_event_dispatch(ill, MAP_IPIF_ID(ill->ill_ipif->ipif_id), NE_PLUMB, ill->ill_name, ill->ill_name_length); return (ill); done: if (ill != NULL) { if (ill->ill_phyint != NULL) { ipsq = ill->ill_phyint->phyint_ipsq; if (ipsq != NULL) { ipsq->ipsq_phyint = NULL; ipsq_delete(ipsq); } mi_free(ill->ill_phyint); } ill_free_mib(ill); if (ill->ill_ipst != NULL) netstack_rele(ill->ill_ipst->ips_netstack); mi_free(ill); } rw_exit(&ipst->ips_ill_g_lock); return (NULL); } /* * For IPP calls - use the ip_stack_t for global stack. */ ill_t * ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6) { ip_stack_t *ipst; ill_t *ill; ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; if (ipst == NULL) { cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n"); return (NULL); } ill = ill_lookup_on_ifindex(index, isv6, ipst); netstack_rele(ipst->ips_netstack); return (ill); } /* * Return a pointer to the ill which matches the index and IP version type. */ ill_t * ill_lookup_on_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) { ill_t *ill; phyint_t *phyi; /* * Indexes are stored in the phyint - a common structure * to both IPv4 and IPv6. */ rw_enter(&ipst->ips_ill_g_lock, RW_READER); phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, (void *) &index, NULL); if (phyi != NULL) { ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; if (ill != NULL) { mutex_enter(&ill->ill_lock); if (!ILL_IS_CONDEMNED(ill)) { ill_refhold_locked(ill); mutex_exit(&ill->ill_lock); rw_exit(&ipst->ips_ill_g_lock); return (ill); } mutex_exit(&ill->ill_lock); } } rw_exit(&ipst->ips_ill_g_lock); return (NULL); } /* * Verify whether or not an interface index is valid for the specified zoneid * to transmit packets. * It can be zero (meaning "reset") or an interface index assigned * to a non-VNI interface. (We don't use VNI interface to send packets.) */ boolean_t ip_xmit_ifindex_valid(uint_t ifindex, zoneid_t zoneid, boolean_t isv6, ip_stack_t *ipst) { ill_t *ill; if (ifindex == 0) return (B_TRUE); ill = ill_lookup_on_ifindex_zoneid(ifindex, zoneid, isv6, ipst); if (ill == NULL) return (B_FALSE); if (IS_VNI(ill)) { ill_refrele(ill); return (B_FALSE); } ill_refrele(ill); return (B_TRUE); } /* * Return the ifindex next in sequence after the passed in ifindex. * If there is no next ifindex for the given protocol, return 0. */ uint_t ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) { phyint_t *phyi; phyint_t *phyi_initial; uint_t ifindex; rw_enter(&ipst->ips_ill_g_lock, RW_READER); if (index == 0) { phyi = avl_first( &ipst->ips_phyint_g_list->phyint_list_avl_by_index); } else { phyi = phyi_initial = avl_find( &ipst->ips_phyint_g_list->phyint_list_avl_by_index, (void *) &index, NULL); } for (; phyi != NULL; phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, phyi, AVL_AFTER)) { /* * If we're not returning the first interface in the tree * and we still haven't moved past the phyint_t that * corresponds to index, avl_walk needs to be called again */ if (!((index != 0) && (phyi == phyi_initial))) { if (isv6) { if ((phyi->phyint_illv6) && ILL_CAN_LOOKUP(phyi->phyint_illv6) && (phyi->phyint_illv6->ill_isv6 == 1)) break; } else { if ((phyi->phyint_illv4) && ILL_CAN_LOOKUP(phyi->phyint_illv4) && (phyi->phyint_illv4->ill_isv6 == 0)) break; } } } rw_exit(&ipst->ips_ill_g_lock); if (phyi != NULL) ifindex = phyi->phyint_ifindex; else ifindex = 0; return (ifindex); } /* * Return the ifindex for the named interface. * If there is no next ifindex for the interface, return 0. */ uint_t ill_get_ifindex_by_name(char *name, ip_stack_t *ipst) { phyint_t *phyi; avl_index_t where = 0; uint_t ifindex; rw_enter(&ipst->ips_ill_g_lock, RW_READER); if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, name, &where)) == NULL) { rw_exit(&ipst->ips_ill_g_lock); return (0); } ifindex = phyi->phyint_ifindex; rw_exit(&ipst->ips_ill_g_lock); return (ifindex); } /* * Return the ifindex to be used by upper layer protocols for instance * for IPV6_RECVPKTINFO. If IPMP this is the one for the upper ill. */ uint_t ill_get_upper_ifindex(const ill_t *ill) { if (IS_UNDER_IPMP(ill)) return (ipmp_ill_get_ipmp_ifindex(ill)); else return (ill->ill_phyint->phyint_ifindex); } /* * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt * that gives a running thread a reference to the ill. This reference must be * released by the thread when it is done accessing the ill and related * objects. ill_refcnt can not be used to account for static references * such as other structures pointing to an ill. Callers must generally * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros * or be sure that the ill is not being deleted or changing state before * calling the refhold functions. A non-zero ill_refcnt ensures that the * ill won't change any of its critical state such as address, netmask etc. */ void ill_refhold(ill_t *ill) { mutex_enter(&ill->ill_lock); ill->ill_refcnt++; ILL_TRACE_REF(ill); mutex_exit(&ill->ill_lock); } void ill_refhold_locked(ill_t *ill) { ASSERT(MUTEX_HELD(&ill->ill_lock)); ill->ill_refcnt++; ILL_TRACE_REF(ill); } /* Returns true if we managed to get a refhold */ boolean_t ill_check_and_refhold(ill_t *ill) { mutex_enter(&ill->ill_lock); if (!ILL_IS_CONDEMNED(ill)) { ill_refhold_locked(ill); mutex_exit(&ill->ill_lock); return (B_TRUE); } mutex_exit(&ill->ill_lock); return (B_FALSE); } /* * Must not be called while holding any locks. Otherwise if this is * the last reference to be released, there is a chance of recursive mutex * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying * to restart an ioctl. */ void ill_refrele(ill_t *ill) { mutex_enter(&ill->ill_lock); ASSERT(ill->ill_refcnt != 0); ill->ill_refcnt--; ILL_UNTRACE_REF(ill); if (ill->ill_refcnt != 0) { /* Every ire pointing to the ill adds 1 to ill_refcnt */ mutex_exit(&ill->ill_lock); return; } /* Drops the ill_lock */ ipif_ill_refrele_tail(ill); } /* * Obtain a weak reference count on the ill. This reference ensures the * ill won't be freed, but the ill may change any of its critical state * such as netmask, address etc. Returns an error if the ill has started * closing. */ boolean_t ill_waiter_inc(ill_t *ill) { mutex_enter(&ill->ill_lock); if (ill->ill_state_flags & ILL_CONDEMNED) { mutex_exit(&ill->ill_lock); return (B_FALSE); } ill->ill_waiters++; mutex_exit(&ill->ill_lock); return (B_TRUE); } void ill_waiter_dcr(ill_t *ill) { mutex_enter(&ill->ill_lock); ill->ill_waiters--; if (ill->ill_waiters == 0) cv_broadcast(&ill->ill_cv); mutex_exit(&ill->ill_lock); } /* * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the * driver. We construct best guess defaults for lower level information that * we need. If an interface is brought up without injection of any overriding * information from outside, we have to be ready to go with these defaults. * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) * we primarely want the dl_provider_style. * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND * at which point we assume the other part of the information is valid. */ void ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) { uchar_t *brdcst_addr; uint_t brdcst_addr_length, phys_addr_length; t_scalar_t sap_length; dl_info_ack_t *dlia; ip_m_t *ipm; dl_qos_cl_sel1_t *sel1; int min_mtu; ASSERT(IAM_WRITER_ILL(ill)); /* * Till the ill is fully up the ill is not globally visible. * So no need for a lock. */ dlia = (dl_info_ack_t *)mp->b_rptr; ill->ill_mactype = dlia->dl_mac_type; ipm = ip_m_lookup(dlia->dl_mac_type); if (ipm == NULL) { ipm = ip_m_lookup(DL_OTHER); ASSERT(ipm != NULL); } ill->ill_media = ipm; /* * When the new DLPI stuff is ready we'll pull lengths * from dlia. */ if (dlia->dl_version == DL_VERSION_2) { brdcst_addr_length = dlia->dl_brdcst_addr_length; brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, brdcst_addr_length); if (brdcst_addr == NULL) { brdcst_addr_length = 0; } sap_length = dlia->dl_sap_length; phys_addr_length = dlia->dl_addr_length - ABS(sap_length); ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", brdcst_addr_length, sap_length, phys_addr_length)); } else { brdcst_addr_length = 6; brdcst_addr = ip_six_byte_all_ones; sap_length = -2; phys_addr_length = brdcst_addr_length; } ill->ill_bcast_addr_length = brdcst_addr_length; ill->ill_phys_addr_length = phys_addr_length; ill->ill_sap_length = sap_length; /* * Synthetic DLPI types such as SUNW_DL_IPMP specify a zero SDU, * but we must ensure a minimum IP MTU is used since other bits of * IP will fly apart otherwise. */ min_mtu = ill->ill_isv6 ? IPV6_MIN_MTU : IP_MIN_MTU; ill->ill_max_frag = MAX(min_mtu, dlia->dl_max_sdu); ill->ill_current_frag = ill->ill_max_frag; ill->ill_mtu = ill->ill_max_frag; ill->ill_type = ipm->ip_m_type; if (!ill->ill_dlpi_style_set) { if (dlia->dl_provider_style == DL_STYLE2) ill->ill_needs_attach = 1; phyint_flags_init(ill->ill_phyint, ill->ill_mactype); /* * Allocate the first ipif on this ill. We don't delay it * further as ioctl handling assumes at least one ipif exists. * * At this point we don't know whether the ill is v4 or v6. * We will know this whan the SIOCSLIFNAME happens and * the correct value for ill_isv6 will be assigned in * ipif_set_values(). We need to hold the ill lock and * clear the ILL_LL_SUBNET_PENDING flag and atomically do * the wakeup. */ (void) ipif_allocate(ill, 0, IRE_LOCAL, dlia->dl_provider_style != DL_STYLE2, B_TRUE, NULL); mutex_enter(&ill->ill_lock); ASSERT(ill->ill_dlpi_style_set == 0); ill->ill_dlpi_style_set = 1; ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; cv_broadcast(&ill->ill_cv); mutex_exit(&ill->ill_lock); freemsg(mp); return; } ASSERT(ill->ill_ipif != NULL); /* * We know whether it is IPv4 or IPv6 now, as this is the * second DL_INFO_ACK we are recieving in response to the * DL_INFO_REQ sent in ipif_set_values. */ ill->ill_sap = (ill->ill_isv6) ? ipm->ip_m_ipv6sap : ipm->ip_m_ipv4sap; /* * Clear all the flags that were set based on ill_bcast_addr_length * and ill_phys_addr_length (in ipif_set_values) as these could have * changed now and we need to re-evaluate. */ ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); /* * Free ill_bcast_mp as things could have changed now. * * NOTE: The IPMP meta-interface is special-cased because it starts * with no underlying interfaces (and thus an unknown broadcast * address length), but we enforce that an interface is broadcast- * capable as part of allowing it to join a group. */ if (ill->ill_bcast_addr_length == 0 && !IS_IPMP(ill)) { if (ill->ill_bcast_mp != NULL) freemsg(ill->ill_bcast_mp); ill->ill_net_type = IRE_IF_NORESOLVER; ill->ill_bcast_mp = ill_dlur_gen(NULL, ill->ill_phys_addr_length, ill->ill_sap, ill->ill_sap_length); if (ill->ill_isv6) /* * Note: xresolv interfaces will eventually need NOARP * set here as well, but that will require those * external resolvers to have some knowledge of * that flag and act appropriately. Not to be changed * at present. */ ill->ill_flags |= ILLF_NONUD; else ill->ill_flags |= ILLF_NOARP; if (ill->ill_mactype == SUNW_DL_VNI) { ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; } else if (ill->ill_phys_addr_length == 0 || ill->ill_mactype == DL_IPV4 || ill->ill_mactype == DL_IPV6) { /* * The underying link is point-to-point, so mark the * interface as such. We can do IP multicast over * such a link since it transmits all network-layer * packets to the remote side the same way. */ ill->ill_flags |= ILLF_MULTICAST; ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; } } else { ill->ill_net_type = IRE_IF_RESOLVER; if (ill->ill_bcast_mp != NULL) freemsg(ill->ill_bcast_mp); ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, ill->ill_bcast_addr_length, ill->ill_sap, ill->ill_sap_length); /* * Later detect lack of DLPI driver multicast * capability by catching DL_ENABMULTI errors in * ip_rput_dlpi. */ ill->ill_flags |= ILLF_MULTICAST; if (!ill->ill_isv6) ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; } /* For IPMP, PHYI_IPMP should already be set by phyint_flags_init() */ if (ill->ill_mactype == SUNW_DL_IPMP) ASSERT(ill->ill_phyint->phyint_flags & PHYI_IPMP); /* By default an interface does not support any CoS marking */ ill->ill_flags &= ~ILLF_COS_ENABLED; /* * If we get QoS information in DL_INFO_ACK, the device supports * some form of CoS marking, set ILLF_COS_ENABLED. */ sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, dlia->dl_qos_length); if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { ill->ill_flags |= ILLF_COS_ENABLED; } /* Clear any previous error indication. */ ill->ill_error = 0; freemsg(mp); } /* * Perform various checks to verify that an address would make sense as a * local, remote, or subnet interface address. */ static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) { ipaddr_t net_mask; /* * Don't allow all zeroes, or all ones, but allow * all ones netmask. */ if ((net_mask = ip_net_mask(addr)) == 0) return (B_FALSE); /* A given netmask overrides the "guess" netmask */ if (subnet_mask != 0) net_mask = subnet_mask; if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || (addr == (addr | ~net_mask)))) { return (B_FALSE); } /* * Even if the netmask is all ones, we do not allow address to be * 255.255.255.255 */ if (addr == INADDR_BROADCAST) return (B_FALSE); if (CLASSD(addr)) return (B_FALSE); return (B_TRUE); } #define V6_IPIF_LINKLOCAL(p) \ IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr) /* * Compare two given ipifs and check if the second one is better than * the first one using the order of preference (not taking deprecated * into acount) specified in ipif_lookup_multicast(). */ static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6) { /* Check the least preferred first. */ if (IS_LOOPBACK(old_ipif->ipif_ill)) { /* If both ipifs are the same, use the first one. */ if (IS_LOOPBACK(new_ipif->ipif_ill)) return (B_FALSE); else return (B_TRUE); } /* For IPv6, check for link local address. */ if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) { if (IS_LOOPBACK(new_ipif->ipif_ill) || V6_IPIF_LINKLOCAL(new_ipif)) { /* The second one is equal or less preferred. */ return (B_FALSE); } else { return (B_TRUE); } } /* Then check for point to point interface. */ if (old_ipif->ipif_flags & IPIF_POINTOPOINT) { if (IS_LOOPBACK(new_ipif->ipif_ill) || (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) || (new_ipif->ipif_flags & IPIF_POINTOPOINT)) { return (B_FALSE); } else { return (B_TRUE); } } /* old_ipif is a normal interface, so no need to use the new one. */ return (B_FALSE); } /* * Find a mulitcast-capable ipif given an IP instance and zoneid. * The ipif must be up, and its ill must multicast-capable, not * condemned, not an underlying interface in an IPMP group, and * not a VNI interface. Order of preference: * * 1a. normal * 1b. normal, but deprecated * 2a. point to point * 2b. point to point, but deprecated * 3a. link local * 3b. link local, but deprecated * 4. loopback. */ static ipif_t * ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) { ill_t *ill; ill_walk_context_t ctx; ipif_t *ipif; ipif_t *saved_ipif = NULL; ipif_t *dep_ipif = NULL; rw_enter(&ipst->ips_ill_g_lock, RW_READER); if (isv6) ill = ILL_START_WALK_V6(&ctx, ipst); else ill = ILL_START_WALK_V4(&ctx, ipst); for (; ill != NULL; ill = ill_next(&ctx, ill)) { mutex_enter(&ill->ill_lock); if (IS_VNI(ill) || IS_UNDER_IPMP(ill) || ILL_IS_CONDEMNED(ill) || !(ill->ill_flags & ILLF_MULTICAST)) { mutex_exit(&ill->ill_lock); continue; } for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { if (zoneid != ipif->ipif_zoneid && zoneid != ALL_ZONES && ipif->ipif_zoneid != ALL_ZONES) { continue; } if (!(ipif->ipif_flags & IPIF_UP) || IPIF_IS_CONDEMNED(ipif)) { continue; } /* * Found one candidate. If it is deprecated, * remember it in dep_ipif. If it is not deprecated, * remember it in saved_ipif. */ if (ipif->ipif_flags & IPIF_DEPRECATED) { if (dep_ipif == NULL) { dep_ipif = ipif; } else if (ipif_comp_multi(dep_ipif, ipif, isv6)) { /* * If the previous dep_ipif does not * belong to the same ill, we've done * a ipif_refhold() on it. So we need * to release it. */ if (dep_ipif->ipif_ill != ill) ipif_refrele(dep_ipif); dep_ipif = ipif; } continue; } if (saved_ipif == NULL) { saved_ipif = ipif; } else { if (ipif_comp_multi(saved_ipif, ipif, isv6)) { if (saved_ipif->ipif_ill != ill) ipif_refrele(saved_ipif); saved_ipif = ipif; } } } /* * Before going to the next ill, do a ipif_refhold() on the * saved ones. */ if (saved_ipif != NULL && saved_ipif->ipif_ill == ill) ipif_refhold_locked(saved_ipif); if (dep_ipif != NULL && dep_ipif->ipif_ill == ill) ipif_refhold_locked(dep_ipif); mutex_exit(&ill->ill_lock); } rw_exit(&ipst->ips_ill_g_lock); /* * If we have only the saved_ipif, return it. But if we have both * saved_ipif and dep_ipif, check to see which one is better. */ if (saved_ipif != NULL) { if (dep_ipif != NULL) { if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) { ipif_refrele(saved_ipif); return (dep_ipif); } else { ipif_refrele(dep_ipif); return (saved_ipif); } } return (saved_ipif); } else { return (dep_ipif); } } ill_t * ill_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) { ipif_t *ipif; ill_t *ill; ipif = ipif_lookup_multicast(ipst, zoneid, isv6); if (ipif == NULL) return (NULL); ill = ipif->ipif_ill; ill_refhold(ill); ipif_refrele(ipif); return (ill); } /* * This function is called when an application does not specify an interface * to be used for multicast traffic (joining a group/sending data). It * calls ire_lookup_multi() to look for an interface route for the * specified multicast group. Doing this allows the administrator to add * prefix routes for multicast to indicate which interface to be used for * multicast traffic in the above scenario. The route could be for all * multicast (224.0/4), for a single multicast group (a /32 route) or * anything in between. If there is no such multicast route, we just find * any multicast capable interface and return it. The returned ipif * is refhold'ed. * * We support MULTIRT and RTF_SETSRC on the multicast routes added to the * unicast table. This is used by CGTP. */ ill_t * ill_lookup_group_v4(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst, boolean_t *multirtp, ipaddr_t *setsrcp) { ill_t *ill; ill = ire_lookup_multi_ill_v4(group, zoneid, ipst, multirtp, setsrcp); if (ill != NULL) return (ill); return (ill_lookup_multicast(ipst, zoneid, B_FALSE)); } /* * Look for an ipif with the specified interface address and destination. * The destination address is used only for matching point-to-point interfaces. */ ipif_t * ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, ip_stack_t *ipst) { ipif_t *ipif; ill_t *ill; ill_walk_context_t ctx; /* * First match all the point-to-point interfaces * before looking at non-point-to-point interfaces. * This is done to avoid returning non-point-to-point * ipif instead of unnumbered point-to-point ipif. */ rw_enter(&ipst->ips_ill_g_lock, RW_READER); ill = ILL_START_WALK_V4(&ctx, ipst); for (; ill != NULL; ill = ill_next(&ctx, ill)) { mutex_enter(&ill->ill_lock); for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { /* Allow the ipif to be down */ if ((ipif->ipif_flags & IPIF_POINTOPOINT) && (ipif->ipif_lcl_addr == if_addr) && (ipif->ipif_pp_dst_addr == dst)) { if (!IPIF_IS_CONDEMNED(ipif)) { ipif_refhold_locked(ipif); mutex_exit(&ill->ill_lock); rw_exit(&ipst->ips_ill_g_lock); return (ipif); } } } mutex_exit(&ill->ill_lock); } rw_exit(&ipst->ips_ill_g_lock); /* lookup the ipif based on interface address */ ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, ipst); ASSERT(ipif == NULL || !ipif->ipif_isv6); return (ipif); } /* * Common function for ipif_lookup_addr() and ipif_lookup_addr_exact(). */ static ipif_t * ipif_lookup_addr_common(ipaddr_t addr, ill_t *match_ill, uint32_t match_flags, zoneid_t zoneid, ip_stack_t *ipst) { ipif_t *ipif; ill_t *ill; boolean_t ptp = B_FALSE; ill_walk_context_t ctx; boolean_t match_illgrp = (match_flags & IPIF_MATCH_ILLGRP); boolean_t no_duplicate = (match_flags & IPIF_MATCH_NONDUP); rw_enter(&ipst->ips_ill_g_lock, RW_READER); /* * Repeat twice, first based on local addresses and * next time for pointopoint. */ repeat: ill = ILL_START_WALK_V4(&ctx, ipst); for (; ill != NULL; ill = ill_next(&ctx, ill)) { if (match_ill != NULL && ill != match_ill && (!match_illgrp || !IS_IN_SAME_ILLGRP(ill, match_ill))) { continue; } mutex_enter(&ill->ill_lock); for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && ipif->ipif_zoneid != ALL_ZONES) continue; if (no_duplicate && !(ipif->ipif_flags & IPIF_UP)) continue; /* Allow the ipif to be down */ if ((!ptp && (ipif->ipif_lcl_addr == addr) && ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && (ipif->ipif_pp_dst_addr == addr))) { if (!IPIF_IS_CONDEMNED(ipif)) { ipif_refhold_locked(ipif); mutex_exit(&ill->ill_lock); rw_exit(&ipst->ips_ill_g_lock); return (ipif); } } } mutex_exit(&ill->ill_lock); } /* If we already did the ptp case, then we are done */ if (ptp) { rw_exit(&ipst->ips_ill_g_lock); return (NULL); } ptp = B_TRUE; goto repeat; } /* * Lookup an ipif with the specified address. For point-to-point links we * look for matches on either the destination address or the local address, * but we skip the local address check if IPIF_UNNUMBERED is set. If the * `match_ill' argument is non-NULL, the lookup is restricted to that ill * (or illgrp if `match_ill' is in an IPMP group). */ ipif_t * ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, ip_stack_t *ipst) { return (ipif_lookup_addr_common(addr, match_ill, IPIF_MATCH_ILLGRP, zoneid, ipst)); } /* * Lookup an ipif with the specified address. Similar to ipif_lookup_addr, * except that we will only return an address if it is not marked as * IPIF_DUPLICATE */ ipif_t * ipif_lookup_addr_nondup(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, ip_stack_t *ipst) { return (ipif_lookup_addr_common(addr, match_ill, (IPIF_MATCH_ILLGRP | IPIF_MATCH_NONDUP), zoneid, ipst)); } /* * Special abbreviated version of ipif_lookup_addr() that doesn't match * `match_ill' across the IPMP group. This function is only needed in some * corner-cases; almost everything should use ipif_lookup_addr(). */ ipif_t * ipif_lookup_addr_exact(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) { ASSERT(match_ill != NULL); return (ipif_lookup_addr_common(addr, match_ill, 0, ALL_ZONES, ipst)); } /* * Look for an ipif with the specified address. For point-point links * we look for matches on either the destination address and the local * address, but we ignore the check on the local address if IPIF_UNNUMBERED * is set. * If the `match_ill' argument is non-NULL, the lookup is restricted to that * ill (or illgrp if `match_ill' is in an IPMP group). * Return the zoneid for the ipif which matches. ALL_ZONES if no match. */ zoneid_t ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) { zoneid_t zoneid; ipif_t *ipif; ill_t *ill; boolean_t ptp = B_FALSE; ill_walk_context_t ctx; rw_enter(&ipst->ips_ill_g_lock, RW_READER); /* * Repeat twice, first based on local addresses and * next time for pointopoint. */ repeat: ill = ILL_START_WALK_V4(&ctx, ipst); for (; ill != NULL; ill = ill_next(&ctx, ill)) { if (match_ill != NULL && ill != match_ill && !IS_IN_SAME_ILLGRP(ill, match_ill)) { continue; } mutex_enter(&ill->ill_lock); for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { /* Allow the ipif to be down */ if ((!ptp && (ipif->ipif_lcl_addr == addr) && ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && (ipif->ipif_pp_dst_addr == addr)) && !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { zoneid = ipif->ipif_zoneid; mutex_exit(&ill->ill_lock); rw_exit(&ipst->ips_ill_g_lock); /* * If ipif_zoneid was ALL_ZONES then we have * a trusted extensions shared IP address. * In that case GLOBAL_ZONEID works to send. */ if (zoneid == ALL_ZONES) zoneid = GLOBAL_ZONEID; return (zoneid); } } mutex_exit(&ill->ill_lock); } /* If we already did the ptp case, then we are done */ if (ptp) { rw_exit(&ipst->ips_ill_g_lock); return (ALL_ZONES); } ptp = B_TRUE; goto repeat; } /* * Look for an ipif that matches the specified remote address i.e. the * ipif that would receive the specified packet. * First look for directly connected interfaces and then do a recursive * IRE lookup and pick the first ipif corresponding to the source address in the * ire. * Returns: held ipif * * This is only used for ICMP_ADDRESS_MASK_REQUESTs */ ipif_t * ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) { ipif_t *ipif; ASSERT(!ill->ill_isv6); /* * Someone could be changing this ipif currently or change it * after we return this. Thus a few packets could use the old * old values. However structure updates/creates (ire, ilg, ilm etc) * will atomically be updated or cleaned up with the new value * Thus we don't need a lock to check the flags or other attrs below. */ mutex_enter(&ill->ill_lock); for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { if (IPIF_IS_CONDEMNED(ipif)) continue; if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && ipif->ipif_zoneid != ALL_ZONES) continue; /* Allow the ipif to be down */ if (ipif->ipif_flags & IPIF_POINTOPOINT) { if ((ipif->ipif_pp_dst_addr == addr) || (!(ipif->ipif_flags & IPIF_UNNUMBERED) && ipif->ipif_lcl_addr == addr)) { ipif_refhold_locked(ipif); mutex_exit(&ill->ill_lock); return (ipif); } } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { ipif_refhold_locked(ipif); mutex_exit(&ill->ill_lock); return (ipif); } } mutex_exit(&ill->ill_lock); /* * For a remote destination it isn't possible to nail down a particular * ipif. */ /* Pick the first interface */ ipif = ipif_get_next_ipif(NULL, ill); return (ipif); } /* * This func does not prevent refcnt from increasing. But if * the caller has taken steps to that effect, then this func * can be used to determine whether the ill has become quiescent */ static boolean_t ill_is_quiescent(ill_t *ill) { ipif_t *ipif; ASSERT(MUTEX_HELD(&ill->ill_lock)); for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { if (ipif->ipif_refcnt != 0) return (B_FALSE); } if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { return (B_FALSE); } return (B_TRUE); } boolean_t ill_is_freeable(ill_t *ill) { ipif_t *ipif; ASSERT(MUTEX_HELD(&ill->ill_lock)); for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { if (ipif->ipif_refcnt != 0) { return (B_FALSE); } } if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) { return (B_FALSE); } return (B_TRUE); } /* * This func does not prevent refcnt from increasing. But if * the caller has taken steps to that effect, then this func * can be used to determine whether the ipif has become quiescent */ static boolean_t ipif_is_quiescent(ipif_t *ipif) { ill_t *ill; ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); if (ipif->ipif_refcnt != 0) return (B_FALSE); ill = ipif->ipif_ill; if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || ill->ill_logical_down) { return (B_TRUE); } /* This is the last ipif going down or being deleted on this ill */ if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) { return (B_FALSE); } return (B_TRUE); } /* * return true if the ipif can be destroyed: the ipif has to be quiescent * with zero references from ire/ilm to it. */ static boolean_t ipif_is_freeable(ipif_t *ipif) { ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); ASSERT(ipif->ipif_id != 0); return (ipif->ipif_refcnt == 0); } /* * The ipif/ill/ire has been refreled. Do the tail processing. * Determine if the ipif or ill in question has become quiescent and if so * wakeup close and/or restart any queued pending ioctl that is waiting * for the ipif_down (or ill_down) */ void ipif_ill_refrele_tail(ill_t *ill) { mblk_t *mp; conn_t *connp; ipsq_t *ipsq; ipxop_t *ipx; ipif_t *ipif; dl_notify_ind_t *dlindp; ASSERT(MUTEX_HELD(&ill->ill_lock)); if ((ill->ill_state_flags & ILL_CONDEMNED) && ill_is_freeable(ill)) { /* ip_modclose() may be waiting */ cv_broadcast(&ill->ill_cv); } ipsq = ill->ill_phyint->phyint_ipsq; mutex_enter(&ipsq->ipsq_lock); ipx = ipsq->ipsq_xop; mutex_enter(&ipx->ipx_lock); if (ipx->ipx_waitfor == 0) /* no one's waiting; bail */ goto unlock; ASSERT(ipx->ipx_pending_mp != NULL && ipx->ipx_pending_ipif != NULL); ipif = ipx->ipx_pending_ipif; if (ipif->ipif_ill != ill) /* wait is for another ill; bail */ goto unlock; switch (ipx->ipx_waitfor) { case IPIF_DOWN: if (!ipif_is_quiescent(ipif)) goto unlock; break; case IPIF_FREE: if (!ipif_is_freeable(ipif)) goto unlock; break; case ILL_DOWN: if (!ill_is_quiescent(ill)) goto unlock; break; case ILL_FREE: /* * ILL_FREE is only for loopback; normal ill teardown waits * synchronously in ip_modclose() without using ipx_waitfor, * handled by the cv_broadcast() at the top of this function. */ if (!ill_is_freeable(ill)) goto unlock; break; default: cmn_err(CE_PANIC, "ipsq: %p unknown ipx_waitfor %d\n", (void *)ipsq, ipx->ipx_waitfor); } ill_refhold_locked(ill); /* for qwriter_ip() call below */ mutex_exit(&ipx->ipx_lock); mp = ipsq_pending_mp_get(ipsq, &connp); mutex_exit(&ipsq->ipsq_lock); mutex_exit(&ill->ill_lock); ASSERT(mp != NULL); /* * NOTE: all of the qwriter_ip() calls below use CUR_OP since * we can only get here when the current operation decides it * it needs to quiesce via ipsq_pending_mp_add(). */ switch (mp->b_datap->db_type) { case M_PCPROTO: case M_PROTO: /* * For now, only DL_NOTIFY_IND messages can use this facility. */ dlindp = (dl_notify_ind_t *)mp->b_rptr; ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND); switch (dlindp->dl_notification) { case DL_NOTE_PHYS_ADDR: qwriter_ip(ill, ill->ill_rq, mp, ill_set_phys_addr_tail, CUR_OP, B_TRUE); return; case DL_NOTE_REPLUMB: qwriter_ip(ill, ill->ill_rq, mp, ill_replumb_tail, CUR_OP, B_TRUE); return; default: ASSERT(0); ill_refrele(ill); } break; case M_ERROR: case M_HANGUP: qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP, B_TRUE); return; case M_IOCTL: case M_IOCDATA: qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) : ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE); return; default: cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " "db_type %d\n", (void *)mp, mp->b_datap->db_type); } return; unlock: mutex_exit(&ipsq->ipsq_lock); mutex_exit(&ipx->ipx_lock); mutex_exit(&ill->ill_lock); } #ifdef DEBUG /* Reuse trace buffer from beginning (if reached the end) and record trace */ static void th_trace_rrecord(th_trace_t *th_trace) { tr_buf_t *tr_buf; uint_t lastref; lastref = th_trace->th_trace_lastref; lastref++; if (lastref == TR_BUF_MAX) lastref = 0; th_trace->th_trace_lastref = lastref; tr_buf = &th_trace->th_trbuf[lastref]; tr_buf->tr_time = ddi_get_lbolt(); tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH); } static void th_trace_free(void *value) { th_trace_t *th_trace = value; ASSERT(th_trace->th_refcnt == 0); kmem_free(th_trace, sizeof (*th_trace)); } /* * Find or create the per-thread hash table used to track object references. * The ipst argument is NULL if we shouldn't allocate. * * Accesses per-thread data, so there's no need to lock here. */ static mod_hash_t * th_trace_gethash(ip_stack_t *ipst) { th_hash_t *thh; if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) { mod_hash_t *mh; char name[256]; size_t objsize, rshift; int retv; if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL) return (NULL); (void) snprintf(name, sizeof (name), "th_trace_%p", (void *)curthread); /* * We use mod_hash_create_extended here rather than the more * obvious mod_hash_create_ptrhash because the latter has a * hard-coded KM_SLEEP, and we'd prefer to fail rather than * block. */ objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)), MAX(sizeof (ire_t), sizeof (ncec_t))); rshift = highbit(objsize); mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor, th_trace_free, mod_hash_byptr, (void *)rshift, mod_hash_ptrkey_cmp, KM_NOSLEEP); if (mh == NULL) { kmem_free(thh, sizeof (*thh)); return (NULL); } thh->thh_hash = mh; thh->thh_ipst = ipst; /* * We trace ills, ipifs, ires, and nces. All of these are * per-IP-stack, so the lock on the thread list is as well. */ rw_enter(&ip_thread_rwlock, RW_WRITER); list_insert_tail(&ip_thread_list, thh); rw_exit(&ip_thread_rwlock); retv = tsd_set(ip_thread_data, thh); ASSERT(retv == 0); } return (thh != NULL ? thh->thh_hash : NULL); } boolean_t th_trace_ref(const void *obj, ip_stack_t *ipst) { th_trace_t *th_trace; mod_hash_t *mh; mod_hash_val_t val; if ((mh = th_trace_gethash(ipst)) == NULL) return (B_FALSE); /* * Attempt to locate the trace buffer for this obj and thread. * If it does not exist, then allocate a new trace buffer and * insert into the hash. */ if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) { th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP); if (th_trace == NULL) return (B_FALSE); th_trace->th_id = curthread; if (mod_hash_insert(mh, (mod_hash_key_t)obj, (mod_hash_val_t)th_trace) != 0) { kmem_free(th_trace, sizeof (th_trace_t)); return (B_FALSE); } } else { th_trace = (th_trace_t *)val; } ASSERT(th_trace->th_refcnt >= 0 && th_trace->th_refcnt < TR_BUF_MAX - 1); th_trace->th_refcnt++; th_trace_rrecord(th_trace); return (B_TRUE); } /* * For the purpose of tracing a reference release, we assume that global * tracing is always on and that the same thread initiated the reference hold * is releasing. */ void th_trace_unref(const void *obj) { int retv; mod_hash_t *mh; th_trace_t *th_trace; mod_hash_val_t val; mh = th_trace_gethash(NULL); retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val); ASSERT(retv == 0); th_trace = (th_trace_t *)val; ASSERT(th_trace->th_refcnt > 0); th_trace->th_refcnt--; th_trace_rrecord(th_trace); } /* * If tracing has been disabled, then we assume that the reference counts are * now useless, and we clear them out before destroying the entries. */ void th_trace_cleanup(const void *obj, boolean_t trace_disable) { th_hash_t *thh; mod_hash_t *mh; mod_hash_val_t val; th_trace_t *th_trace; int retv; rw_enter(&ip_thread_rwlock, RW_READER); for (thh = list_head(&ip_thread_list); thh != NULL; thh = list_next(&ip_thread_list, thh)) { if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj, &val) == 0) { th_trace = (th_trace_t *)val; if (trace_disable) th_trace->th_refcnt = 0; retv = mod_hash_destroy(mh, (mod_hash_key_t)obj); ASSERT(retv == 0); } } rw_exit(&ip_thread_rwlock); } void ipif_trace_ref(ipif_t *ipif) { ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); if (ipif->ipif_trace_disable) return; if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) { ipif->ipif_trace_disable = B_TRUE; ipif_trace_cleanup(ipif); } } void ipif_untrace_ref(ipif_t *ipif) { ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); if (!ipif->ipif_trace_disable) th_trace_unref(ipif); } void ill_trace_ref(ill_t *ill) { ASSERT(MUTEX_HELD(&ill->ill_lock)); if (ill->ill_trace_disable) return; if (!th_trace_ref(ill, ill->ill_ipst)) { ill->ill_trace_disable = B_TRUE; ill_trace_cleanup(ill); } } void ill_untrace_ref(ill_t *ill) { ASSERT(MUTEX_HELD(&ill->ill_lock)); if (!ill->ill_trace_disable) th_trace_unref(ill); } /* * Called when ipif is unplumbed or when memory alloc fails. Note that on * failure, ipif_trace_disable is set. */ static void ipif_trace_cleanup(const ipif_t *ipif) { th_trace_cleanup(ipif, ipif->ipif_trace_disable); } /* * Called when ill is unplumbed or when memory alloc fails. Note that on * failure, ill_trace_disable is set. */ static void ill_trace_cleanup(const ill_t *ill) { th_trace_cleanup(ill, ill->ill_trace_disable); } #endif /* DEBUG */ void ipif_refhold_locked(ipif_t *ipif) { ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); ipif->ipif_refcnt++; IPIF_TRACE_REF(ipif); } void ipif_refhold(ipif_t *ipif) { ill_t *ill; ill = ipif->ipif_ill; mutex_enter(&ill->ill_lock); ipif->ipif_refcnt++; IPIF_TRACE_REF(ipif); mutex_exit(&ill->ill_lock); } /* * Must not be called while holding any locks. Otherwise if this is * the last reference to be released there is a chance of recursive mutex * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying * to restart an ioctl. */ void ipif_refrele(ipif_t *ipif) { ill_t *ill; ill = ipif->ipif_ill; mutex_enter(&ill->ill_lock); ASSERT(ipif->ipif_refcnt != 0); ipif->ipif_refcnt--; IPIF_UNTRACE_REF(ipif); if (ipif->ipif_refcnt != 0) { mutex_exit(&ill->ill_lock); return; } /* Drops the ill_lock */ ipif_ill_refrele_tail(ill); } ipif_t * ipif_get_next_ipif(ipif_t *curr, ill_t *ill) { ipif_t *ipif; mutex_enter(&ill->ill_lock); for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); ipif != NULL; ipif = ipif->ipif_next) { if (IPIF_IS_CONDEMNED(ipif)) continue; ipif_refhold_locked(ipif); mutex_exit(&ill->ill_lock); return (ipif); } mutex_exit(&ill->ill_lock); return (NULL); } /* * TODO: make this table extendible at run time * Return a pointer to the mac type info for 'mac_type' */ static ip_m_t * ip_m_lookup(t_uscalar_t mac_type) { ip_m_t *ipm; for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) if (ipm->ip_m_mac_type == mac_type) return (ipm); return (NULL); } /* * Make a link layer address from the multicast IP address *addr. * To form the link layer address, invoke the ip_m_v*mapping function * associated with the link-layer type. */ void ip_mcast_mapping(ill_t *ill, uchar_t *addr, uchar_t *hwaddr) { ip_m_t *ipm; if (ill->ill_net_type == IRE_IF_NORESOLVER) return; ASSERT(addr != NULL); ipm = ip_m_lookup(ill->ill_mactype); if (ipm == NULL || (ill->ill_isv6 && ipm->ip_m_v6mapping == NULL) || (!ill->ill_isv6 && ipm->ip_m_v4mapping == NULL)) { ip0dbg(("no mapping for ill %s mactype 0x%x\n", ill->ill_name, ill->ill_mactype)); return; } if (ill->ill_isv6) (*ipm->ip_m_v6mapping)(ill, addr, hwaddr); else (*ipm->ip_m_v4mapping)(ill, addr, hwaddr); } /* * Returns B_FALSE if the IPv4 netmask pointed by `mask' is non-contiguous. * Otherwise returns B_TRUE. * * The netmask can be verified to be contiguous with 32 shifts and or * operations. Take the contiguous mask (in host byte order) and compute * mask | mask << 1 | mask << 2 | ... | mask << 31 * the result will be the same as the 'mask' for contiguous mask. */ static boolean_t ip_contiguous_mask(uint32_t mask) { uint32_t m = mask; int i; for (i = 1; i < 32; i++) m |= (mask << i); return (m == mask); } /* * ip_rt_add is called to add an IPv4 route to the forwarding table. * ill is passed in to associate it with the correct interface. * If ire_arg is set, then we return the held IRE in that location. */ int ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, ipaddr_t src_addr, int flags, ill_t *ill, ire_t **ire_arg, boolean_t ioctl_msg, struct rtsa_s *sp, ip_stack_t *ipst, zoneid_t zoneid) { ire_t *ire, *nire; ire_t *gw_ire = NULL; ipif_t *ipif = NULL; uint_t type; int match_flags = MATCH_IRE_TYPE; tsol_gc_t *gc = NULL; tsol_gcgrp_t *gcgrp = NULL; boolean_t gcgrp_xtraref = B_FALSE; boolean_t cgtp_broadcast; boolean_t unbound = B_FALSE; ip1dbg(("ip_rt_add:")); if (ire_arg != NULL) *ire_arg = NULL; /* disallow non-contiguous netmasks */ if (!ip_contiguous_mask(ntohl(mask))) return (ENOTSUP); /* * If this is the case of RTF_HOST being set, then we set the netmask * to all ones (regardless if one was supplied). */ if (flags & RTF_HOST) mask = IP_HOST_MASK; /* * Prevent routes with a zero gateway from being created (since * interfaces can currently be plumbed and brought up no assigned * address). */ if (gw_addr == 0) return (ENETUNREACH); /* * Get the ipif, if any, corresponding to the gw_addr * If -ifp was specified we restrict ourselves to the ill, otherwise * we match on the gatway and destination to handle unnumbered pt-pt * interfaces. */ if (ill != NULL) ipif = ipif_lookup_addr(gw_addr, ill, ALL_ZONES, ipst); else ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst); if (ipif != NULL) { if (IS_VNI(ipif->ipif_ill)) { ipif_refrele(ipif); return (EINVAL); } } /* * GateD will attempt to create routes with a loopback interface * address as the gateway and with RTF_GATEWAY set. We allow * these routes to be added, but create them as interface routes * since the gateway is an interface address. */ if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { flags &= ~RTF_GATEWAY; if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && mask == IP_HOST_MASK) { ire = ire_ftable_lookup_v4(dst_addr, 0, 0, IRE_LOOPBACK, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, NULL); if (ire != NULL) { ire_refrele(ire); ipif_refrele(ipif); return (EEXIST); } ip1dbg(("ip_rt_add: 0x%p creating IRE 0x%x" "for 0x%x\n", (void *)ipif, ipif->ipif_ire_type, ntohl(ipif->ipif_lcl_addr))); ire = ire_create( (uchar_t *)&dst_addr, /* dest address */ (uchar_t *)&mask, /* mask */ NULL, /* no gateway */ ipif->ipif_ire_type, /* LOOPBACK */ ipif->ipif_ill, zoneid, (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE : 0, NULL, ipst); if (ire == NULL) { ipif_refrele(ipif); return (ENOMEM); } /* src address assigned by the caller? */ if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) ire->ire_setsrc_addr = src_addr; nire = ire_add(ire); if (nire == NULL) { /* * In the result of failure, ire_add() will have * already deleted the ire in question, so there * is no need to do that here. */ ipif_refrele(ipif); return (ENOMEM); } /* * Check if it was a duplicate entry. This handles * the case of two racing route adds for the same route */ if (nire != ire) { ASSERT(nire->ire_identical_ref > 1); ire_delete(nire); ire_refrele(nire); ipif_refrele(ipif); return (EEXIST); } ire = nire; goto save_ire; } } /* * The routes for multicast with CGTP are quite special in that * the gateway is the local interface address, yet RTF_GATEWAY * is set. We turn off RTF_GATEWAY to provide compatibility with * this undocumented and unusual use of multicast routes. */ if ((flags & RTF_MULTIRT) && ipif != NULL) flags &= ~RTF_GATEWAY; /* * Traditionally, interface routes are ones where RTF_GATEWAY isn't set * and the gateway address provided is one of the system's interface * addresses. By using the routing socket interface and supplying an * RTA_IFP sockaddr with an interface index, an alternate method of * specifying an interface route to be created is available which uses * the interface index that specifies the outgoing interface rather than * the address of an outgoing interface (which may not be able to * uniquely identify an interface). When coupled with the RTF_GATEWAY * flag, routes can be specified which not only specify the next-hop to * be used when routing to a certain prefix, but also which outgoing * interface should be used. * * Previously, interfaces would have unique addresses assigned to them * and so the address assigned to a particular interface could be used * to identify a particular interface. One exception to this was the * case of an unnumbered interface (where IPIF_UNNUMBERED was set). * * With the advent of IPv6 and its link-local addresses, this * restriction was relaxed and interfaces could share addresses between * themselves. In fact, typically all of the link-local interfaces on * an IPv6 node or router will have the same link-local address. In * order to differentiate between these interfaces, the use of an * interface index is necessary and this index can be carried inside a * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction * of using the interface index, however, is that all of the ipif's that * are part of an ill have the same index and so the RTA_IFP sockaddr * cannot be used to differentiate between ipif's (or logical * interfaces) that belong to the same ill (physical interface). * * For example, in the following case involving IPv4 interfaces and * logical interfaces * * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0 * * the ipif's corresponding to each of these interface routes can be * uniquely identified by the "gateway" (actually interface address). * * In this case involving multiple IPv6 default routes to a particular * link-local gateway, the use of RTA_IFP is necessary to specify which * default route is of interest: * * default fe80::123:4567:89ab:cdef U if0 * default fe80::123:4567:89ab:cdef U if1 */ /* RTF_GATEWAY not set */ if (!(flags & RTF_GATEWAY)) { if (sp != NULL) { ip2dbg(("ip_rt_add: gateway security attributes " "cannot be set with interface route\n")); if (ipif != NULL) ipif_refrele(ipif); return (EINVAL); } /* * Whether or not ill (RTA_IFP) is set, we require that * the gateway is one of our local addresses. */ if (ipif == NULL) return (ENETUNREACH); /* * We use MATCH_IRE_ILL here. If the caller specified an * interface (from the RTA_IFP sockaddr) we use it, otherwise * we use the ill derived from the gateway address. * We can always match the gateway address since we record it * in ire_gateway_addr. * We don't allow RTA_IFP to specify a different ill than the * one matching the ipif to make sure we can delete the route. */ match_flags |= MATCH_IRE_GW | MATCH_IRE_ILL; if (ill == NULL) { ill = ipif->ipif_ill; } else if (ill != ipif->ipif_ill) { ipif_refrele(ipif); return (EINVAL); } /* * We check for an existing entry at this point. * * Since a netmask isn't passed in via the ioctl interface * (SIOCADDRT), we don't check for a matching netmask in that * case. */ if (!ioctl_msg) match_flags |= MATCH_IRE_MASK; ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, IRE_INTERFACE, ill, ALL_ZONES, NULL, match_flags, 0, ipst, NULL); if (ire != NULL) { ire_refrele(ire); ipif_refrele(ipif); return (EEXIST); } /* * Some software (for example, GateD and Sun Cluster) attempts * to create (what amount to) IRE_PREFIX routes with the * loopback address as the gateway. This is primarily done to * set up prefixes with the RTF_REJECT flag set (for example, * when generating aggregate routes.) * * If the IRE type (as defined by ill->ill_net_type) would be * IRE_LOOPBACK, then we map the request into a * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as * these interface routes, by definition, can only be that. * * Needless to say, the real IRE_LOOPBACK is NOT created by this * routine, but rather using ire_create() directly. * */ type = ill->ill_net_type; if (type == IRE_LOOPBACK) { type = IRE_IF_NORESOLVER; flags |= RTF_BLACKHOLE; } /* * Create a copy of the IRE_IF_NORESOLVER or * IRE_IF_RESOLVER with the modified address, netmask, and * gateway. */ ire = ire_create( (uchar_t *)&dst_addr, (uint8_t *)&mask, (uint8_t *)&gw_addr, type, ill, zoneid, flags, NULL, ipst); if (ire == NULL) { ipif_refrele(ipif); return (ENOMEM); } /* src address assigned by the caller? */ if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) ire->ire_setsrc_addr = src_addr; nire = ire_add(ire); if (nire == NULL) { /* * In the result of failure, ire_add() will have * already deleted the ire in question, so there * is no need to do that here. */ ipif_refrele(ipif); return (ENOMEM); } /* * Check if it was a duplicate entry. This handles * the case of two racing route adds for the same route */ if (nire != ire) { ire_delete(nire); ire_refrele(nire); ipif_refrele(ipif); return (EEXIST); } ire = nire; goto save_ire; } /* * Get an interface IRE for the specified gateway. * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the * gateway, it is currently unreachable and we fail the request * accordingly. We reject any RTF_GATEWAY routes where the gateway * is an IRE_LOCAL or IRE_LOOPBACK. * If RTA_IFP was specified we look on that particular ill. */ if (ill != NULL) match_flags |= MATCH_IRE_ILL; /* Check whether the gateway is reachable. */ again: type = IRE_INTERFACE | IRE_LOCAL | IRE_LOOPBACK; if (flags & RTF_INDIRECT) type |= IRE_OFFLINK; gw_ire = ire_ftable_lookup_v4(gw_addr, 0, 0, type, ill, ALL_ZONES, NULL, match_flags, 0, ipst, NULL); if (gw_ire == NULL) { /* * With IPMP, we allow host routes to influence in.mpathd's * target selection. However, if the test addresses are on * their own network, the above lookup will fail since the * underlying IRE_INTERFACEs are marked hidden. So allow * hidden test IREs to be found and try again. */ if (!(match_flags & MATCH_IRE_TESTHIDDEN)) { match_flags |= MATCH_IRE_TESTHIDDEN; goto again; } if (ipif != NULL) ipif_refrele(ipif); return (ENETUNREACH); } if (gw_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) { ire_refrele(gw_ire); if (ipif != NULL) ipif_refrele(ipif); return (ENETUNREACH); } if (ill == NULL && !(flags & RTF_INDIRECT)) { unbound = B_TRUE; if (ipst->ips_ip_strict_src_multihoming > 0) ill = gw_ire->ire_ill; } /* * We create one of three types of IREs as a result of this request * based on the netmask. A netmask of all ones (which is automatically * assumed when RTF_HOST is set) results in an IRE_HOST being created. * An all zeroes netmask implies a default route so an IRE_DEFAULT is * created. Otherwise, an IRE_PREFIX route is created for the * destination prefix. */ if (mask == IP_HOST_MASK) type = IRE_HOST; else if (mask == 0) type = IRE_DEFAULT; else type = IRE_PREFIX; /* check for a duplicate entry */ ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill, ALL_ZONES, NULL, match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, 0, ipst, NULL); if (ire != NULL) { if (ipif != NULL) ipif_refrele(ipif); ire_refrele(gw_ire); ire_refrele(ire); return (EEXIST); } /* Security attribute exists */ if (sp != NULL) { tsol_gcgrp_addr_t ga; /* find or create the gateway credentials group */ ga.ga_af = AF_INET; IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); /* we hold reference to it upon success */ gcgrp = gcgrp_lookup(&ga, B_TRUE); if (gcgrp == NULL) { if (ipif != NULL) ipif_refrele(ipif); ire_refrele(gw_ire); return (ENOMEM); } /* * Create and add the security attribute to the group; a * reference to the group is made upon allocating a new * entry successfully. If it finds an already-existing * entry for the security attribute in the group, it simply * returns it and no new reference is made to the group. */ gc = gc_create(sp, gcgrp, &gcgrp_xtraref); if (gc == NULL) { if (ipif != NULL) ipif_refrele(ipif); /* release reference held by gcgrp_lookup */ GCGRP_REFRELE(gcgrp); ire_refrele(gw_ire); return (ENOMEM); } } /* Create the IRE. */ ire = ire_create( (uchar_t *)&dst_addr, /* dest address */ (uchar_t *)&mask, /* mask */ (uchar_t *)&gw_addr, /* gateway address */ (ushort_t)type, /* IRE type */ ill, zoneid, flags, gc, /* security attribute */ ipst); /* * The ire holds a reference to the 'gc' and the 'gc' holds a * reference to the 'gcgrp'. We can now release the extra reference * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. */ if (gcgrp_xtraref) GCGRP_REFRELE(gcgrp); if (ire == NULL) { if (gc != NULL) GC_REFRELE(gc); if (ipif != NULL) ipif_refrele(ipif); ire_refrele(gw_ire); return (ENOMEM); } /* Before we add, check if an extra CGTP broadcast is needed */ cgtp_broadcast = ((flags & RTF_MULTIRT) && ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST); /* src address assigned by the caller? */ if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) ire->ire_setsrc_addr = src_addr; ire->ire_unbound = unbound; /* * POLICY: should we allow an RTF_HOST with address INADDR_ANY? * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? */ /* Add the new IRE. */ nire = ire_add(ire); if (nire == NULL) { /* * In the result of failure, ire_add() will have * already deleted the ire in question, so there * is no need to do that here. */ if (ipif != NULL) ipif_refrele(ipif); ire_refrele(gw_ire); return (ENOMEM); } /* * Check if it was a duplicate entry. This handles * the case of two racing route adds for the same route */ if (nire != ire) { ire_delete(nire); ire_refrele(nire); if (ipif != NULL) ipif_refrele(ipif); ire_refrele(gw_ire); return (EEXIST); } ire = nire; if (flags & RTF_MULTIRT) { /* * Invoke the CGTP (multirouting) filtering module * to add the dst address in the filtering database. * Replicated inbound packets coming from that address * will be filtered to discard the duplicates. * It is not necessary to call the CGTP filter hook * when the dst address is a broadcast or multicast, * because an IP source address cannot be a broadcast * or a multicast. */ if (cgtp_broadcast) { ip_cgtp_bcast_add(ire, ipst); goto save_ire; } if (ipst->ips_ip_cgtp_filter_ops != NULL && !CLASSD(ire->ire_addr)) { int res; ipif_t *src_ipif; /* Find the source address corresponding to gw_ire */ src_ipif = ipif_lookup_addr(gw_ire->ire_gateway_addr, NULL, zoneid, ipst); if (src_ipif != NULL) { res = ipst->ips_ip_cgtp_filter_ops-> cfo_add_dest_v4( ipst->ips_netstack->netstack_stackid, ire->ire_addr, ire->ire_gateway_addr, ire->ire_setsrc_addr, src_ipif->ipif_lcl_addr); ipif_refrele(src_ipif); } else { res = EADDRNOTAVAIL; } if (res != 0) { if (ipif != NULL) ipif_refrele(ipif); ire_refrele(gw_ire); ire_delete(ire); ire_refrele(ire); /* Held in ire_add */ return (res); } } } save_ire: if (gw_ire != NULL) { ire_refrele(gw_ire); gw_ire = NULL; } if (ill != NULL) { /* * Save enough information so that we can recreate the IRE if * the interface goes down and then up. The metrics associated * with the route will be saved as well when rts_setmetrics() is * called after the IRE has been created. In the case where * memory cannot be allocated, none of this information will be * saved. */ ill_save_ire(ill, ire); } if (ioctl_msg) ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst); if (ire_arg != NULL) { /* * Store the ire that was successfully added into where ire_arg * points to so that callers don't have to look it up * themselves (but they are responsible for ire_refrele()ing * the ire when they are finished with it). */ *ire_arg = ire; } else { ire_refrele(ire); /* Held in ire_add */ } if (ipif != NULL) ipif_refrele(ipif); return (0); } /* * ip_rt_delete is called to delete an IPv4 route. * ill is passed in to associate it with the correct interface. */ /* ARGSUSED4 */ int ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, uint_t rtm_addrs, int flags, ill_t *ill, boolean_t ioctl_msg, ip_stack_t *ipst, zoneid_t zoneid) { ire_t *ire = NULL; ipif_t *ipif; uint_t type; uint_t match_flags = MATCH_IRE_TYPE; int err = 0; ip1dbg(("ip_rt_delete:")); /* * If this is the case of RTF_HOST being set, then we set the netmask * to all ones. Otherwise, we use the netmask if one was supplied. */ if (flags & RTF_HOST) { mask = IP_HOST_MASK; match_flags |= MATCH_IRE_MASK; } else if (rtm_addrs & RTA_NETMASK) { match_flags |= MATCH_IRE_MASK; } /* * Note that RTF_GATEWAY is never set on a delete, therefore * we check if the gateway address is one of our interfaces first, * and fall back on RTF_GATEWAY routes. * * This makes it possible to delete an original * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. * However, we have RTF_KERNEL set on the ones created by ipif_up * and those can not be deleted here. * * We use MATCH_IRE_ILL if we know the interface. If the caller * specified an interface (from the RTA_IFP sockaddr) we use it, * otherwise we use the ill derived from the gateway address. * We can always match the gateway address since we record it * in ire_gateway_addr. * * For more detail on specifying routes by gateway address and by * interface index, see the comments in ip_rt_add(). */ ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst); if (ipif != NULL) { ill_t *ill_match; if (ill != NULL) ill_match = ill; else ill_match = ipif->ipif_ill; match_flags |= MATCH_IRE_ILL; if (ipif->ipif_ire_type == IRE_LOOPBACK) { ire = ire_ftable_lookup_v4(dst_addr, mask, 0, IRE_LOOPBACK, ill_match, ALL_ZONES, NULL, match_flags, 0, ipst, NULL); } if (ire == NULL) { match_flags |= MATCH_IRE_GW; ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, IRE_INTERFACE, ill_match, ALL_ZONES, NULL, match_flags, 0, ipst, NULL); } /* Avoid deleting routes created by kernel from an ipif */ if (ire != NULL && (ire->ire_flags & RTF_KERNEL)) { ire_refrele(ire); ire = NULL; } /* Restore in case we didn't find a match */ match_flags &= ~(MATCH_IRE_GW|MATCH_IRE_ILL); } if (ire == NULL) { /* * At this point, the gateway address is not one of our own * addresses or a matching interface route was not found. We * set the IRE type to lookup based on whether * this is a host route, a default route or just a prefix. * * If an ill was passed in, then the lookup is based on an * interface index so MATCH_IRE_ILL is added to match_flags. */ match_flags |= MATCH_IRE_GW; if (ill != NULL) match_flags |= MATCH_IRE_ILL; if (mask == IP_HOST_MASK) type = IRE_HOST; else if (mask == 0) type = IRE_DEFAULT; else type = IRE_PREFIX; ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill, ALL_ZONES, NULL, match_flags, 0, ipst, NULL); } if (ipif != NULL) { ipif_refrele(ipif); ipif = NULL; } if (ire == NULL) return (ESRCH); if (ire->ire_flags & RTF_MULTIRT) { /* * Invoke the CGTP (multirouting) filtering module * to remove the dst address from the filtering database. * Packets coming from that address will no longer be * filtered to remove duplicates. */ if (ipst->ips_ip_cgtp_filter_ops != NULL) { err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4( ipst->ips_netstack->netstack_stackid, ire->ire_addr, ire->ire_gateway_addr); } ip_cgtp_bcast_delete(ire, ipst); } ill = ire->ire_ill; if (ill != NULL) ill_remove_saved_ire(ill, ire); if (ioctl_msg) ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst); ire_delete(ire); ire_refrele(ire); return (err); } /* * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. */ /* ARGSUSED */ int ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) { ipaddr_t dst_addr; ipaddr_t gw_addr; ipaddr_t mask; int error = 0; mblk_t *mp1; struct rtentry *rt; ipif_t *ipif = NULL; ip_stack_t *ipst; ASSERT(q->q_next == NULL); ipst = CONNQ_TO_IPST(q); ip1dbg(("ip_siocaddrt:")); /* Existence of mp1 verified in ip_wput_nondata */ mp1 = mp->b_cont->b_cont; rt = (struct rtentry *)mp1->b_rptr; dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; /* * If the RTF_HOST flag is on, this is a request to assign a gateway * to a particular host address. In this case, we set the netmask to * all ones for the particular destination address. Otherwise, * determine the netmask to be used based on dst_addr and the interfaces * in use. */ if (rt->rt_flags & RTF_HOST) { mask = IP_HOST_MASK; } else { /* * Note that ip_subnet_mask returns a zero mask in the case of * default (an all-zeroes address). */ mask = ip_subnet_mask(dst_addr, &ipif, ipst); } error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, B_TRUE, NULL, ipst, ALL_ZONES); if (ipif != NULL) ipif_refrele(ipif); return (error); } /* * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. */ /* ARGSUSED */ int ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) { ipaddr_t dst_addr; ipaddr_t gw_addr; ipaddr_t mask; int error; mblk_t *mp1; struct rtentry *rt; ipif_t *ipif = NULL; ip_stack_t *ipst; ASSERT(q->q_next == NULL); ipst = CONNQ_TO_IPST(q); ip1dbg(("ip_siocdelrt:")); /* Existence of mp1 verified in ip_wput_nondata */ mp1 = mp->b_cont->b_cont; rt = (struct rtentry *)mp1->b_rptr; dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; /* * If the RTF_HOST flag is on, this is a request to delete a gateway * to a particular host address. In this case, we set the netmask to * all ones for the particular destination address. Otherwise, * determine the netmask to be used based on dst_addr and the interfaces * in use. */ if (rt->rt_flags & RTF_HOST) { mask = IP_HOST_MASK; } else { /* * Note that ip_subnet_mask returns a zero mask in the case of * default (an all-zeroes address). */ mask = ip_subnet_mask(dst_addr, &ipif, ipst); } error = ip_rt_delete(dst_addr, mask, gw_addr, RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE, ipst, ALL_ZONES); if (ipif != NULL) ipif_refrele(ipif); return (error); } /* * Enqueue the mp onto the ipsq, chained by b_next. * b_prev stores the function to be executed later, and b_queue the queue * where this mp originated. */ void ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, ill_t *pending_ill) { conn_t *connp; ipxop_t *ipx = ipsq->ipsq_xop; ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); ASSERT(MUTEX_HELD(&ipx->ipx_lock)); ASSERT(func != NULL); mp->b_queue = q; mp->b_prev = (void *)func; mp->b_next = NULL; switch (type) { case CUR_OP: if (ipx->ipx_mptail != NULL) { ASSERT(ipx->ipx_mphead != NULL); ipx->ipx_mptail->b_next = mp; } else { ASSERT(ipx->ipx_mphead == NULL); ipx->ipx_mphead = mp; } ipx->ipx_mptail = mp; break; case NEW_OP: if (ipsq->ipsq_xopq_mptail != NULL) { ASSERT(ipsq->ipsq_xopq_mphead != NULL); ipsq->ipsq_xopq_mptail->b_next = mp; } else { ASSERT(ipsq->ipsq_xopq_mphead == NULL); ipsq->ipsq_xopq_mphead = mp; } ipsq->ipsq_xopq_mptail = mp; ipx->ipx_ipsq_queued = B_TRUE; break; case SWITCH_OP: ASSERT(ipsq->ipsq_swxop != NULL); /* only one switch operation is currently allowed */ ASSERT(ipsq->ipsq_switch_mp == NULL); ipsq->ipsq_switch_mp = mp; ipx->ipx_ipsq_queued = B_TRUE; break; default: cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); } if (CONN_Q(q) && pending_ill != NULL) { connp = Q_TO_CONN(q); ASSERT(MUTEX_HELD(&connp->conn_lock)); connp->conn_oper_pending_ill = pending_ill; } } /* * Dequeue the next message that requested exclusive access to this IPSQ's * xop. Specifically: * * 1. If we're still processing the current operation on `ipsq', then * dequeue the next message for the operation (from ipx_mphead), or * return NULL if there are no queued messages for the operation. * These messages are queued via CUR_OP to qwriter_ip() and friends. * * 2. If the current operation on `ipsq' has completed (ipx_current_ipif is * not set) see if the ipsq has requested an xop switch. If so, switch * `ipsq' to a different xop. Xop switches only happen when joining or * leaving IPMP groups and require a careful dance -- see the comments * in-line below for details. If we're leaving a group xop or if we're * joining a group xop and become writer on it, then we proceed to (3). * Otherwise, we return NULL and exit the xop. * * 3. For each IPSQ in the xop, return any switch operation stored on * ipsq_switch_mp (set via SWITCH_OP); these must be processed before * any other messages queued on the IPSQ. Otherwise, dequeue the next * exclusive operation (queued via NEW_OP) stored on ipsq_xopq_mphead. * Note that if the phyint tied to `ipsq' is not using IPMP there will * only be one IPSQ in the xop. Otherwise, there will be one IPSQ for * each phyint in the group, including the IPMP meta-interface phyint. */ static mblk_t * ipsq_dq(ipsq_t *ipsq) { ill_t *illv4, *illv6; mblk_t *mp; ipsq_t *xopipsq; ipsq_t *leftipsq = NULL; ipxop_t *ipx; phyint_t *phyi = ipsq->ipsq_phyint; ip_stack_t *ipst = ipsq->ipsq_ipst; boolean_t emptied = B_FALSE; /* * Grab all the locks we need in the defined order (ill_g_lock -> * ipsq_lock -> ipx_lock); ill_g_lock is needed to use ipsq_next. */ rw_enter(&ipst->ips_ill_g_lock, ipsq->ipsq_swxop != NULL ? RW_WRITER : RW_READER); mutex_enter(&ipsq->ipsq_lock); ipx = ipsq->ipsq_xop; mutex_enter(&ipx->ipx_lock); /* * Dequeue the next message associated with the current exclusive * operation, if any. */ if ((mp = ipx->ipx_mphead) != NULL) { ipx->ipx_mphead = mp->b_next; if (ipx->ipx_mphead == NULL) ipx->ipx_mptail = NULL; mp->b_next = (void *)ipsq; goto out; } if (ipx->ipx_current_ipif != NULL) goto empty; if (ipsq->ipsq_swxop != NULL) { /* * The exclusive operation that is now being completed has * requested a switch to a different xop. This happens * when an interface joins or leaves an IPMP group. Joins * happen through SIOCSLIFGROUPNAME (ip_sioctl_groupname()). * Leaves happen via SIOCSLIFGROUPNAME, interface unplumb * (phyint_free()), or interface plumb for an ill type * not in the IPMP group (ip_rput_dlpi_writer()). * * Xop switches are not allowed on the IPMP meta-interface. */ ASSERT(phyi == NULL || !(phyi->phyint_flags & PHYI_IPMP)); ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); DTRACE_PROBE1(ipsq__switch, (ipsq_t *), ipsq); if (ipsq->ipsq_swxop == &ipsq->ipsq_ownxop) { /* * We're switching back to our own xop, so we have two * xop's to drain/exit: our own, and the group xop * that we are leaving. * * First, pull ourselves out of the group ipsq list. * This is safe since we're writer on ill_g_lock. */ ASSERT(ipsq->ipsq_xop != &ipsq->ipsq_ownxop); xopipsq = ipx->ipx_ipsq; while (xopipsq->ipsq_next != ipsq) xopipsq = xopipsq->ipsq_next; xopipsq->ipsq_next = ipsq->ipsq_next; ipsq->ipsq_next = ipsq; ipsq->ipsq_xop = ipsq->ipsq_swxop; ipsq->ipsq_swxop = NULL; /* * Second, prepare to exit the group xop. The actual * ipsq_exit() is done at the end of this function * since we cannot hold any locks across ipsq_exit(). * Note that although we drop the group's ipx_lock, no * threads can proceed since we're still ipx_writer. */ leftipsq = xopipsq; mutex_exit(&ipx->ipx_lock); /* * Third, set ipx to point to our own xop (which was * inactive and therefore can be entered). */ ipx = ipsq->ipsq_xop; mutex_enter(&ipx->ipx_lock); ASSERT(ipx->ipx_writer == NULL); ASSERT(ipx->ipx_current_ipif == NULL); } else { /* * We're switching from our own xop to a group xop. * The requestor of the switch must ensure that the * group xop cannot go away (e.g. by ensuring the * phyint associated with the xop cannot go away). * * If we can become writer on our new xop, then we'll * do the drain. Otherwise, the current writer of our * new xop will do the drain when it exits. * * First, splice ourselves into the group IPSQ list. * This is safe since we're writer on ill_g_lock. */ ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); xopipsq = ipsq->ipsq_swxop->ipx_ipsq; while (xopipsq->ipsq_next != ipsq->ipsq_swxop->ipx_ipsq) xopipsq = xopipsq->ipsq_next; xopipsq->ipsq_next = ipsq; ipsq->ipsq_next = ipsq->ipsq_swxop->ipx_ipsq; ipsq->ipsq_xop = ipsq->ipsq_swxop; ipsq->ipsq_swxop = NULL; /* * Second, exit our own xop, since it's now unused. * This is safe since we've got the only reference. */ ASSERT(ipx->ipx_writer == curthread); ipx->ipx_writer = NULL; VERIFY(--ipx->ipx_reentry_cnt == 0); ipx->ipx_ipsq_queued = B_FALSE; mutex_exit(&ipx->ipx_lock); /* * Third, set ipx to point to our new xop, and check * if we can become writer on it. If we cannot, then * the current writer will drain the IPSQ group when * it exits. Our ipsq_xop is guaranteed to be stable * because we're still holding ipsq_lock. */ ipx = ipsq->ipsq_xop; mutex_enter(&ipx->ipx_lock); if (ipx->ipx_writer != NULL || ipx->ipx_current_ipif != NULL) { goto out; } } /* * Fourth, become writer on our new ipx before we continue * with the drain. Note that we never dropped ipsq_lock * above, so no other thread could've raced with us to * become writer first. Also, we're holding ipx_lock, so * no other thread can examine the ipx right now. */ ASSERT(ipx->ipx_current_ipif == NULL); ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); VERIFY(ipx->ipx_reentry_cnt++ == 0); ipx->ipx_writer = curthread; ipx->ipx_forced = B_FALSE; #ifdef DEBUG ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); #endif } xopipsq = ipsq; do { /* * So that other operations operate on a consistent and * complete phyint, a switch message on an IPSQ must be * handled prior to any other operations on that IPSQ. */ if ((mp = xopipsq->ipsq_switch_mp) != NULL) { xopipsq->ipsq_switch_mp = NULL; ASSERT(mp->b_next == NULL); mp->b_next = (void *)xopipsq; goto out; } if ((mp = xopipsq->ipsq_xopq_mphead) != NULL) { xopipsq->ipsq_xopq_mphead = mp->b_next; if (xopipsq->ipsq_xopq_mphead == NULL) xopipsq->ipsq_xopq_mptail = NULL; mp->b_next = (void *)xopipsq; goto out; } } while ((xopipsq = xopipsq->ipsq_next) != ipsq); empty: /* * There are no messages. Further, we are holding ipx_lock, hence no * new messages can end up on any IPSQ in the xop. */ ipx->ipx_writer = NULL; ipx->ipx_forced = B_FALSE; VERIFY(--ipx->ipx_reentry_cnt == 0); ipx->ipx_ipsq_queued = B_FALSE; emptied = B_TRUE; #ifdef DEBUG ipx->ipx_depth = 0; #endif out: mutex_exit(&ipx->ipx_lock); mutex_exit(&ipsq->ipsq_lock); /* * If we completely emptied the xop, then wake up any threads waiting * to enter any of the IPSQ's associated with it. */ if (emptied) { xopipsq = ipsq; do { if ((phyi = xopipsq->ipsq_phyint) == NULL) continue; illv4 = phyi->phyint_illv4; illv6 = phyi->phyint_illv6; GRAB_ILL_LOCKS(illv4, illv6); if (illv4 != NULL) cv_broadcast(&illv4->ill_cv); if (illv6 != NULL) cv_broadcast(&illv6->ill_cv); RELEASE_ILL_LOCKS(illv4, illv6); } while ((xopipsq = xopipsq->ipsq_next) != ipsq); } rw_exit(&ipst->ips_ill_g_lock); /* * Now that all locks are dropped, exit the IPSQ we left. */ if (leftipsq != NULL) ipsq_exit(leftipsq); return (mp); } /* * Return completion status of previously initiated DLPI operations on * ills in the purview of an ipsq. */ static boolean_t ipsq_dlpi_done(ipsq_t *ipsq) { ipsq_t *ipsq_start; phyint_t *phyi; ill_t *ill; ASSERT(RW_LOCK_HELD(&ipsq->ipsq_ipst->ips_ill_g_lock)); ipsq_start = ipsq; do { /* * The only current users of this function are ipsq_try_enter * and ipsq_enter which have made sure that ipsq_writer is * NULL before we reach here. ill_dlpi_pending is modified * only by an ipsq writer */ ASSERT(ipsq->ipsq_xop->ipx_writer == NULL); phyi = ipsq->ipsq_phyint; /* * phyi could be NULL if a phyint that is part of an * IPMP group is being unplumbed. A more detailed * comment is in ipmp_grp_update_kstats() */ if (phyi != NULL) { ill = phyi->phyint_illv4; if (ill != NULL && (ill->ill_dlpi_pending != DL_PRIM_INVAL || ill->ill_arl_dlpi_pending)) return (B_FALSE); ill = phyi->phyint_illv6; if (ill != NULL && ill->ill_dlpi_pending != DL_PRIM_INVAL) return (B_FALSE); } } while ((ipsq = ipsq->ipsq_next) != ipsq_start); return (B_TRUE); } /* * Enter the ipsq corresponding to ill, by waiting synchronously till * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq * will have to drain completely before ipsq_enter returns success. * ipx_current_ipif will be set if some exclusive op is in progress, * and the ipsq_exit logic will start the next enqueued op after * completion of the current op. If 'force' is used, we don't wait * for the enqueued ops. This is needed when a conn_close wants to * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb * of an ill can also use this option. But we dont' use it currently. */ #define ENTER_SQ_WAIT_TICKS 100 boolean_t ipsq_enter(ill_t *ill, boolean_t force, int type) { ipsq_t *ipsq; ipxop_t *ipx; boolean_t waited_enough = B_FALSE; ip_stack_t *ipst = ill->ill_ipst; /* * Note that the relationship between ill and ipsq is fixed as long as * the ill is not ILL_CONDEMNED. Holding ipsq_lock ensures the * relationship between the IPSQ and xop cannot change. However, * since we cannot hold ipsq_lock across the cv_wait(), it may change * while we're waiting. We wait on ill_cv and rely on ipsq_exit() * waking up all ills in the xop when it becomes available. */ for (;;) { rw_enter(&ipst->ips_ill_g_lock, RW_READER); mutex_enter(&ill->ill_lock); if (ill->ill_state_flags & ILL_CONDEMNED) { mutex_exit(&ill->ill_lock); rw_exit(&ipst->ips_ill_g_lock); return (B_FALSE); } ipsq = ill->ill_phyint->phyint_ipsq; mutex_enter(&ipsq->ipsq_lock); ipx = ipsq->ipsq_xop; mutex_enter(&ipx->ipx_lock); if (ipx->ipx_writer == NULL && (type == CUR_OP || (ipx->ipx_current_ipif == NULL && ipsq_dlpi_done(ipsq)) || waited_enough)) break; rw_exit(&ipst->ips_ill_g_lock); if (!force || ipx->ipx_writer != NULL) { mutex_exit(&ipx->ipx_lock); mutex_exit(&ipsq->ipsq_lock); cv_wait(&ill->ill_cv, &ill->ill_lock); } else { mutex_exit(&ipx->ipx_lock); mutex_exit(&ipsq->ipsq_lock); (void) cv_reltimedwait(&ill->ill_cv, &ill->ill_lock, ENTER_SQ_WAIT_TICKS, TR_CLOCK_TICK); waited_enough = B_TRUE; } mutex_exit(&ill->ill_lock); } ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); ASSERT(ipx->ipx_reentry_cnt == 0); ipx->ipx_writer = curthread; ipx->ipx_forced = (ipx->ipx_current_ipif != NULL); ipx->ipx_reentry_cnt++; #ifdef DEBUG ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); #endif mutex_exit(&ipx->ipx_lock); mutex_exit(&ipsq->ipsq_lock); mutex_exit(&ill->ill_lock); rw_exit(&ipst->ips_ill_g_lock); return (B_TRUE); } /* * ipif_set_values() has a constraint that it cannot drop the ips_ill_g_lock * across the call to the core interface ipsq_try_enter() and hence calls this * function directly. This is explained more fully in ipif_set_values(). * In order to support the above constraint, ipsq_try_enter is implemented as * a wrapper that grabs the ips_ill_g_lock and calls this function subsequently */ static ipsq_t * ipsq_try_enter_internal(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, boolean_t reentry_ok) { ipsq_t *ipsq; ipxop_t *ipx; ip_stack_t *ipst = ill->ill_ipst; /* * lock ordering: * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock. * * ipx of an ipsq can't change when ipsq_lock is held. */ ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); GRAB_CONN_LOCK(q); mutex_enter(&ill->ill_lock); ipsq = ill->ill_phyint->phyint_ipsq; mutex_enter(&ipsq->ipsq_lock); ipx = ipsq->ipsq_xop; mutex_enter(&ipx->ipx_lock); /* * 1. Enter the ipsq if we are already writer and reentry is ok. * (Note: If the caller does not specify reentry_ok then neither * 'func' nor any of its callees must ever attempt to enter the ipsq * again. Otherwise it can lead to an infinite loop * 2. Enter the ipsq if there is no current writer and this attempted * entry is part of the current operation * 3. Enter the ipsq if there is no current writer and this is a new * operation and the operation queue is empty and there is no * operation currently in progress and if all previously initiated * DLPI operations have completed. */ if ((ipx->ipx_writer == curthread && reentry_ok) || (ipx->ipx_writer == NULL && (type == CUR_OP || (type == NEW_OP && !ipx->ipx_ipsq_queued && ipx->ipx_current_ipif == NULL && ipsq_dlpi_done(ipsq))))) { /* Success. */ ipx->ipx_reentry_cnt++; ipx->ipx_writer = curthread; ipx->ipx_forced = B_FALSE; mutex_exit(&ipx->ipx_lock); mutex_exit(&ipsq->ipsq_lock); mutex_exit(&ill->ill_lock); RELEASE_CONN_LOCK(q); #ifdef DEBUG ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); #endif return (ipsq); } if (func != NULL) ipsq_enq(ipsq, q, mp, func, type, ill); mutex_exit(&ipx->ipx_lock); mutex_exit(&ipsq->ipsq_lock); mutex_exit(&ill->ill_lock); RELEASE_CONN_LOCK(q); return (NULL); } /* * The ipsq_t (ipsq) is the synchronization data structure used to serialize * certain critical operations like plumbing (i.e. most set ioctls), etc. * There is one ipsq per phyint. The ipsq * serializes exclusive ioctls issued by applications on a per ipsq basis in * ipsq_xopq_mphead. It also protects against multiple threads executing in * the ipsq. Responses from the driver pertain to the current ioctl (say a * DL_BIND_ACK in response to a DL_BIND_REQ initiated as part of bringing * up the interface) and are enqueued in ipx_mphead. * * If a thread does not want to reenter the ipsq when it is already writer, * it must make sure that the specified reentry point to be called later * when the ipsq is empty, nor any code path starting from the specified reentry * point must never ever try to enter the ipsq again. Otherwise it can lead * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. * When the thread that is currently exclusive finishes, it (ipsq_exit) * dequeues the requests waiting to become exclusive in ipx_mphead and calls * the reentry point. When the list at ipx_mphead becomes empty ipsq_exit * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next * ioctl if the current ioctl has completed. If the current ioctl is still * in progress it simply returns. The current ioctl could be waiting for * a response from another module (the driver or could be waiting for * the ipif/ill/ire refcnts to drop to zero. In such a case the ipx_pending_mp * and ipx_pending_ipif are set. ipx_current_ipif is set throughout the * execution of the ioctl and ipsq_exit does not start the next ioctl unless * ipx_current_ipif is NULL which happens only once the ioctl is complete and * all associated DLPI operations have completed. */ /* * Try to enter the IPSQ corresponding to `ipif' or `ill' exclusively (`ipif' * and `ill' cannot both be specified). Returns a pointer to the entered IPSQ * on success, or NULL on failure. The caller ensures ipif/ill is valid by * refholding it as necessary. If the IPSQ cannot be entered and `func' is * non-NULL, then `func' will be called back with `q' and `mp' once the IPSQ * can be entered. If `func' is NULL, then `q' and `mp' are ignored. */ ipsq_t * ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, boolean_t reentry_ok) { ip_stack_t *ipst; ipsq_t *ipsq; /* Only 1 of ipif or ill can be specified */ ASSERT((ipif != NULL) ^ (ill != NULL)); if (ipif != NULL) ill = ipif->ipif_ill; ipst = ill->ill_ipst; rw_enter(&ipst->ips_ill_g_lock, RW_READER); ipsq = ipsq_try_enter_internal(ill, q, mp, func, type, reentry_ok); rw_exit(&ipst->ips_ill_g_lock); return (ipsq); } /* * Try to enter the IPSQ corresponding to `ill' as writer. The caller ensures * ill is valid by refholding it if necessary; we will refrele. If the IPSQ * cannot be entered, the mp is queued for completion. */ void qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, boolean_t reentry_ok) { ipsq_t *ipsq; ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok); /* * Drop the caller's refhold on the ill. This is safe since we either * entered the IPSQ (and thus are exclusive), or failed to enter the * IPSQ, in which case we return without accessing ill anymore. This * is needed because func needs to see the correct refcount. * e.g. removeif can work only then. */ ill_refrele(ill); if (ipsq != NULL) { (*func)(ipsq, q, mp, NULL); ipsq_exit(ipsq); } } /* * Exit the specified IPSQ. If this is the final exit on it then drain it * prior to exiting. Caller must be writer on the specified IPSQ. */ void ipsq_exit(ipsq_t *ipsq) { mblk_t *mp; ipsq_t *mp_ipsq; queue_t *q; phyint_t *phyi; ipsq_func_t func; ASSERT(IAM_WRITER_IPSQ(ipsq)); ASSERT(ipsq->ipsq_xop->ipx_reentry_cnt >= 1); if (ipsq->ipsq_xop->ipx_reentry_cnt != 1) { ipsq->ipsq_xop->ipx_reentry_cnt--; return; } for (;;) { phyi = ipsq->ipsq_phyint; mp = ipsq_dq(ipsq); mp_ipsq = (mp == NULL) ? NULL : (ipsq_t *)mp->b_next; /* * If we've changed to a new IPSQ, and the phyint associated * with the old one has gone away, free the old IPSQ. Note * that this cannot happen while the IPSQ is in a group. */ if (mp_ipsq != ipsq && phyi == NULL) { ASSERT(ipsq->ipsq_next == ipsq); ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); ipsq_delete(ipsq); } if (mp == NULL) break; q = mp->b_queue; func = (ipsq_func_t)mp->b_prev; ipsq = mp_ipsq; mp->b_next = mp->b_prev = NULL; mp->b_queue = NULL; /* * If 'q' is an conn queue, it is valid, since we did a * a refhold on the conn at the start of the ioctl. * If 'q' is an ill queue, it is valid, since close of an * ill will clean up its IPSQ. */ (*func)(ipsq, q, mp, NULL); } } /* * Used to start any igmp or mld timers that could not be started * while holding ill_mcast_lock. The timers can't be started while holding * the lock, since mld/igmp_start_timers may need to call untimeout() * which can't be done while holding the lock which the timeout handler * acquires. Otherwise * there could be a deadlock since the timeout handlers * mld_timeout_handler_per_ill/igmp_timeout_handler_per_ill also acquire * ill_mcast_lock. */ void ill_mcast_timer_start(ip_stack_t *ipst) { int next; mutex_enter(&ipst->ips_igmp_timer_lock); next = ipst->ips_igmp_deferred_next; ipst->ips_igmp_deferred_next = INFINITY; mutex_exit(&ipst->ips_igmp_timer_lock); if (next != INFINITY) igmp_start_timers(next, ipst); mutex_enter(&ipst->ips_mld_timer_lock); next = ipst->ips_mld_deferred_next; ipst->ips_mld_deferred_next = INFINITY; mutex_exit(&ipst->ips_mld_timer_lock); if (next != INFINITY) mld_start_timers(next, ipst); } /* * Start the current exclusive operation on `ipsq'; associate it with `ipif' * and `ioccmd'. */ void ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd) { ill_t *ill = ipif->ipif_ill; ipxop_t *ipx = ipsq->ipsq_xop; ASSERT(IAM_WRITER_IPSQ(ipsq)); ASSERT(ipx->ipx_current_ipif == NULL); ASSERT(ipx->ipx_current_ioctl == 0); ipx->ipx_current_done = B_FALSE; ipx->ipx_current_ioctl = ioccmd; mutex_enter(&ipx->ipx_lock); ipx->ipx_current_ipif = ipif; mutex_exit(&ipx->ipx_lock); /* * Set IPIF_CHANGING on one or more ipifs associated with the * current exclusive operation. IPIF_CHANGING prevents any new * references to the ipif (so that the references will eventually * drop to zero) and also prevents any "get" operations (e.g., * SIOCGLIFFLAGS) from being able to access the ipif until the * operation has completed and the ipif is again in a stable state. * * For ioctls, IPIF_CHANGING is set on the ipif associated with the * ioctl. For internal operations (where ioccmd is zero), all ipifs * on the ill are marked with IPIF_CHANGING since it's unclear which * ipifs will be affected. * * Note that SIOCLIFREMOVEIF is a special case as it sets * IPIF_CONDEMNED internally after identifying the right ipif to * operate on. */ switch (ioccmd) { case SIOCLIFREMOVEIF: break; case 0: mutex_enter(&ill->ill_lock); ipif = ipif->ipif_ill->ill_ipif; for (; ipif != NULL; ipif = ipif->ipif_next) ipif->ipif_state_flags |= IPIF_CHANGING; mutex_exit(&ill->ill_lock); break; default: mutex_enter(&ill->ill_lock); ipif->ipif_state_flags |= IPIF_CHANGING; mutex_exit(&ill->ill_lock); } } /* * Finish the current exclusive operation on `ipsq'. Usually, this will allow * the next exclusive operation to begin once we ipsq_exit(). However, if * pending DLPI operations remain, then we will wait for the queue to drain * before allowing the next exclusive operation to begin. This ensures that * DLPI operations from one exclusive operation are never improperly processed * as part of a subsequent exclusive operation. */ void ipsq_current_finish(ipsq_t *ipsq) { ipxop_t *ipx = ipsq->ipsq_xop; t_uscalar_t dlpi_pending = DL_PRIM_INVAL; ipif_t *ipif = ipx->ipx_current_ipif; ASSERT(IAM_WRITER_IPSQ(ipsq)); /* * For SIOCLIFREMOVEIF, the ipif has been already been blown away * (but in that case, IPIF_CHANGING will already be clear and no * pending DLPI messages can remain). */ if (ipx->ipx_current_ioctl != SIOCLIFREMOVEIF) { ill_t *ill = ipif->ipif_ill; mutex_enter(&ill->ill_lock); dlpi_pending = ill->ill_dlpi_pending; if (ipx->ipx_current_ioctl == 0) { ipif = ill->ill_ipif; for (; ipif != NULL; ipif = ipif->ipif_next) ipif->ipif_state_flags &= ~IPIF_CHANGING; } else { ipif->ipif_state_flags &= ~IPIF_CHANGING; } mutex_exit(&ill->ill_lock); } ASSERT(!ipx->ipx_current_done); ipx->ipx_current_done = B_TRUE; ipx->ipx_current_ioctl = 0; if (dlpi_pending == DL_PRIM_INVAL) { mutex_enter(&ipx->ipx_lock); ipx->ipx_current_ipif = NULL; mutex_exit(&ipx->ipx_lock); } } /* * The ill is closing. Flush all messages on the ipsq that originated * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead * for this ill since ipsq_enter could not have entered until then. * New messages can't be queued since the CONDEMNED flag is set. */ static void ipsq_flush(ill_t *ill) { queue_t *q; mblk_t *prev; mblk_t *mp; mblk_t *mp_next; ipxop_t *ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; ASSERT(IAM_WRITER_ILL(ill)); /* * Flush any messages sent up by the driver. */ mutex_enter(&ipx->ipx_lock); for (prev = NULL, mp = ipx->ipx_mphead; mp != NULL; mp = mp_next) { mp_next = mp->b_next; q = mp->b_queue; if (q == ill->ill_rq || q == ill->ill_wq) { /* dequeue mp */ if (prev == NULL) ipx->ipx_mphead = mp->b_next; else prev->b_next = mp->b_next; if (ipx->ipx_mptail == mp) { ASSERT(mp_next == NULL); ipx->ipx_mptail = prev; } inet_freemsg(mp); } else { prev = mp; } } mutex_exit(&ipx->ipx_lock); (void) ipsq_pending_mp_cleanup(ill, NULL); ipsq_xopq_mp_cleanup(ill, NULL); } /* * Parse an ifreq or lifreq struct coming down ioctls and refhold * and return the associated ipif. * Return value: * Non zero: An error has occurred. ci may not be filled out. * zero : ci is filled out with the ioctl cmd in ci.ci_name, and * a held ipif in ci.ci_ipif. */ int ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, cmd_info_t *ci) { char *name; struct ifreq *ifr; struct lifreq *lifr; ipif_t *ipif = NULL; ill_t *ill; conn_t *connp; boolean_t isv6; int err; mblk_t *mp1; zoneid_t zoneid; ip_stack_t *ipst; if (q->q_next != NULL) { ill = (ill_t *)q->q_ptr; isv6 = ill->ill_isv6; connp = NULL; zoneid = ALL_ZONES; ipst = ill->ill_ipst; } else { ill = NULL; connp = Q_TO_CONN(q); isv6 = (connp->conn_family == AF_INET6); zoneid = connp->conn_zoneid; if (zoneid == GLOBAL_ZONEID) { /* global zone can access ipifs in all zones */ zoneid = ALL_ZONES; } ipst = connp->conn_netstack->netstack_ip; } /* Has been checked in ip_wput_nondata */ mp1 = mp->b_cont->b_cont; if (ipip->ipi_cmd_type == IF_CMD) { /* This a old style SIOC[GS]IF* command */ ifr = (struct ifreq *)mp1->b_rptr; /* * Null terminate the string to protect against buffer * overrun. String was generated by user code and may not * be trusted. */ ifr->ifr_name[IFNAMSIZ - 1] = '\0'; name = ifr->ifr_name; ci->ci_sin = (sin_t *)&ifr->ifr_addr; ci->ci_sin6 = NULL; ci->ci_lifr = (struct lifreq *)ifr; } else { /* This a new style SIOC[GS]LIF* command */ ASSERT(ipip->ipi_cmd_type == LIF_CMD); lifr = (struct lifreq *)mp1->b_rptr; /* * Null terminate the string to protect against buffer * overrun. String was generated by user code and may not * be trusted. */ lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; name = lifr->lifr_name; ci->ci_sin = (sin_t *)&lifr->lifr_addr; ci->ci_sin6 = (sin6_t *)&lifr->lifr_addr; ci->ci_lifr = lifr; } if (ipip->ipi_cmd == SIOCSLIFNAME) { /* * The ioctl will be failed if the ioctl comes down * an conn stream */ if (ill == NULL) { /* * Not an ill queue, return EINVAL same as the * old error code. */ return (ENXIO); } ipif = ill->ill_ipif; ipif_refhold(ipif); } else { /* * Ensure that ioctls don't see any internal state changes * caused by set ioctls by deferring them if IPIF_CHANGING is * set. */ ipif = ipif_lookup_on_name_async(name, mi_strlen(name), isv6, zoneid, q, mp, ip_process_ioctl, &err, ipst); if (ipif == NULL) { if (err == EINPROGRESS) return (err); err = 0; /* Ensure we don't use it below */ } } /* * Old style [GS]IFCMD does not admit IPv6 ipif */ if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) { ipif_refrele(ipif); return (ENXIO); } if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && name[0] == '\0') { /* * Handle a or a SIOC?IF* with a null name * during plumb (on the ill queue before the I_PLINK). */ ipif = ill->ill_ipif; ipif_refhold(ipif); } if (ipif == NULL) return (ENXIO); DTRACE_PROBE4(ipif__ioctl, char *, "ip_extract_lifreq", int, ipip->ipi_cmd, ill_t *, ipif->ipif_ill, ipif_t *, ipif); ci->ci_ipif = ipif; return (0); } /* * Return the total number of ipifs. */ static uint_t ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst) { uint_t numifs = 0; ill_t *ill; ill_walk_context_t ctx; ipif_t *ipif; rw_enter(&ipst->ips_ill_g_lock, RW_READER); ill = ILL_START_WALK_V4(&ctx, ipst); for (; ill != NULL; ill = ill_next(&ctx, ill)) { if (IS_UNDER_IPMP(ill)) continue; for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { if (ipif->ipif_zoneid == zoneid || ipif->ipif_zoneid == ALL_ZONES) numifs++; } } rw_exit(&ipst->ips_ill_g_lock); return (numifs); } /* * Return the total number of ipifs. */ static uint_t ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst) { uint_t numifs = 0; ill_t *ill; ipif_t *ipif; ill_walk_context_t ctx; ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); rw_enter(&ipst->ips_ill_g_lock, RW_READER); if (family == AF_INET) ill = ILL_START_WALK_V4(&ctx, ipst); else if (family == AF_INET6) ill = ILL_START_WALK_V6(&ctx, ipst); else ill = ILL_START_WALK_ALL(&ctx, ipst); for (; ill != NULL; ill = ill_next(&ctx, ill)) { if (IS_UNDER_IPMP(ill) && !(lifn_flags & LIFC_UNDER_IPMP)) continue; for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { if ((ipif->ipif_flags & IPIF_NOXMIT) && !(lifn_flags & LIFC_NOXMIT)) continue; if ((ipif->ipif_flags & IPIF_TEMPORARY) && !(lifn_flags & LIFC_TEMPORARY)) continue; if (((ipif->ipif_flags & (IPIF_NOXMIT|IPIF_NOLOCAL| IPIF_DEPRECATED)) || IS_LOOPBACK(ill) || !(ipif->ipif_flags & IPIF_UP)) && (lifn_flags & LIFC_EXTERNAL_SOURCE)) continue; if (zoneid != ipif->ipif_zoneid && ipif->ipif_zoneid != ALL_ZONES && (zoneid != GLOBAL_ZONEID || !(lifn_flags & LIFC_ALLZONES))) continue; numifs++; } } rw_exit(&ipst->ips_ill_g_lock); return (numifs); } uint_t ip_get_lifsrcofnum(ill_t *ill) { uint_t numifs = 0; ill_t *ill_head = ill; ip_stack_t *ipst = ill->ill_ipst; /* * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some * other thread may be trying to relink the ILLs in this usesrc group * and adjusting the ill_usesrc_grp_next pointers */ rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); if ((ill->ill_usesrc_ifindex == 0) && (ill->ill_usesrc_grp_next != NULL)) { for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); ill = ill->ill_usesrc_grp_next) numifs++; } rw_exit(&ipst->ips_ill_g_usesrc_lock); return (numifs); } /* Null values are passed in for ipif, sin, and ifreq */ /* ARGSUSED */ int ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) { int *nump; conn_t *connp = Q_TO_CONN(q); ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ /* Existence of b_cont->b_cont checked in ip_wput_nondata */ nump = (int *)mp->b_cont->b_cont->b_rptr; *nump = ip_get_numifs(connp->conn_zoneid, connp->conn_netstack->netstack_ip); ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); return (0); } /* Null values are passed in for ipif, sin, and ifreq */ /* ARGSUSED */ int ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) { struct lifnum *lifn; mblk_t *mp1; conn_t *connp = Q_TO_CONN(q); ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ /* Existence checked in ip_wput_nondata */ mp1 = mp->b_cont->b_cont; lifn = (struct lifnum *)mp1->b_rptr; switch (lifn->lifn_family) { case AF_UNSPEC: case AF_INET: case AF_INET6: break; default: return (EAFNOSUPPORT); } lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, connp->conn_zoneid, connp->conn_netstack->netstack_ip); ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); return (0); } /* ARGSUSED */ int ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) { STRUCT_HANDLE(ifconf, ifc); mblk_t *mp1; struct iocblk *iocp; struct ifreq *ifr; ill_walk_context_t ctx; ill_t *ill; ipif_t *ipif; struct sockaddr_in *sin; int32_t ifclen; zoneid_t zoneid; ip_stack_t *ipst = CONNQ_TO_IPST(q); ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ ip1dbg(("ip_sioctl_get_ifconf")); /* Existence verified in ip_wput_nondata */ mp1 = mp->b_cont->b_cont; iocp = (struct iocblk *)mp->b_rptr; zoneid = Q_TO_CONN(q)->conn_zoneid; /* * The original SIOCGIFCONF passed in a struct ifconf which specified * the user buffer address and length into which the list of struct * ifreqs was to be copied. Since AT&T Streams does not seem to * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, * the SIOCGIFCONF operation was redefined to simply provide * a large output buffer into which we are supposed to jam the ifreq * array. The same ioctl command code was used, despite the fact that * both the applications and the kernel code had to change, thus making * it impossible to support both interfaces. * * For reasons not good enough to try to explain, the following * algorithm is used for deciding what to do with one of these: * If the IOCTL comes in as an I_STR, it is assumed to be of the new * form with the output buffer coming down as the continuation message. * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, * and we have to copy in the ifconf structure to find out how big the * output buffer is and where to copy out to. Sure no problem... * */ STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { int numifs = 0; size_t ifc_bufsize; /* * Must be (better be!) continuation of a TRANSPARENT * IOCTL. We just copied in the ifconf structure. */ STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, (struct ifconf *)mp1->b_rptr); /* * Allocate a buffer to hold requested information. * * If ifc_len is larger than what is needed, we only * allocate what we will use. * * If ifc_len is smaller than what is needed, return * EINVAL. * * XXX: the ill_t structure can hava 2 counters, for * v4 and v6 (not just ill_ipif_up_count) to store the * number of interfaces for a device, so we don't need * to count them here... */ numifs = ip_get_numifs(zoneid, ipst); ifclen = STRUCT_FGET(ifc, ifc_len); ifc_bufsize = numifs * sizeof (struct ifreq); if (ifc_bufsize > ifclen) { if (iocp->ioc_cmd == O_SIOCGIFCONF) { /* old behaviour */ return (EINVAL); } else { ifc_bufsize = ifclen; } } mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); if (mp1 == NULL) return (ENOMEM); mp1->b_wptr = mp1->b_rptr + ifc_bufsize; } bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); /* * the SIOCGIFCONF ioctl only knows about * IPv4 addresses, so don't try to tell * it about interfaces with IPv6-only * addresses. (Last parm 'isv6' is B_FALSE) */ ifr = (struct ifreq *)mp1->b_rptr; rw_enter(&ipst->ips_ill_g_lock, RW_READER); ill = ILL_START_WALK_V4(&ctx, ipst); for (; ill != NULL; ill = ill_next(&ctx, ill)) { if (IS_UNDER_IPMP(ill)) continue; for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { if (zoneid != ipif->ipif_zoneid && ipif->ipif_zoneid != ALL_ZONES) continue; if ((uchar_t *)&ifr[1] > mp1->b_wptr) { if (iocp->ioc_cmd == O_SIOCGIFCONF) { /* old behaviour */ rw_exit(&ipst->ips_ill_g_lock); return (EINVAL); } else { goto if_copydone; } } ipif_get_name(ipif, ifr->ifr_name, sizeof (ifr->ifr_name)); sin = (sin_t *)&ifr->ifr_addr; *sin = sin_null; sin->sin_family = AF_INET; sin->sin_addr.s_addr = ipif->ipif_lcl_addr; ifr++; } } if_copydone: rw_exit(&ipst->ips_ill_g_lock); mp1->b_wptr = (uchar_t *)ifr; if (STRUCT_BUF(ifc) != NULL) { STRUCT_FSET(ifc, ifc_len, (int)((uchar_t *)ifr - mp1->b_rptr)); } return (0); } /* * Get the interfaces using the address hosted on the interface passed in, * as a source adddress */ /* ARGSUSED */ int ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) { mblk_t *mp1; ill_t *ill, *ill_head; ipif_t *ipif, *orig_ipif; int numlifs = 0; size_t lifs_bufsize, lifsmaxlen; struct lifreq *lifr; struct iocblk *iocp = (struct iocblk *)mp->b_rptr; uint_t ifindex; zoneid_t zoneid; boolean_t isv6 = B_FALSE; struct sockaddr_in *sin; struct sockaddr_in6 *sin6; STRUCT_HANDLE(lifsrcof, lifs); ip_stack_t *ipst; ipst = CONNQ_TO_IPST(q); ASSERT(q->q_next == NULL); zoneid = Q_TO_CONN(q)->conn_zoneid; /* Existence verified in ip_wput_nondata */ mp1 = mp->b_cont->b_cont; /* * Must be (better be!) continuation of a TRANSPARENT * IOCTL. We just copied in the lifsrcof structure. */ STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, (struct lifsrcof *)mp1->b_rptr); if (MBLKL(mp1) != STRUCT_SIZE(lifs)) return (EINVAL); ifindex = STRUCT_FGET(lifs, lifs_ifindex); isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6; ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, ipst); if (ipif == NULL) { ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", ifindex)); return (ENXIO); } /* Allocate a buffer to hold requested information */ numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); lifs_bufsize = numlifs * sizeof (struct lifreq); lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); /* The actual size needed is always returned in lifs_len */ STRUCT_FSET(lifs, lifs_len, lifs_bufsize); /* If the amount we need is more than what is passed in, abort */ if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { ipif_refrele(ipif); return (0); } mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); if (mp1 == NULL) { ipif_refrele(ipif); return (ENOMEM); } mp1->b_wptr = mp1->b_rptr + lifs_bufsize; bzero(mp1->b_rptr, lifs_bufsize); lifr = (struct lifreq *)mp1->b_rptr; ill = ill_head = ipif->ipif_ill; orig_ipif = ipif; /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); rw_enter(&ipst->ips_ill_g_lock, RW_READER); ill = ill->ill_usesrc_grp_next; /* start from next ill */ for (; (ill != NULL) && (ill != ill_head); ill = ill->ill_usesrc_grp_next) { if ((uchar_t *)&lifr[1] > mp1->b_wptr) break; ipif = ill->ill_ipif; ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name)); if (ipif->ipif_isv6) { sin6 = (sin6_t *)&lifr->lifr_addr; *sin6 = sin6_null; sin6->sin6_family = AF_INET6; sin6->sin6_addr = ipif->ipif_v6lcl_addr; lifr->lifr_addrlen = ip_mask_to_plen_v6( &ipif->ipif_v6net_mask); } else { sin = (sin_t *)&lifr->lifr_addr; *sin = sin_null; sin->sin_family = AF_INET; sin->sin_addr.s_addr = ipif->ipif_lcl_addr; lifr->lifr_addrlen = ip_mask_to_plen( ipif->ipif_net_mask); } lifr++; } rw_exit(&ipst->ips_ill_g_lock); rw_exit(&ipst->ips_ill_g_usesrc_lock); ipif_refrele(orig_ipif); mp1->b_wptr = (uchar_t *)lifr; STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); return (0); } /* ARGSUSED */ int ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) { mblk_t *mp1; int list; ill_t *ill; ipif_t *ipif; int flags; int numlifs = 0; size_t lifc_bufsize; struct lifreq *lifr; sa_family_t family; struct sockaddr_in *sin; struct sockaddr_in6 *sin6; ill_walk_context_t ctx; struct iocblk *iocp = (struct iocblk *)mp->b_rptr; int32_t lifclen; zoneid_t zoneid; STRUCT_HANDLE(lifconf, lifc); ip_stack_t *ipst = CONNQ_TO_IPST(q); ip1dbg(("ip_sioctl_get_lifconf")); ASSERT(q->q_next == NULL); zoneid = Q_TO_CONN(q)->conn_zoneid; /* Existence verified in ip_wput_nondata */ mp1 = mp->b_cont->b_cont; /* * An extended version of SIOCGIFCONF that takes an * additional address family and flags field. * AF_UNSPEC retrieve both IPv4 and IPv6. * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT * interfaces are omitted. * Similarly, IPIF_TEMPORARY interfaces are omitted * unless LIFC_TEMPORARY is specified. * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE * has priority over LIFC_NOXMIT. */ STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) return (EINVAL); /* * Must be (better be!) continuation of a TRANSPARENT * IOCTL. We just copied in the lifconf structure. */ STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); family = STRUCT_FGET(lifc, lifc_family); flags = STRUCT_FGET(lifc, lifc_flags); switch (family) { case AF_UNSPEC: /* * walk all ILL's. */ list = MAX_G_HEADS; break; case AF_INET: /* * walk only IPV4 ILL's. */ list = IP_V4_G_HEAD; break; case AF_INET6: /* * walk only IPV6 ILL's. */ list = IP_V6_G_HEAD; break; default: return (EAFNOSUPPORT); } /* * Allocate a buffer to hold requested information. * * If lifc_len is larger than what is needed, we only * allocate what we will use. * * If lifc_len is smaller than what is needed, return * EINVAL. */ numlifs = ip_get_numlifs(family, flags, zoneid, ipst); lifc_bufsize = numlifs * sizeof (struct lifreq); lifclen = STRUCT_FGET(lifc, lifc_len); if (lifc_bufsize > lifclen) { if (iocp->ioc_cmd == O_SIOCGLIFCONF) return (EINVAL); else lifc_bufsize = lifclen; } mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); if (mp1 == NULL) return (ENOMEM); mp1->b_wptr = mp1->b_rptr + lifc_bufsize; bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); lifr = (struct lifreq *)mp1->b_rptr; rw_enter(&ipst->ips_ill_g_lock, RW_READER); ill = ill_first(list, list, &ctx, ipst); for (; ill != NULL; ill = ill_next(&ctx, ill)) { if (IS_UNDER_IPMP(ill) && !(flags & LIFC_UNDER_IPMP)) continue; for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { if ((ipif->ipif_flags & IPIF_NOXMIT) && !(flags & LIFC_NOXMIT)) continue; if ((ipif->ipif_flags & IPIF_TEMPORARY) && !(flags & LIFC_TEMPORARY)) continue; if (((ipif->ipif_flags & (IPIF_NOXMIT|IPIF_NOLOCAL| IPIF_DEPRECATED)) || IS_LOOPBACK(ill) || !(ipif->ipif_flags & IPIF_UP)) && (flags & LIFC_EXTERNAL_SOURCE)) continue; if (zoneid != ipif->ipif_zoneid && ipif->ipif_zoneid != ALL_ZONES && (zoneid != GLOBAL_ZONEID || !(flags & LIFC_ALLZONES))) continue; if ((uchar_t *)&lifr[1] > mp1->b_wptr) { if (iocp->ioc_cmd == O_SIOCGLIFCONF) { rw_exit(&ipst->ips_ill_g_lock); return (EINVAL); } else { goto lif_copydone; } } ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name)); lifr->lifr_type = ill->ill_type; if (ipif->ipif_isv6) { sin6 = (sin6_t *)&lifr->lifr_addr; *sin6 = sin6_null; sin6->sin6_family = AF_INET6; sin6->sin6_addr = ipif->ipif_v6lcl_addr; lifr->lifr_addrlen = ip_mask_to_plen_v6( &ipif->ipif_v6net_mask); } else { sin = (sin_t *)&lifr->lifr_addr; *sin = sin_null; sin->sin_family = AF_INET; sin->sin_addr.s_addr = ipif->ipif_lcl_addr; lifr->lifr_addrlen = ip_mask_to_plen( ipif->ipif_net_mask); } lifr++; } } lif_copydone: rw_exit(&ipst->ips_ill_g_lock); mp1->b_wptr = (uchar_t *)lifr; if (STRUCT_BUF(lifc) != NULL) { STRUCT_FSET(lifc, lifc_len, (int)((uchar_t *)lifr - mp1->b_rptr)); } return (0); } static void ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) { ip6_asp_t *table; size_t table_size; mblk_t *data_mp; struct iocblk *iocp = (struct iocblk *)mp->b_rptr; ip_stack_t *ipst; if (q->q_next == NULL) ipst = CONNQ_TO_IPST(q); else ipst = ILLQ_TO_IPST(q); /* These two ioctls are I_STR only */ if (iocp->ioc_count == TRANSPARENT) { miocnak(q, mp, 0, EINVAL); return; } data_mp = mp->b_cont; if (data_mp == NULL) { /* The user passed us a NULL argument */ table = NULL; table_size = iocp->ioc_count; } else { /* * The user provided a table. The stream head * may have copied in the user data in chunks, * so make sure everything is pulled up * properly. */ if (MBLKL(data_mp) < iocp->ioc_count) { mblk_t *new_data_mp; if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { miocnak(q, mp, 0, ENOMEM); return; } freemsg(data_mp); data_mp = new_data_mp; mp->b_cont = data_mp; } table = (ip6_asp_t *)data_mp->b_rptr; table_size = iocp->ioc_count; } switch (iocp->ioc_cmd) { case SIOCGIP6ADDRPOLICY: iocp->ioc_rval = ip6_asp_get(table, table_size, ipst); if (iocp->ioc_rval == -1) iocp->ioc_error = EINVAL; #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 else if (table != NULL && (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { ip6_asp_t *src = table; ip6_asp32_t *dst = (void *)table; int count = table_size / sizeof (ip6_asp_t); int i; /* * We need to do an in-place shrink of the array * to match the alignment attributes of the * 32-bit ABI looking at it. */ /* LINTED: logical expression always true: op "||" */ ASSERT(sizeof (*src) > sizeof (*dst)); for (i = 1; i < count; i++) bcopy(src + i, dst + i, sizeof (*dst)); } #endif break; case SIOCSIP6ADDRPOLICY: ASSERT(mp->b_prev == NULL); mp->b_prev = (void *)q; #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 /* * We pass in the datamodel here so that the ip6_asp_replace() * routine can handle converting from 32-bit to native formats * where necessary. * * A better way to handle this might be to convert the inbound * data structure here, and hang it off a new 'mp'; thus the * ip6_asp_replace() logic would always be dealing with native * format data structures.. * * (An even simpler way to handle these ioctls is to just * add a 32-bit trailing 'pad' field to the ip6_asp_t structure * and just recompile everything that depends on it.) */ #endif ip6_asp_replace(mp, table, table_size, B_FALSE, ipst, iocp->ioc_flag & IOC_MODELS); return; } DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; qreply(q, mp); } static void ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) { mblk_t *data_mp; struct dstinforeq *dir; uint8_t *end, *cur; in6_addr_t *daddr, *saddr; ipaddr_t v4daddr; ire_t *ire; ipaddr_t v4setsrc; in6_addr_t v6setsrc; char *slabel, *dlabel; boolean_t isipv4; int match_ire; ill_t *dst_ill; struct iocblk *iocp = (struct iocblk *)mp->b_rptr; conn_t *connp = Q_TO_CONN(q); zoneid_t zoneid = IPCL_ZONEID(connp); ip_stack_t *ipst = connp->conn_netstack->netstack_ip; uint64_t ipif_flags; ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ /* * This ioctl is I_STR only, and must have a * data mblk following the M_IOCTL mblk. */ data_mp = mp->b_cont; if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { miocnak(q, mp, 0, EINVAL); return; } if (MBLKL(data_mp) < iocp->ioc_count) { mblk_t *new_data_mp; if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { miocnak(q, mp, 0, ENOMEM); return; } freemsg(data_mp); data_mp = new_data_mp; mp->b_cont = data_mp; } match_ire = MATCH_IRE_DSTONLY; for (cur = data_mp->b_rptr, end = data_mp->b_wptr; end - cur >= sizeof (struct dstinforeq); cur += sizeof (struct dstinforeq)) { dir = (struct dstinforeq *)cur; daddr = &dir->dir_daddr; saddr = &dir->dir_saddr; /* * ip_addr_scope_v6() and ip6_asp_lookup() handle * v4 mapped addresses; ire_ftable_lookup_v6() * and ip_select_source_v6() do not. */ dir->dir_dscope = ip_addr_scope_v6(daddr); dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst); isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); if (isipv4) { IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); v4setsrc = INADDR_ANY; ire = ire_route_recursive_v4(v4daddr, 0, NULL, zoneid, NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v4setsrc, NULL, NULL); } else { v6setsrc = ipv6_all_zeros; ire = ire_route_recursive_v6(daddr, 0, NULL, zoneid, NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v6setsrc, NULL, NULL); } ASSERT(ire != NULL); if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { ire_refrele(ire); dir->dir_dreachable = 0; /* move on to next dst addr */ continue; } dir->dir_dreachable = 1; dst_ill = ire_nexthop_ill(ire); if (dst_ill == NULL) { ire_refrele(ire); continue; } /* With ipmp we most likely look at the ipmp ill here */ dir->dir_dmactype = dst_ill->ill_mactype; if (isipv4) { ipaddr_t v4saddr; if (ip_select_source_v4(dst_ill, v4setsrc, v4daddr, connp->conn_ixa->ixa_multicast_ifaddr, zoneid, ipst, &v4saddr, NULL, &ipif_flags) != 0) { v4saddr = INADDR_ANY; ipif_flags = 0; } IN6_IPADDR_TO_V4MAPPED(v4saddr, saddr); } else { if (ip_select_source_v6(dst_ill, &v6setsrc, daddr, zoneid, ipst, B_FALSE, IPV6_PREFER_SRC_DEFAULT, saddr, NULL, &ipif_flags) != 0) { *saddr = ipv6_all_zeros; ipif_flags = 0; } } dir->dir_sscope = ip_addr_scope_v6(saddr); slabel = ip6_asp_lookup(saddr, NULL, ipst); dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); dir->dir_sdeprecated = (ipif_flags & IPIF_DEPRECATED) ? 1 : 0; ire_refrele(ire); ill_refrele(dst_ill); } miocack(q, mp, iocp->ioc_count, 0); } /* * Check if this is an address assigned to this machine. * Skips interfaces that are down by using ire checks. * Translates mapped addresses to v4 addresses and then * treats them as such, returning true if the v4 address * associated with this mapped address is configured. * Note: Applications will have to be careful what they do * with the response; use of mapped addresses limits * what can be done with the socket, especially with * respect to socket options and ioctls - neither IPv4 * options nor IPv6 sticky options/ancillary data options * may be used. */ /* ARGSUSED */ int ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_ifreq) { struct sioc_addrreq *sia; sin_t *sin; ire_t *ire; mblk_t *mp1; zoneid_t zoneid; ip_stack_t *ipst; ip1dbg(("ip_sioctl_tmyaddr")); ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ zoneid = Q_TO_CONN(q)->conn_zoneid; ipst = CONNQ_TO_IPST(q); /* Existence verified in ip_wput_nondata */ mp1 = mp->b_cont->b_cont; sia = (struct sioc_addrreq *)mp1->b_rptr; sin = (sin_t *)&sia->sa_addr; switch (sin->sin_family) { case AF_INET6: { sin6_t *sin6 = (sin6_t *)sin; if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { ipaddr_t v4_addr; IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, v4_addr); ire = ire_ftable_lookup_v4(v4_addr, 0, 0, IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); } else { in6_addr_t v6addr; v6addr = sin6->sin6_addr; ire = ire_ftable_lookup_v6(&v6addr, 0, 0, IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); } break; } case AF_INET: { ipaddr_t v4addr; v4addr = sin->sin_addr.s_addr; ire = ire_ftable_lookup_v4(v4addr, 0, 0, IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); break; } default: return (EAFNOSUPPORT); } if (ire != NULL) { sia->sa_res = 1; ire_refrele(ire); } else { sia->sa_res = 0; } return (0); } /* * Check if this is an address assigned on-link i.e. neighbor, * and makes sure it's reachable from the current zone. * Returns true for my addresses as well. * Translates mapped addresses to v4 addresses and then * treats them as such, returning true if the v4 address * associated with this mapped address is configured. * Note: Applications will have to be careful what they do * with the response; use of mapped addresses limits * what can be done with the socket, especially with * respect to socket options and ioctls - neither IPv4 * options nor IPv6 sticky options/ancillary data options * may be used. */ /* ARGSUSED */ int ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) { struct sioc_addrreq *sia; sin_t *sin; mblk_t *mp1; ire_t *ire = NULL; zoneid_t zoneid; ip_stack_t *ipst; ip1dbg(("ip_sioctl_tonlink")); ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ zoneid = Q_TO_CONN(q)->conn_zoneid; ipst = CONNQ_TO_IPST(q); /* Existence verified in ip_wput_nondata */ mp1 = mp->b_cont->b_cont; sia = (struct sioc_addrreq *)mp1->b_rptr; sin = (sin_t *)&sia->sa_addr; /* * We check for IRE_ONLINK and exclude IRE_BROADCAST|IRE_MULTICAST * to make sure we only look at on-link unicast address. */ switch (sin->sin_family) { case AF_INET6: { sin6_t *sin6 = (sin6_t *)sin; if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { ipaddr_t v4_addr; IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, v4_addr); if (!CLASSD(v4_addr)) { ire = ire_ftable_lookup_v4(v4_addr, 0, 0, 0, NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); } } else { in6_addr_t v6addr; v6addr = sin6->sin6_addr; if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { ire = ire_ftable_lookup_v6(&v6addr, 0, 0, 0, NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); } } break; } case AF_INET: { ipaddr_t v4addr; v4addr = sin->sin_addr.s_addr; if (!CLASSD(v4addr)) { ire = ire_ftable_lookup_v4(v4addr, 0, 0, 0, NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); } break; } default: return (EAFNOSUPPORT); } sia->sa_res = 0; if (ire != NULL) { ASSERT(!(ire->ire_type & IRE_MULTICAST)); if ((ire->ire_type & IRE_ONLINK) && !(ire->ire_type & IRE_BROADCAST)) sia->sa_res = 1; ire_refrele(ire); } return (0); } /* * TBD: implement when kernel maintaines a list of site prefixes. */ /* ARGSUSED */ int ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) { return (ENXIO); } /* ARP IOCTLs. */ /* ARGSUSED */ int ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_ifreq) { int err; ipaddr_t ipaddr; struct iocblk *iocp; conn_t *connp; struct arpreq *ar; struct xarpreq *xar; int arp_flags, flags, alength; uchar_t *lladdr; ip_stack_t *ipst; ill_t *ill = ipif->ipif_ill; ill_t *proxy_ill = NULL; ipmp_arpent_t *entp = NULL; boolean_t proxyarp = B_FALSE; boolean_t if_arp_ioctl = B_FALSE; ncec_t *ncec = NULL; nce_t *nce; ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); connp = Q_TO_CONN(q); ipst = connp->conn_netstack->netstack_ip; iocp = (struct iocblk *)mp->b_rptr; if (ipip->ipi_cmd_type == XARP_CMD) { /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; ar = NULL; arp_flags = xar->xarp_flags; lladdr = (uchar_t *)LLADDR(&xar->xarp_ha); if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0); /* * Validate against user's link layer address length * input and name and addr length limits. */ alength = ill->ill_phys_addr_length; if (ipip->ipi_cmd == SIOCSXARP) { if (alength != xar->xarp_ha.sdl_alen || (alength + xar->xarp_ha.sdl_nlen > sizeof (xar->xarp_ha.sdl_data))) return (EINVAL); } } else { /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; xar = NULL; arp_flags = ar->arp_flags; lladdr = (uchar_t *)ar->arp_ha.sa_data; /* * Theoretically, the sa_family could tell us what link * layer type this operation is trying to deal with. By * common usage AF_UNSPEC means ethernet. We'll assume * any attempt to use the SIOC?ARP ioctls is for ethernet, * for now. Our new SIOC*XARP ioctls can be used more * generally. * * If the underlying media happens to have a non 6 byte * address, arp module will fail set/get, but the del * operation will succeed. */ alength = 6; if ((ipip->ipi_cmd != SIOCDARP) && (alength != ill->ill_phys_addr_length)) { return (EINVAL); } } /* Translate ATF* flags to NCE* flags */ flags = 0; if (arp_flags & ATF_AUTHORITY) flags |= NCE_F_AUTHORITY; if (arp_flags & ATF_PERM) flags |= NCE_F_NONUD; /* not subject to aging */ if (arp_flags & ATF_PUBL) flags |= NCE_F_PUBLISH; /* * IPMP ARP special handling: * * 1. Since ARP mappings must appear consistent across the group, * prohibit changing ARP mappings on the underlying interfaces. * * 2. Since ARP mappings for IPMP data addresses are maintained by * IP itself, prohibit changing them. * * 3. For proxy ARP, use a functioning hardware address in the group, * provided one exists. If one doesn't, just add the entry as-is; * ipmp_illgrp_refresh_arpent() will refresh it if things change. */ if (IS_UNDER_IPMP(ill)) { if (ipip->ipi_cmd != SIOCGARP && ipip->ipi_cmd != SIOCGXARP) return (EPERM); } if (IS_IPMP(ill)) { ipmp_illgrp_t *illg = ill->ill_grp; switch (ipip->ipi_cmd) { case SIOCSARP: case SIOCSXARP: proxy_ill = ipmp_illgrp_find_ill(illg, lladdr, alength); if (proxy_ill != NULL) { proxyarp = B_TRUE; if (!ipmp_ill_is_active(proxy_ill)) proxy_ill = ipmp_illgrp_next_ill(illg); if (proxy_ill != NULL) lladdr = proxy_ill->ill_phys_addr; } /* FALLTHRU */ } } ipaddr = sin->sin_addr.s_addr; /* * don't match across illgrp per case (1) and (2). * XXX use IS_IPMP(ill) like ndp_sioc_update? */ nce = nce_lookup_v4(ill, &ipaddr); if (nce != NULL) ncec = nce->nce_common; switch (iocp->ioc_cmd) { case SIOCDARP: case SIOCDXARP: { /* * Delete the NCE if any. */ if (ncec == NULL) { iocp->ioc_error = ENXIO; break; } /* Don't allow changes to arp mappings of local addresses. */ if (NCE_MYADDR(ncec)) { nce_refrele(nce); return (ENOTSUP); } iocp->ioc_error = 0; /* * Delete the nce_common which has ncec_ill set to ipmp_ill. * This will delete all the nce entries on the under_ills. */ ncec_delete(ncec); /* * Once the NCE has been deleted, then the ire_dep* consistency * mechanism will find any IRE which depended on the now * condemned NCE (as part of sending packets). * That mechanism handles redirects by deleting redirects * that refer to UNREACHABLE nces. */ break; } case SIOCGARP: case SIOCGXARP: if (ncec != NULL) { lladdr = ncec->ncec_lladdr; flags = ncec->ncec_flags; iocp->ioc_error = 0; ip_sioctl_garp_reply(mp, ncec->ncec_ill, lladdr, flags); } else { iocp->ioc_error = ENXIO; } break; case SIOCSARP: case SIOCSXARP: /* Don't allow changes to arp mappings of local addresses. */ if (ncec != NULL && NCE_MYADDR(ncec)) { nce_refrele(nce); return (ENOTSUP); } /* static arp entries will undergo NUD if ATF_PERM is not set */ flags |= NCE_F_STATIC; if (!if_arp_ioctl) { ip_nce_lookup_and_update(&ipaddr, NULL, ipst, lladdr, alength, flags); } else { ipif_t *ipif = ipif_get_next_ipif(NULL, ill); if (ipif != NULL) { ip_nce_lookup_and_update(&ipaddr, ipif, ipst, lladdr, alength, flags); ipif_refrele(ipif); } } if (nce != NULL) { nce_refrele(nce); nce = NULL; } /* * NCE_F_STATIC entries will be added in state ND_REACHABLE * by nce_add_common() */ err = nce_lookup_then_add_v4(ill, lladdr, ill->ill_phys_addr_length, &ipaddr, flags, ND_UNCHANGED, &nce); if (err == EEXIST) { ncec = nce->nce_common; mutex_enter(&ncec->ncec_lock); ncec->ncec_state = ND_REACHABLE; ncec->ncec_flags = flags; nce_update(ncec, ND_UNCHANGED, lladdr); mutex_exit(&ncec->ncec_lock); err = 0; } if (nce != NULL) { nce_refrele(nce); nce = NULL; } if (IS_IPMP(ill) && err == 0) { entp = ipmp_illgrp_create_arpent(ill->ill_grp, proxyarp, ipaddr, lladdr, ill->ill_phys_addr_length, flags); if (entp == NULL || (proxyarp && proxy_ill == NULL)) { iocp->ioc_error = (entp == NULL ? ENOMEM : 0); break; } } iocp->ioc_error = err; } if (nce != NULL) { nce_refrele(nce); } /* * If we created an IPMP ARP entry, mark that we've notified ARP. */ if (entp != NULL) ipmp_illgrp_mark_arpent(ill->ill_grp, entp); return (iocp->ioc_error); } /* * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify * the associated sin and refhold and return the associated ipif via `ci'. */ int ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, cmd_info_t *ci) { mblk_t *mp1; sin_t *sin; conn_t *connp; ipif_t *ipif; ire_t *ire = NULL; ill_t *ill = NULL; boolean_t exists; ip_stack_t *ipst; struct arpreq *ar; struct xarpreq *xar; struct sockaddr_dl *sdl; /* ioctl comes down on a conn */ ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); connp = Q_TO_CONN(q); if (connp->conn_family == AF_INET6) return (ENXIO); ipst = connp->conn_netstack->netstack_ip; /* Verified in ip_wput_nondata */ mp1 = mp->b_cont->b_cont; if (ipip->ipi_cmd_type == XARP_CMD) { ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq)); xar = (struct xarpreq *)mp1->b_rptr; sin = (sin_t *)&xar->xarp_pa; sdl = &xar->xarp_ha; if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET) return (ENXIO); if (sdl->sdl_nlen >= LIFNAMSIZ) return (EINVAL); } else { ASSERT(ipip->ipi_cmd_type == ARP_CMD); ASSERT(MBLKL(mp1) >= sizeof (struct arpreq)); ar = (struct arpreq *)mp1->b_rptr; sin = (sin_t *)&ar->arp_pa; } if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) { ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen, B_FALSE, &exists, B_FALSE, ALL_ZONES, ipst); if (ipif == NULL) return (ENXIO); if (ipif->ipif_id != 0) { ipif_refrele(ipif); return (ENXIO); } } else { /* * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with an sdl_nlen * of 0: use the IP address to find the ipif. If the IP * address is an IPMP test address, ire_ftable_lookup() will * find the wrong ill, so we first do an ipif_lookup_addr(). */ ipif = ipif_lookup_addr(sin->sin_addr.s_addr, NULL, ALL_ZONES, ipst); if (ipif == NULL) { ire = ire_ftable_lookup_v4(sin->sin_addr.s_addr, 0, 0, IRE_IF_RESOLVER, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, NULL); if (ire == NULL || ((ill = ire->ire_ill) == NULL)) { if (ire != NULL) ire_refrele(ire); return (ENXIO); } ASSERT(ire != NULL && ill != NULL); ipif = ill->ill_ipif; ipif_refhold(ipif); ire_refrele(ire); } } if (ipif->ipif_ill->ill_net_type != IRE_IF_RESOLVER) { ipif_refrele(ipif); return (ENXIO); } ci->ci_sin = sin; ci->ci_ipif = ipif; return (0); } /* * Link or unlink the illgrp on IPMP meta-interface `ill' depending on the * value of `ioccmd'. While an illgrp is linked to an ipmp_grp_t, it is * accessible from that ipmp_grp_t, which means SIOCSLIFGROUPNAME can look it * up and thus an ill can join that illgrp. * * We use I_PLINK/I_PUNLINK to do the link/unlink operations rather than * open()/close() primarily because close() is not allowed to fail or block * forever. On the other hand, I_PUNLINK *can* fail, and there's no reason * why anyone should ever need to I_PUNLINK an in-use IPMP stream. To ensure * symmetric behavior (e.g., doing an I_PLINK after and I_PUNLINK undoes the * I_PUNLINK) we defer linking to I_PLINK. Separately, we also fail attempts * to I_LINK since I_UNLINK is optional and we'd end up in an inconsistent * state if I_UNLINK didn't occur. * * Note that for each plumb/unplumb operation, we may end up here more than * once because of the way ifconfig works. However, it's OK to link the same * illgrp more than once, or unlink an illgrp that's already unlinked. */ static int ip_sioctl_plink_ipmp(ill_t *ill, int ioccmd) { int err; ip_stack_t *ipst = ill->ill_ipst; ASSERT(IS_IPMP(ill)); ASSERT(IAM_WRITER_ILL(ill)); switch (ioccmd) { case I_LINK: return (ENOTSUP); case I_PLINK: rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); ipmp_illgrp_link_grp(ill->ill_grp, ill->ill_phyint->phyint_grp); rw_exit(&ipst->ips_ipmp_lock); break; case I_PUNLINK: /* * Require all UP ipifs be brought down prior to unlinking the * illgrp so any associated IREs (and other state) is torched. */ if (ill->ill_ipif_up_count + ill->ill_ipif_dup_count > 0) return (EBUSY); /* * NOTE: We hold ipmp_lock across the unlink to prevent a race * with an SIOCSLIFGROUPNAME request from an ill trying to * join this group. Specifically: ills trying to join grab * ipmp_lock and bump a "pending join" counter checked by * ipmp_illgrp_unlink_grp(). During the unlink no new pending * joins can occur (since we have ipmp_lock). Once we drop * ipmp_lock, subsequent SIOCSLIFGROUPNAME requests will not * find the illgrp (since we unlinked it) and will return * EAFNOSUPPORT. This will then take them back through the * IPMP meta-interface plumbing logic in ifconfig, and thus * back through I_PLINK above. */ rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); err = ipmp_illgrp_unlink_grp(ill->ill_grp); rw_exit(&ipst->ips_ipmp_lock); return (err); default: break; } return (0); } /* * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also * atomically set/clear the muxids. Also complete the ioctl by acking or * naking it. Note that the code is structured such that the link type, * whether it's persistent or not, is treated equally. ifconfig(1M) and * its clones use the persistent link, while pppd(1M) and perhaps many * other daemons may use non-persistent link. When combined with some * ill_t states, linking and unlinking lower streams may be used as * indicators of dynamic re-plumbing events [see PSARC/1999/348]. */ /* ARGSUSED */ void ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) { mblk_t *mp1; struct linkblk *li; int ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd; int err = 0; ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK || ioccmd == I_LINK || ioccmd == I_UNLINK); mp1 = mp->b_cont; /* This is the linkblk info */ li = (struct linkblk *)mp1->b_rptr; err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li); if (err == EINPROGRESS) return; if (err == 0) miocack(q, mp, 0, 0); else miocnak(q, mp, 0, err); /* Conn was refheld in ip_sioctl_copyin_setup */ if (CONN_Q(q)) { CONN_DEC_IOCTLREF(Q_TO_CONN(q)); CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); } } /* * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP * module stream). * Returns zero on success, EINPROGRESS if the operation is still pending, or * an error code on failure. */ static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd, struct linkblk *li) { int err = 0; ill_t *ill; queue_t *ipwq, *dwq; const char *name; struct qinit *qinfo; boolean_t islink = (ioccmd == I_PLINK || ioccmd == I_LINK); boolean_t entered_ipsq = B_FALSE; boolean_t is_ip = B_FALSE; arl_t *arl; /* * Walk the lower stream to verify it's the IP module stream. * The IP module is identified by its name, wput function, * and non-NULL q_next. STREAMS ensures that the lower stream * (li->l_qbot) will not vanish until this ioctl completes. */ for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) { qinfo = ipwq->q_qinfo; name = qinfo->qi_minfo->mi_idname; if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 && qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { is_ip = B_TRUE; break; } if (name != NULL && strcmp(name, arp_mod_info.mi_idname) == 0 && qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { break; } } /* * If this isn't an IP module stream, bail. */ if (ipwq == NULL) return (0); if (!is_ip) { arl = (arl_t *)ipwq->q_ptr; ill = arl_to_ill(arl); if (ill == NULL) return (0); } else { ill = ipwq->q_ptr; } ASSERT(ill != NULL); if (ipsq == NULL) { ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, NEW_OP, B_FALSE); if (ipsq == NULL) { if (!is_ip) ill_refrele(ill); return (EINPROGRESS); } entered_ipsq = B_TRUE; } ASSERT(IAM_WRITER_ILL(ill)); mutex_enter(&ill->ill_lock); if (!is_ip) { if (islink && ill->ill_muxid == 0) { /* * Plumbing has to be done with IP plumbed first, arp * second, but here we have arp being plumbed first. */ mutex_exit(&ill->ill_lock); if (entered_ipsq) ipsq_exit(ipsq); ill_refrele(ill); return (EINVAL); } } mutex_exit(&ill->ill_lock); if (!is_ip) { arl->arl_muxid = islink ? li->l_index : 0; ill_refrele(ill); goto done; } if (IS_IPMP(ill) && (err = ip_sioctl_plink_ipmp(ill, ioccmd)) != 0) goto done; /* * As part of I_{P}LINKing, stash the number of downstream modules and * the read queue of the module immediately below IP in the ill. * These are used during the capability negotiation below. */ ill->ill_lmod_rq = NULL; ill->ill_lmod_cnt = 0; if (islink && ((dwq = ipwq->q_next) != NULL)) { ill->ill_lmod_rq = RD(dwq); for (; dwq != NULL; dwq = dwq->q_next) ill->ill_lmod_cnt++; } ill->ill_muxid = islink ? li->l_index : 0; /* * Mark the ipsq busy until the capability operations initiated below * complete. The PLINK/UNLINK ioctl itself completes when our caller * returns, but the capability operation may complete asynchronously * much later. */ ipsq_current_start(ipsq, ill->ill_ipif, ioccmd); /* * If there's at least one up ipif on this ill, then we're bound to * the underlying driver via DLPI. In that case, renegotiate * capabilities to account for any possible change in modules * interposed between IP and the driver. */ if (ill->ill_ipif_up_count > 0) { if (islink) ill_capability_probe(ill); else ill_capability_reset(ill, B_FALSE); } ipsq_current_finish(ipsq); done: if (entered_ipsq) ipsq_exit(ipsq); return (err); } /* * Search the ioctl command in the ioctl tables and return a pointer * to the ioctl command information. The ioctl command tables are * static and fully populated at compile time. */ ip_ioctl_cmd_t * ip_sioctl_lookup(int ioc_cmd) { int index; ip_ioctl_cmd_t *ipip; ip_ioctl_cmd_t *ipip_end; if (ioc_cmd == IPI_DONTCARE) return (NULL); /* * Do a 2 step search. First search the indexed table * based on the least significant byte of the ioctl cmd. * If we don't find a match, then search the misc table * serially. */ index = ioc_cmd & 0xFF; if (index < ip_ndx_ioctl_count) { ipip = &ip_ndx_ioctl_table[index]; if (ipip->ipi_cmd == ioc_cmd) { /* Found a match in the ndx table */ return (ipip); } } /* Search the misc table */ ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { if (ipip->ipi_cmd == ioc_cmd) /* Found a match in the misc table */ return (ipip); } return (NULL); } /* * helper function for ip_sioctl_getsetprop(), which does some sanity checks */ static boolean_t getset_ioctl_checks(mblk_t *mp) { struct iocblk *iocp = (struct iocblk *)mp->b_rptr; mblk_t *mp1 = mp->b_cont; mod_ioc_prop_t *pioc; uint_t flags; uint_t pioc_size; /* do sanity checks on various arguments */ if (mp1 == NULL || iocp->ioc_count == 0 || iocp->ioc_count == TRANSPARENT) { return (B_FALSE); } if (msgdsize(mp1) < iocp->ioc_count) { if (!pullupmsg(mp1, iocp->ioc_count)) return (B_FALSE); } pioc = (mod_ioc_prop_t *)mp1->b_rptr; /* sanity checks on mpr_valsize */ pioc_size = sizeof (mod_ioc_prop_t); if (pioc->mpr_valsize != 0) pioc_size += pioc->mpr_valsize - 1; if (iocp->ioc_count != pioc_size) return (B_FALSE); flags = pioc->mpr_flags; if (iocp->ioc_cmd == SIOCSETPROP) { /* * One can either reset the value to it's default value or * change the current value or append/remove the value from * a multi-valued properties. */ if ((flags & MOD_PROP_DEFAULT) != MOD_PROP_DEFAULT && flags != MOD_PROP_ACTIVE && flags != (MOD_PROP_ACTIVE|MOD_PROP_APPEND) && flags != (MOD_PROP_ACTIVE|MOD_PROP_REMOVE)) return (B_FALSE); } else { ASSERT(iocp->ioc_cmd == SIOCGETPROP); /* * One can retrieve only one kind of property information * at a time. */ if ((flags & MOD_PROP_ACTIVE) != MOD_PROP_ACTIVE && (flags & MOD_PROP_DEFAULT) != MOD_PROP_DEFAULT && (flags & MOD_PROP_POSSIBLE) != MOD_PROP_POSSIBLE && (flags & MOD_PROP_PERM) != MOD_PROP_PERM) return (B_FALSE); } return (B_TRUE); } /* * process the SIOC{SET|GET}PROP ioctl's */ /* ARGSUSED */ static void ip_sioctl_getsetprop(queue_t *q, mblk_t *mp) { struct iocblk *iocp = (struct iocblk *)mp->b_rptr; mblk_t *mp1 = mp->b_cont; mod_ioc_prop_t *pioc; mod_prop_info_t *ptbl = NULL, *pinfo = NULL; ip_stack_t *ipst; icmp_stack_t *is; tcp_stack_t *tcps; sctp_stack_t *sctps; udp_stack_t *us; netstack_t *stack; void *cbarg; cred_t *cr; boolean_t set; int err; ASSERT(q->q_next == NULL); ASSERT(CONN_Q(q)); if (!getset_ioctl_checks(mp)) { miocnak(q, mp, 0, EINVAL); return; } ipst = CONNQ_TO_IPST(q); stack = ipst->ips_netstack; pioc = (mod_ioc_prop_t *)mp1->b_rptr; switch (pioc->mpr_proto) { case MOD_PROTO_IP: case MOD_PROTO_IPV4: case MOD_PROTO_IPV6: ptbl = ipst->ips_propinfo_tbl; cbarg = ipst; break; case MOD_PROTO_RAWIP: is = stack->netstack_icmp; ptbl = is->is_propinfo_tbl; cbarg = is; break; case MOD_PROTO_TCP: tcps = stack->netstack_tcp; ptbl = tcps->tcps_propinfo_tbl; cbarg = tcps; break; case MOD_PROTO_UDP: us = stack->netstack_udp; ptbl = us->us_propinfo_tbl; cbarg = us; break; case MOD_PROTO_SCTP: sctps = stack->netstack_sctp; ptbl = sctps->sctps_propinfo_tbl; cbarg = sctps; break; default: miocnak(q, mp, 0, EINVAL); return; } /* search for given property in respective protocol propinfo table */ for (pinfo = ptbl; pinfo->mpi_name != NULL; pinfo++) { if (strcmp(pinfo->mpi_name, pioc->mpr_name) == 0 && pinfo->mpi_proto == pioc->mpr_proto) break; } if (pinfo->mpi_name == NULL) { miocnak(q, mp, 0, ENOENT); return; } set = (iocp->ioc_cmd == SIOCSETPROP) ? B_TRUE : B_FALSE; if (set && pinfo->mpi_setf != NULL) { cr = msg_getcred(mp, NULL); if (cr == NULL) cr = iocp->ioc_cr; err = pinfo->mpi_setf(cbarg, cr, pinfo, pioc->mpr_ifname, pioc->mpr_val, pioc->mpr_flags); } else if (!set && pinfo->mpi_getf != NULL) { err = pinfo->mpi_getf(cbarg, pinfo, pioc->mpr_ifname, pioc->mpr_val, pioc->mpr_valsize, pioc->mpr_flags); } else { err = EPERM; } if (err != 0) { miocnak(q, mp, 0, err); } else { if (set) miocack(q, mp, 0, 0); else /* For get, we need to return back the data */ miocack(q, mp, iocp->ioc_count, 0); } } /* * process the legacy ND_GET, ND_SET ioctl just for {ip|ip6}_forwarding * as several routing daemons have unfortunately used this 'unpublished' * but well-known ioctls. */ /* ARGSUSED */ static void ip_process_legacy_nddprop(queue_t *q, mblk_t *mp) { struct iocblk *iocp = (struct iocblk *)mp->b_rptr; mblk_t *mp1 = mp->b_cont; char *pname, *pval, *buf; uint_t bufsize, proto; mod_prop_info_t *ptbl = NULL, *pinfo = NULL; ip_stack_t *ipst; int err = 0; ASSERT(CONN_Q(q)); ipst = CONNQ_TO_IPST(q); if (iocp->ioc_count == 0 || mp1 == NULL) { miocnak(q, mp, 0, EINVAL); return; } mp1->b_datap->db_lim[-1] = '\0'; /* Force null termination */ pval = buf = pname = (char *)mp1->b_rptr; bufsize = MBLKL(mp1); if (strcmp(pname, "ip_forwarding") == 0) { pname = "forwarding"; proto = MOD_PROTO_IPV4; } else if (strcmp(pname, "ip6_forwarding") == 0) { pname = "forwarding"; proto = MOD_PROTO_IPV6; } else { miocnak(q, mp, 0, EINVAL); return; } ptbl = ipst->ips_propinfo_tbl; for (pinfo = ptbl; pinfo->mpi_name != NULL; pinfo++) { if (strcmp(pinfo->mpi_name, pname) == 0 && pinfo->mpi_proto == proto) break; } ASSERT(pinfo->mpi_name != NULL); switch (iocp->ioc_cmd) { case ND_GET: if ((err = pinfo->mpi_getf(ipst, pinfo, NULL, buf, bufsize, 0)) == 0) { miocack(q, mp, iocp->ioc_count, 0); return; } break; case ND_SET: /* * buffer will have property name and value in the following * format, * '\0''\0', extract them; */ while (*pval++) noop; if (!*pval || pval >= (char *)mp1->b_wptr) { err = EINVAL; } else if ((err = pinfo->mpi_setf(ipst, NULL, pinfo, NULL, pval, 0)) == 0) { miocack(q, mp, 0, 0); return; } break; default: err = EINVAL; break; } miocnak(q, mp, 0, err); } /* * Wrapper function for resuming deferred ioctl processing * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. */ /* ARGSUSED */ void ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) { ip_sioctl_copyin_setup(q, mp); } /* * ip_sioctl_copyin_setup is called by ip_wput_nondata with any M_IOCTL message * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle * in either I_STR or TRANSPARENT form, using the mi_copy facility. * We establish here the size of the block to be copied in. mi_copyin * arranges for this to happen, an processing continues in ip_wput_nondata with * an M_IOCDATA message. */ void ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) { int copyin_size; struct iocblk *iocp = (struct iocblk *)mp->b_rptr; ip_ioctl_cmd_t *ipip; cred_t *cr; ip_stack_t *ipst; if (CONN_Q(q)) ipst = CONNQ_TO_IPST(q); else ipst = ILLQ_TO_IPST(q); ipip = ip_sioctl_lookup(iocp->ioc_cmd); if (ipip == NULL) { /* * The ioctl is not one we understand or own. * Pass it along to be processed down stream, * if this is a module instance of IP, else nak * the ioctl. */ if (q->q_next == NULL) { goto nak; } else { putnext(q, mp); return; } } /* * If this is deferred, then we will do all the checks when we * come back. */ if ((iocp->ioc_cmd == SIOCGDSTINFO || iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) { ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); return; } /* * Only allow a very small subset of IP ioctls on this stream if * IP is a module and not a driver. Allowing ioctls to be processed * in this case may cause assert failures or data corruption. * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few * ioctls allowed on an IP module stream, after which this stream * normally becomes a multiplexor (at which time the stream head * will fail all ioctls). */ if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { goto nak; } /* Make sure we have ioctl data to process. */ if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) goto nak; /* * Prefer dblk credential over ioctl credential; some synthesized * ioctls have kcred set because there's no way to crhold() * a credential in some contexts. (ioc_cr is not crfree() by * the framework; the caller of ioctl needs to hold the reference * for the duration of the call). */ cr = msg_getcred(mp, NULL); if (cr == NULL) cr = iocp->ioc_cr; /* Make sure normal users don't send down privileged ioctls */ if ((ipip->ipi_flags & IPI_PRIV) && (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) { /* We checked the privilege earlier but log it here */ miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE)); return; } /* * The ioctl command tables can only encode fixed length * ioctl data. If the length is variable, the table will * encode the length as zero. Such special cases are handled * below in the switch. */ if (ipip->ipi_copyin_size != 0) { mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); return; } switch (iocp->ioc_cmd) { case O_SIOCGIFCONF: case SIOCGIFCONF: /* * This IOCTL is hilarious. See comments in * ip_sioctl_get_ifconf for the story. */ if (iocp->ioc_count == TRANSPARENT) copyin_size = SIZEOF_STRUCT(ifconf, iocp->ioc_flag); else copyin_size = iocp->ioc_count; mi_copyin(q, mp, NULL, copyin_size); return; case O_SIOCGLIFCONF: case SIOCGLIFCONF: copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); mi_copyin(q, mp, NULL, copyin_size); return; case SIOCGLIFSRCOF: copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); mi_copyin(q, mp, NULL, copyin_size); return; case SIOCGIP6ADDRPOLICY: ip_sioctl_ip6addrpolicy(q, mp); ip6_asp_table_refrele(ipst); return; case SIOCSIP6ADDRPOLICY: ip_sioctl_ip6addrpolicy(q, mp); return; case SIOCGDSTINFO: ip_sioctl_dstinfo(q, mp); ip6_asp_table_refrele(ipst); return; case ND_SET: case ND_GET: ip_process_legacy_nddprop(q, mp); return; case SIOCSETPROP: case SIOCGETPROP: ip_sioctl_getsetprop(q, mp); return; case I_PLINK: case I_PUNLINK: case I_LINK: case I_UNLINK: /* * We treat non-persistent link similarly as the persistent * link case, in terms of plumbing/unplumbing, as well as * dynamic re-plumbing events indicator. See comments * in ip_sioctl_plink() for more. * * Request can be enqueued in the 'ipsq' while waiting * to become exclusive. So bump up the conn ref. */ if (CONN_Q(q)) { CONN_INC_REF(Q_TO_CONN(q)); CONN_INC_IOCTLREF(Q_TO_CONN(q)) } ip_sioctl_plink(NULL, q, mp, NULL); return; case IP_IOCTL: ip_wput_ioctl(q, mp); return; case SIOCILB: /* The ioctl length varies depending on the ILB command. */ copyin_size = iocp->ioc_count; if (copyin_size < sizeof (ilb_cmd_t)) goto nak; mi_copyin(q, mp, NULL, copyin_size); return; default: cmn_err(CE_PANIC, "should not happen "); } nak: if (mp->b_cont != NULL) { freemsg(mp->b_cont); mp->b_cont = NULL; } iocp->ioc_error = EINVAL; mp->b_datap->db_type = M_IOCNAK; iocp->ioc_count = 0; qreply(q, mp); } static void ip_sioctl_garp_reply(mblk_t *mp, ill_t *ill, void *hwaddr, int flags) { struct arpreq *ar; struct xarpreq *xar; mblk_t *tmp; struct iocblk *iocp; int x_arp_ioctl = B_FALSE; int *flagsp; char *storage = NULL; ASSERT(ill != NULL); iocp = (struct iocblk *)mp->b_rptr; ASSERT(iocp->ioc_cmd == SIOCGXARP || iocp->ioc_cmd == SIOCGARP); tmp = (mp->b_cont)->b_cont; /* xarpreq/arpreq */ if ((iocp->ioc_cmd == SIOCGXARP) || (iocp->ioc_cmd == SIOCSXARP)) { x_arp_ioctl = B_TRUE; xar = (struct xarpreq *)tmp->b_rptr; flagsp = &xar->xarp_flags; storage = xar->xarp_ha.sdl_data; } else { ar = (struct arpreq *)tmp->b_rptr; flagsp = &ar->arp_flags; storage = ar->arp_ha.sa_data; } /* * We're done if this is not an SIOCG{X}ARP */ if (x_arp_ioctl) { storage += ill_xarp_info(&xar->xarp_ha, ill); if ((ill->ill_phys_addr_length + ill->ill_name_length) > sizeof (xar->xarp_ha.sdl_data)) { iocp->ioc_error = EINVAL; return; } } *flagsp = ATF_INUSE; /* * If /sbin/arp told us we are the authority using the "permanent" * flag, or if this is one of my addresses print "permanent" * in the /sbin/arp output. */ if ((flags & NCE_F_MYADDR) || (flags & NCE_F_AUTHORITY)) *flagsp |= ATF_AUTHORITY; if (flags & NCE_F_NONUD) *flagsp |= ATF_PERM; /* not subject to aging */ if (flags & NCE_F_PUBLISH) *flagsp |= ATF_PUBL; if (hwaddr != NULL) { *flagsp |= ATF_COM; bcopy((char *)hwaddr, storage, ill->ill_phys_addr_length); } } /* * Create a new logical interface. If ipif_id is zero (i.e. not a logical * interface) create the next available logical interface for this * physical interface. * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an * ipif with the specified name. * * If the address family is not AF_UNSPEC then set the address as well. * * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. * * Executed as a writer on the ill. * So no lock is needed to traverse the ipif chain, or examine the * phyint flags. */ /* ARGSUSED */ int ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) { mblk_t *mp1; struct lifreq *lifr; boolean_t isv6; boolean_t exists; char *name; char *endp; char *cp; int namelen; ipif_t *ipif; long id; ipsq_t *ipsq; ill_t *ill; sin_t *sin; int err = 0; boolean_t found_sep = B_FALSE; conn_t *connp; zoneid_t zoneid; ip_stack_t *ipst = CONNQ_TO_IPST(q); ASSERT(q->q_next == NULL); ip1dbg(("ip_sioctl_addif\n")); /* Existence of mp1 has been checked in ip_wput_nondata */ mp1 = mp->b_cont->b_cont; /* * Null terminate the string to protect against buffer * overrun. String was generated by user code and may not * be trusted. */ lifr = (struct lifreq *)mp1->b_rptr; lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; name = lifr->lifr_name; ASSERT(CONN_Q(q)); connp = Q_TO_CONN(q); isv6 = (connp->conn_family == AF_INET6); zoneid = connp->conn_zoneid; namelen = mi_strlen(name); if (namelen == 0) return (EINVAL); exists = B_FALSE; if ((namelen + 1 == sizeof (ipif_loopback_name)) && (mi_strcmp(name, ipif_loopback_name) == 0)) { /* * Allow creating lo0 using SIOCLIFADDIF. * can't be any other writer thread. So can pass null below * for the last 4 args to ipif_lookup_name. */ ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE, &exists, isv6, zoneid, ipst); /* Prevent any further action */ if (ipif == NULL) { return (ENOBUFS); } else if (!exists) { /* We created the ipif now and as writer */ ipif_refrele(ipif); return (0); } else { ill = ipif->ipif_ill; ill_refhold(ill); ipif_refrele(ipif); } } else { /* Look for a colon in the name. */ endp = &name[namelen]; for (cp = endp; --cp > name; ) { if (*cp == IPIF_SEPARATOR_CHAR) { found_sep = B_TRUE; /* * Reject any non-decimal aliases for plumbing * of logical interfaces. Aliases with leading * zeroes are also rejected as they introduce * ambiguity in the naming of the interfaces. * Comparing with "0" takes care of all such * cases. */ if ((strncmp("0", cp+1, 1)) == 0) return (EINVAL); if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || id <= 0 || *endp != '\0') { return (EINVAL); } *cp = '\0'; break; } } ill = ill_lookup_on_name(name, B_FALSE, isv6, NULL, ipst); if (found_sep) *cp = IPIF_SEPARATOR_CHAR; if (ill == NULL) return (ENXIO); } ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, B_TRUE); /* * Release the refhold due to the lookup, now that we are excl * or we are just returning */ ill_refrele(ill); if (ipsq == NULL) return (EINPROGRESS); /* We are now exclusive on the IPSQ */ ASSERT(IAM_WRITER_ILL(ill)); if (found_sep) { /* Now see if there is an IPIF with this unit number. */ for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { if (ipif->ipif_id == id) { err = EEXIST; goto done; } } } /* * We use IRE_LOCAL for lo0:1 etc. for "receive only" use * of lo0. Plumbing for lo0:0 happens in ipif_lookup_on_name() * instead. */ if ((ipif = ipif_allocate(ill, found_sep ? id : -1, IRE_LOCAL, B_TRUE, B_TRUE, &err)) == NULL) { goto done; } /* Return created name with ioctl */ (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, IPIF_SEPARATOR_CHAR, ipif->ipif_id); ip1dbg(("created %s\n", lifr->lifr_name)); /* Set address */ sin = (sin_t *)&lifr->lifr_addr; if (sin->sin_family != AF_UNSPEC) { err = ip_sioctl_addr(ipif, sin, q, mp, &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); } done: ipsq_exit(ipsq); return (err); } /* * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical * interface) delete it based on the IP address (on this physical interface). * Otherwise delete it based on the ipif_id. * Also, special handling to allow a removeif of lo0. */ /* ARGSUSED */ int ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) { conn_t *connp; ill_t *ill = ipif->ipif_ill; boolean_t success; ip_stack_t *ipst; ipst = CONNQ_TO_IPST(q); ASSERT(q->q_next == NULL); ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", ill->ill_name, ipif->ipif_id, (void *)ipif)); ASSERT(IAM_WRITER_IPIF(ipif)); connp = Q_TO_CONN(q); /* * Special case for unplumbing lo0 (the loopback physical interface). * If unplumbing lo0, the incoming address structure has been * initialized to all zeros. When unplumbing lo0, all its logical * interfaces must be removed too. * * Note that this interface may be called to remove a specific * loopback logical interface (eg, lo0:1). But in that case * ipif->ipif_id != 0 so that the code path for that case is the * same as any other interface (meaning it skips the code directly * below). */ if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) { if (sin->sin_family == AF_UNSPEC && (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { /* * Mark it condemned. No new ref. will be made to ill. */ mutex_enter(&ill->ill_lock); ill->ill_state_flags |= ILL_CONDEMNED; for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { ipif->ipif_state_flags |= IPIF_CONDEMNED; } mutex_exit(&ill->ill_lock); ipif = ill->ill_ipif; /* unplumb the loopback interface */ ill_delete(ill); mutex_enter(&connp->conn_lock); mutex_enter(&ill->ill_lock); /* Are any references to this ill active */ if (ill_is_freeable(ill)) { mutex_exit(&ill->ill_lock); mutex_exit(&connp->conn_lock); ill_delete_tail(ill); mi_free(ill); return (0); } success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, ILL_FREE); mutex_exit(&connp->conn_lock); mutex_exit(&ill->ill_lock); if (success) return (EINPROGRESS); else return (EINTR); } } if (ipif->ipif_id == 0) { ipsq_t *ipsq; /* Find based on address */ if (ipif->ipif_isv6) { sin6_t *sin6; if (sin->sin_family != AF_INET6) return (EAFNOSUPPORT); sin6 = (sin6_t *)sin; /* We are a writer, so we should be able to lookup */ ipif = ipif_lookup_addr_exact_v6(&sin6->sin6_addr, ill, ipst); } else { if (sin->sin_family != AF_INET) return (EAFNOSUPPORT); /* We are a writer, so we should be able to lookup */ ipif = ipif_lookup_addr_exact(sin->sin_addr.s_addr, ill, ipst); } if (ipif == NULL) { return (EADDRNOTAVAIL); } /* * It is possible for a user to send an SIOCLIFREMOVEIF with * lifr_name of the physical interface but with an ip address * lifr_addr of a logical interface plumbed over it. * So update ipx_current_ipif now that ipif points to the * correct one. */ ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; ipsq->ipsq_xop->ipx_current_ipif = ipif; /* This is a writer */ ipif_refrele(ipif); } /* * Can not delete instance zero since it is tied to the ill. */ if (ipif->ipif_id == 0) return (EBUSY); mutex_enter(&ill->ill_lock); ipif->ipif_state_flags |= IPIF_CONDEMNED; mutex_exit(&ill->ill_lock); ipif_free(ipif); mutex_enter(&connp->conn_lock); mutex_enter(&ill->ill_lock); /* Are any references to this ipif active */ if (ipif_is_freeable(ipif)) { mutex_exit(&ill->ill_lock); mutex_exit(&connp->conn_lock); ipif_non_duplicate(ipif); (void) ipif_down_tail(ipif); ipif_free_tail(ipif); /* frees ipif */ return (0); } success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, IPIF_FREE); mutex_exit(&ill->ill_lock); mutex_exit(&connp->conn_lock); if (success) return (EINPROGRESS); else return (EINTR); } /* * Restart the removeif ioctl. The refcnt has gone down to 0. * The ipif is already condemned. So can't find it thru lookups. */ /* ARGSUSED */ int ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) { ill_t *ill = ipif->ipif_ill; ASSERT(IAM_WRITER_IPIF(ipif)); ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", ill->ill_name, ipif->ipif_id, (void *)ipif)); if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) { ASSERT(ill->ill_state_flags & ILL_CONDEMNED); ill_delete_tail(ill); mi_free(ill); return (0); } ipif_non_duplicate(ipif); (void) ipif_down_tail(ipif); ipif_free_tail(ipif); return (0); } /* * Set the local interface address using the given prefix and ill_token. */ /* ARGSUSED */ int ip_sioctl_prefix(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) { int err; in6_addr_t v6addr; sin6_t *sin6; ill_t *ill; int i; ip1dbg(("ip_sioctl_prefix(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); ASSERT(IAM_WRITER_IPIF(ipif)); if (!ipif->ipif_isv6) return (EINVAL); if (sin->sin_family != AF_INET6) return (EAFNOSUPPORT); sin6 = (sin6_t *)sin; v6addr = sin6->sin6_addr; ill = ipif->ipif_ill; if (IN6_IS_ADDR_UNSPECIFIED(&v6addr) || IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) return (EADDRNOTAVAIL); for (i = 0; i < 4; i++) sin6->sin6_addr.s6_addr32[i] |= ill->ill_token.s6_addr32[i]; err = ip_sioctl_addr(ipif, sin, q, mp, &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], dummy_ifreq); return (err); } /* * Restart entry point to restart the address set operation after the * refcounts have dropped to zero. */ /* ARGSUSED */ int ip_sioctl_prefix_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) { ip1dbg(("ip_sioctl_prefix_restart(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); return (ip_sioctl_addr_restart(ipif, sin, q, mp, ipip, ifreq)); } /* * Set the local interface address. * Allow an address of all zero when the interface is down. */ /* ARGSUSED */ int ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) { int err = 0; in6_addr_t v6addr; boolean_t need_up = B_FALSE; ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); ASSERT(IAM_WRITER_IPIF(ipif)); if (ipif->ipif_isv6) { sin6_t *sin6; ill_t *ill; phyint_t *phyi; if (sin->sin_family != AF_INET6) return (EAFNOSUPPORT); sin6 = (sin6_t *)sin; v6addr = sin6->sin6_addr; ill = ipif->ipif_ill; phyi = ill->ill_phyint; /* * Enforce that true multicast interfaces have a link-local * address for logical unit 0. * * However for those ipif's for which link-local address was * not created by default, also allow setting :: as the address. * This scenario would arise, when we delete an address on ipif * with logical unit 0, we would want to set :: as the address. */ if (ipif->ipif_id == 0 && (ill->ill_flags & ILLF_MULTICAST) && !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && !(phyi->phyint_flags & (PHYI_LOOPBACK)) && !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { /* * if default link-local was not created by kernel for * this ill, allow setting :: as the address on ipif:0. */ if (ill->ill_flags & ILLF_NOLINKLOCAL) { if (!IN6_IS_ADDR_UNSPECIFIED(&v6addr)) return (EADDRNOTAVAIL); } else { return (EADDRNOTAVAIL); } } /* * up interfaces shouldn't have the unspecified address * unless they also have the IPIF_NOLOCAL flags set and * have a subnet assigned. */ if ((ipif->ipif_flags & IPIF_UP) && IN6_IS_ADDR_UNSPECIFIED(&v6addr) && (!(ipif->ipif_flags & IPIF_NOLOCAL) || IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { return (EADDRNOTAVAIL); } if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) return (EADDRNOTAVAIL); } else { ipaddr_t addr; if (sin->sin_family != AF_INET) return (EAFNOSUPPORT); addr = sin->sin_addr.s_addr; /* Allow INADDR_ANY as the local address. */ if (addr != INADDR_ANY && !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) return (EADDRNOTAVAIL); IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); } /* * Even if there is no change we redo things just to rerun * ipif_set_default. */ if (ipif->ipif_flags & IPIF_UP) { /* * Setting a new local address, make sure * we have net and subnet bcast ire's for * the old address if we need them. */ /* * If the interface is already marked up, * we call ipif_down which will take care * of ditching any IREs that have been set * up based on the old interface address. */ err = ipif_logical_down(ipif, q, mp); if (err == EINPROGRESS) return (err); (void) ipif_down_tail(ipif); need_up = 1; } err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); return (err); } int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, boolean_t need_up) { in6_addr_t v6addr; in6_addr_t ov6addr; ipaddr_t addr; sin6_t *sin6; int sinlen; int err = 0; ill_t *ill = ipif->ipif_ill; boolean_t need_dl_down; boolean_t need_arp_down; struct iocblk *iocp; iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", ill->ill_name, ipif->ipif_id, (void *)ipif)); ASSERT(IAM_WRITER_IPIF(ipif)); /* Must cancel any pending timer before taking the ill_lock */ if (ipif->ipif_recovery_id != 0) (void) untimeout(ipif->ipif_recovery_id); ipif->ipif_recovery_id = 0; if (ipif->ipif_isv6) { sin6 = (sin6_t *)sin; v6addr = sin6->sin6_addr; sinlen = sizeof (struct sockaddr_in6); } else { addr = sin->sin_addr.s_addr; IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); sinlen = sizeof (struct sockaddr_in); } mutex_enter(&ill->ill_lock); ov6addr = ipif->ipif_v6lcl_addr; ipif->ipif_v6lcl_addr = v6addr; sctp_update_ipif_addr(ipif, ov6addr); ipif->ipif_addr_ready = 0; ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT); /* * If the interface was previously marked as a duplicate, then since * we've now got a "new" address, it should no longer be considered a * duplicate -- even if the "new" address is the same as the old one. * Note that if all ipifs are down, we may have a pending ARP down * event to handle. This is because we want to recover from duplicates * and thus delay tearing down ARP until the duplicates have been * removed or disabled. */ need_dl_down = need_arp_down = B_FALSE; if (ipif->ipif_flags & IPIF_DUPLICATE) { need_arp_down = !need_up; ipif->ipif_flags &= ~IPIF_DUPLICATE; if (--ill->ill_ipif_dup_count == 0 && !need_up && ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { need_dl_down = B_TRUE; } } ipif_set_default(ipif); /* * If we've just manually set the IPv6 link-local address (0th ipif), * tag the ill so that future updates to the interface ID don't result * in this address getting automatically reconfigured from under the * administrator. */ if (ipif->ipif_isv6 && ipif->ipif_id == 0) { if (iocp == NULL || (iocp->ioc_cmd == SIOCSLIFADDR && !IN6_IS_ADDR_UNSPECIFIED(&v6addr))) ill->ill_manual_linklocal = 1; } /* * When publishing an interface address change event, we only notify * the event listeners of the new address. It is assumed that if they * actively care about the addresses assigned that they will have * already discovered the previous address assigned (if there was one.) * * Don't attach nic event message for SIOCLIFADDIF ioctl. */ if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { ill_nic_event_dispatch(ill, MAP_IPIF_ID(ipif->ipif_id), NE_ADDRESS_CHANGE, sin, sinlen); } mutex_exit(&ill->ill_lock); if (need_up) { /* * Now bring the interface back up. If this * is the only IPIF for the ILL, ipif_up * will have to re-bind to the device, so * we may get back EINPROGRESS, in which * case, this IOCTL will get completed in * ip_rput_dlpi when we see the DL_BIND_ACK. */ err = ipif_up(ipif, q, mp); } else { /* Perhaps ilgs should use this ill */ update_conn_ill(NULL, ill->ill_ipst); } if (need_dl_down) ill_dl_down(ill); if (need_arp_down && !ill->ill_isv6) (void) ipif_arp_down(ipif); /* * The default multicast interface might have changed (for * instance if the IPv6 scope of the address changed) */ ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6); return (err); } /* * Restart entry point to restart the address set operation after the * refcounts have dropped to zero. */ /* ARGSUSED */ int ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) { ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); ASSERT(IAM_WRITER_IPIF(ipif)); (void) ipif_down_tail(ipif); return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); } /* ARGSUSED */ int ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *if_req) { sin6_t *sin6 = (struct sockaddr_in6 *)sin; struct lifreq *lifr = (struct lifreq *)if_req; ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); /* * The net mask and address can't change since we have a * reference to the ipif. So no lock is necessary. */ if (ipif->ipif_isv6) { *sin6 = sin6_null; sin6->sin6_family = AF_INET6; sin6->sin6_addr = ipif->ipif_v6lcl_addr; ASSERT(ipip->ipi_cmd_type == LIF_CMD); lifr->lifr_addrlen = ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); } else { *sin = sin_null; sin->sin_family = AF_INET; sin->sin_addr.s_addr = ipif->ipif_lcl_addr; if (ipip->ipi_cmd_type == LIF_CMD) { lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); } } return (0); } /* * Set the destination address for a pt-pt interface. */ /* ARGSUSED */ int ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *if_req) { int err = 0; in6_addr_t v6addr; boolean_t need_up = B_FALSE; ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); ASSERT(IAM_WRITER_IPIF(ipif)); if (ipif->ipif_isv6) { sin6_t *sin6; if (sin->sin_family != AF_INET6) return (EAFNOSUPPORT); sin6 = (sin6_t *)sin; v6addr = sin6->sin6_addr; if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) return (EADDRNOTAVAIL); } else { ipaddr_t addr; if (sin->sin_family != AF_INET) return (EAFNOSUPPORT); addr = sin->sin_addr.s_addr; if (addr != INADDR_ANY && !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) { return (EADDRNOTAVAIL); } IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); } if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) return (0); /* No change */ if (ipif->ipif_flags & IPIF_UP) { /* * If the interface is already marked up, * we call ipif_down which will take care * of ditching any IREs that have been set * up based on the old pp dst address. */ err = ipif_logical_down(ipif, q, mp); if (err == EINPROGRESS) return (err); (void) ipif_down_tail(ipif); need_up = B_TRUE; } /* * could return EINPROGRESS. If so ioctl will complete in * ip_rput_dlpi_writer */ err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); return (err); } static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, boolean_t need_up) { in6_addr_t v6addr; ill_t *ill = ipif->ipif_ill; int err = 0; boolean_t need_dl_down; boolean_t need_arp_down; ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, ipif->ipif_id, (void *)ipif)); /* Must cancel any pending timer before taking the ill_lock */ if (ipif->ipif_recovery_id != 0) (void) untimeout(ipif->ipif_recovery_id); ipif->ipif_recovery_id = 0; if (ipif->ipif_isv6) { sin6_t *sin6; sin6 = (sin6_t *)sin; v6addr = sin6->sin6_addr; } else { ipaddr_t addr; addr = sin->sin_addr.s_addr; IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); } mutex_enter(&ill->ill_lock); /* Set point to point destination address. */ if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { /* * Allow this as a means of creating logical * pt-pt interfaces on top of e.g. an Ethernet. * XXX Undocumented HACK for testing. * pt-pt interfaces are created with NUD disabled. */ ipif->ipif_flags |= IPIF_POINTOPOINT; ipif->ipif_flags &= ~IPIF_BROADCAST; if (ipif->ipif_isv6) ill->ill_flags |= ILLF_NONUD; } /* * If the interface was previously marked as a duplicate, then since * we've now got a "new" address, it should no longer be considered a * duplicate -- even if the "new" address is the same as the old one. * Note that if all ipifs are down, we may have a pending ARP down * event to handle. */ need_dl_down = need_arp_down = B_FALSE; if (ipif->ipif_flags & IPIF_DUPLICATE) { need_arp_down = !need_up; ipif->ipif_flags &= ~IPIF_DUPLICATE; if (--ill->ill_ipif_dup_count == 0 && !need_up && ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { need_dl_down = B_TRUE; } } /* * If we've just manually set the IPv6 destination link-local address * (0th ipif), tag the ill so that future updates to the destination * interface ID (as can happen with interfaces over IP tunnels) don't * result in this address getting automatically reconfigured from * under the administrator. */ if (ipif->ipif_isv6 && ipif->ipif_id == 0) ill->ill_manual_dst_linklocal = 1; /* Set the new address. */ ipif->ipif_v6pp_dst_addr = v6addr; /* Make sure subnet tracks pp_dst */ ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; mutex_exit(&ill->ill_lock); if (need_up) { /* * Now bring the interface back up. If this * is the only IPIF for the ILL, ipif_up * will have to re-bind to the device, so * we may get back EINPROGRESS, in which * case, this IOCTL will get completed in * ip_rput_dlpi when we see the DL_BIND_ACK. */ err = ipif_up(ipif, q, mp); } if (need_dl_down) ill_dl_down(ill); if (need_arp_down && !ipif->ipif_isv6) (void) ipif_arp_down(ipif); return (err); } /* * Restart entry point to restart the dstaddress set operation after the * refcounts have dropped to zero. */ /* ARGSUSED */ int ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) { ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); (void) ipif_down_tail(ipif); return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); } /* ARGSUSED */ int ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *if_req) { sin6_t *sin6 = (struct sockaddr_in6 *)sin; ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); /* * Get point to point destination address. The addresses can't * change since we hold a reference to the ipif. */ if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) return (EADDRNOTAVAIL); if (ipif->ipif_isv6) { ASSERT(ipip->ipi_cmd_type == LIF_CMD); *sin6 = sin6_null; sin6->sin6_family = AF_INET6; sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; } else { *sin = sin_null; sin->sin_family = AF_INET; sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; } return (0); } /* * Check which flags will change by the given flags being set * silently ignore flags which userland is not allowed to control. * (Because these flags may change between SIOCGLIFFLAGS and * SIOCSLIFFLAGS, and that's outside of userland's control, * we need to silently ignore them rather than fail.) */ static void ip_sioctl_flags_onoff(ipif_t *ipif, uint64_t flags, uint64_t *onp, uint64_t *offp) { ill_t *ill = ipif->ipif_ill; phyint_t *phyi = ill->ill_phyint; uint64_t cantchange_flags, intf_flags; uint64_t turn_on, turn_off; intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; cantchange_flags = IFF_CANTCHANGE; if (IS_IPMP(ill)) cantchange_flags |= IFF_IPMP_CANTCHANGE; turn_on = (flags ^ intf_flags) & ~cantchange_flags; turn_off = intf_flags & turn_on; turn_on ^= turn_off; *onp = turn_on; *offp = turn_off; } /* * Set interface flags. Many flags require special handling (e.g., * bringing the interface down); see below for details. * * NOTE : We really don't enforce that ipif_id zero should be used * for setting any flags other than IFF_LOGINT_FLAGS. This * is because applications generally does SICGLIFFLAGS and * ORs in the new flags (that affects the logical) and does a * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the * flags that will be turned on is correct with respect to * ipif_id 0. For backward compatibility reasons, it is not done. */ /* ARGSUSED */ int ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *if_req) { uint64_t turn_on; uint64_t turn_off; int err = 0; phyint_t *phyi; ill_t *ill; conn_t *connp; uint64_t intf_flags; boolean_t phyint_flags_modified = B_FALSE; uint64_t flags; struct ifreq *ifr; struct lifreq *lifr; boolean_t set_linklocal = B_FALSE; ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); ASSERT(IAM_WRITER_IPIF(ipif)); ill = ipif->ipif_ill; phyi = ill->ill_phyint; if (ipip->ipi_cmd_type == IF_CMD) { ifr = (struct ifreq *)if_req; flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); } else { lifr = (struct lifreq *)if_req; flags = lifr->lifr_flags; } intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; /* * Have the flags been set correctly until now? */ ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); /* * Compare the new flags to the old, and partition * into those coming on and those going off. * For the 16 bit command keep the bits above bit 16 unchanged. */ if (ipip->ipi_cmd == SIOCSIFFLAGS) flags |= intf_flags & ~0xFFFF; /* * Explicitly fail attempts to change flags that are always invalid on * an IPMP meta-interface. */ if (IS_IPMP(ill) && ((flags ^ intf_flags) & IFF_IPMP_INVALID)) return (EINVAL); ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); if ((turn_on|turn_off) == 0) return (0); /* No change */ /* * All test addresses must be IFF_DEPRECATED (to ensure source address * selection avoids them) -- so force IFF_DEPRECATED on, and do not * allow it to be turned off. */ if ((turn_off & (IFF_DEPRECATED|IFF_NOFAILOVER)) == IFF_DEPRECATED && (turn_on|intf_flags) & IFF_NOFAILOVER) return (EINVAL); if ((connp = Q_TO_CONN(q)) == NULL) return (EINVAL); /* * Only vrrp control socket is allowed to change IFF_UP and * IFF_NOACCEPT flags when IFF_VRRP is set. */ if ((intf_flags & IFF_VRRP) && ((turn_off | turn_on) & IFF_UP)) { if (!connp->conn_isvrrp) return (EINVAL); } /* * The IFF_NOACCEPT flag can only be set on an IFF_VRRP IP address by * VRRP control socket. */ if ((turn_off | turn_on) & IFF_NOACCEPT) { if (!connp->conn_isvrrp || !(intf_flags & IFF_VRRP)) return (EINVAL); } if (turn_on & IFF_NOFAILOVER) { turn_on |= IFF_DEPRECATED; flags |= IFF_DEPRECATED; } /* * On underlying interfaces, only allow applications to manage test * addresses -- otherwise, they may get confused when the address * moves as part of being brought up. Likewise, prevent an * application-managed test address from being converted to a data * address. To prevent migration of administratively up addresses in * the kernel, we don't allow them to be converted either. */ if (IS_UNDER_IPMP(ill)) { const uint64_t appflags = IFF_DHCPRUNNING | IFF_ADDRCONF; if ((turn_on & appflags) && !(flags & IFF_NOFAILOVER)) return (EINVAL); if ((turn_off & IFF_NOFAILOVER) && (flags & (appflags | IFF_UP | IFF_DUPLICATE))) return (EINVAL); } /* * Only allow IFF_TEMPORARY flag to be set on * IPv6 interfaces. */ if ((turn_on & IFF_TEMPORARY) && !(ipif->ipif_isv6)) return (EINVAL); /* * cannot turn off IFF_NOXMIT on VNI interfaces. */ if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill)) return (EINVAL); /* * Don't allow the IFF_ROUTER flag to be turned on on loopback * interfaces. It makes no sense in that context. */ if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) return (EINVAL); /* * For IPv6 ipif_id 0, don't allow the interface to be up without * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. * If the link local address isn't set, and can be set, it will get * set later on in this function. */ if (ipif->ipif_id == 0 && ipif->ipif_isv6 && (flags & IFF_UP) && !(flags & (IFF_NOLOCAL|IFF_ANYCAST)) && IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { if (ipif_cant_setlinklocal(ipif)) return (EINVAL); set_linklocal = B_TRUE; } /* * If we modify physical interface flags, we'll potentially need to * send up two routing socket messages for the changes (one for the * IPv4 ill, and another for the IPv6 ill). Note that here. */ if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) phyint_flags_modified = B_TRUE; /* * All functioning PHYI_STANDBY interfaces start life PHYI_INACTIVE * (otherwise, we'd immediately use them, defeating standby). Also, * since PHYI_INACTIVE has a separate meaning when PHYI_STANDBY is not * set, don't allow PHYI_STANDBY to be set if PHYI_INACTIVE is already * set, and clear PHYI_INACTIVE if PHYI_STANDBY is being cleared. We * also don't allow PHYI_STANDBY if VNI is enabled since its semantics * will not be honored. */ if (turn_on & PHYI_STANDBY) { /* * No need to grab ill_g_usesrc_lock here; see the * synchronization notes in ip.c. */ if (ill->ill_usesrc_grp_next != NULL || intf_flags & PHYI_INACTIVE) return (EINVAL); if (!(flags & PHYI_FAILED)) { flags |= PHYI_INACTIVE; turn_on |= PHYI_INACTIVE; } } if (turn_off & PHYI_STANDBY) { flags &= ~PHYI_INACTIVE; turn_off |= PHYI_INACTIVE; } /* * PHYI_FAILED and PHYI_INACTIVE are mutually exclusive; fail if both * would end up on. */ if ((flags & (PHYI_FAILED | PHYI_INACTIVE)) == (PHYI_FAILED | PHYI_INACTIVE)) return (EINVAL); /* * If ILLF_ROUTER changes, we need to change the ip forwarding * status of the interface. */ if ((turn_on | turn_off) & ILLF_ROUTER) (void) ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0)); /* * If the interface is not UP and we are not going to * bring it UP, record the flags and return. When the * interface comes UP later, the right actions will be * taken. */ if (!(ipif->ipif_flags & IPIF_UP) && !(turn_on & IPIF_UP)) { /* Record new flags in their respective places. */ mutex_enter(&ill->ill_lock); mutex_enter(&ill->ill_phyint->phyint_lock); ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); mutex_exit(&ill->ill_lock); mutex_exit(&ill->ill_phyint->phyint_lock); /* * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the * same to the kernel: if any of them has been set by * userland, the interface cannot be used for data traffic. */ if ((turn_on|turn_off) & (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { ASSERT(!IS_IPMP(ill)); /* * It's possible the ill is part of an "anonymous" * IPMP group rather than a real group. In that case, * there are no other interfaces in the group and thus * no need to call ipmp_phyint_refresh_active(). */ if (IS_UNDER_IPMP(ill)) ipmp_phyint_refresh_active(phyi); } if (phyint_flags_modified) { if (phyi->phyint_illv4 != NULL) { ip_rts_ifmsg(phyi->phyint_illv4-> ill_ipif, RTSQ_DEFAULT); } if (phyi->phyint_illv6 != NULL) { ip_rts_ifmsg(phyi->phyint_illv6-> ill_ipif, RTSQ_DEFAULT); } } /* The default multicast interface might have changed */ ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6); return (0); } else if (set_linklocal) { mutex_enter(&ill->ill_lock); if (set_linklocal) ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; mutex_exit(&ill->ill_lock); } /* * Disallow IPv6 interfaces coming up that have the unspecified address, * or point-to-point interfaces with an unspecified destination. We do * allow the address to be unspecified for IPIF_NOLOCAL interfaces that * have a subnet assigned, which is how in.ndpd currently manages its * onlink prefix list when no addresses are configured with those * prefixes. */ if (ipif->ipif_isv6 && ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || ((ipif->ipif_flags & IPIF_POINTOPOINT) && IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { return (EINVAL); } /* * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination * from being brought up. */ if (!ipif->ipif_isv6 && ((ipif->ipif_flags & IPIF_POINTOPOINT) && ipif->ipif_pp_dst_addr == INADDR_ANY)) { return (EINVAL); } /* * If we are going to change one or more of the flags that are * IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, ILLF_NOARP, * ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, IPIF_PREFERRED, and * IPIF_NOFAILOVER, we will take special action. This is * done by bring the ipif down, changing the flags and bringing * it back up again. For IPIF_NOFAILOVER, the act of bringing it * back up will trigger the address to be moved. * * If we are going to change IFF_NOACCEPT, we need to bring * all the ipifs down then bring them up again. The act of * bringing all the ipifs back up will trigger the local * ires being recreated with "no_accept" set/cleared. * * Note that ILLF_NOACCEPT is always set separately from the * other flags. */ if ((turn_on|turn_off) & (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED| IPIF_NOFAILOVER)) { /* * ipif_down() will ire_delete bcast ire's for the subnet, * while the ire_identical_ref tracks the case of IRE_BROADCAST * entries shared between multiple ipifs on the same subnet. */ if (((ipif->ipif_flags | turn_on) & IPIF_UP) && !(turn_off & IPIF_UP)) { if (ipif->ipif_flags & IPIF_UP) ill->ill_logical_down = 1; turn_on &= ~IPIF_UP; } err = ipif_down(ipif, q, mp); ip1dbg(("ipif_down returns %d err ", err)); if (err == EINPROGRESS) return (err); (void) ipif_down_tail(ipif); } else if ((turn_on|turn_off) & ILLF_NOACCEPT) { /* * If we can quiesce the ill, then continue. If not, then * ip_sioctl_flags_tail() will be called from * ipif_ill_refrele_tail(). */ ill_down_ipifs(ill, B_TRUE); mutex_enter(&connp->conn_lock); mutex_enter(&ill->ill_lock); if (!ill_is_quiescent(ill)) { boolean_t success; success = ipsq_pending_mp_add(connp, ill->ill_ipif, q, mp, ILL_DOWN); mutex_exit(&ill->ill_lock); mutex_exit(&connp->conn_lock); return (success ? EINPROGRESS : EINTR); } mutex_exit(&ill->ill_lock); mutex_exit(&connp->conn_lock); } return (ip_sioctl_flags_tail(ipif, flags, q, mp)); } static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp) { ill_t *ill; phyint_t *phyi; uint64_t turn_on, turn_off; boolean_t phyint_flags_modified = B_FALSE; int err = 0; boolean_t set_linklocal = B_FALSE; ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", ipif->ipif_ill->ill_name, ipif->ipif_id)); ASSERT(IAM_WRITER_IPIF(ipif)); ill = ipif->ipif_ill; phyi = ill->ill_phyint; ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); /* * IFF_UP is handled separately. */ turn_on &= ~IFF_UP; turn_off &= ~IFF_UP; if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) phyint_flags_modified = B_TRUE; /* * Now we change the flags. Track current value of * other flags in their respective places. */ mutex_enter(&ill->ill_lock); mutex_enter(&phyi->phyint_lock); ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { set_linklocal = B_TRUE; ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; } mutex_exit(&ill->ill_lock); mutex_exit(&phyi->phyint_lock); if (set_linklocal) (void) ipif_setlinklocal(ipif); /* * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the same to * the kernel: if any of them has been set by userland, the interface * cannot be used for data traffic. */ if ((turn_on|turn_off) & (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { ASSERT(!IS_IPMP(ill)); /* * It's possible the ill is part of an "anonymous" IPMP group * rather than a real group. In that case, there are no other * interfaces in the group and thus no need for us to call * ipmp_phyint_refresh_active(). */ if (IS_UNDER_IPMP(ill)) ipmp_phyint_refresh_active(phyi); } if ((turn_on|turn_off) & ILLF_NOACCEPT) { /* * If the ILLF_NOACCEPT flag is changed, bring up all the * ipifs that were brought down. * * The routing sockets messages are sent as the result * of ill_up_ipifs(), further, SCTP's IPIF list was updated * as well. */ err = ill_up_ipifs(ill, q, mp); } else if ((flags & IFF_UP) && !(ipif->ipif_flags & IPIF_UP)) { /* * XXX ipif_up really does not know whether a phyint flags * was modified or not. So, it sends up information on * only one routing sockets message. As we don't bring up * the interface and also set PHYI_ flags simultaneously * it should be okay. */ err = ipif_up(ipif, q, mp); } else { /* * Make sure routing socket sees all changes to the flags. * ipif_up_done* handles this when we use ipif_up. */ if (phyint_flags_modified) { if (phyi->phyint_illv4 != NULL) { ip_rts_ifmsg(phyi->phyint_illv4-> ill_ipif, RTSQ_DEFAULT); } if (phyi->phyint_illv6 != NULL) { ip_rts_ifmsg(phyi->phyint_illv6-> ill_ipif, RTSQ_DEFAULT); } } else { ip_rts_ifmsg(ipif, RTSQ_DEFAULT); } /* * Update the flags in SCTP's IPIF list, ipif_up() will do * this in need_up case. */ sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); } /* The default multicast interface might have changed */ ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6); return (err); } /* * Restart the flags operation now that the refcounts have dropped to zero. */ /* ARGSUSED */ int ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *if_req) { uint64_t flags; struct ifreq *ifr = if_req; struct lifreq *lifr = if_req; uint64_t turn_on, turn_off; ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); if (ipip->ipi_cmd_type == IF_CMD) { /* cast to uint16_t prevents unwanted sign extension */ flags = (uint16_t)ifr->ifr_flags; } else { flags = lifr->lifr_flags; } /* * If this function call is a result of the ILLF_NOACCEPT flag * change, do not call ipif_down_tail(). See ip_sioctl_flags(). */ ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); if (!((turn_on|turn_off) & ILLF_NOACCEPT)) (void) ipif_down_tail(ipif); return (ip_sioctl_flags_tail(ipif, flags, q, mp)); } /* * Can operate on either a module or a driver queue. */ /* ARGSUSED */ int ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *if_req) { /* * Has the flags been set correctly till now ? */ ill_t *ill = ipif->ipif_ill; phyint_t *phyi = ill->ill_phyint; ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); /* * Need a lock since some flags can be set even when there are * references to the ipif. */ mutex_enter(&ill->ill_lock); if (ipip->ipi_cmd_type == IF_CMD) { struct ifreq *ifr = (struct ifreq *)if_req; /* Get interface flags (low 16 only). */ ifr->ifr_flags = ((ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags) & 0xffff); } else { struct lifreq *lifr = (struct lifreq *)if_req; /* Get interface flags. */ lifr->lifr_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; } mutex_exit(&ill->ill_lock); return (0); } /* * We allow the MTU to be set on an ILL, but not have it be different * for different IPIFs since we don't actually send packets on IPIFs. */ /* ARGSUSED */ int ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *if_req) { int mtu; int ip_min_mtu; struct ifreq *ifr; struct lifreq *lifr; ill_t *ill; ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); if (ipip->ipi_cmd_type == IF_CMD) { ifr = (struct ifreq *)if_req; mtu = ifr->ifr_metric; } else { lifr = (struct lifreq *)if_req; mtu = lifr->lifr_mtu; } /* Only allow for logical unit zero i.e. not on "bge0:17" */ if (ipif->ipif_id != 0) return (EINVAL); ill = ipif->ipif_ill; if (ipif->ipif_isv6) ip_min_mtu = IPV6_MIN_MTU; else ip_min_mtu = IP_MIN_MTU; mutex_enter(&ill->ill_lock); if (mtu > ill->ill_max_frag || mtu < ip_min_mtu) { mutex_exit(&ill->ill_lock); return (EINVAL); } /* * The dce and fragmentation code can handle changes to ill_mtu * concurrent with sending/fragmenting packets. */ ill->ill_mtu = mtu; ill->ill_flags |= ILLF_FIXEDMTU; mutex_exit(&ill->ill_lock); /* * Make sure all dce_generation checks find out * that ill_mtu has changed. */ dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst); /* * Refresh IPMP meta-interface MTU if necessary. */ if (IS_UNDER_IPMP(ill)) ipmp_illgrp_refresh_mtu(ill->ill_grp); /* Update the MTU in SCTP's list */ sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); return (0); } /* Get interface MTU. */ /* ARGSUSED */ int ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *if_req) { struct ifreq *ifr; struct lifreq *lifr; ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); /* * We allow a get on any logical interface even though the set * can only be done on logical unit 0. */ if (ipip->ipi_cmd_type == IF_CMD) { ifr = (struct ifreq *)if_req; ifr->ifr_metric = ipif->ipif_ill->ill_mtu; } else { lifr = (struct lifreq *)if_req; lifr->lifr_mtu = ipif->ipif_ill->ill_mtu; } return (0); } /* Set interface broadcast address. */ /* ARGSUSED2 */ int ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *if_req) { ipaddr_t addr; ire_t *ire; ill_t *ill = ipif->ipif_ill; ip_stack_t *ipst = ill->ill_ipst; ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ill->ill_name, ipif->ipif_id)); ASSERT(IAM_WRITER_IPIF(ipif)); if (!(ipif->ipif_flags & IPIF_BROADCAST)) return (EADDRNOTAVAIL); ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ if (sin->sin_family != AF_INET) return (EAFNOSUPPORT); addr = sin->sin_addr.s_addr; if (ipif->ipif_flags & IPIF_UP) { /* * If we are already up, make sure the new * broadcast address makes sense. If it does, * there should be an IRE for it already. */ ire = ire_ftable_lookup_v4(addr, 0, 0, IRE_BROADCAST, ill, ipif->ipif_zoneid, NULL, (MATCH_IRE_ILL | MATCH_IRE_TYPE), 0, ipst, NULL); if (ire == NULL) { return (EINVAL); } else { ire_refrele(ire); } } /* * Changing the broadcast addr for this ipif. Since the IRE_BROADCAST * needs to already exist we never need to change the set of * IRE_BROADCASTs when we are UP. */ if (addr != ipif->ipif_brd_addr) IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); return (0); } /* Get interface broadcast address. */ /* ARGSUSED */ int ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *if_req) { ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); if (!(ipif->ipif_flags & IPIF_BROADCAST)) return (EADDRNOTAVAIL); /* IPIF_BROADCAST not possible with IPv6 */ ASSERT(!ipif->ipif_isv6); *sin = sin_null; sin->sin_family = AF_INET; sin->sin_addr.s_addr = ipif->ipif_brd_addr; return (0); } /* * This routine is called to handle the SIOCS*IFNETMASK IOCTL. */ /* ARGSUSED */ int ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *if_req) { int err = 0; in6_addr_t v6mask; ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); ASSERT(IAM_WRITER_IPIF(ipif)); if (ipif->ipif_isv6) { sin6_t *sin6; if (sin->sin_family != AF_INET6) return (EAFNOSUPPORT); sin6 = (sin6_t *)sin; v6mask = sin6->sin6_addr; } else { ipaddr_t mask; if (sin->sin_family != AF_INET) return (EAFNOSUPPORT); mask = sin->sin_addr.s_addr; if (!ip_contiguous_mask(ntohl(mask))) return (ENOTSUP); V4MASK_TO_V6(mask, v6mask); } /* * No big deal if the interface isn't already up, or the mask * isn't really changing, or this is pt-pt. */ if (!(ipif->ipif_flags & IPIF_UP) || IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || (ipif->ipif_flags & IPIF_POINTOPOINT)) { ipif->ipif_v6net_mask = v6mask; if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, ipif->ipif_v6subnet); } return (0); } /* * Make sure we have valid net and subnet broadcast ire's * for the old netmask, if needed by other logical interfaces. */ err = ipif_logical_down(ipif, q, mp); if (err == EINPROGRESS) return (err); (void) ipif_down_tail(ipif); err = ip_sioctl_netmask_tail(ipif, sin, q, mp); return (err); } static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) { in6_addr_t v6mask; int err = 0; ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); if (ipif->ipif_isv6) { sin6_t *sin6; sin6 = (sin6_t *)sin; v6mask = sin6->sin6_addr; } else { ipaddr_t mask; mask = sin->sin_addr.s_addr; V4MASK_TO_V6(mask, v6mask); } ipif->ipif_v6net_mask = v6mask; if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, ipif->ipif_v6subnet); } err = ipif_up(ipif, q, mp); if (err == 0 || err == EINPROGRESS) { /* * The interface must be DL_BOUND if this packet has to * go out on the wire. Since we only go through a logical * down and are bound with the driver during an internal * down/up that is satisfied. */ if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { /* Potentially broadcast an address mask reply. */ ipif_mask_reply(ipif); } } return (err); } /* ARGSUSED */ int ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *if_req) { ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); (void) ipif_down_tail(ipif); return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); } /* Get interface net mask. */ /* ARGSUSED */ int ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *if_req) { struct lifreq *lifr = (struct lifreq *)if_req; struct sockaddr_in6 *sin6 = (sin6_t *)sin; ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); /* * net mask can't change since we have a reference to the ipif. */ if (ipif->ipif_isv6) { ASSERT(ipip->ipi_cmd_type == LIF_CMD); *sin6 = sin6_null; sin6->sin6_family = AF_INET6; sin6->sin6_addr = ipif->ipif_v6net_mask; lifr->lifr_addrlen = ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); } else { *sin = sin_null; sin->sin_family = AF_INET; sin->sin_addr.s_addr = ipif->ipif_net_mask; if (ipip->ipi_cmd_type == LIF_CMD) { lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); } } return (0); } /* ARGSUSED */ int ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *if_req) { ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); /* * Since no applications should ever be setting metrics on underlying * interfaces, we explicitly fail to smoke 'em out. */ if (IS_UNDER_IPMP(ipif->ipif_ill)) return (EINVAL); /* * Set interface metric. We don't use this for * anything but we keep track of it in case it is * important to routing applications or such. */ if (ipip->ipi_cmd_type == IF_CMD) { struct ifreq *ifr; ifr = (struct ifreq *)if_req; ipif->ipif_ill->ill_metric = ifr->ifr_metric; } else { struct lifreq *lifr; lifr = (struct lifreq *)if_req; ipif->ipif_ill->ill_metric = lifr->lifr_metric; } return (0); } /* ARGSUSED */ int ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *if_req) { /* Get interface metric. */ ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); if (ipip->ipi_cmd_type == IF_CMD) { struct ifreq *ifr; ifr = (struct ifreq *)if_req; ifr->ifr_metric = ipif->ipif_ill->ill_metric; } else { struct lifreq *lifr; lifr = (struct lifreq *)if_req; lifr->lifr_metric = ipif->ipif_ill->ill_metric; } return (0); } /* ARGSUSED */ int ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *if_req) { int arp_muxid; ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); /* * Set the muxid returned from I_PLINK. */ if (ipip->ipi_cmd_type == IF_CMD) { struct ifreq *ifr = (struct ifreq *)if_req; ipif->ipif_ill->ill_muxid = ifr->ifr_ip_muxid; arp_muxid = ifr->ifr_arp_muxid; } else { struct lifreq *lifr = (struct lifreq *)if_req; ipif->ipif_ill->ill_muxid = lifr->lifr_ip_muxid; arp_muxid = lifr->lifr_arp_muxid; } arl_set_muxid(ipif->ipif_ill, arp_muxid); return (0); } /* ARGSUSED */ int ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *if_req) { int arp_muxid = 0; ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); /* * Get the muxid saved in ill for I_PUNLINK. */ arp_muxid = arl_get_muxid(ipif->ipif_ill); if (ipip->ipi_cmd_type == IF_CMD) { struct ifreq *ifr = (struct ifreq *)if_req; ifr->ifr_ip_muxid = ipif->ipif_ill->ill_muxid; ifr->ifr_arp_muxid = arp_muxid; } else { struct lifreq *lifr = (struct lifreq *)if_req; lifr->lifr_ip_muxid = ipif->ipif_ill->ill_muxid; lifr->lifr_arp_muxid = arp_muxid; } return (0); } /* * Set the subnet prefix. Does not modify the broadcast address. */ /* ARGSUSED */ int ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *if_req) { int err = 0; in6_addr_t v6addr; in6_addr_t v6mask; boolean_t need_up = B_FALSE; int addrlen; ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); ASSERT(IAM_WRITER_IPIF(ipif)); addrlen = ((struct lifreq *)if_req)->lifr_addrlen; if (ipif->ipif_isv6) { sin6_t *sin6; if (sin->sin_family != AF_INET6) return (EAFNOSUPPORT); sin6 = (sin6_t *)sin; v6addr = sin6->sin6_addr; if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) return (EADDRNOTAVAIL); } else { ipaddr_t addr; if (sin->sin_family != AF_INET) return (EAFNOSUPPORT); addr = sin->sin_addr.s_addr; if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) return (EADDRNOTAVAIL); IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); /* Add 96 bits */ addrlen += IPV6_ABITS - IP_ABITS; } if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) return (EINVAL); /* Check if bits in the address is set past the mask */ if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) return (EINVAL); if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) return (0); /* No change */ if (ipif->ipif_flags & IPIF_UP) { /* * If the interface is already marked up, * we call ipif_down which will take care * of ditching any IREs that have been set * up based on the old interface address. */ err = ipif_logical_down(ipif, q, mp); if (err == EINPROGRESS) return (err); (void) ipif_down_tail(ipif); need_up = B_TRUE; } err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); return (err); } static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, queue_t *q, mblk_t *mp, boolean_t need_up) { ill_t *ill = ipif->ipif_ill; int err = 0; ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); /* Set the new address. */ mutex_enter(&ill->ill_lock); ipif->ipif_v6net_mask = v6mask; if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, ipif->ipif_v6subnet); } mutex_exit(&ill->ill_lock); if (need_up) { /* * Now bring the interface back up. If this * is the only IPIF for the ILL, ipif_up * will have to re-bind to the device, so * we may get back EINPROGRESS, in which * case, this IOCTL will get completed in * ip_rput_dlpi when we see the DL_BIND_ACK. */ err = ipif_up(ipif, q, mp); if (err == EINPROGRESS) return (err); } return (err); } /* ARGSUSED */ int ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *if_req) { int addrlen; in6_addr_t v6addr; in6_addr_t v6mask; struct lifreq *lifr = (struct lifreq *)if_req; ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); (void) ipif_down_tail(ipif); addrlen = lifr->lifr_addrlen; if (ipif->ipif_isv6) { sin6_t *sin6; sin6 = (sin6_t *)sin; v6addr = sin6->sin6_addr; } else { ipaddr_t addr; addr = sin->sin_addr.s_addr; IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); addrlen += IPV6_ABITS - IP_ABITS; } (void) ip_plen_to_mask_v6(addrlen, &v6mask); return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); } /* ARGSUSED */ int ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *if_req) { struct lifreq *lifr = (struct lifreq *)if_req; struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); ASSERT(ipip->ipi_cmd_type == LIF_CMD); if (ipif->ipif_isv6) { *sin6 = sin6_null; sin6->sin6_family = AF_INET6; sin6->sin6_addr = ipif->ipif_v6subnet; lifr->lifr_addrlen = ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); } else { *sin = sin_null; sin->sin_family = AF_INET; sin->sin_addr.s_addr = ipif->ipif_subnet; lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); } return (0); } /* * Set the IPv6 address token. */ /* ARGSUSED */ int ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipi, void *if_req) { ill_t *ill = ipif->ipif_ill; int err; in6_addr_t v6addr; in6_addr_t v6mask; boolean_t need_up = B_FALSE; int i; sin6_t *sin6 = (sin6_t *)sin; struct lifreq *lifr = (struct lifreq *)if_req; int addrlen; ip1dbg(("ip_sioctl_token(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); ASSERT(IAM_WRITER_IPIF(ipif)); addrlen = lifr->lifr_addrlen; /* Only allow for logical unit zero i.e. not on "le0:17" */ if (ipif->ipif_id != 0) return (EINVAL); if (!ipif->ipif_isv6) return (EINVAL); if (addrlen > IPV6_ABITS) return (EINVAL); v6addr = sin6->sin6_addr; /* * The length of the token is the length from the end. To get * the proper mask for this, compute the mask of the bits not * in the token; ie. the prefix, and then xor to get the mask. */ if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) return (EINVAL); for (i = 0; i < 4; i++) { v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; } if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && ill->ill_token_length == addrlen) return (0); /* No change */ if (ipif->ipif_flags & IPIF_UP) { err = ipif_logical_down(ipif, q, mp); if (err == EINPROGRESS) return (err); (void) ipif_down_tail(ipif); need_up = B_TRUE; } err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); return (err); } static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, mblk_t *mp, boolean_t need_up) { in6_addr_t v6addr; in6_addr_t v6mask; ill_t *ill = ipif->ipif_ill; int i; int err = 0; ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); v6addr = sin6->sin6_addr; /* * The length of the token is the length from the end. To get * the proper mask for this, compute the mask of the bits not * in the token; ie. the prefix, and then xor to get the mask. */ (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); for (i = 0; i < 4; i++) v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; mutex_enter(&ill->ill_lock); V6_MASK_COPY(v6addr, v6mask, ill->ill_token); ill->ill_token_length = addrlen; ill->ill_manual_token = 1; /* Reconfigure the link-local address based on this new token */ ipif_setlinklocal(ill->ill_ipif); mutex_exit(&ill->ill_lock); if (need_up) { /* * Now bring the interface back up. If this * is the only IPIF for the ILL, ipif_up * will have to re-bind to the device, so * we may get back EINPROGRESS, in which * case, this IOCTL will get completed in * ip_rput_dlpi when we see the DL_BIND_ACK. */ err = ipif_up(ipif, q, mp); if (err == EINPROGRESS) return (err); } return (err); } /* ARGSUSED */ int ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipi, void *if_req) { ill_t *ill; sin6_t *sin6 = (sin6_t *)sin; struct lifreq *lifr = (struct lifreq *)if_req; ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); if (ipif->ipif_id != 0) return (EINVAL); ill = ipif->ipif_ill; if (!ill->ill_isv6) return (ENXIO); *sin6 = sin6_null; sin6->sin6_family = AF_INET6; ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); sin6->sin6_addr = ill->ill_token; lifr->lifr_addrlen = ill->ill_token_length; return (0); } /* * Set (hardware) link specific information that might override * what was acquired through the DL_INFO_ACK. */ /* ARGSUSED */ int ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipi, void *if_req) { ill_t *ill = ipif->ipif_ill; int ip_min_mtu; struct lifreq *lifr = (struct lifreq *)if_req; lif_ifinfo_req_t *lir; ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); lir = &lifr->lifr_ifinfo; ASSERT(IAM_WRITER_IPIF(ipif)); /* Only allow for logical unit zero i.e. not on "bge0:17" */ if (ipif->ipif_id != 0) return (EINVAL); /* Set interface MTU. */ if (ipif->ipif_isv6) ip_min_mtu = IPV6_MIN_MTU; else ip_min_mtu = IP_MIN_MTU; /* * Verify values before we set anything. Allow zero to * mean unspecified. * * XXX We should be able to set the user-defined lir_mtu to some value * that is greater than ill_current_frag but less than ill_max_frag- the * ill_max_frag value tells us the max MTU that can be handled by the * datalink, whereas the ill_current_frag is dynamically computed for * some link-types like tunnels, based on the tunnel PMTU. However, * since there is currently no way of distinguishing between * administratively fixed link mtu values (e.g., those set via * /sbin/dladm) and dynamically discovered MTUs (e.g., those discovered * for tunnels) we conservatively choose the ill_current_frag as the * upper-bound. */ if (lir->lir_maxmtu != 0 && (lir->lir_maxmtu > ill->ill_current_frag || lir->lir_maxmtu < ip_min_mtu)) return (EINVAL); if (lir->lir_reachtime != 0 && lir->lir_reachtime > ND_MAX_REACHTIME) return (EINVAL); if (lir->lir_reachretrans != 0 && lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) return (EINVAL); mutex_enter(&ill->ill_lock); /* * The dce and fragmentation code can handle changes to ill_mtu * concurrent with sending/fragmenting packets. */ if (lir->lir_maxmtu != 0) ill->ill_user_mtu = lir->lir_maxmtu; if (lir->lir_reachtime != 0) ill->ill_reachable_time = lir->lir_reachtime; if (lir->lir_reachretrans != 0) ill->ill_reachable_retrans_time = lir->lir_reachretrans; ill->ill_max_hops = lir->lir_maxhops; ill->ill_max_buf = ND_MAX_Q; if (!(ill->ill_flags & ILLF_FIXEDMTU) && ill->ill_user_mtu != 0) { /* * ill_mtu is the actual interface MTU, obtained as the min * of user-configured mtu and the value announced by the * driver (via DL_NOTE_SDU_SIZE/DL_INFO_ACK). Note that since * we have already made the choice of requiring * ill_user_mtu < ill_current_frag by the time we get here, * the ill_mtu effectively gets assigned to the ill_user_mtu * here. */ ill->ill_mtu = MIN(ill->ill_current_frag, ill->ill_user_mtu); } mutex_exit(&ill->ill_lock); /* * Make sure all dce_generation checks find out * that ill_mtu has changed. */ if (!(ill->ill_flags & ILLF_FIXEDMTU) && (lir->lir_maxmtu != 0)) dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst); /* * Refresh IPMP meta-interface MTU if necessary. */ if (IS_UNDER_IPMP(ill)) ipmp_illgrp_refresh_mtu(ill->ill_grp); return (0); } /* ARGSUSED */ int ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipi, void *if_req) { struct lif_ifinfo_req *lir; ill_t *ill = ipif->ipif_ill; ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); if (ipif->ipif_id != 0) return (EINVAL); lir = &((struct lifreq *)if_req)->lifr_ifinfo; lir->lir_maxhops = ill->ill_max_hops; lir->lir_reachtime = ill->ill_reachable_time; lir->lir_reachretrans = ill->ill_reachable_retrans_time; lir->lir_maxmtu = ill->ill_mtu; return (0); } /* * Return best guess as to the subnet mask for the specified address. * Based on the subnet masks for all the configured interfaces. * * We end up returning a zero mask in the case of default, multicast or * experimental. */ static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst) { ipaddr_t net_mask; ill_t *ill; ipif_t *ipif; ill_walk_context_t ctx; ipif_t *fallback_ipif = NULL; net_mask = ip_net_mask(addr); if (net_mask == 0) { *ipifp = NULL; return (0); } /* Let's check to see if this is maybe a local subnet route. */ /* this function only applies to IPv4 interfaces */ rw_enter(&ipst->ips_ill_g_lock, RW_READER); ill = ILL_START_WALK_V4(&ctx, ipst); for (; ill != NULL; ill = ill_next(&ctx, ill)) { mutex_enter(&ill->ill_lock); for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { if (IPIF_IS_CONDEMNED(ipif)) continue; if (!(ipif->ipif_flags & IPIF_UP)) continue; if ((ipif->ipif_subnet & net_mask) == (addr & net_mask)) { /* * Don't trust pt-pt interfaces if there are * other interfaces. */ if (ipif->ipif_flags & IPIF_POINTOPOINT) { if (fallback_ipif == NULL) { ipif_refhold_locked(ipif); fallback_ipif = ipif; } continue; } /* * Fine. Just assume the same net mask as the * directly attached subnet interface is using. */ ipif_refhold_locked(ipif); mutex_exit(&ill->ill_lock); rw_exit(&ipst->ips_ill_g_lock); if (fallback_ipif != NULL) ipif_refrele(fallback_ipif); *ipifp = ipif; return (ipif->ipif_net_mask); } } mutex_exit(&ill->ill_lock); } rw_exit(&ipst->ips_ill_g_lock); *ipifp = fallback_ipif; return ((fallback_ipif != NULL) ? fallback_ipif->ipif_net_mask : net_mask); } /* * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. */ static void ip_wput_ioctl(queue_t *q, mblk_t *mp) { IOCP iocp; ipft_t *ipft; ipllc_t *ipllc; mblk_t *mp1; cred_t *cr; int error = 0; conn_t *connp; ip1dbg(("ip_wput_ioctl")); iocp = (IOCP)mp->b_rptr; mp1 = mp->b_cont; if (mp1 == NULL) { iocp->ioc_error = EINVAL; mp->b_datap->db_type = M_IOCNAK; iocp->ioc_count = 0; qreply(q, mp); return; } /* * These IOCTLs provide various control capabilities to * upstream agents such as ULPs and processes. There * are currently two such IOCTLs implemented. They * are used by TCP to provide update information for * existing IREs and to forcibly delete an IRE for a * host that is not responding, thereby forcing an * attempt at a new route. */ iocp->ioc_error = EINVAL; if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) goto done; ipllc = (ipllc_t *)mp1->b_rptr; for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { if (ipllc->ipllc_cmd == ipft->ipft_cmd) break; } /* * prefer credential from mblk over ioctl; * see ip_sioctl_copyin_setup */ cr = msg_getcred(mp, NULL); if (cr == NULL) cr = iocp->ioc_cr; /* * Refhold the conn in case the request gets queued up in some lookup */ ASSERT(CONN_Q(q)); connp = Q_TO_CONN(q); CONN_INC_REF(connp); CONN_INC_IOCTLREF(connp); if (ipft->ipft_pfi && ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || pullupmsg(mp1, ipft->ipft_min_size))) { error = (*ipft->ipft_pfi)(q, (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); } if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { /* * CONN_OPER_PENDING_DONE happens in the function called * through ipft_pfi above. */ return; } CONN_DEC_IOCTLREF(connp); CONN_OPER_PENDING_DONE(connp); if (ipft->ipft_flags & IPFT_F_NO_REPLY) { freemsg(mp); return; } iocp->ioc_error = error; done: mp->b_datap->db_type = M_IOCACK; if (iocp->ioc_error) iocp->ioc_count = 0; qreply(q, mp); } /* * Assign a unique id for the ipif. This is used by sctp_addr.c * Note: remove if sctp_addr.c is redone to not shadow ill/ipif data structures. */ static void ipif_assign_seqid(ipif_t *ipif) { ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1); } /* * Clone the contents of `sipif' to `dipif'. Requires that both ipifs are * administratively down (i.e., no DAD), of the same type, and locked. Note * that the clone is complete -- including the seqid -- and the expectation is * that the caller will either free or overwrite `sipif' before it's unlocked. */ static void ipif_clone(const ipif_t *sipif, ipif_t *dipif) { ASSERT(MUTEX_HELD(&sipif->ipif_ill->ill_lock)); ASSERT(MUTEX_HELD(&dipif->ipif_ill->ill_lock)); ASSERT(!(sipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); ASSERT(!(dipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); ASSERT(sipif->ipif_ire_type == dipif->ipif_ire_type); dipif->ipif_flags = sipif->ipif_flags; dipif->ipif_zoneid = sipif->ipif_zoneid; dipif->ipif_v6subnet = sipif->ipif_v6subnet; dipif->ipif_v6lcl_addr = sipif->ipif_v6lcl_addr; dipif->ipif_v6net_mask = sipif->ipif_v6net_mask; dipif->ipif_v6brd_addr = sipif->ipif_v6brd_addr; dipif->ipif_v6pp_dst_addr = sipif->ipif_v6pp_dst_addr; /* * As per the comment atop the function, we assume that these sipif * fields will be changed before sipif is unlocked. */ dipif->ipif_seqid = sipif->ipif_seqid; dipif->ipif_state_flags = sipif->ipif_state_flags; } /* * Transfer the contents of `sipif' to `dipif', and then free (if `virgipif' * is NULL) or overwrite `sipif' with `virgipif', which must be a virgin * (unreferenced) ipif. Also, if `sipif' is used by the current xop, then * transfer the xop to `dipif'. Requires that all ipifs are administratively * down (i.e., no DAD), of the same type, and unlocked. */ static void ipif_transfer(ipif_t *sipif, ipif_t *dipif, ipif_t *virgipif) { ipsq_t *ipsq = sipif->ipif_ill->ill_phyint->phyint_ipsq; ipxop_t *ipx = ipsq->ipsq_xop; ASSERT(sipif != dipif); ASSERT(sipif != virgipif); /* * Grab all of the locks that protect the ipif in a defined order. */ GRAB_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); ipif_clone(sipif, dipif); if (virgipif != NULL) { ipif_clone(virgipif, sipif); mi_free(virgipif); } RELEASE_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); /* * Transfer ownership of the current xop, if necessary. */ if (ipx->ipx_current_ipif == sipif) { ASSERT(ipx->ipx_pending_ipif == NULL); mutex_enter(&ipx->ipx_lock); ipx->ipx_current_ipif = dipif; mutex_exit(&ipx->ipx_lock); } if (virgipif == NULL) mi_free(sipif); } /* * checks if: * - : is at most LIFNAMSIZ - 1 and * - logical interface is within the allowed range */ static int is_lifname_valid(ill_t *ill, unsigned int ipif_id) { if (snprintf(NULL, 0, "%s:%d", ill->ill_name, ipif_id) >= LIFNAMSIZ) return (ENAMETOOLONG); if (ipif_id >= ill->ill_ipst->ips_ip_addrs_per_if) return (ERANGE); return (0); } /* * Insert the ipif, so that the list of ipifs on the ill will be sorted * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will * be inserted into the first space available in the list. The value of * ipif_id will then be set to the appropriate value for its position. */ static int ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock) { ill_t *ill; ipif_t *tipif; ipif_t **tipifp; int id, err; ip_stack_t *ipst; ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || IAM_WRITER_IPIF(ipif)); ill = ipif->ipif_ill; ASSERT(ill != NULL); ipst = ill->ill_ipst; /* * In the case of lo0:0 we already hold the ill_g_lock. * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> * ipif_insert. */ if (acquire_g_lock) rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); mutex_enter(&ill->ill_lock); id = ipif->ipif_id; tipifp = &(ill->ill_ipif); if (id == -1) { /* need to find a real id */ id = 0; while ((tipif = *tipifp) != NULL) { ASSERT(tipif->ipif_id >= id); if (tipif->ipif_id != id) break; /* non-consecutive id */ id++; tipifp = &(tipif->ipif_next); } if ((err = is_lifname_valid(ill, id)) != 0) { mutex_exit(&ill->ill_lock); if (acquire_g_lock) rw_exit(&ipst->ips_ill_g_lock); return (err); } ipif->ipif_id = id; /* assign new id */ } else if ((err = is_lifname_valid(ill, id)) == 0) { /* we have a real id; insert ipif in the right place */ while ((tipif = *tipifp) != NULL) { ASSERT(tipif->ipif_id != id); if (tipif->ipif_id > id) break; /* found correct location */ tipifp = &(tipif->ipif_next); } } else { mutex_exit(&ill->ill_lock); if (acquire_g_lock) rw_exit(&ipst->ips_ill_g_lock); return (err); } ASSERT(tipifp != &(ill->ill_ipif) || id == 0); ipif->ipif_next = tipif; *tipifp = ipif; mutex_exit(&ill->ill_lock); if (acquire_g_lock) rw_exit(&ipst->ips_ill_g_lock); return (0); } static void ipif_remove(ipif_t *ipif) { ipif_t **ipifp; ill_t *ill = ipif->ipif_ill; ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock)); mutex_enter(&ill->ill_lock); ipifp = &ill->ill_ipif; for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { if (*ipifp == ipif) { *ipifp = ipif->ipif_next; break; } } mutex_exit(&ill->ill_lock); } /* * Allocate and initialize a new interface control structure. (Always * called as writer.) * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill * is not part of the global linked list of ills. ipif_seqid is unique * in the system and to preserve the uniqueness, it is assigned only * when ill becomes part of the global list. At that point ill will * have a name. If it doesn't get assigned here, it will get assigned * in ipif_set_values() as part of SIOCSLIFNAME processing. * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set * the interface flags or any other information from the DL_INFO_ACK for * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at * this point. The flags etc. will be set in ip_ll_subnet_defaults when the * second DL_INFO_ACK comes in from the driver. */ static ipif_t * ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize, boolean_t insert, int *errorp) { int err; ipif_t *ipif; ip_stack_t *ipst = ill->ill_ipst; ip1dbg(("ipif_allocate(%s:%d ill %p)\n", ill->ill_name, id, (void *)ill)); ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); if (errorp != NULL) *errorp = 0; if ((ipif = mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) { if (errorp != NULL) *errorp = ENOMEM; return (NULL); } *ipif = ipif_zero; /* start clean */ ipif->ipif_ill = ill; ipif->ipif_id = id; /* could be -1 */ /* * Inherit the zoneid from the ill; for the shared stack instance * this is always the global zone */ ipif->ipif_zoneid = ill->ill_zoneid; ipif->ipif_refcnt = 0; if (insert) { if ((err = ipif_insert(ipif, ire_type != IRE_LOOPBACK)) != 0) { mi_free(ipif); if (errorp != NULL) *errorp = err; return (NULL); } /* -1 id should have been replaced by real id */ id = ipif->ipif_id; ASSERT(id >= 0); } if (ill->ill_name[0] != '\0') ipif_assign_seqid(ipif); /* * If this is the zeroth ipif on the IPMP ill, create the illgrp * (which must not exist yet because the zeroth ipif is created once * per ill). However, do not not link it to the ipmp_grp_t until * I_PLINK is called; see ip_sioctl_plink_ipmp() for details. */ if (id == 0 && IS_IPMP(ill)) { if (ipmp_illgrp_create(ill) == NULL) { if (insert) { rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); ipif_remove(ipif); rw_exit(&ipst->ips_ill_g_lock); } mi_free(ipif); if (errorp != NULL) *errorp = ENOMEM; return (NULL); } } /* * We grab ill_lock to protect the flag changes. The ipif is still * not up and can't be looked up until the ioctl completes and the * IPIF_CHANGING flag is cleared. */ mutex_enter(&ill->ill_lock); ipif->ipif_ire_type = ire_type; if (ipif->ipif_isv6) { ill->ill_flags |= ILLF_IPV6; } else { ipaddr_t inaddr_any = INADDR_ANY; ill->ill_flags |= ILLF_IPV4; /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ IN6_IPADDR_TO_V4MAPPED(inaddr_any, &ipif->ipif_v6lcl_addr); IN6_IPADDR_TO_V4MAPPED(inaddr_any, &ipif->ipif_v6subnet); IN6_IPADDR_TO_V4MAPPED(inaddr_any, &ipif->ipif_v6net_mask); IN6_IPADDR_TO_V4MAPPED(inaddr_any, &ipif->ipif_v6brd_addr); IN6_IPADDR_TO_V4MAPPED(inaddr_any, &ipif->ipif_v6pp_dst_addr); } /* * Don't set the interface flags etc. now, will do it in * ip_ll_subnet_defaults. */ if (!initialize) goto out; /* * NOTE: The IPMP meta-interface is special-cased because it starts * with no underlying interfaces (and thus an unknown broadcast * address length), but all interfaces that can be placed into an IPMP * group are required to be broadcast-capable. */ if (ill->ill_bcast_addr_length != 0 || IS_IPMP(ill)) { /* * Later detect lack of DLPI driver multicast capability by * catching DL_ENABMULTI_REQ errors in ip_rput_dlpi(). */ ill->ill_flags |= ILLF_MULTICAST; if (!ipif->ipif_isv6) ipif->ipif_flags |= IPIF_BROADCAST; } else { if (ill->ill_net_type != IRE_LOOPBACK) { if (ipif->ipif_isv6) /* * Note: xresolv interfaces will eventually need * NOARP set here as well, but that will require * those external resolvers to have some * knowledge of that flag and act appropriately. * Not to be changed at present. */ ill->ill_flags |= ILLF_NONUD; else ill->ill_flags |= ILLF_NOARP; } if (ill->ill_phys_addr_length == 0) { if (IS_VNI(ill)) { ipif->ipif_flags |= IPIF_NOXMIT; } else { /* pt-pt supports multicast. */ ill->ill_flags |= ILLF_MULTICAST; if (ill->ill_net_type != IRE_LOOPBACK) ipif->ipif_flags |= IPIF_POINTOPOINT; } } } out: mutex_exit(&ill->ill_lock); return (ipif); } /* * Remove the neighbor cache entries associated with this logical * interface. */ int ipif_arp_down(ipif_t *ipif) { ill_t *ill = ipif->ipif_ill; int err = 0; ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); ASSERT(IAM_WRITER_IPIF(ipif)); DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_down", ill_t *, ill, ipif_t *, ipif); ipif_nce_down(ipif); /* * If this is the last ipif that is going down and there are no * duplicate addresses we may yet attempt to re-probe, then we need to * clean up ARP completely. */ if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && !ill->ill_logical_down && ill->ill_net_type == IRE_IF_RESOLVER) { /* * If this was the last ipif on an IPMP interface, purge any * static ARP entries associated with it. */ if (IS_IPMP(ill)) ipmp_illgrp_refresh_arpent(ill->ill_grp); /* UNBIND, DETACH */ err = arp_ll_down(ill); } return (err); } /* * Get the resolver set up for a new IP address. (Always called as writer.) * Called both for IPv4 and IPv6 interfaces, though it only does some * basic DAD related initialization for IPv6. Honors ILLF_NOARP. * * The enumerated value res_act tunes the behavior: * * Res_act_initial: set up all the resolver structures for a new * IP address. * * Res_act_defend: tell ARP that it needs to send a single gratuitous * ARP message in defense of the address. * * Res_act_rebind: tell ARP to change the hardware address for an IP * address (and issue gratuitous ARPs). Used by ipmp_ill_bind_ipif(). * * Returns zero on success, or an errno upon failure. */ int ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) { ill_t *ill = ipif->ipif_ill; int err; boolean_t was_dup; ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); ASSERT(IAM_WRITER_IPIF(ipif)); was_dup = B_FALSE; if (res_act == Res_act_initial) { ipif->ipif_addr_ready = 0; /* * We're bringing an interface up here. There's no way that we * should need to shut down ARP now. */ mutex_enter(&ill->ill_lock); if (ipif->ipif_flags & IPIF_DUPLICATE) { ipif->ipif_flags &= ~IPIF_DUPLICATE; ill->ill_ipif_dup_count--; was_dup = B_TRUE; } mutex_exit(&ill->ill_lock); } if (ipif->ipif_recovery_id != 0) (void) untimeout(ipif->ipif_recovery_id); ipif->ipif_recovery_id = 0; if (ill->ill_net_type != IRE_IF_RESOLVER) { ipif->ipif_addr_ready = 1; return (0); } /* NDP will set the ipif_addr_ready flag when it's ready */ if (ill->ill_isv6) return (0); err = ipif_arp_up(ipif, res_act, was_dup); return (err); } /* * This routine restarts IPv4/IPv6 duplicate address detection (DAD) * when a link has just gone back up. */ static void ipif_nce_start_dad(ipif_t *ipif) { ncec_t *ncec; ill_t *ill = ipif->ipif_ill; boolean_t isv6 = ill->ill_isv6; if (isv6) { ncec = ncec_lookup_illgrp_v6(ipif->ipif_ill, &ipif->ipif_v6lcl_addr); } else { ipaddr_t v4addr; if (ill->ill_net_type != IRE_IF_RESOLVER || (ipif->ipif_flags & IPIF_UNNUMBERED) || ipif->ipif_lcl_addr == INADDR_ANY) { /* * If we can't contact ARP for some reason, * that's not really a problem. Just send * out the routing socket notification that * DAD completion would have done, and continue. */ ipif_mask_reply(ipif); ipif_up_notify(ipif); ipif->ipif_addr_ready = 1; return; } IN6_V4MAPPED_TO_IPADDR(&ipif->ipif_v6lcl_addr, v4addr); ncec = ncec_lookup_illgrp_v4(ipif->ipif_ill, &v4addr); } if (ncec == NULL) { ip1dbg(("couldn't find ncec for ipif %p leaving !ready\n", (void *)ipif)); return; } if (!nce_restart_dad(ncec)) { /* * If we can't restart DAD for some reason, that's not really a * problem. Just send out the routing socket notification that * DAD completion would have done, and continue. */ ipif_up_notify(ipif); ipif->ipif_addr_ready = 1; } ncec_refrele(ncec); } /* * Restart duplicate address detection on all interfaces on the given ill. * * This is called when an interface transitions from down to up * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). * * Note that since the underlying physical link has transitioned, we must cause * at least one routing socket message to be sent here, either via DAD * completion or just by default on the first ipif. (If we don't do this, then * in.mpathd will see long delays when doing link-based failure recovery.) */ void ill_restart_dad(ill_t *ill, boolean_t went_up) { ipif_t *ipif; if (ill == NULL) return; /* * If layer two doesn't support duplicate address detection, then just * send the routing socket message now and be done with it. */ if (!ill->ill_isv6 && arp_no_defense) { ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); return; } for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { if (went_up) { if (ipif->ipif_flags & IPIF_UP) { ipif_nce_start_dad(ipif); } else if (ipif->ipif_flags & IPIF_DUPLICATE) { /* * kick off the bring-up process now. */ ipif_do_recovery(ipif); } else { /* * Unfortunately, the first ipif is "special" * and represents the underlying ill in the * routing socket messages. Thus, when this * one ipif is down, we must still notify so * that the user knows the IFF_RUNNING status * change. (If the first ipif is up, then * we'll handle eventual routing socket * notification via DAD completion.) */ if (ipif == ill->ill_ipif) { ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); } } } else { /* * After link down, we'll need to send a new routing * message when the link comes back, so clear * ipif_addr_ready. */ ipif->ipif_addr_ready = 0; } } /* * If we've torn down links, then notify the user right away. */ if (!went_up) ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); } static void ipsq_delete(ipsq_t *ipsq) { ipxop_t *ipx = ipsq->ipsq_xop; ipsq->ipsq_ipst = NULL; ASSERT(ipsq->ipsq_phyint == NULL); ASSERT(ipsq->ipsq_xop != NULL); ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipx->ipx_mphead == NULL); ASSERT(ipx->ipx_pending_mp == NULL); kmem_free(ipsq, sizeof (ipsq_t)); } static int ill_up_ipifs_on_ill(ill_t *ill, queue_t *q, mblk_t *mp) { int err = 0; ipif_t *ipif; if (ill == NULL) return (0); ASSERT(IAM_WRITER_ILL(ill)); ill->ill_up_ipifs = B_TRUE; for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { if (ipif->ipif_was_up) { if (!(ipif->ipif_flags & IPIF_UP)) err = ipif_up(ipif, q, mp); ipif->ipif_was_up = B_FALSE; if (err != 0) { ASSERT(err == EINPROGRESS); return (err); } } } ill->ill_up_ipifs = B_FALSE; return (0); } /* * This function is called to bring up all the ipifs that were up before * bringing the ill down via ill_down_ipifs(). */ int ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) { int err; ASSERT(IAM_WRITER_ILL(ill)); if (ill->ill_replumbing) { ill->ill_replumbing = 0; /* * Send down REPLUMB_DONE notification followed by the * BIND_REQ on the arp stream. */ if (!ill->ill_isv6) arp_send_replumb_conf(ill); } err = ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv4, q, mp); if (err != 0) return (err); return (ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv6, q, mp)); } /* * Bring down any IPIF_UP ipifs on ill. If "logical" is B_TRUE, we bring * down the ipifs without sending DL_UNBIND_REQ to the driver. */ static void ill_down_ipifs(ill_t *ill, boolean_t logical) { ipif_t *ipif; ASSERT(IAM_WRITER_ILL(ill)); for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { /* * We go through the ipif_down logic even if the ipif * is already down, since routes can be added based * on down ipifs. Going through ipif_down once again * will delete any IREs created based on these routes. */ if (ipif->ipif_flags & IPIF_UP) ipif->ipif_was_up = B_TRUE; if (logical) { (void) ipif_logical_down(ipif, NULL, NULL); ipif_non_duplicate(ipif); (void) ipif_down_tail(ipif); } else { (void) ipif_down(ipif, NULL, NULL); } } } /* * Redo source address selection. This makes IXAF_VERIFY_SOURCE take * a look again at valid source addresses. * This should be called each time after the set of source addresses has been * changed. */ void ip_update_source_selection(ip_stack_t *ipst) { /* We skip past SRC_GENERATION_VERIFY */ if (atomic_add_32_nv(&ipst->ips_src_generation, 1) == SRC_GENERATION_VERIFY) atomic_add_32(&ipst->ips_src_generation, 1); } /* * Finish the group join started in ip_sioctl_groupname(). */ /* ARGSUSED */ static void ip_join_illgrps(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy) { ill_t *ill = q->q_ptr; phyint_t *phyi = ill->ill_phyint; ipmp_grp_t *grp = phyi->phyint_grp; ip_stack_t *ipst = ill->ill_ipst; /* IS_UNDER_IPMP() won't work until ipmp_ill_join_illgrp() is called */ ASSERT(!IS_IPMP(ill) && grp != NULL); ASSERT(IAM_WRITER_IPSQ(ipsq)); if (phyi->phyint_illv4 != NULL) { rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); VERIFY(grp->gr_pendv4-- > 0); rw_exit(&ipst->ips_ipmp_lock); ipmp_ill_join_illgrp(phyi->phyint_illv4, grp->gr_v4); } if (phyi->phyint_illv6 != NULL) { rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); VERIFY(grp->gr_pendv6-- > 0); rw_exit(&ipst->ips_ipmp_lock); ipmp_ill_join_illgrp(phyi->phyint_illv6, grp->gr_v6); } freemsg(mp); } /* * Process an SIOCSLIFGROUPNAME request. */ /* ARGSUSED */ int ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) { struct lifreq *lifr = ifreq; ill_t *ill = ipif->ipif_ill; ip_stack_t *ipst = ill->ill_ipst; phyint_t *phyi = ill->ill_phyint; ipmp_grp_t *grp = phyi->phyint_grp; mblk_t *ipsq_mp; int err = 0; /* * Note that phyint_grp can only change here, where we're exclusive. */ ASSERT(IAM_WRITER_ILL(ill)); if (ipif->ipif_id != 0 || ill->ill_usesrc_grp_next != NULL || (phyi->phyint_flags & PHYI_VIRTUAL)) return (EINVAL); lifr->lifr_groupname[LIFGRNAMSIZ - 1] = '\0'; rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); /* * If the name hasn't changed, there's nothing to do. */ if (grp != NULL && strcmp(grp->gr_name, lifr->lifr_groupname) == 0) goto unlock; /* * Handle requests to rename an IPMP meta-interface. * * Note that creation of the IPMP meta-interface is handled in * userland through the standard plumbing sequence. As part of the * plumbing the IPMP meta-interface, its initial groupname is set to * the name of the interface (see ipif_set_values_tail()). */ if (IS_IPMP(ill)) { err = ipmp_grp_rename(grp, lifr->lifr_groupname); goto unlock; } /* * Handle requests to add or remove an IP interface from a group. */ if (lifr->lifr_groupname[0] != '\0') { /* add */ /* * Moves are handled by first removing the interface from * its existing group, and then adding it to another group. * So, fail if it's already in a group. */ if (IS_UNDER_IPMP(ill)) { err = EALREADY; goto unlock; } grp = ipmp_grp_lookup(lifr->lifr_groupname, ipst); if (grp == NULL) { err = ENOENT; goto unlock; } /* * Check if the phyint and its ills are suitable for * inclusion into the group. */ if ((err = ipmp_grp_vet_phyint(grp, phyi)) != 0) goto unlock; /* * Checks pass; join the group, and enqueue the remaining * illgrp joins for when we've become part of the group xop * and are exclusive across its IPSQs. Since qwriter_ip() * requires an mblk_t to scribble on, and since `mp' will be * freed as part of completing the ioctl, allocate another. */ if ((ipsq_mp = allocb(0, BPRI_MED)) == NULL) { err = ENOMEM; goto unlock; } /* * Before we drop ipmp_lock, bump gr_pend* to ensure that the * IPMP meta-interface ills needed by `phyi' cannot go away * before ip_join_illgrps() is called back. See the comments * in ip_sioctl_plink_ipmp() for more. */ if (phyi->phyint_illv4 != NULL) grp->gr_pendv4++; if (phyi->phyint_illv6 != NULL) grp->gr_pendv6++; rw_exit(&ipst->ips_ipmp_lock); ipmp_phyint_join_grp(phyi, grp); ill_refhold(ill); qwriter_ip(ill, ill->ill_rq, ipsq_mp, ip_join_illgrps, SWITCH_OP, B_FALSE); return (0); } else { /* * Request to remove the interface from a group. If the * interface is not in a group, this trivially succeeds. */ rw_exit(&ipst->ips_ipmp_lock); if (IS_UNDER_IPMP(ill)) ipmp_phyint_leave_grp(phyi); return (0); } unlock: rw_exit(&ipst->ips_ipmp_lock); return (err); } /* * Process an SIOCGLIFBINDING request. */ /* ARGSUSED */ int ip_sioctl_get_binding(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) { ill_t *ill; struct lifreq *lifr = ifreq; ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; if (!IS_IPMP(ipif->ipif_ill)) return (EINVAL); rw_enter(&ipst->ips_ipmp_lock, RW_READER); if ((ill = ipif->ipif_bound_ill) == NULL) lifr->lifr_binding[0] = '\0'; else (void) strlcpy(lifr->lifr_binding, ill->ill_name, LIFNAMSIZ); rw_exit(&ipst->ips_ipmp_lock); return (0); } /* * Process an SIOCGLIFGROUPNAME request. */ /* ARGSUSED */ int ip_sioctl_get_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) { ipmp_grp_t *grp; struct lifreq *lifr = ifreq; ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; rw_enter(&ipst->ips_ipmp_lock, RW_READER); if ((grp = ipif->ipif_ill->ill_phyint->phyint_grp) == NULL) lifr->lifr_groupname[0] = '\0'; else (void) strlcpy(lifr->lifr_groupname, grp->gr_name, LIFGRNAMSIZ); rw_exit(&ipst->ips_ipmp_lock); return (0); } /* * Process an SIOCGLIFGROUPINFO request. */ /* ARGSUSED */ int ip_sioctl_groupinfo(ipif_t *dummy_ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy) { ipmp_grp_t *grp; lifgroupinfo_t *lifgr; ip_stack_t *ipst = CONNQ_TO_IPST(q); /* ip_wput_nondata() verified mp->b_cont->b_cont */ lifgr = (lifgroupinfo_t *)mp->b_cont->b_cont->b_rptr; lifgr->gi_grname[LIFGRNAMSIZ - 1] = '\0'; rw_enter(&ipst->ips_ipmp_lock, RW_READER); if ((grp = ipmp_grp_lookup(lifgr->gi_grname, ipst)) == NULL) { rw_exit(&ipst->ips_ipmp_lock); return (ENOENT); } ipmp_grp_info(grp, lifgr); rw_exit(&ipst->ips_ipmp_lock); return (0); } static void ill_dl_down(ill_t *ill) { DTRACE_PROBE2(ill__downup, char *, "ill_dl_down", ill_t *, ill); /* * The ill is down; unbind but stay attached since we're still * associated with a PPA. If we have negotiated DLPI capabilites * with the data link service provider (IDS_OK) then reset them. * The interval between unbinding and rebinding is potentially * unbounded hence we cannot assume things will be the same. * The DLPI capabilities will be probed again when the data link * is brought up. */ mblk_t *mp = ill->ill_unbind_mp; ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); if (!ill->ill_replumbing) { /* Free all ilms for this ill */ update_conn_ill(ill, ill->ill_ipst); } else { ill_leave_multicast(ill); } ill->ill_unbind_mp = NULL; if (mp != NULL) { ip1dbg(("ill_dl_down: %s (%u) for %s\n", dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr, ill->ill_name)); mutex_enter(&ill->ill_lock); ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; mutex_exit(&ill->ill_lock); /* * ip_rput does not pass up normal (M_PROTO) DLPI messages * after ILL_CONDEMNED is set. So in the unplumb case, we call * ill_capability_dld_disable disable rightaway. If this is not * an unplumb operation then the disable happens on receipt of * the capab ack via ip_rput_dlpi_writer -> * ill_capability_ack_thr. In both cases the order of * the operations seen by DLD is capability disable followed * by DL_UNBIND. Also the DLD capability disable needs a * cv_wait'able context. */ if (ill->ill_state_flags & ILL_CONDEMNED) ill_capability_dld_disable(ill); ill_capability_reset(ill, B_FALSE); ill_dlpi_send(ill, mp); } mutex_enter(&ill->ill_lock); ill->ill_dl_up = 0; ill_nic_event_dispatch(ill, 0, NE_DOWN, NULL, 0); mutex_exit(&ill->ill_lock); } void ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) { union DL_primitives *dlp; t_uscalar_t prim; boolean_t waitack = B_FALSE; ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); dlp = (union DL_primitives *)mp->b_rptr; prim = dlp->dl_primitive; ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", dl_primstr(prim), prim, ill->ill_name)); switch (prim) { case DL_PHYS_ADDR_REQ: { dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; ill->ill_phys_addr_pend = dlpap->dl_addr_type; break; } case DL_BIND_REQ: mutex_enter(&ill->ill_lock); ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; mutex_exit(&ill->ill_lock); break; } /* * Except for the ACKs for the M_PCPROTO messages, all other ACKs * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore * we only wait for the ACK of the DL_UNBIND_REQ. */ mutex_enter(&ill->ill_lock); if (!(ill->ill_state_flags & ILL_CONDEMNED) || (prim == DL_UNBIND_REQ)) { ill->ill_dlpi_pending = prim; waitack = B_TRUE; } mutex_exit(&ill->ill_lock); DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_dispatch", char *, dl_primstr(prim), ill_t *, ill); putnext(ill->ill_wq, mp); /* * There is no ack for DL_NOTIFY_CONF messages */ if (waitack && prim == DL_NOTIFY_CONF) ill_dlpi_done(ill, prim); } /* * Helper function for ill_dlpi_send(). */ /* ARGSUSED */ static void ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) { ill_dlpi_send(q->q_ptr, mp); } /* * Send a DLPI control message to the driver but make sure there * is only one outstanding message. Uses ill_dlpi_pending to tell * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() * when an ACK or a NAK is received to process the next queued message. */ void ill_dlpi_send(ill_t *ill, mblk_t *mp) { mblk_t **mpp; ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); /* * To ensure that any DLPI requests for current exclusive operation * are always completely sent before any DLPI messages for other * operations, require writer access before enqueuing. */ if (!IAM_WRITER_ILL(ill)) { ill_refhold(ill); /* qwriter_ip() does the ill_refrele() */ qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer, NEW_OP, B_TRUE); return; } mutex_enter(&ill->ill_lock); if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { /* Must queue message. Tail insertion */ mpp = &ill->ill_dlpi_deferred; while (*mpp != NULL) mpp = &((*mpp)->b_next); ip1dbg(("ill_dlpi_send: deferring request for %s " "while %s pending\n", ill->ill_name, dl_primstr(ill->ill_dlpi_pending))); *mpp = mp; mutex_exit(&ill->ill_lock); return; } mutex_exit(&ill->ill_lock); ill_dlpi_dispatch(ill, mp); } void ill_capability_send(ill_t *ill, mblk_t *mp) { ill->ill_capab_pending_cnt++; ill_dlpi_send(ill, mp); } void ill_capability_done(ill_t *ill) { ASSERT(ill->ill_capab_pending_cnt != 0); ill_dlpi_done(ill, DL_CAPABILITY_REQ); ill->ill_capab_pending_cnt--; if (ill->ill_capab_pending_cnt == 0 && ill->ill_dlpi_capab_state == IDCS_OK) ill_capability_reset_alloc(ill); } /* * Send all deferred DLPI messages without waiting for their ACKs. */ void ill_dlpi_send_deferred(ill_t *ill) { mblk_t *mp, *nextmp; /* * Clear ill_dlpi_pending so that the message is not queued in * ill_dlpi_send(). */ mutex_enter(&ill->ill_lock); ill->ill_dlpi_pending = DL_PRIM_INVAL; mp = ill->ill_dlpi_deferred; ill->ill_dlpi_deferred = NULL; mutex_exit(&ill->ill_lock); for (; mp != NULL; mp = nextmp) { nextmp = mp->b_next; mp->b_next = NULL; ill_dlpi_send(ill, mp); } } /* * Clear all the deferred DLPI messages. Called on receiving an M_ERROR * or M_HANGUP */ static void ill_dlpi_clear_deferred(ill_t *ill) { mblk_t *mp, *nextmp; mutex_enter(&ill->ill_lock); ill->ill_dlpi_pending = DL_PRIM_INVAL; mp = ill->ill_dlpi_deferred; ill->ill_dlpi_deferred = NULL; mutex_exit(&ill->ill_lock); for (; mp != NULL; mp = nextmp) { nextmp = mp->b_next; inet_freemsg(mp); } } /* * Check if the DLPI primitive `prim' is pending; print a warning if not. */ boolean_t ill_dlpi_pending(ill_t *ill, t_uscalar_t prim) { t_uscalar_t pending; mutex_enter(&ill->ill_lock); if (ill->ill_dlpi_pending == prim) { mutex_exit(&ill->ill_lock); return (B_TRUE); } /* * During teardown, ill_dlpi_dispatch() will send DLPI requests * without waiting, so don't print any warnings in that case. */ if (ill->ill_state_flags & ILL_CONDEMNED) { mutex_exit(&ill->ill_lock); return (B_FALSE); } pending = ill->ill_dlpi_pending; mutex_exit(&ill->ill_lock); if (pending == DL_PRIM_INVAL) { (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, "received unsolicited ack for %s on %s\n", dl_primstr(prim), ill->ill_name); } else { (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, "received unexpected ack for %s on %s (expecting %s)\n", dl_primstr(prim), ill->ill_name, dl_primstr(pending)); } return (B_FALSE); } /* * Complete the current DLPI operation associated with `prim' on `ill' and * start the next queued DLPI operation (if any). If there are no queued DLPI * operations and the ill's current exclusive IPSQ operation has finished * (i.e., ipsq_current_finish() was called), then clear ipsq_current_ipif to * allow the next exclusive IPSQ operation to begin upon ipsq_exit(). See * the comments above ipsq_current_finish() for details. */ void ill_dlpi_done(ill_t *ill, t_uscalar_t prim) { mblk_t *mp; ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; ipxop_t *ipx = ipsq->ipsq_xop; ASSERT(IAM_WRITER_IPSQ(ipsq)); mutex_enter(&ill->ill_lock); ASSERT(prim != DL_PRIM_INVAL); ASSERT(ill->ill_dlpi_pending == prim); ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); if ((mp = ill->ill_dlpi_deferred) == NULL) { ill->ill_dlpi_pending = DL_PRIM_INVAL; if (ipx->ipx_current_done) { mutex_enter(&ipx->ipx_lock); ipx->ipx_current_ipif = NULL; mutex_exit(&ipx->ipx_lock); } cv_signal(&ill->ill_cv); mutex_exit(&ill->ill_lock); return; } ill->ill_dlpi_deferred = mp->b_next; mp->b_next = NULL; mutex_exit(&ill->ill_lock); ill_dlpi_dispatch(ill, mp); } /* * Queue a (multicast) DLPI control message to be sent to the driver by * later calling ill_dlpi_send_queued. * We queue them while holding a lock (ill_mcast_lock) to ensure that they * are sent in order i.e., prevent a DL_DISABMULTI_REQ and DL_ENABMULTI_REQ * for the same group to race. * We send DLPI control messages in order using ill_lock. * For IPMP we should be called on the cast_ill. */ void ill_dlpi_queue(ill_t *ill, mblk_t *mp) { mblk_t **mpp; ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); mutex_enter(&ill->ill_lock); /* Must queue message. Tail insertion */ mpp = &ill->ill_dlpi_deferred; while (*mpp != NULL) mpp = &((*mpp)->b_next); *mpp = mp; mutex_exit(&ill->ill_lock); } /* * Send the messages that were queued. Make sure there is only * one outstanding message. ip_rput_dlpi_writer calls ill_dlpi_done() * when an ACK or a NAK is received to process the next queued message. * For IPMP we are called on the upper ill, but when send what is queued * on the cast_ill. */ void ill_dlpi_send_queued(ill_t *ill) { mblk_t *mp; union DL_primitives *dlp; t_uscalar_t prim; ill_t *release_ill = NULL; if (IS_IPMP(ill)) { /* On the upper IPMP ill. */ release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); if (release_ill == NULL) { /* Avoid ever sending anything down to the ipmpstub */ return; } ill = release_ill; } mutex_enter(&ill->ill_lock); while ((mp = ill->ill_dlpi_deferred) != NULL) { if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { /* Can't send. Somebody else will send it */ mutex_exit(&ill->ill_lock); goto done; } ill->ill_dlpi_deferred = mp->b_next; mp->b_next = NULL; if (!ill->ill_dl_up) { /* * Nobody there. All multicast addresses will be * re-joined when we get the DL_BIND_ACK bringing the * interface up. */ freemsg(mp); continue; } dlp = (union DL_primitives *)mp->b_rptr; prim = dlp->dl_primitive; if (!(ill->ill_state_flags & ILL_CONDEMNED) || (prim == DL_UNBIND_REQ)) { ill->ill_dlpi_pending = prim; } mutex_exit(&ill->ill_lock); DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_send_queued", char *, dl_primstr(prim), ill_t *, ill); putnext(ill->ill_wq, mp); mutex_enter(&ill->ill_lock); } mutex_exit(&ill->ill_lock); done: if (release_ill != NULL) ill_refrele(release_ill); } /* * Queue an IP (IGMP/MLD) message to be sent by IP from * ill_mcast_send_queued * We queue them while holding a lock (ill_mcast_lock) to ensure that they * are sent in order i.e., prevent a IGMP leave and IGMP join for the same * group to race. * We send them in order using ill_lock. * For IPMP we are called on the upper ill, but we queue on the cast_ill. */ void ill_mcast_queue(ill_t *ill, mblk_t *mp) { mblk_t **mpp; ill_t *release_ill = NULL; ASSERT(RW_LOCK_HELD(&ill->ill_mcast_lock)); if (IS_IPMP(ill)) { /* On the upper IPMP ill. */ release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); if (release_ill == NULL) { /* Discard instead of queuing for the ipmp interface */ BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); ip_drop_output("ipIfStatsOutDiscards - no cast_ill", mp, ill); freemsg(mp); return; } ill = release_ill; } mutex_enter(&ill->ill_lock); /* Must queue message. Tail insertion */ mpp = &ill->ill_mcast_deferred; while (*mpp != NULL) mpp = &((*mpp)->b_next); *mpp = mp; mutex_exit(&ill->ill_lock); if (release_ill != NULL) ill_refrele(release_ill); } /* * Send the IP packets that were queued by ill_mcast_queue. * These are IGMP/MLD packets. * * For IPMP we are called on the upper ill, but when send what is queued * on the cast_ill. * * Request loopback of the report if we are acting as a multicast * router, so that the process-level routing demon can hear it. * This will run multiple times for the same group if there are members * on the same group for multiple ipif's on the same ill. The * igmp_input/mld_input code will suppress this due to the loopback thus we * always loopback membership report. * * We also need to make sure that this does not get load balanced * by IPMP. We do this by passing an ill to ip_output_simple. */ void ill_mcast_send_queued(ill_t *ill) { mblk_t *mp; ip_xmit_attr_t ixas; ill_t *release_ill = NULL; if (IS_IPMP(ill)) { /* On the upper IPMP ill. */ release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); if (release_ill == NULL) { /* * We should have no messages on the ipmp interface * but no point in trying to send them. */ return; } ill = release_ill; } bzero(&ixas, sizeof (ixas)); ixas.ixa_zoneid = ALL_ZONES; ixas.ixa_cred = kcred; ixas.ixa_cpid = NOPID; ixas.ixa_tsl = NULL; /* * Here we set ixa_ifindex. If IPMP it will be the lower ill which * makes ip_select_route pick the IRE_MULTICAST for the cast_ill. * That is necessary to handle IGMP/MLD snooping switches. */ ixas.ixa_ifindex = ill->ill_phyint->phyint_ifindex; ixas.ixa_ipst = ill->ill_ipst; mutex_enter(&ill->ill_lock); while ((mp = ill->ill_mcast_deferred) != NULL) { ill->ill_mcast_deferred = mp->b_next; mp->b_next = NULL; if (!ill->ill_dl_up) { /* * Nobody there. Just drop the ip packets. * IGMP/MLD will resend later, if this is a replumb. */ freemsg(mp); continue; } mutex_enter(&ill->ill_phyint->phyint_lock); if (IS_UNDER_IPMP(ill) && !ipmp_ill_is_active(ill)) { /* * When the ill is getting deactivated, we only want to * send the DLPI messages, so drop IGMP/MLD packets. * DLPI messages are handled by ill_dlpi_send_queued() */ mutex_exit(&ill->ill_phyint->phyint_lock); freemsg(mp); continue; } mutex_exit(&ill->ill_phyint->phyint_lock); mutex_exit(&ill->ill_lock); /* Check whether we are sending IPv4 or IPv6. */ if (ill->ill_isv6) { ip6_t *ip6h = (ip6_t *)mp->b_rptr; ixas.ixa_multicast_ttl = ip6h->ip6_hops; ixas.ixa_flags = IXAF_BASIC_SIMPLE_V6; } else { ipha_t *ipha = (ipha_t *)mp->b_rptr; ixas.ixa_multicast_ttl = ipha->ipha_ttl; ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; ixas.ixa_flags &= ~IXAF_SET_ULP_CKSUM; } ixas.ixa_flags &= ~IXAF_VERIFY_SOURCE; ixas.ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_SOURCE; (void) ip_output_simple(mp, &ixas); ixa_cleanup(&ixas); mutex_enter(&ill->ill_lock); } mutex_exit(&ill->ill_lock); done: if (release_ill != NULL) ill_refrele(release_ill); } /* * Take down a specific interface, but don't lose any information about it. * (Always called as writer.) * This function goes through the down sequence even if the interface is * already down. There are 2 reasons. * a. Currently we permit interface routes that depend on down interfaces * to be added. This behaviour itself is questionable. However it appears * that both Solaris and 4.3 BSD have exhibited this behaviour for a long * time. We go thru the cleanup in order to remove these routes. * b. The bringup of the interface could fail in ill_dl_up i.e. we get * DL_ERROR_ACK in response to the DL_BIND request. The interface is * down, but we need to cleanup i.e. do ill_dl_down and * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. * * IP-MT notes: * * Model of reference to interfaces. * * The following members in ipif_t track references to the ipif. * int ipif_refcnt; Active reference count * * The following members in ill_t track references to the ill. * int ill_refcnt; active refcnt * uint_t ill_ire_cnt; Number of ires referencing ill * uint_t ill_ncec_cnt; Number of ncecs referencing ill * uint_t ill_nce_cnt; Number of nces referencing ill * uint_t ill_ilm_cnt; Number of ilms referencing ill * * Reference to an ipif or ill can be obtained in any of the following ways. * * Through the lookup functions ipif_lookup_* / ill_lookup_* functions * Pointers to ipif / ill from other data structures viz ire and conn. * Implicit reference to the ipif / ill by holding a reference to the ire. * * The ipif/ill lookup functions return a reference held ipif / ill. * ipif_refcnt and ill_refcnt track the reference counts respectively. * This is a purely dynamic reference count associated with threads holding * references to the ipif / ill. Pointers from other structures do not * count towards this reference count. * * ill_ire_cnt is the number of ire's associated with the * ill. This is incremented whenever a new ire is created referencing the * ill. This is done atomically inside ire_add_v[46] where the ire is * actually added to the ire hash table. The count is decremented in * ire_inactive where the ire is destroyed. * * ill_ncec_cnt is the number of ncec's referencing the ill thru ncec_ill. * This is incremented atomically in * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the * table. Similarly it is decremented in ncec_inactive() where the ncec * is destroyed. * * ill_nce_cnt is the number of nce's referencing the ill thru nce_ill. This is * incremented atomically in nce_add() where the nce is actually added to the * ill_nce. Similarly it is decremented in nce_inactive() where the nce * is destroyed. * * ill_ilm_cnt is the ilm's reference to the ill. It is incremented in * ilm_add() and decremented before the ilm is freed in ilm_delete(). * * Flow of ioctls involving interface down/up * * The following is the sequence of an attempt to set some critical flags on an * up interface. * ip_sioctl_flags * ipif_down * wait for ipif to be quiescent * ipif_down_tail * ip_sioctl_flags_tail * * All set ioctls that involve down/up sequence would have a skeleton similar * to the above. All the *tail functions are called after the refcounts have * dropped to the appropriate values. * * SIOC ioctls during the IPIF_CHANGING interval. * * Threads handling SIOC set ioctls serialize on the squeue, but this * is not done for SIOC get ioctls. Since a set ioctl can cause several * steps of internal changes to the state, some of which are visible in * ipif_flags (such as IFF_UP being cleared and later set), and we want * the set ioctl to be atomic related to the get ioctls, the SIOC get code * will wait and restart ioctls if IPIF_CHANGING is set. The mblk is then * enqueued in the ipsq and the operation is restarted by ipsq_exit() when * the current exclusive operation completes. The IPIF_CHANGING check * and enqueue is atomic using the ill_lock and ipsq_lock. The * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't * change while the ill_lock is held. Before dropping the ill_lock we acquire * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish * until we release the ipsq_lock, even though the ill/ipif state flags * can change after we drop the ill_lock. */ int ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) { ill_t *ill = ipif->ipif_ill; conn_t *connp; boolean_t success; boolean_t ipif_was_up = B_FALSE; ip_stack_t *ipst = ill->ill_ipst; ASSERT(IAM_WRITER_IPIF(ipif)); ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); DTRACE_PROBE3(ipif__downup, char *, "ipif_down", ill_t *, ill, ipif_t *, ipif); if (ipif->ipif_flags & IPIF_UP) { mutex_enter(&ill->ill_lock); ipif->ipif_flags &= ~IPIF_UP; ASSERT(ill->ill_ipif_up_count > 0); --ill->ill_ipif_up_count; mutex_exit(&ill->ill_lock); ipif_was_up = B_TRUE; /* Update status in SCTP's list */ sctp_update_ipif(ipif, SCTP_IPIF_DOWN); ill_nic_event_dispatch(ipif->ipif_ill, MAP_IPIF_ID(ipif->ipif_id), NE_LIF_DOWN, NULL, 0); } /* * Removal of the last ipif from an ill may result in a DL_UNBIND * being sent to the driver, and we must not send any data packets to * the driver after the DL_UNBIND_REQ. To ensure this, all the * ire and nce entries used in the data path will be cleaned * up, and we also set the ILL_DOWN_IN_PROGRESS bit to make * sure on new entries will be added until the ill is bound * again. The ILL_DOWN_IN_PROGRESS bit is turned off upon * receipt of a DL_BIND_ACK. */ if (ill->ill_wq != NULL && !ill->ill_logical_down && ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && ill->ill_dl_up) { ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS; } /* * Blow away memberships we established in ipif_multicast_up(). */ ipif_multicast_down(ipif); /* * Remove from the mapping for __sin6_src_id. We insert only * when the address is not INADDR_ANY. As IPv4 addresses are * stored as mapped addresses, we need to check for mapped * INADDR_ANY also. */ if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && !(ipif->ipif_flags & IPIF_NOLOCAL)) { int err; err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); if (err != 0) { ip0dbg(("ipif_down: srcid_remove %d\n", err)); } } if (ipif_was_up) { /* only delete if we'd added ire's before */ if (ipif->ipif_isv6) ipif_delete_ires_v6(ipif); else ipif_delete_ires_v4(ipif); } if (ipif_was_up && ill->ill_ipif_up_count == 0) { /* * Since the interface is now down, it may have just become * inactive. Note that this needs to be done even for a * lll_logical_down(), or ARP entries will not get correctly * restored when the interface comes back up. */ if (IS_UNDER_IPMP(ill)) ipmp_ill_refresh_active(ill); } /* * neighbor-discovery or arp entries for this interface. The ipif * has to be quiesced, so we walk all the nce's and delete those * that point at the ipif->ipif_ill. At the same time, we also * update IPMP so that ipifs for data addresses are unbound. We dont * call ipif_arp_down to DL_UNBIND the arp stream itself here, but defer * that for ipif_down_tail() */ ipif_nce_down(ipif); /* * If this is the last ipif on the ill, we also need to remove * any IREs with ire_ill set. Otherwise ipif_is_quiescent() will * never succeed. */ if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) ire_walk_ill(0, 0, ill_downi, ill, ill); /* * Walk all CONNs that can have a reference on an ire for this * ipif (we actually walk all that now have stale references). */ ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst); /* * If mp is NULL the caller will wait for the appropriate refcnt. * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down * and ill_delete -> ipif_free -> ipif_down */ if (mp == NULL) { ASSERT(q == NULL); return (0); } if (CONN_Q(q)) { connp = Q_TO_CONN(q); mutex_enter(&connp->conn_lock); } else { connp = NULL; } mutex_enter(&ill->ill_lock); /* * Are there any ire's pointing to this ipif that are still active ? * If this is the last ipif going down, are there any ire's pointing * to this ill that are still active ? */ if (ipif_is_quiescent(ipif)) { mutex_exit(&ill->ill_lock); if (connp != NULL) mutex_exit(&connp->conn_lock); return (0); } ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", ill->ill_name, (void *)ill)); /* * Enqueue the mp atomically in ipsq_pending_mp. When the refcount * drops down, the operation will be restarted by ipif_ill_refrele_tail * which in turn is called by the last refrele on the ipif/ill/ire. */ success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); if (!success) { /* The conn is closing. So just return */ ASSERT(connp != NULL); mutex_exit(&ill->ill_lock); mutex_exit(&connp->conn_lock); return (EINTR); } mutex_exit(&ill->ill_lock); if (connp != NULL) mutex_exit(&connp->conn_lock); return (EINPROGRESS); } int ipif_down_tail(ipif_t *ipif) { ill_t *ill = ipif->ipif_ill; int err = 0; DTRACE_PROBE3(ipif__downup, char *, "ipif_down_tail", ill_t *, ill, ipif_t *, ipif); /* * Skip any loopback interface (null wq). * If this is the last logical interface on the ill * have ill_dl_down tell the driver we are gone (unbind) * Note that lun 0 can ipif_down even though * there are other logical units that are up. * This occurs e.g. when we change a "significant" IFF_ flag. */ if (ill->ill_wq != NULL && !ill->ill_logical_down && ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && ill->ill_dl_up) { ill_dl_down(ill); } if (!ipif->ipif_isv6) err = ipif_arp_down(ipif); ill->ill_logical_down = 0; ip_rts_ifmsg(ipif, RTSQ_DEFAULT); ip_rts_newaddrmsg(RTM_DELETE, 0, ipif, RTSQ_DEFAULT); return (err); } /* * Bring interface logically down without bringing the physical interface * down e.g. when the netmask is changed. This avoids long lasting link * negotiations between an ethernet interface and a certain switches. */ static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) { DTRACE_PROBE3(ipif__downup, char *, "ipif_logical_down", ill_t *, ipif->ipif_ill, ipif_t *, ipif); /* * The ill_logical_down flag is a transient flag. It is set here * and is cleared once the down has completed in ipif_down_tail. * This flag does not indicate whether the ill stream is in the * DL_BOUND state with the driver. Instead this flag is used by * ipif_down_tail to determine whether to DL_UNBIND the stream with * the driver. The state of the ill stream i.e. whether it is * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. */ ipif->ipif_ill->ill_logical_down = 1; return (ipif_down(ipif, q, mp)); } /* * Initiate deallocate of an IPIF. Always called as writer. Called by * ill_delete or ip_sioctl_removeif. */ static void ipif_free(ipif_t *ipif) { ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; ASSERT(IAM_WRITER_IPIF(ipif)); if (ipif->ipif_recovery_id != 0) (void) untimeout(ipif->ipif_recovery_id); ipif->ipif_recovery_id = 0; /* * Take down the interface. We can be called either from ill_delete * or from ip_sioctl_removeif. */ (void) ipif_down(ipif, NULL, NULL); /* * Now that the interface is down, there's no chance it can still * become a duplicate. Cancel any timer that may have been set while * tearing down. */ if (ipif->ipif_recovery_id != 0) (void) untimeout(ipif->ipif_recovery_id); ipif->ipif_recovery_id = 0; rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); /* Remove pointers to this ill in the multicast routing tables */ reset_mrt_vif_ipif(ipif); /* If necessary, clear the cached source ipif rotor. */ if (ipif->ipif_ill->ill_src_ipif == ipif) ipif->ipif_ill->ill_src_ipif = NULL; rw_exit(&ipst->ips_ill_g_lock); } static void ipif_free_tail(ipif_t *ipif) { ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; /* * Need to hold both ill_g_lock and ill_lock while * inserting or removing an ipif from the linked list * of ipifs hanging off the ill. */ rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); #ifdef DEBUG ipif_trace_cleanup(ipif); #endif /* Ask SCTP to take it out of it list */ sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); ip_rts_newaddrmsg(RTM_FREEADDR, 0, ipif, RTSQ_DEFAULT); /* Get it out of the ILL interface list. */ ipif_remove(ipif); rw_exit(&ipst->ips_ill_g_lock); ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); ASSERT(ipif->ipif_recovery_id == 0); ASSERT(ipif->ipif_ire_local == NULL); ASSERT(ipif->ipif_ire_if == NULL); /* Free the memory. */ mi_free(ipif); } /* * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id" * is zero. */ void ipif_get_name(const ipif_t *ipif, char *buf, int len) { char lbuf[LIFNAMSIZ]; char *name; size_t name_len; buf[0] = '\0'; name = ipif->ipif_ill->ill_name; name_len = ipif->ipif_ill->ill_name_length; if (ipif->ipif_id != 0) { (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, ipif->ipif_id); name = lbuf; name_len = mi_strlen(name) + 1; } len -= 1; buf[len] = '\0'; len = MIN(len, name_len); bcopy(name, buf, len); } /* * Sets `buf' to an ill name. */ void ill_get_name(const ill_t *ill, char *buf, int len) { char *name; size_t name_len; name = ill->ill_name; name_len = ill->ill_name_length; len -= 1; buf[len] = '\0'; len = MIN(len, name_len); bcopy(name, buf, len); } /* * Find an IPIF based on the name passed in. Names can be of the form * (e.g., le0) or :<#> (e.g., le0:1). When there is no colon, the * implied unit id is zero. must correspond to the name of an ILL. * (May be called as writer.) */ static ipif_t * ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, ip_stack_t *ipst) { char *cp; char *endp; long id; ill_t *ill; ipif_t *ipif; uint_t ire_type; boolean_t did_alloc = B_FALSE; char last; /* * If the caller wants to us to create the ipif, make sure we have a * valid zoneid */ ASSERT(!do_alloc || zoneid != ALL_ZONES); if (namelen == 0) { return (NULL); } *exists = B_FALSE; /* Look for a colon in the name. */ endp = &name[namelen]; for (cp = endp; --cp > name; ) { if (*cp == IPIF_SEPARATOR_CHAR) break; } if (*cp == IPIF_SEPARATOR_CHAR) { /* * Reject any non-decimal aliases for logical * interfaces. Aliases with leading zeroes * are also rejected as they introduce ambiguity * in the naming of the interfaces. * In order to confirm with existing semantics, * and to not break any programs/script relying * on that behaviour, if<0>:0 is considered to be * a valid interface. * * If alias has two or more digits and the first * is zero, fail. */ if (&cp[2] < endp && cp[1] == '0') { return (NULL); } } if (cp <= name) { cp = endp; } last = *cp; *cp = '\0'; /* * Look up the ILL, based on the portion of the name * before the slash. ill_lookup_on_name returns a held ill. * Temporary to check whether ill exists already. If so * ill_lookup_on_name will clear it. */ ill = ill_lookup_on_name(name, do_alloc, isv6, &did_alloc, ipst); *cp = last; if (ill == NULL) return (NULL); /* Establish the unit number in the name. */ id = 0; if (cp < endp && *endp == '\0') { /* If there was a colon, the unit number follows. */ cp++; if (ddi_strtol(cp, NULL, 0, &id) != 0) { ill_refrele(ill); return (NULL); } } mutex_enter(&ill->ill_lock); /* Now see if there is an IPIF with this unit number. */ for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { if (ipif->ipif_id == id) { if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && ipif->ipif_zoneid != ALL_ZONES) { mutex_exit(&ill->ill_lock); ill_refrele(ill); return (NULL); } if (IPIF_CAN_LOOKUP(ipif)) { ipif_refhold_locked(ipif); mutex_exit(&ill->ill_lock); if (!did_alloc) *exists = B_TRUE; /* * Drop locks before calling ill_refrele * since it can potentially call into * ipif_ill_refrele_tail which can end up * in trying to acquire any lock. */ ill_refrele(ill); return (ipif); } } } if (!do_alloc) { mutex_exit(&ill->ill_lock); ill_refrele(ill); return (NULL); } /* * If none found, atomically allocate and return a new one. * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL * to support "receive only" use of lo0:1 etc. as is still done * below as an initial guess. * However, this is now likely to be overriden later in ipif_up_done() * when we know for sure what address has been configured on the * interface, since we might have more than one loopback interface * with a loopback address, e.g. in the case of zones, and all the * interfaces with loopback addresses need to be marked IRE_LOOPBACK. */ if (ill->ill_net_type == IRE_LOOPBACK && id == 0) ire_type = IRE_LOOPBACK; else ire_type = IRE_LOCAL; ipif = ipif_allocate(ill, id, ire_type, B_TRUE, B_TRUE, NULL); if (ipif != NULL) ipif_refhold_locked(ipif); mutex_exit(&ill->ill_lock); ill_refrele(ill); return (ipif); } /* * Variant of the above that queues the request on the ipsq when * IPIF_CHANGING is set. */ static ipif_t * ipif_lookup_on_name_async(char *name, size_t namelen, boolean_t isv6, zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) { char *cp; char *endp; long id; ill_t *ill; ipif_t *ipif; boolean_t did_alloc = B_FALSE; ipsq_t *ipsq; if (error != NULL) *error = 0; if (namelen == 0) { if (error != NULL) *error = ENXIO; return (NULL); } /* Look for a colon in the name. */ endp = &name[namelen]; for (cp = endp; --cp > name; ) { if (*cp == IPIF_SEPARATOR_CHAR) break; } if (*cp == IPIF_SEPARATOR_CHAR) { /* * Reject any non-decimal aliases for logical * interfaces. Aliases with leading zeroes * are also rejected as they introduce ambiguity * in the naming of the interfaces. * In order to confirm with existing semantics, * and to not break any programs/script relying * on that behaviour, if<0>:0 is considered to be * a valid interface. * * If alias has two or more digits and the first * is zero, fail. */ if (&cp[2] < endp && cp[1] == '0') { if (error != NULL) *error = EINVAL; return (NULL); } } if (cp <= name) { cp = endp; } else { *cp = '\0'; } /* * Look up the ILL, based on the portion of the name * before the slash. ill_lookup_on_name returns a held ill. * Temporary to check whether ill exists already. If so * ill_lookup_on_name will clear it. */ ill = ill_lookup_on_name(name, B_FALSE, isv6, &did_alloc, ipst); if (cp != endp) *cp = IPIF_SEPARATOR_CHAR; if (ill == NULL) return (NULL); /* Establish the unit number in the name. */ id = 0; if (cp < endp && *endp == '\0') { /* If there was a colon, the unit number follows. */ cp++; if (ddi_strtol(cp, NULL, 0, &id) != 0) { ill_refrele(ill); if (error != NULL) *error = ENXIO; return (NULL); } } GRAB_CONN_LOCK(q); mutex_enter(&ill->ill_lock); /* Now see if there is an IPIF with this unit number. */ for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { if (ipif->ipif_id == id) { if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && ipif->ipif_zoneid != ALL_ZONES) { mutex_exit(&ill->ill_lock); RELEASE_CONN_LOCK(q); ill_refrele(ill); if (error != NULL) *error = ENXIO; return (NULL); } if (!(IPIF_IS_CHANGING(ipif) || IPIF_IS_CONDEMNED(ipif)) || IAM_WRITER_IPIF(ipif)) { ipif_refhold_locked(ipif); mutex_exit(&ill->ill_lock); /* * Drop locks before calling ill_refrele * since it can potentially call into * ipif_ill_refrele_tail which can end up * in trying to acquire any lock. */ RELEASE_CONN_LOCK(q); ill_refrele(ill); return (ipif); } else if (q != NULL && !IPIF_IS_CONDEMNED(ipif)) { ipsq = ill->ill_phyint->phyint_ipsq; mutex_enter(&ipsq->ipsq_lock); mutex_enter(&ipsq->ipsq_xop->ipx_lock); mutex_exit(&ill->ill_lock); ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); mutex_exit(&ipsq->ipsq_xop->ipx_lock); mutex_exit(&ipsq->ipsq_lock); RELEASE_CONN_LOCK(q); ill_refrele(ill); if (error != NULL) *error = EINPROGRESS; return (NULL); } } } RELEASE_CONN_LOCK(q); mutex_exit(&ill->ill_lock); ill_refrele(ill); if (error != NULL) *error = ENXIO; return (NULL); } /* * This routine is called whenever a new address comes up on an ipif. If * we are configured to respond to address mask requests, then we are supposed * to broadcast an address mask reply at this time. This routine is also * called if we are already up, but a netmask change is made. This is legal * but might not make the system manager very popular. (May be called * as writer.) */ void ipif_mask_reply(ipif_t *ipif) { icmph_t *icmph; ipha_t *ipha; mblk_t *mp; ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; ip_xmit_attr_t ixas; #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) if (!ipst->ips_ip_respond_to_address_mask_broadcast) return; /* ICMP mask reply is IPv4 only */ ASSERT(!ipif->ipif_isv6); /* ICMP mask reply is not for a loopback interface */ ASSERT(ipif->ipif_ill->ill_wq != NULL); if (ipif->ipif_lcl_addr == INADDR_ANY) return; mp = allocb(REPLY_LEN, BPRI_HI); if (mp == NULL) return; mp->b_wptr = mp->b_rptr + REPLY_LEN; ipha = (ipha_t *)mp->b_rptr; bzero(ipha, REPLY_LEN); *ipha = icmp_ipha; ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; ipha->ipha_src = ipif->ipif_lcl_addr; ipha->ipha_dst = ipif->ipif_brd_addr; ipha->ipha_length = htons(REPLY_LEN); ipha->ipha_ident = 0; icmph = (icmph_t *)&ipha[1]; icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); bzero(&ixas, sizeof (ixas)); ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; ixas.ixa_zoneid = ALL_ZONES; ixas.ixa_ifindex = 0; ixas.ixa_ipst = ipst; ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; (void) ip_output_simple(mp, &ixas); ixa_cleanup(&ixas); #undef REPLY_LEN } /* * Join the ipif specific multicast groups. * Must be called after a mapping has been set up in the resolver. (Always * called as writer.) */ void ipif_multicast_up(ipif_t *ipif) { int err; ill_t *ill; ilm_t *ilm; ASSERT(IAM_WRITER_IPIF(ipif)); ill = ipif->ipif_ill; ip1dbg(("ipif_multicast_up\n")); if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_allhosts_ilm != NULL) return; if (ipif->ipif_isv6) { in6_addr_t v6allmc = ipv6_all_hosts_mcast; in6_addr_t v6solmc = ipv6_solicited_node_mcast; v6solmc.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) return; ip1dbg(("ipif_multicast_up - addmulti\n")); /* * Join the all hosts multicast address. We skip this for * underlying IPMP interfaces since they should be invisible. */ if (!IS_UNDER_IPMP(ill)) { ilm = ip_addmulti(&v6allmc, ill, ipif->ipif_zoneid, &err); if (ilm == NULL) { ASSERT(err != 0); ip0dbg(("ipif_multicast_up: " "all_hosts_mcast failed %d\n", err)); return; } ipif->ipif_allhosts_ilm = ilm; } /* * Enable multicast for the solicited node multicast address. * If IPMP we need to put the membership on the upper ill. */ if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { ill_t *mcast_ill = NULL; boolean_t need_refrele; if (IS_UNDER_IPMP(ill) && (mcast_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) { need_refrele = B_TRUE; } else { mcast_ill = ill; need_refrele = B_FALSE; } ilm = ip_addmulti(&v6solmc, mcast_ill, ipif->ipif_zoneid, &err); if (need_refrele) ill_refrele(mcast_ill); if (ilm == NULL) { ASSERT(err != 0); ip0dbg(("ipif_multicast_up: solicited MC" " failed %d\n", err)); if ((ilm = ipif->ipif_allhosts_ilm) != NULL) { ipif->ipif_allhosts_ilm = NULL; (void) ip_delmulti(ilm); } return; } ipif->ipif_solmulti_ilm = ilm; } } else { in6_addr_t v6group; if (ipif->ipif_lcl_addr == INADDR_ANY || IS_UNDER_IPMP(ill)) return; /* Join the all hosts multicast address */ ip1dbg(("ipif_multicast_up - addmulti\n")); IN6_IPADDR_TO_V4MAPPED(htonl(INADDR_ALLHOSTS_GROUP), &v6group); ilm = ip_addmulti(&v6group, ill, ipif->ipif_zoneid, &err); if (ilm == NULL) { ASSERT(err != 0); ip0dbg(("ipif_multicast_up: failed %d\n", err)); return; } ipif->ipif_allhosts_ilm = ilm; } } /* * Blow away any multicast groups that we joined in ipif_multicast_up(). * (ilms from explicit memberships are handled in conn_update_ill.) */ void ipif_multicast_down(ipif_t *ipif) { ASSERT(IAM_WRITER_IPIF(ipif)); ip1dbg(("ipif_multicast_down\n")); if (ipif->ipif_allhosts_ilm != NULL) { (void) ip_delmulti(ipif->ipif_allhosts_ilm); ipif->ipif_allhosts_ilm = NULL; } if (ipif->ipif_solmulti_ilm != NULL) { (void) ip_delmulti(ipif->ipif_solmulti_ilm); ipif->ipif_solmulti_ilm = NULL; } } /* * Used when an interface comes up to recreate any extra routes on this * interface. */ int ill_recover_saved_ire(ill_t *ill) { mblk_t *mp; ip_stack_t *ipst = ill->ill_ipst; ip1dbg(("ill_recover_saved_ire(%s)", ill->ill_name)); mutex_enter(&ill->ill_saved_ire_lock); for (mp = ill->ill_saved_ire_mp; mp != NULL; mp = mp->b_cont) { ire_t *ire, *nire; ifrt_t *ifrt; ifrt = (ifrt_t *)mp->b_rptr; /* * Create a copy of the IRE with the saved address and netmask. */ if (ill->ill_isv6) { ire = ire_create_v6( &ifrt->ifrt_v6addr, &ifrt->ifrt_v6mask, &ifrt->ifrt_v6gateway_addr, ifrt->ifrt_type, ill, ifrt->ifrt_zoneid, ifrt->ifrt_flags, NULL, ipst); } else { ire = ire_create( (uint8_t *)&ifrt->ifrt_addr, (uint8_t *)&ifrt->ifrt_mask, (uint8_t *)&ifrt->ifrt_gateway_addr, ifrt->ifrt_type, ill, ifrt->ifrt_zoneid, ifrt->ifrt_flags, NULL, ipst); } if (ire == NULL) { mutex_exit(&ill->ill_saved_ire_lock); return (ENOMEM); } if (ifrt->ifrt_flags & RTF_SETSRC) { if (ill->ill_isv6) { ire->ire_setsrc_addr_v6 = ifrt->ifrt_v6setsrc_addr; } else { ire->ire_setsrc_addr = ifrt->ifrt_setsrc_addr; } } /* * Some software (for example, GateD and Sun Cluster) attempts * to create (what amount to) IRE_PREFIX routes with the * loopback address as the gateway. This is primarily done to * set up prefixes with the RTF_REJECT flag set (for example, * when generating aggregate routes.) * * If the IRE type (as defined by ill->ill_net_type) is * IRE_LOOPBACK, then we map the request into a * IRE_IF_NORESOLVER. */ if (ill->ill_net_type == IRE_LOOPBACK) ire->ire_type = IRE_IF_NORESOLVER; /* * ire held by ire_add, will be refreled' towards the * the end of ipif_up_done */ nire = ire_add(ire); /* * Check if it was a duplicate entry. This handles * the case of two racing route adds for the same route */ if (nire == NULL) { ip1dbg(("ill_recover_saved_ire: FAILED\n")); } else if (nire != ire) { ip1dbg(("ill_recover_saved_ire: duplicate ire %p\n", (void *)nire)); ire_delete(nire); } else { ip1dbg(("ill_recover_saved_ire: added ire %p\n", (void *)nire)); } if (nire != NULL) ire_refrele(nire); } mutex_exit(&ill->ill_saved_ire_lock); return (0); } /* * Used to set the netmask and broadcast address to default values when the * interface is brought up. (Always called as writer.) */ static void ipif_set_default(ipif_t *ipif) { ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); if (!ipif->ipif_isv6) { /* * Interface holds an IPv4 address. Default * mask is the natural netmask. */ if (!ipif->ipif_net_mask) { ipaddr_t v4mask; v4mask = ip_net_mask(ipif->ipif_lcl_addr); V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); } if (ipif->ipif_flags & IPIF_POINTOPOINT) { /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; } else { V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, ipif->ipif_v6subnet); } /* * NOTE: SunOS 4.X does this even if the broadcast address * has been already set thus we do the same here. */ if (ipif->ipif_flags & IPIF_BROADCAST) { ipaddr_t v4addr; v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); } } else { /* * Interface holds an IPv6-only address. Default * mask is all-ones. */ if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) ipif->ipif_v6net_mask = ipv6_all_ones; if (ipif->ipif_flags & IPIF_POINTOPOINT) { /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; } else { V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, ipif->ipif_v6subnet); } } } /* * Return 0 if this address can be used as local address without causing * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address * is already up on a different ill, and EADDRINUSE if it's up on the same ill. * Note that the same IPv6 link-local address is allowed as long as the ills * are not on the same link. */ int ip_addr_availability_check(ipif_t *new_ipif) { in6_addr_t our_v6addr; ill_t *ill; ipif_t *ipif; ill_walk_context_t ctx; ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst; ASSERT(IAM_WRITER_IPIF(new_ipif)); ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock)); ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock)); new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) return (0); our_v6addr = new_ipif->ipif_v6lcl_addr; if (new_ipif->ipif_isv6) ill = ILL_START_WALK_V6(&ctx, ipst); else ill = ILL_START_WALK_V4(&ctx, ipst); for (; ill != NULL; ill = ill_next(&ctx, ill)) { for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { if ((ipif == new_ipif) || !(ipif->ipif_flags & IPIF_UP) || (ipif->ipif_flags & IPIF_UNNUMBERED) || !IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, &our_v6addr)) continue; if (new_ipif->ipif_flags & IPIF_POINTOPOINT) new_ipif->ipif_flags |= IPIF_UNNUMBERED; else if (ipif->ipif_flags & IPIF_POINTOPOINT) ipif->ipif_flags |= IPIF_UNNUMBERED; else if ((IN6_IS_ADDR_LINKLOCAL(&our_v6addr) || IN6_IS_ADDR_SITELOCAL(&our_v6addr)) && !IS_ON_SAME_LAN(ill, new_ipif->ipif_ill)) continue; else if (new_ipif->ipif_zoneid != ipif->ipif_zoneid && ipif->ipif_zoneid != ALL_ZONES && IS_LOOPBACK(ill)) continue; else if (new_ipif->ipif_ill == ill) return (EADDRINUSE); else return (EADDRNOTAVAIL); } } return (0); } /* * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add * IREs for the ipif. * When the routine returns EINPROGRESS then mp has been consumed and * the ioctl will be acked from ip_rput_dlpi. */ int ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) { ill_t *ill = ipif->ipif_ill; boolean_t isv6 = ipif->ipif_isv6; int err = 0; boolean_t success; uint_t ipif_orig_id; ip_stack_t *ipst = ill->ill_ipst; ASSERT(IAM_WRITER_IPIF(ipif)); ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); DTRACE_PROBE3(ipif__downup, char *, "ipif_up", ill_t *, ill, ipif_t *, ipif); /* Shouldn't get here if it is already up. */ if (ipif->ipif_flags & IPIF_UP) return (EALREADY); /* * If this is a request to bring up a data address on an interface * under IPMP, then move the address to its IPMP meta-interface and * try to bring it up. One complication is that the zeroth ipif for * an ill is special, in that every ill always has one, and that code * throughout IP deferences ill->ill_ipif without holding any locks. */ if (IS_UNDER_IPMP(ill) && ipmp_ipif_is_dataaddr(ipif) && (!ipif->ipif_isv6 || !V6_IPIF_LINKLOCAL(ipif))) { ipif_t *stubipif = NULL, *moveipif = NULL; ill_t *ipmp_ill = ipmp_illgrp_ipmp_ill(ill->ill_grp); /* * The ipif being brought up should be quiesced. If it's not, * something has gone amiss and we need to bail out. (If it's * quiesced, we know it will remain so via IPIF_CONDEMNED.) */ mutex_enter(&ill->ill_lock); if (!ipif_is_quiescent(ipif)) { mutex_exit(&ill->ill_lock); return (EINVAL); } mutex_exit(&ill->ill_lock); /* * If we're going to need to allocate ipifs, do it prior * to starting the move (and grabbing locks). */ if (ipif->ipif_id == 0) { if ((moveipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, B_FALSE, &err)) == NULL) { return (err); } if ((stubipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, B_FALSE, &err)) == NULL) { mi_free(moveipif); return (err); } } /* * Grab or transfer the ipif to move. During the move, keep * ill_g_lock held to prevent any ill walker threads from * seeing things in an inconsistent state. */ rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); if (ipif->ipif_id != 0) { ipif_remove(ipif); } else { ipif_transfer(ipif, moveipif, stubipif); ipif = moveipif; } /* * Place the ipif on the IPMP ill. If the zeroth ipif on * the IPMP ill is a stub (0.0.0.0 down address) then we * replace that one. Otherwise, pick the next available slot. */ ipif->ipif_ill = ipmp_ill; ipif_orig_id = ipif->ipif_id; if (ipmp_ipif_is_stubaddr(ipmp_ill->ill_ipif)) { ipif_transfer(ipif, ipmp_ill->ill_ipif, NULL); ipif = ipmp_ill->ill_ipif; } else { ipif->ipif_id = -1; if ((err = ipif_insert(ipif, B_FALSE)) != 0) { /* * No more available ipif_id's -- put it back * on the original ill and fail the operation. * Since we're writer on the ill, we can be * sure our old slot is still available. */ ipif->ipif_id = ipif_orig_id; ipif->ipif_ill = ill; if (ipif_orig_id == 0) { ipif_transfer(ipif, ill->ill_ipif, NULL); } else { VERIFY(ipif_insert(ipif, B_FALSE) == 0); } rw_exit(&ipst->ips_ill_g_lock); return (err); } } rw_exit(&ipst->ips_ill_g_lock); /* * Tell SCTP that the ipif has moved. Note that even if we * had to allocate a new ipif, the original sequence id was * preserved and therefore SCTP won't know. */ sctp_move_ipif(ipif, ill, ipmp_ill); /* * If the ipif being brought up was on slot zero, then we * first need to bring up the placeholder we stuck there. In * ip_rput_dlpi_writer(), arp_bringup_done(), or the recursive * call to ipif_up() itself, if we successfully bring up the * placeholder, we'll check ill_move_ipif and bring it up too. */ if (ipif_orig_id == 0) { ASSERT(ill->ill_move_ipif == NULL); ill->ill_move_ipif = ipif; if ((err = ipif_up(ill->ill_ipif, q, mp)) == 0) ASSERT(ill->ill_move_ipif == NULL); if (err != EINPROGRESS) ill->ill_move_ipif = NULL; return (err); } /* * Bring it up on the IPMP ill. */ return (ipif_up(ipif, q, mp)); } /* Skip arp/ndp for any loopback interface. */ if (ill->ill_wq != NULL) { conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; if (!ill->ill_dl_up) { /* * ill_dl_up is not yet set. i.e. we are yet to * DL_BIND with the driver and this is the first * logical interface on the ill to become "up". * Tell the driver to get going (via DL_BIND_REQ). * Note that changing "significant" IFF_ flags * address/netmask etc cause a down/up dance, but * does not cause an unbind (DL_UNBIND) with the driver */ return (ill_dl_up(ill, ipif, mp, q)); } /* * ipif_resolver_up may end up needeing to bind/attach * the ARP stream, which in turn necessitates a * DLPI message exchange with the driver. ioctls are * serialized and so we cannot send more than one * interface up message at a time. If ipif_resolver_up * does need to wait for the DLPI handshake for the ARP stream, * we get EINPROGRESS and we will complete in arp_bringup_done. */ ASSERT(connp != NULL || !CONN_Q(q)); if (connp != NULL) mutex_enter(&connp->conn_lock); mutex_enter(&ill->ill_lock); success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); mutex_exit(&ill->ill_lock); if (connp != NULL) mutex_exit(&connp->conn_lock); if (!success) return (EINTR); /* * Crank up IPv6 neighbor discovery. Unlike ARP, this should * complete when ipif_ndp_up returns. */ err = ipif_resolver_up(ipif, Res_act_initial); if (err == EINPROGRESS) { /* We will complete it in arp_bringup_done() */ return (err); } if (isv6 && err == 0) err = ipif_ndp_up(ipif, B_TRUE); ASSERT(err != EINPROGRESS); mp = ipsq_pending_mp_get(ipsq, &connp); ASSERT(mp != NULL); if (err != 0) return (err); } else { /* * Interfaces without underlying hardware don't do duplicate * address detection. */ ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); ipif->ipif_addr_ready = 1; err = ill_add_ires(ill); /* allocation failure? */ if (err != 0) return (err); } err = (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); if (err == 0 && ill->ill_move_ipif != NULL) { ipif = ill->ill_move_ipif; ill->ill_move_ipif = NULL; return (ipif_up(ipif, q, mp)); } return (err); } /* * Add any IREs tied to the ill. For now this is just an IRE_MULTICAST. * The identical set of IREs need to be removed in ill_delete_ires(). */ int ill_add_ires(ill_t *ill) { ire_t *ire; in6_addr_t dummy6 = {(uint32_t)V6_MCAST, 0, 0, 1}; in_addr_t dummy4 = htonl(INADDR_ALLHOSTS_GROUP); if (ill->ill_ire_multicast != NULL) return (0); /* * provide some dummy ire_addr for creating the ire. */ if (ill->ill_isv6) { ire = ire_create_v6(&dummy6, 0, 0, IRE_MULTICAST, ill, ALL_ZONES, RTF_UP, NULL, ill->ill_ipst); } else { ire = ire_create((uchar_t *)&dummy4, 0, 0, IRE_MULTICAST, ill, ALL_ZONES, RTF_UP, NULL, ill->ill_ipst); } if (ire == NULL) return (ENOMEM); ill->ill_ire_multicast = ire; return (0); } void ill_delete_ires(ill_t *ill) { if (ill->ill_ire_multicast != NULL) { /* * BIND/ATTACH completed; Release the ref for ill_ire_multicast * which was taken without any th_tracing enabled. * We also mark it as condemned (note that it was never added) * so that caching conn's can move off of it. */ ire_make_condemned(ill->ill_ire_multicast); ire_refrele_notr(ill->ill_ire_multicast); ill->ill_ire_multicast = NULL; } } /* * Perform a bind for the physical device. * When the routine returns EINPROGRESS then mp has been consumed and * the ioctl will be acked from ip_rput_dlpi. * Allocate an unbind message and save it until ipif_down. */ static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) { mblk_t *bind_mp = NULL; mblk_t *unbind_mp = NULL; conn_t *connp; boolean_t success; int err; DTRACE_PROBE2(ill__downup, char *, "ill_dl_up", ill_t *, ill); ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); ASSERT(IAM_WRITER_ILL(ill)); ASSERT(mp != NULL); /* * Make sure we have an IRE_MULTICAST in case we immediately * start receiving packets. */ err = ill_add_ires(ill); if (err != 0) goto bad; bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), DL_BIND_REQ); if (bind_mp == NULL) goto bad; ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); if (unbind_mp == NULL) goto bad; /* * Record state needed to complete this operation when the * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. */ connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; ASSERT(connp != NULL || !CONN_Q(q)); GRAB_CONN_LOCK(q); mutex_enter(&ipif->ipif_ill->ill_lock); success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); mutex_exit(&ipif->ipif_ill->ill_lock); RELEASE_CONN_LOCK(q); if (!success) goto bad; /* * Save the unbind message for ill_dl_down(); it will be consumed when * the interface goes down. */ ASSERT(ill->ill_unbind_mp == NULL); ill->ill_unbind_mp = unbind_mp; ill_dlpi_send(ill, bind_mp); /* Send down link-layer capabilities probe if not already done. */ ill_capability_probe(ill); /* * Sysid used to rely on the fact that netboots set domainname * and the like. Now that miniroot boots aren't strictly netboots * and miniroot network configuration is driven from userland * these things still need to be set. This situation can be detected * by comparing the interface being configured here to the one * dhcifname was set to reference by the boot loader. Once sysid is * converted to use dhcp_ipc_getinfo() this call can go away. */ if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && (strcmp(ill->ill_name, dhcifname) == 0) && (strlen(srpc_domain) == 0)) { if (dhcpinit() != 0) cmn_err(CE_WARN, "no cached dhcp response"); } /* * This operation will complete in ip_rput_dlpi with either * a DL_BIND_ACK or DL_ERROR_ACK. */ return (EINPROGRESS); bad: ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); freemsg(bind_mp); freemsg(unbind_mp); return (ENOMEM); } /* Add room for tcp+ip headers */ uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; /* * DLPI and ARP is up. * Create all the IREs associated with an interface. Bring up multicast. * Set the interface flag and finish other initialization * that potentially had to be deferred to after DL_BIND_ACK. */ int ipif_up_done(ipif_t *ipif) { ill_t *ill = ipif->ipif_ill; int err = 0; boolean_t loopback = B_FALSE; boolean_t update_src_selection = B_TRUE; ipif_t *tmp_ipif; ip1dbg(("ipif_up_done(%s:%u)\n", ipif->ipif_ill->ill_name, ipif->ipif_id)); DTRACE_PROBE3(ipif__downup, char *, "ipif_up_done", ill_t *, ill, ipif_t *, ipif); /* Check if this is a loopback interface */ if (ipif->ipif_ill->ill_wq == NULL) loopback = B_TRUE; ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); /* * If all other interfaces for this ill are down or DEPRECATED, * or otherwise unsuitable for source address selection, * reset the src generation numbers to make sure source * address selection gets to take this new ipif into account. * No need to hold ill_lock while traversing the ipif list since * we are writer */ for (tmp_ipif = ill->ill_ipif; tmp_ipif; tmp_ipif = tmp_ipif->ipif_next) { if (((tmp_ipif->ipif_flags & (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || !(tmp_ipif->ipif_flags & IPIF_UP)) || (tmp_ipif == ipif)) continue; /* first useable pre-existing interface */ update_src_selection = B_FALSE; break; } if (update_src_selection) ip_update_source_selection(ill->ill_ipst); if (IS_LOOPBACK(ill) || ill->ill_net_type == IRE_IF_NORESOLVER) { nce_t *loop_nce = NULL; uint16_t flags = (NCE_F_MYADDR | NCE_F_AUTHORITY | NCE_F_NONUD); /* * lo0:1 and subsequent ipifs were marked IRE_LOCAL in * ipif_lookup_on_name(), but in the case of zones we can have * several loopback addresses on lo0. So all the interfaces with * loopback addresses need to be marked IRE_LOOPBACK. */ if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == htonl(INADDR_LOOPBACK)) ipif->ipif_ire_type = IRE_LOOPBACK; else ipif->ipif_ire_type = IRE_LOCAL; if (ill->ill_net_type != IRE_LOOPBACK) flags |= NCE_F_PUBLISH; /* add unicast nce for the local addr */ err = nce_lookup_then_add_v4(ill, NULL, ill->ill_phys_addr_length, &ipif->ipif_lcl_addr, flags, ND_REACHABLE, &loop_nce); /* A shared-IP zone sees EEXIST for lo0:N */ if (err == 0 || err == EEXIST) { ipif->ipif_added_nce = 1; loop_nce->nce_ipif_cnt++; nce_refrele(loop_nce); err = 0; } else { ASSERT(loop_nce == NULL); return (err); } } /* Create all the IREs associated with this interface */ err = ipif_add_ires_v4(ipif, loopback); if (err != 0) { /* * see comments about return value from * ip_addr_availability_check() in ipif_add_ires_v4(). */ if (err != EADDRINUSE) { (void) ipif_arp_down(ipif); } else { /* * Make IPMP aware of the deleted ipif so that * the needed ipmp cleanup (e.g., of ipif_bound_ill) * can be completed. Note that we do not want to * destroy the nce that was created on the ipmp_ill * for the active copy of the duplicate address in * use. */ if (IS_IPMP(ill)) ipmp_illgrp_del_ipif(ill->ill_grp, ipif); err = EADDRNOTAVAIL; } return (err); } if (ill->ill_ipif_up_count == 1 && !loopback) { /* Recover any additional IREs entries for this ill */ (void) ill_recover_saved_ire(ill); } if (ill->ill_need_recover_multicast) { /* * Need to recover all multicast memberships in the driver. * This had to be deferred until we had attached. The same * code exists in ipif_up_done_v6() to recover IPv6 * memberships. * * Note that it would be preferable to unconditionally do the * ill_recover_multicast() in ill_dl_up(), but we cannot do * that since ill_join_allmulti() depends on ill_dl_up being * set, and it is not set until we receive a DL_BIND_ACK after * having called ill_dl_up(). */ ill_recover_multicast(ill); } if (ill->ill_ipif_up_count == 1) { /* * Since the interface is now up, it may now be active. */ if (IS_UNDER_IPMP(ill)) ipmp_ill_refresh_active(ill); /* * If this is an IPMP interface, we may now be able to * establish ARP entries. */ if (IS_IPMP(ill)) ipmp_illgrp_refresh_arpent(ill->ill_grp); } /* Join the allhosts multicast address */ ipif_multicast_up(ipif); if (!loopback && !update_src_selection && !(ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) ip_update_source_selection(ill->ill_ipst); if (!loopback && ipif->ipif_addr_ready) { /* Broadcast an address mask reply. */ ipif_mask_reply(ipif); } /* Perhaps ilgs should use this ill */ update_conn_ill(NULL, ill->ill_ipst); /* * This had to be deferred until we had bound. Tell routing sockets and * others that this interface is up if it looks like the address has * been validated. Otherwise, if it isn't ready yet, wait for * duplicate address detection to do its thing. */ if (ipif->ipif_addr_ready) ipif_up_notify(ipif); return (0); } /* * Add the IREs associated with the ipif. * Those MUST be explicitly removed in ipif_delete_ires_v4. */ static int ipif_add_ires_v4(ipif_t *ipif, boolean_t loopback) { ill_t *ill = ipif->ipif_ill; ip_stack_t *ipst = ill->ill_ipst; ire_t *ire_array[20]; ire_t **irep = ire_array; ire_t **irep1; ipaddr_t net_mask = 0; ipaddr_t subnet_mask, route_mask; int err; ire_t *ire_local = NULL; /* LOCAL or LOOPBACK */ ire_t *ire_if = NULL; uchar_t *gw; if ((ipif->ipif_lcl_addr != INADDR_ANY) && !(ipif->ipif_flags & IPIF_NOLOCAL)) { /* * If we're on a labeled system then make sure that zone- * private addresses have proper remote host database entries. */ if (is_system_labeled() && ipif->ipif_ire_type != IRE_LOOPBACK && !tsol_check_interface_address(ipif)) return (EINVAL); /* Register the source address for __sin6_src_id */ err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); if (err != 0) { ip0dbg(("ipif_add_ires: srcid_insert %d\n", err)); return (err); } if (loopback) gw = (uchar_t *)&ipif->ipif_lcl_addr; else gw = NULL; /* If the interface address is set, create the local IRE. */ ire_local = ire_create( (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ (uchar_t *)&ip_g_all_ones, /* mask */ gw, /* gateway */ ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ ipif->ipif_ill, ipif->ipif_zoneid, ((ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE : 0) | RTF_KERNEL, NULL, ipst); ip1dbg(("ipif_add_ires: 0x%p creating IRE %p type 0x%x" " for 0x%x\n", (void *)ipif, (void *)ire_local, ipif->ipif_ire_type, ntohl(ipif->ipif_lcl_addr))); if (ire_local == NULL) { ip1dbg(("ipif_up_done: NULL ire_local\n")); err = ENOMEM; goto bad; } } else { ip1dbg(( "ipif_add_ires: not creating IRE %d for 0x%x: flags 0x%x\n", ipif->ipif_ire_type, ntohl(ipif->ipif_lcl_addr), (uint_t)ipif->ipif_flags)); } if ((ipif->ipif_lcl_addr != INADDR_ANY) && !(ipif->ipif_flags & IPIF_NOLOCAL)) { net_mask = ip_net_mask(ipif->ipif_lcl_addr); } else { net_mask = htonl(IN_CLASSA_NET); /* fallback */ } subnet_mask = ipif->ipif_net_mask; /* * If mask was not specified, use natural netmask of * interface address. Also, store this mask back into the * ipif struct. */ if (subnet_mask == 0) { subnet_mask = net_mask; V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, ipif->ipif_v6subnet); } /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ if (!loopback && !(ipif->ipif_flags & IPIF_NOXMIT) && ipif->ipif_subnet != INADDR_ANY) { /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ if (ipif->ipif_flags & IPIF_POINTOPOINT) { route_mask = IP_HOST_MASK; } else { route_mask = subnet_mask; } ip1dbg(("ipif_add_ires: ipif 0x%p ill 0x%p " "creating if IRE ill_net_type 0x%x for 0x%x\n", (void *)ipif, (void *)ill, ill->ill_net_type, ntohl(ipif->ipif_subnet))); ire_if = ire_create( (uchar_t *)&ipif->ipif_subnet, (uchar_t *)&route_mask, (uchar_t *)&ipif->ipif_lcl_addr, ill->ill_net_type, ill, ipif->ipif_zoneid, ((ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0) | RTF_KERNEL, NULL, ipst); if (ire_if == NULL) { ip1dbg(("ipif_up_done: NULL ire_if\n")); err = ENOMEM; goto bad; } } /* * Create any necessary broadcast IREs. */ if ((ipif->ipif_flags & IPIF_BROADCAST) && !(ipif->ipif_flags & IPIF_NOXMIT)) irep = ipif_create_bcast_ires(ipif, irep); /* If an earlier ire_create failed, get out now */ for (irep1 = irep; irep1 > ire_array; ) { irep1--; if (*irep1 == NULL) { ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); err = ENOMEM; goto bad; } } /* * Need to atomically check for IP address availability under * ip_addr_avail_lock. ill_g_lock is held as reader to ensure no new * ills or new ipifs can be added while we are checking availability. */ rw_enter(&ipst->ips_ill_g_lock, RW_READER); mutex_enter(&ipst->ips_ip_addr_avail_lock); /* Mark it up, and increment counters. */ ipif->ipif_flags |= IPIF_UP; ill->ill_ipif_up_count++; err = ip_addr_availability_check(ipif); mutex_exit(&ipst->ips_ip_addr_avail_lock); rw_exit(&ipst->ips_ill_g_lock); if (err != 0) { /* * Our address may already be up on the same ill. In this case, * the ARP entry for our ipif replaced the one for the other * ipif. So we don't want to delete it (otherwise the other ipif * would be unable to send packets). * ip_addr_availability_check() identifies this case for us and * returns EADDRINUSE; Caller should turn it into EADDRNOTAVAIL * which is the expected error code. */ ill->ill_ipif_up_count--; ipif->ipif_flags &= ~IPIF_UP; goto bad; } /* * Add in all newly created IREs. ire_create_bcast() has * already checked for duplicates of the IRE_BROADCAST type. * We add the IRE_INTERFACE before the IRE_LOCAL to ensure * that lookups find the IRE_LOCAL even if the IRE_INTERFACE is * a /32 route. */ if (ire_if != NULL) { ire_if = ire_add(ire_if); if (ire_if == NULL) { err = ENOMEM; goto bad2; } #ifdef DEBUG ire_refhold_notr(ire_if); ire_refrele(ire_if); #endif } if (ire_local != NULL) { ire_local = ire_add(ire_local); if (ire_local == NULL) { err = ENOMEM; goto bad2; } #ifdef DEBUG ire_refhold_notr(ire_local); ire_refrele(ire_local); #endif } rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); if (ire_local != NULL) ipif->ipif_ire_local = ire_local; if (ire_if != NULL) ipif->ipif_ire_if = ire_if; rw_exit(&ipst->ips_ill_g_lock); ire_local = NULL; ire_if = NULL; /* * We first add all of them, and if that succeeds we refrele the * bunch. That enables us to delete all of them should any of the * ire_adds fail. */ for (irep1 = irep; irep1 > ire_array; ) { irep1--; ASSERT(!MUTEX_HELD(&((*irep1)->ire_ill->ill_lock))); *irep1 = ire_add(*irep1); if (*irep1 == NULL) { err = ENOMEM; goto bad2; } } for (irep1 = irep; irep1 > ire_array; ) { irep1--; /* refheld by ire_add. */ if (*irep1 != NULL) { ire_refrele(*irep1); *irep1 = NULL; } } if (!loopback) { /* * If the broadcast address has been set, make sure it makes * sense based on the interface address. * Only match on ill since we are sharing broadcast addresses. */ if ((ipif->ipif_brd_addr != INADDR_ANY) && (ipif->ipif_flags & IPIF_BROADCAST)) { ire_t *ire; ire = ire_ftable_lookup_v4(ipif->ipif_brd_addr, 0, 0, IRE_BROADCAST, ipif->ipif_ill, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_ILL), 0, ipst, NULL); if (ire == NULL) { /* * If there isn't a matching broadcast IRE, * revert to the default for this netmask. */ ipif->ipif_v6brd_addr = ipv6_all_zeros; mutex_enter(&ipif->ipif_ill->ill_lock); ipif_set_default(ipif); mutex_exit(&ipif->ipif_ill->ill_lock); } else { ire_refrele(ire); } } } return (0); bad2: ill->ill_ipif_up_count--; ipif->ipif_flags &= ~IPIF_UP; bad: ip1dbg(("ipif_add_ires: FAILED \n")); if (ire_local != NULL) ire_delete(ire_local); if (ire_if != NULL) ire_delete(ire_if); rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); ire_local = ipif->ipif_ire_local; ipif->ipif_ire_local = NULL; ire_if = ipif->ipif_ire_if; ipif->ipif_ire_if = NULL; rw_exit(&ipst->ips_ill_g_lock); if (ire_local != NULL) { ire_delete(ire_local); ire_refrele_notr(ire_local); } if (ire_if != NULL) { ire_delete(ire_if); ire_refrele_notr(ire_if); } while (irep > ire_array) { irep--; if (*irep != NULL) { ire_delete(*irep); } } (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); return (err); } /* Remove all the IREs created by ipif_add_ires_v4 */ void ipif_delete_ires_v4(ipif_t *ipif) { ill_t *ill = ipif->ipif_ill; ip_stack_t *ipst = ill->ill_ipst; ire_t *ire; rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); ire = ipif->ipif_ire_local; ipif->ipif_ire_local = NULL; rw_exit(&ipst->ips_ill_g_lock); if (ire != NULL) { /* * Move count to ipif so we don't loose the count due to * a down/up dance. */ atomic_add_32(&ipif->ipif_ib_pkt_count, ire->ire_ib_pkt_count); ire_delete(ire); ire_refrele_notr(ire); } rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); ire = ipif->ipif_ire_if; ipif->ipif_ire_if = NULL; rw_exit(&ipst->ips_ill_g_lock); if (ire != NULL) { ire_delete(ire); ire_refrele_notr(ire); } /* * Delete the broadcast IREs. */ if ((ipif->ipif_flags & IPIF_BROADCAST) && !(ipif->ipif_flags & IPIF_NOXMIT)) ipif_delete_bcast_ires(ipif); } /* * Checks for availbility of a usable source address (if there is one) when the * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note * this selection is done regardless of the destination. */ boolean_t ipif_zone_avail(uint_t ifindex, boolean_t isv6, zoneid_t zoneid, ip_stack_t *ipst) { ipif_t *ipif = NULL; ill_t *uill; ASSERT(ifindex != 0); uill = ill_lookup_on_ifindex(ifindex, isv6, ipst); if (uill == NULL) return (B_FALSE); mutex_enter(&uill->ill_lock); for (ipif = uill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { if (IPIF_IS_CONDEMNED(ipif)) continue; if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) continue; if (!(ipif->ipif_flags & IPIF_UP)) continue; if (ipif->ipif_zoneid != zoneid) continue; if (isv6 ? IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) : ipif->ipif_lcl_addr == INADDR_ANY) continue; mutex_exit(&uill->ill_lock); ill_refrele(uill); return (B_TRUE); } mutex_exit(&uill->ill_lock); ill_refrele(uill); return (B_FALSE); } /* * Find an ipif with a good local address on the ill+zoneid. */ ipif_t * ipif_good_addr(ill_t *ill, zoneid_t zoneid) { ipif_t *ipif; mutex_enter(&ill->ill_lock); for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { if (IPIF_IS_CONDEMNED(ipif)) continue; if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) continue; if (!(ipif->ipif_flags & IPIF_UP)) continue; if (ipif->ipif_zoneid != zoneid && ipif->ipif_zoneid != ALL_ZONES && zoneid != ALL_ZONES) continue; if (ill->ill_isv6 ? IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) : ipif->ipif_lcl_addr == INADDR_ANY) continue; ipif_refhold_locked(ipif); mutex_exit(&ill->ill_lock); return (ipif); } mutex_exit(&ill->ill_lock); return (NULL); } /* * IP source address type, sorted from worst to best. For a given type, * always prefer IP addresses on the same subnet. All-zones addresses are * suboptimal because they pose problems with unlabeled destinations. */ typedef enum { IPIF_NONE, IPIF_DIFFNET_DEPRECATED, /* deprecated and different subnet */ IPIF_SAMENET_DEPRECATED, /* deprecated and same subnet */ IPIF_DIFFNET_ALLZONES, /* allzones and different subnet */ IPIF_SAMENET_ALLZONES, /* allzones and same subnet */ IPIF_DIFFNET, /* normal and different subnet */ IPIF_SAMENET, /* normal and same subnet */ IPIF_LOCALADDR /* local loopback */ } ipif_type_t; /* * Pick the optimal ipif on `ill' for sending to destination `dst' from zone * `zoneid'. We rate usable ipifs from low -> high as per the ipif_type_t * enumeration, and return the highest-rated ipif. If there's a tie, we pick * the first one, unless IPMP is used in which case we round-robin among them; * see below for more. * * Returns NULL if there is no suitable source address for the ill. * This only occurs when there is no valid source address for the ill. */ ipif_t * ipif_select_source_v4(ill_t *ill, ipaddr_t dst, zoneid_t zoneid, boolean_t allow_usesrc, boolean_t *notreadyp) { ill_t *usill = NULL; ill_t *ipmp_ill = NULL; ipif_t *start_ipif, *next_ipif, *ipif, *best_ipif; ipif_type_t type, best_type; tsol_tpc_t *src_rhtp, *dst_rhtp; ip_stack_t *ipst = ill->ill_ipst; boolean_t samenet; if (ill->ill_usesrc_ifindex != 0 && allow_usesrc) { usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, B_FALSE, ipst); if (usill != NULL) ill = usill; /* Select source from usesrc ILL */ else return (NULL); } /* * Test addresses should never be used for source address selection, * so if we were passed one, switch to the IPMP meta-interface. */ if (IS_UNDER_IPMP(ill)) { if ((ipmp_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) ill = ipmp_ill; /* Select source from IPMP ill */ else return (NULL); } /* * If we're dealing with an unlabeled destination on a labeled system, * make sure that we ignore source addresses that are incompatible with * the destination's default label. That destination's default label * must dominate the minimum label on the source address. */ dst_rhtp = NULL; if (is_system_labeled()) { dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); if (dst_rhtp == NULL) return (NULL); if (dst_rhtp->tpc_tp.host_type != UNLABELED) { TPC_RELE(dst_rhtp); dst_rhtp = NULL; } } /* * Hold the ill_g_lock as reader. This makes sure that no ipif/ill * can be deleted. But an ipif/ill can get CONDEMNED any time. * After selecting the right ipif, under ill_lock make sure ipif is * not condemned, and increment refcnt. If ipif is CONDEMNED, * we retry. Inside the loop we still need to check for CONDEMNED, * but not under a lock. */ rw_enter(&ipst->ips_ill_g_lock, RW_READER); retry: /* * For source address selection, we treat the ipif list as circular * and continue until we get back to where we started. This allows * IPMP to vary source address selection (which improves inbound load * spreading) by caching its last ending point and starting from * there. NOTE: we don't have to worry about ill_src_ipif changing * ills since that can't happen on the IPMP ill. */ start_ipif = ill->ill_ipif; if (IS_IPMP(ill) && ill->ill_src_ipif != NULL) start_ipif = ill->ill_src_ipif; ipif = start_ipif; best_ipif = NULL; best_type = IPIF_NONE; do { if ((next_ipif = ipif->ipif_next) == NULL) next_ipif = ill->ill_ipif; if (IPIF_IS_CONDEMNED(ipif)) continue; /* Always skip NOLOCAL and ANYCAST interfaces */ if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) continue; /* Always skip NOACCEPT interfaces */ if (ipif->ipif_ill->ill_flags & ILLF_NOACCEPT) continue; if (!(ipif->ipif_flags & IPIF_UP)) continue; if (!ipif->ipif_addr_ready) { if (notreadyp != NULL) *notreadyp = B_TRUE; continue; } if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && ipif->ipif_zoneid != ALL_ZONES) continue; /* * Interfaces with 0.0.0.0 address are allowed to be UP, but * are not valid as source addresses. */ if (ipif->ipif_lcl_addr == INADDR_ANY) continue; /* * Check compatibility of local address for destination's * default label if we're on a labeled system. Incompatible * addresses can't be used at all. */ if (dst_rhtp != NULL) { boolean_t incompat; src_rhtp = find_tpc(&ipif->ipif_lcl_addr, IPV4_VERSION, B_FALSE); if (src_rhtp == NULL) continue; incompat = src_rhtp->tpc_tp.host_type != SUN_CIPSO || src_rhtp->tpc_tp.tp_doi != dst_rhtp->tpc_tp.tp_doi || (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, &src_rhtp->tpc_tp.tp_sl_range_cipso) && !blinlset(&dst_rhtp->tpc_tp.tp_def_label, src_rhtp->tpc_tp.tp_sl_set_cipso)); TPC_RELE(src_rhtp); if (incompat) continue; } samenet = ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet); if (ipif->ipif_lcl_addr == dst) { type = IPIF_LOCALADDR; } else if (ipif->ipif_flags & IPIF_DEPRECATED) { type = samenet ? IPIF_SAMENET_DEPRECATED : IPIF_DIFFNET_DEPRECATED; } else if (ipif->ipif_zoneid == ALL_ZONES) { type = samenet ? IPIF_SAMENET_ALLZONES : IPIF_DIFFNET_ALLZONES; } else { type = samenet ? IPIF_SAMENET : IPIF_DIFFNET; } if (type > best_type) { best_type = type; best_ipif = ipif; if (best_type == IPIF_LOCALADDR) break; /* can't get better */ } } while ((ipif = next_ipif) != start_ipif); if ((ipif = best_ipif) != NULL) { mutex_enter(&ipif->ipif_ill->ill_lock); if (IPIF_IS_CONDEMNED(ipif)) { mutex_exit(&ipif->ipif_ill->ill_lock); goto retry; } ipif_refhold_locked(ipif); /* * For IPMP, update the source ipif rotor to the next ipif, * provided we can look it up. (We must not use it if it's * IPIF_CONDEMNED since we may have grabbed ill_g_lock after * ipif_free() checked ill_src_ipif.) */ if (IS_IPMP(ill) && ipif != NULL) { next_ipif = ipif->ipif_next; if (next_ipif != NULL && !IPIF_IS_CONDEMNED(next_ipif)) ill->ill_src_ipif = next_ipif; else ill->ill_src_ipif = NULL; } mutex_exit(&ipif->ipif_ill->ill_lock); } rw_exit(&ipst->ips_ill_g_lock); if (usill != NULL) ill_refrele(usill); if (ipmp_ill != NULL) ill_refrele(ipmp_ill); if (dst_rhtp != NULL) TPC_RELE(dst_rhtp); #ifdef DEBUG if (ipif == NULL) { char buf1[INET6_ADDRSTRLEN]; ip1dbg(("ipif_select_source_v4(%s, %s) -> NULL\n", ill->ill_name, inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); } else { char buf1[INET6_ADDRSTRLEN]; char buf2[INET6_ADDRSTRLEN]; ip1dbg(("ipif_select_source_v4(%s, %s) -> %s\n", ipif->ipif_ill->ill_name, inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), inet_ntop(AF_INET, &ipif->ipif_lcl_addr, buf2, sizeof (buf2)))); } #endif /* DEBUG */ return (ipif); } /* * Pick a source address based on the destination ill and an optional setsrc * address. * The result is stored in srcp. If generation is set, then put the source * generation number there before we look for the source address (to avoid * missing changes in the set of source addresses. * If flagsp is set, then us it to pass back ipif_flags. * * If the caller wants to cache the returned source address and detect when * that might be stale, the caller should pass in a generation argument, * which the caller can later compare against ips_src_generation * * The precedence order for selecting an IPv4 source address is: * - RTF_SETSRC on the offlink ire always wins. * - If usrsrc is set, swap the ill to be the usesrc one. * - If IPMP is used on the ill, select a random address from the most * preferred ones below: * 1. If onlink destination, same subnet and not deprecated, not ALL_ZONES * 2. Not deprecated, not ALL_ZONES * 3. If onlink destination, same subnet and not deprecated, ALL_ZONES * 4. Not deprecated, ALL_ZONES * 5. If onlink destination, same subnet and deprecated * 6. Deprecated. * * We have lower preference for ALL_ZONES IP addresses, * as they pose problems with unlabeled destinations. * * Note that when multiple IP addresses match e.g., #1 we pick * the first one if IPMP is not in use. With IPMP we randomize. */ int ip_select_source_v4(ill_t *ill, ipaddr_t setsrc, ipaddr_t dst, ipaddr_t multicast_ifaddr, zoneid_t zoneid, ip_stack_t *ipst, ipaddr_t *srcp, uint32_t *generation, uint64_t *flagsp) { ipif_t *ipif; boolean_t notready = B_FALSE; /* Set if !ipif_addr_ready found */ if (flagsp != NULL) *flagsp = 0; /* * Need to grab the generation number before we check to * avoid a race with a change to the set of local addresses. * No lock needed since the thread which updates the set of local * addresses use ipif/ill locks and exit those (hence a store memory * barrier) before doing the atomic increase of ips_src_generation. */ if (generation != NULL) { *generation = ipst->ips_src_generation; } if (CLASSD(dst) && multicast_ifaddr != INADDR_ANY) { *srcp = multicast_ifaddr; return (0); } /* Was RTF_SETSRC set on the first IRE in the recursive lookup? */ if (setsrc != INADDR_ANY) { *srcp = setsrc; return (0); } ipif = ipif_select_source_v4(ill, dst, zoneid, B_TRUE, ¬ready); if (ipif == NULL) { if (notready) return (ENETDOWN); else return (EADDRNOTAVAIL); } *srcp = ipif->ipif_lcl_addr; if (flagsp != NULL) *flagsp = ipif->ipif_flags; ipif_refrele(ipif); return (0); } /* ARGSUSED */ int if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_ifreq) { /* * ill_phyint_reinit merged the v4 and v6 into a single * ipsq. We might not have been able to complete the * operation in ipif_set_values, if we could not become * exclusive. If so restart it here. */ return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); } /* * Can operate on either a module or a driver queue. * Returns an error if not a module queue. */ /* ARGSUSED */ int if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_ifreq) { queue_t *q1 = q; char *cp; char interf_name[LIFNAMSIZ]; uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; if (q->q_next == NULL) { ip1dbg(( "if_unitsel: IF_UNITSEL: no q_next\n")); return (EINVAL); } if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') return (EALREADY); do { q1 = q1->q_next; } while (q1->q_next); cp = q1->q_qinfo->qi_minfo->mi_idname; (void) sprintf(interf_name, "%s%d", cp, ppa); /* * Here we are not going to delay the ioack until after * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the * original ioctl message before sending the requests. */ return (ipif_set_values(q, mp, interf_name, &ppa)); } /* ARGSUSED */ int ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_ifreq) { return (ENXIO); } /* * Create any IRE_BROADCAST entries for `ipif', and store those entries in * `irep'. Returns a pointer to the next free `irep' entry * A mirror exists in ipif_delete_bcast_ires(). * * The management of any "extra" or seemingly duplicate IRE_BROADCASTs is * done in ire_add. */ static ire_t ** ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep) { ipaddr_t addr; ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); ipaddr_t subnetmask = ipif->ipif_net_mask; ill_t *ill = ipif->ipif_ill; zoneid_t zoneid = ipif->ipif_zoneid; ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n")); ASSERT(ipif->ipif_flags & IPIF_BROADCAST); ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT)); if (ipif->ipif_lcl_addr == INADDR_ANY || (ipif->ipif_flags & IPIF_NOLOCAL)) netmask = htonl(IN_CLASSA_NET); /* fallback */ irep = ire_create_bcast(ill, 0, zoneid, irep); irep = ire_create_bcast(ill, INADDR_BROADCAST, zoneid, irep); /* * For backward compatibility, we create net broadcast IREs based on * the old "IP address class system", since some old machines only * respond to these class derived net broadcast. However, we must not * create these net broadcast IREs if the subnetmask is shorter than * the IP address class based derived netmask. Otherwise, we may * create a net broadcast address which is the same as an IP address * on the subnet -- and then TCP will refuse to talk to that address. */ if (netmask < subnetmask) { addr = netmask & ipif->ipif_subnet; irep = ire_create_bcast(ill, addr, zoneid, irep); irep = ire_create_bcast(ill, ~netmask | addr, zoneid, irep); } /* * Don't create IRE_BROADCAST IREs for the interface if the subnetmask * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already * created. Creating these broadcast IREs will only create confusion * as `addr' will be the same as the IP address. */ if (subnetmask != 0xFFFFFFFF) { addr = ipif->ipif_subnet; irep = ire_create_bcast(ill, addr, zoneid, irep); irep = ire_create_bcast(ill, ~subnetmask | addr, zoneid, irep); } return (irep); } /* * Mirror of ipif_create_bcast_ires() */ static void ipif_delete_bcast_ires(ipif_t *ipif) { ipaddr_t addr; ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); ipaddr_t subnetmask = ipif->ipif_net_mask; ill_t *ill = ipif->ipif_ill; zoneid_t zoneid = ipif->ipif_zoneid; ire_t *ire; ASSERT(ipif->ipif_flags & IPIF_BROADCAST); ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT)); if (ipif->ipif_lcl_addr == INADDR_ANY || (ipif->ipif_flags & IPIF_NOLOCAL)) netmask = htonl(IN_CLASSA_NET); /* fallback */ ire = ire_lookup_bcast(ill, 0, zoneid); ASSERT(ire != NULL); ire_delete(ire); ire_refrele(ire); ire = ire_lookup_bcast(ill, INADDR_BROADCAST, zoneid); ASSERT(ire != NULL); ire_delete(ire); ire_refrele(ire); /* * For backward compatibility, we create net broadcast IREs based on * the old "IP address class system", since some old machines only * respond to these class derived net broadcast. However, we must not * create these net broadcast IREs if the subnetmask is shorter than * the IP address class based derived netmask. Otherwise, we may * create a net broadcast address which is the same as an IP address * on the subnet -- and then TCP will refuse to talk to that address. */ if (netmask < subnetmask) { addr = netmask & ipif->ipif_subnet; ire = ire_lookup_bcast(ill, addr, zoneid); ASSERT(ire != NULL); ire_delete(ire); ire_refrele(ire); ire = ire_lookup_bcast(ill, ~netmask | addr, zoneid); ASSERT(ire != NULL); ire_delete(ire); ire_refrele(ire); } /* * Don't create IRE_BROADCAST IREs for the interface if the subnetmask * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already * created. Creating these broadcast IREs will only create confusion * as `addr' will be the same as the IP address. */ if (subnetmask != 0xFFFFFFFF) { addr = ipif->ipif_subnet; ire = ire_lookup_bcast(ill, addr, zoneid); ASSERT(ire != NULL); ire_delete(ire); ire_refrele(ire); ire = ire_lookup_bcast(ill, ~subnetmask | addr, zoneid); ASSERT(ire != NULL); ire_delete(ire); ire_refrele(ire); } } /* * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* * from lifr_flags and the name from lifr_name. * Set IFF_IPV* and ill_isv6 prior to doing the lookup * since ipif_lookup_on_name uses the _isv6 flags when matching. * Returns EINPROGRESS when mp has been consumed by queueing it on * ipx_pending_mp and the ioctl will complete in ip_rput. * * Can operate on either a module or a driver queue. * Returns an error if not a module queue. */ /* ARGSUSED */ int ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *if_req) { ill_t *ill = q->q_ptr; phyint_t *phyi; ip_stack_t *ipst; struct lifreq *lifr = if_req; uint64_t new_flags; ASSERT(ipif != NULL); ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); if (q->q_next == NULL) { ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n")); return (EINVAL); } /* * If we are not writer on 'q' then this interface exists already * and previous lookups (ip_extract_lifreq()) found this ipif -- * so return EALREADY. */ if (ill != ipif->ipif_ill) return (EALREADY); if (ill->ill_name[0] != '\0') return (EALREADY); /* * If there's another ill already with the requested name, ensure * that it's of the same type. Otherwise, ill_phyint_reinit() will * fuse together two unrelated ills, which will cause chaos. */ ipst = ill->ill_ipst; phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, lifr->lifr_name, NULL); if (phyi != NULL) { ill_t *ill_mate = phyi->phyint_illv4; if (ill_mate == NULL) ill_mate = phyi->phyint_illv6; ASSERT(ill_mate != NULL); if (ill_mate->ill_media->ip_m_mac_type != ill->ill_media->ip_m_mac_type) { ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to " "use the same ill name on differing media\n")); return (EINVAL); } } /* * We start off as IFF_IPV4 in ipif_allocate and become * IFF_IPV4 or IFF_IPV6 here depending on lifr_flags value. * The only flags that we read from user space are IFF_IPV4, * IFF_IPV6, and IFF_BROADCAST. * * This ill has not been inserted into the global list. * So we are still single threaded and don't need any lock * * Saniy check the flags. */ if ((lifr->lifr_flags & IFF_BROADCAST) && ((lifr->lifr_flags & IFF_IPV6) || (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { ip1dbg(("ip_sioctl_slifname: link not broadcast capable " "or IPv6 i.e., no broadcast \n")); return (EINVAL); } new_flags = lifr->lifr_flags & (IFF_IPV6|IFF_IPV4|IFF_BROADCAST); if ((new_flags ^ (IFF_IPV6|IFF_IPV4)) == 0) { ip1dbg(("ip_sioctl_slifname: flags must be exactly one of " "IFF_IPV4 or IFF_IPV6\n")); return (EINVAL); } /* * We always start off as IPv4, so only need to check for IPv6. */ if ((new_flags & IFF_IPV6) != 0) { ill->ill_flags |= ILLF_IPV6; ill->ill_flags &= ~ILLF_IPV4; if (lifr->lifr_flags & IFF_NOLINKLOCAL) ill->ill_flags |= ILLF_NOLINKLOCAL; } if ((new_flags & IFF_BROADCAST) != 0) ipif->ipif_flags |= IPIF_BROADCAST; else ipif->ipif_flags &= ~IPIF_BROADCAST; /* We started off as V4. */ if (ill->ill_flags & ILLF_IPV6) { ill->ill_phyint->phyint_illv6 = ill; ill->ill_phyint->phyint_illv4 = NULL; } return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa)); } /* ARGSUSED */ int ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *if_req) { /* * ill_phyint_reinit merged the v4 and v6 into a single * ipsq. We might not have been able to complete the * slifname in ipif_set_values, if we could not become * exclusive. If so restart it here */ return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); } /* * Return a pointer to the ipif which matches the index, IP version type and * zoneid. */ ipif_t * ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, ip_stack_t *ipst) { ill_t *ill; ipif_t *ipif = NULL; ill = ill_lookup_on_ifindex(index, isv6, ipst); if (ill != NULL) { mutex_enter(&ill->ill_lock); for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { if (!IPIF_IS_CONDEMNED(ipif) && (zoneid == ALL_ZONES || zoneid == ipif->ipif_zoneid || ipif->ipif_zoneid == ALL_ZONES)) { ipif_refhold_locked(ipif); break; } } mutex_exit(&ill->ill_lock); ill_refrele(ill); } return (ipif); } /* * Change an existing physical interface's index. If the new index * is acceptable we update the index and the phyint_list_avl_by_index tree. * Finally, we update other systems which may have a dependence on the * index value. */ /* ARGSUSED */ int ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) { ill_t *ill; phyint_t *phyi; struct ifreq *ifr = (struct ifreq *)ifreq; struct lifreq *lifr = (struct lifreq *)ifreq; uint_t old_index, index; ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; avl_index_t where; if (ipip->ipi_cmd_type == IF_CMD) index = ifr->ifr_index; else index = lifr->lifr_index; /* * Only allow on physical interface. Also, index zero is illegal. */ ill = ipif->ipif_ill; phyi = ill->ill_phyint; if (ipif->ipif_id != 0 || index == 0) { return (EINVAL); } /* If the index is not changing, no work to do */ if (phyi->phyint_ifindex == index) return (0); /* * Use phyint_exists() to determine if the new interface index * is already in use. If the index is unused then we need to * change the phyint's position in the phyint_list_avl_by_index * tree. If we do not do this, subsequent lookups (using the new * index value) will not find the phyint. */ rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); if (phyint_exists(index, ipst)) { rw_exit(&ipst->ips_ill_g_lock); return (EEXIST); } /* * The new index is unused. Set it in the phyint. However we must not * forget to trigger NE_IFINDEX_CHANGE event before the ifindex * changes. The event must be bound to old ifindex value. */ ill_nic_event_dispatch(ill, 0, NE_IFINDEX_CHANGE, &index, sizeof (index)); old_index = phyi->phyint_ifindex; phyi->phyint_ifindex = index; avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, phyi); (void) avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, &index, &where); avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, phyi, where); rw_exit(&ipst->ips_ill_g_lock); /* Update SCTP's ILL list */ sctp_ill_reindex(ill, old_index); /* Send the routing sockets message */ ip_rts_ifmsg(ipif, RTSQ_DEFAULT); if (ILL_OTHER(ill)) ip_rts_ifmsg(ILL_OTHER(ill)->ill_ipif, RTSQ_DEFAULT); /* Perhaps ilgs should use this ill */ update_conn_ill(NULL, ill->ill_ipst); return (0); } /* ARGSUSED */ int ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) { struct ifreq *ifr = (struct ifreq *)ifreq; struct lifreq *lifr = (struct lifreq *)ifreq; ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); /* Get the interface index */ if (ipip->ipi_cmd_type == IF_CMD) { ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; } else { lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; } return (0); } /* ARGSUSED */ int ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) { struct lifreq *lifr = (struct lifreq *)ifreq; ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); /* Get the interface zone */ ASSERT(ipip->ipi_cmd_type == LIF_CMD); lifr->lifr_zoneid = ipif->ipif_zoneid; return (0); } /* * Set the zoneid of an interface. */ /* ARGSUSED */ int ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) { struct lifreq *lifr = (struct lifreq *)ifreq; int err = 0; boolean_t need_up = B_FALSE; zone_t *zptr; zone_status_t status; zoneid_t zoneid; ASSERT(ipip->ipi_cmd_type == LIF_CMD); if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { if (!is_system_labeled()) return (ENOTSUP); zoneid = GLOBAL_ZONEID; } /* cannot assign instance zero to a non-global zone */ if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) return (ENOTSUP); /* * Cannot assign to a zone that doesn't exist or is shutting down. In * the event of a race with the zone shutdown processing, since IP * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the * interface will be cleaned up even if the zone is shut down * immediately after the status check. If the interface can't be brought * down right away, and the zone is shut down before the restart * function is called, we resolve the possible races by rechecking the * zone status in the restart function. */ if ((zptr = zone_find_by_id(zoneid)) == NULL) return (EINVAL); status = zone_status_get(zptr); zone_rele(zptr); if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) return (EINVAL); if (ipif->ipif_flags & IPIF_UP) { /* * If the interface is already marked up, * we call ipif_down which will take care * of ditching any IREs that have been set * up based on the old interface address. */ err = ipif_logical_down(ipif, q, mp); if (err == EINPROGRESS) return (err); (void) ipif_down_tail(ipif); need_up = B_TRUE; } err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); return (err); } static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, queue_t *q, mblk_t *mp, boolean_t need_up) { int err = 0; ip_stack_t *ipst; ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); if (CONN_Q(q)) ipst = CONNQ_TO_IPST(q); else ipst = ILLQ_TO_IPST(q); /* * For exclusive stacks we don't allow a different zoneid than * global. */ if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID && zoneid != GLOBAL_ZONEID) return (EINVAL); /* Set the new zone id. */ ipif->ipif_zoneid = zoneid; /* Update sctp list */ sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); /* The default multicast interface might have changed */ ire_increment_multicast_generation(ipst, ipif->ipif_ill->ill_isv6); if (need_up) { /* * Now bring the interface back up. If this * is the only IPIF for the ILL, ipif_up * will have to re-bind to the device, so * we may get back EINPROGRESS, in which * case, this IOCTL will get completed in * ip_rput_dlpi when we see the DL_BIND_ACK. */ err = ipif_up(ipif, q, mp); } return (err); } /* ARGSUSED */ int ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *if_req) { struct lifreq *lifr = (struct lifreq *)if_req; zoneid_t zoneid; zone_t *zptr; zone_status_t status; ASSERT(ipip->ipi_cmd_type == LIF_CMD); if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) zoneid = GLOBAL_ZONEID; ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); /* * We recheck the zone status to resolve the following race condition: * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; * 2) hme0:1 is up and can't be brought down right away; * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; * 3) zone "myzone" is halted; the zone status switches to * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list * the interfaces to remove - hme0:1 is not returned because it's not * yet in "myzone", so it won't be removed; * 4) the restart function for SIOCSLIFZONE is called; without the * status check here, we would have hme0:1 in "myzone" after it's been * destroyed. * Note that if the status check fails, we need to bring the interface * back to its state prior to ip_sioctl_slifzone(), hence the call to * ipif_up_done[_v6](). */ status = ZONE_IS_UNINITIALIZED; if ((zptr = zone_find_by_id(zoneid)) != NULL) { status = zone_status_get(zptr); zone_rele(zptr); } if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { if (ipif->ipif_isv6) { (void) ipif_up_done_v6(ipif); } else { (void) ipif_up_done(ipif); } return (EINVAL); } (void) ipif_down_tail(ipif); return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, B_TRUE)); } /* * Return the number of addresses on `ill' with one or more of the values * in `set' set and all of the values in `clear' clear. */ static uint_t ill_flagaddr_cnt(const ill_t *ill, uint64_t set, uint64_t clear) { ipif_t *ipif; uint_t cnt = 0; ASSERT(IAM_WRITER_ILL(ill)); for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) if ((ipif->ipif_flags & set) && !(ipif->ipif_flags & clear)) cnt++; return (cnt); } /* * Return the number of migratable addresses on `ill' that are under * application control. */ uint_t ill_appaddr_cnt(const ill_t *ill) { return (ill_flagaddr_cnt(ill, IPIF_DHCPRUNNING | IPIF_ADDRCONF, IPIF_NOFAILOVER)); } /* * Return the number of point-to-point addresses on `ill'. */ uint_t ill_ptpaddr_cnt(const ill_t *ill) { return (ill_flagaddr_cnt(ill, IPIF_POINTOPOINT, 0)); } /* ARGSUSED */ int ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) { struct lifreq *lifr = ifreq; ASSERT(q->q_next == NULL); ASSERT(CONN_Q(q)); ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); return (0); } /* Find the previous ILL in this usesrc group */ static ill_t * ill_prev_usesrc(ill_t *uill) { ill_t *ill; for (ill = uill->ill_usesrc_grp_next; ASSERT(ill), ill->ill_usesrc_grp_next != uill; ill = ill->ill_usesrc_grp_next) /* do nothing */; return (ill); } /* * Release all members of the usesrc group. This routine is called * from ill_delete when the interface being unplumbed is the * group head. * * This silently clears the usesrc that ifconfig setup. * An alternative would be to keep that ifindex, and drop packets on the floor * since no source address can be selected. * Even if we keep the current semantics, don't need a lock and a linked list. * Can walk all the ills checking if they have a ill_usesrc_ifindex matching * the one that is being removed. Issue is how we return the usesrc users * (SIOCGLIFSRCOF). We want to be able to find the ills which have an * ill_usesrc_ifindex matching a target ill. We could also do that with an * ill walk, but the walker would need to insert in the ioctl response. */ static void ill_disband_usesrc_group(ill_t *uill) { ill_t *next_ill, *tmp_ill; ip_stack_t *ipst = uill->ill_ipst; ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); next_ill = uill->ill_usesrc_grp_next; do { ASSERT(next_ill != NULL); tmp_ill = next_ill->ill_usesrc_grp_next; ASSERT(tmp_ill != NULL); next_ill->ill_usesrc_grp_next = NULL; next_ill->ill_usesrc_ifindex = 0; next_ill = tmp_ill; } while (next_ill->ill_usesrc_ifindex != 0); uill->ill_usesrc_grp_next = NULL; } /* * Remove the client usesrc ILL from the list and relink to a new list */ int ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) { ill_t *ill, *tmp_ill; ip_stack_t *ipst = ucill->ill_ipst; ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); /* * Check if the usesrc client ILL passed in is not already * in use as a usesrc ILL i.e one whose source address is * in use OR a usesrc ILL is not already in use as a usesrc * client ILL */ if ((ucill->ill_usesrc_ifindex == 0) || (uill->ill_usesrc_ifindex != 0)) { return (-1); } ill = ill_prev_usesrc(ucill); ASSERT(ill->ill_usesrc_grp_next != NULL); /* Remove from the current list */ if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { /* Only two elements in the list */ ASSERT(ill->ill_usesrc_ifindex == 0); ill->ill_usesrc_grp_next = NULL; } else { ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; } if (ifindex == 0) { ucill->ill_usesrc_ifindex = 0; ucill->ill_usesrc_grp_next = NULL; return (0); } ucill->ill_usesrc_ifindex = ifindex; tmp_ill = uill->ill_usesrc_grp_next; uill->ill_usesrc_grp_next = ucill; ucill->ill_usesrc_grp_next = (tmp_ill != NULL) ? tmp_ill : uill; return (0); } /* * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in * ip.c for locking details. */ /* ARGSUSED */ int ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) { struct lifreq *lifr = (struct lifreq *)ifreq; boolean_t isv6 = B_FALSE, reset_flg = B_FALSE; ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; int err = 0, ret; uint_t ifindex; ipsq_t *ipsq = NULL; ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; ASSERT(IAM_WRITER_IPIF(ipif)); ASSERT(q->q_next == NULL); ASSERT(CONN_Q(q)); isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6; ifindex = lifr->lifr_index; if (ifindex == 0) { if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { /* non usesrc group interface, nothing to reset */ return (0); } ifindex = usesrc_cli_ill->ill_usesrc_ifindex; /* valid reset request */ reset_flg = B_TRUE; } usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, ipst); if (usesrc_ill == NULL) return (ENXIO); if (usesrc_ill == ipif->ipif_ill) { ill_refrele(usesrc_ill); return (EINVAL); } ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, NEW_OP, B_TRUE); if (ipsq == NULL) { err = EINPROGRESS; /* Operation enqueued on the ipsq of the usesrc ILL */ goto done; } /* USESRC isn't currently supported with IPMP */ if (IS_IPMP(usesrc_ill) || IS_UNDER_IPMP(usesrc_ill)) { err = ENOTSUP; goto done; } /* * USESRC isn't compatible with the STANDBY flag. (STANDBY is only * used by IPMP underlying interfaces, but someone might think it's * more general and try to use it independently with VNI.) */ if (usesrc_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { err = ENOTSUP; goto done; } /* * If the client is already in use as a usesrc_ill or a usesrc_ill is * already a client then return EINVAL */ if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { err = EINVAL; goto done; } /* * If the ill_usesrc_ifindex field is already set to what it needs to * be then this is a duplicate operation. */ if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { err = 0; goto done; } ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, usesrc_ill->ill_isv6)); /* * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next * and the ill_usesrc_ifindex fields */ rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); if (reset_flg) { ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); if (ret != 0) { err = EINVAL; } rw_exit(&ipst->ips_ill_g_usesrc_lock); goto done; } /* * Four possibilities to consider: * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't * 4. Both are part of their respective usesrc groups */ if ((usesrc_ill->ill_usesrc_grp_next == NULL) && (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); usesrc_cli_ill->ill_usesrc_ifindex = ifindex; usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { usesrc_cli_ill->ill_usesrc_ifindex = ifindex; /* Insert at head of list */ usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill->ill_usesrc_grp_next; usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; } else { ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, ifindex); if (ret != 0) err = EINVAL; } rw_exit(&ipst->ips_ill_g_usesrc_lock); done: if (ipsq != NULL) ipsq_exit(ipsq); /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ ill_refrele(usesrc_ill); /* Let conn_ixa caching know that source address selection changed */ ip_update_source_selection(ipst); return (err); } /* ARGSUSED */ int ip_sioctl_get_dadstate(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *if_req) { struct lifreq *lifr = (struct lifreq *)if_req; ill_t *ill = ipif->ipif_ill; /* * Need a lock since IFF_UP can be set even when there are * references to the ipif. */ mutex_enter(&ill->ill_lock); if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_addr_ready == 0) lifr->lifr_dadstate = DAD_IN_PROGRESS; else lifr->lifr_dadstate = DAD_DONE; mutex_exit(&ill->ill_lock); return (0); } /* * comparison function used by avl. */ static int ill_phyint_compare_index(const void *index_ptr, const void *phyip) { uint_t index; ASSERT(phyip != NULL && index_ptr != NULL); index = *((uint_t *)index_ptr); /* * let the phyint with the lowest index be on top. */ if (((phyint_t *)phyip)->phyint_ifindex < index) return (1); if (((phyint_t *)phyip)->phyint_ifindex > index) return (-1); return (0); } /* * comparison function used by avl. */ static int ill_phyint_compare_name(const void *name_ptr, const void *phyip) { ill_t *ill; int res = 0; ASSERT(phyip != NULL && name_ptr != NULL); if (((phyint_t *)phyip)->phyint_illv4) ill = ((phyint_t *)phyip)->phyint_illv4; else ill = ((phyint_t *)phyip)->phyint_illv6; ASSERT(ill != NULL); res = strcmp(ill->ill_name, (char *)name_ptr); if (res > 0) return (1); else if (res < 0) return (-1); return (0); } /* * This function is called on the unplumb path via ill_glist_delete() when * there are no ills left on the phyint and thus the phyint can be freed. */ static void phyint_free(phyint_t *phyi) { ip_stack_t *ipst = PHYINT_TO_IPST(phyi); ASSERT(phyi->phyint_illv4 == NULL && phyi->phyint_illv6 == NULL); /* * If this phyint was an IPMP meta-interface, blow away the group. * This is safe to do because all of the illgrps have already been * removed by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find us. * If we're cleaning up as a result of failed initialization, * phyint_grp may be NULL. */ if ((phyi->phyint_flags & PHYI_IPMP) && (phyi->phyint_grp != NULL)) { rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); ipmp_grp_destroy(phyi->phyint_grp); phyi->phyint_grp = NULL; rw_exit(&ipst->ips_ipmp_lock); } /* * If this interface was under IPMP, take it out of the group. */ if (phyi->phyint_grp != NULL) ipmp_phyint_leave_grp(phyi); /* * Delete the phyint and disassociate its ipsq. The ipsq itself * will be freed in ipsq_exit(). */ phyi->phyint_ipsq->ipsq_phyint = NULL; phyi->phyint_name[0] = '\0'; mi_free(phyi); } /* * Attach the ill to the phyint structure which can be shared by both * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This * function is called from ipif_set_values and ill_lookup_on_name (for * loopback) where we know the name of the ill. We lookup the ill and if * there is one present already with the name use that phyint. Otherwise * reuse the one allocated by ill_init. */ static void ill_phyint_reinit(ill_t *ill) { boolean_t isv6 = ill->ill_isv6; phyint_t *phyi_old; phyint_t *phyi; avl_index_t where = 0; ill_t *ill_other = NULL; ip_stack_t *ipst = ill->ill_ipst; ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); phyi_old = ill->ill_phyint; ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && phyi_old->phyint_illv6 == NULL)); ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && phyi_old->phyint_illv4 == NULL)); ASSERT(phyi_old->phyint_ifindex == 0); /* * Now that our ill has a name, set it in the phyint. */ (void) strlcpy(ill->ill_phyint->phyint_name, ill->ill_name, LIFNAMSIZ); phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, ill->ill_name, &where); /* * 1. We grabbed the ill_g_lock before inserting this ill into * the global list of ills. So no other thread could have located * this ill and hence the ipsq of this ill is guaranteed to be empty. * 2. Now locate the other protocol instance of this ill. * 3. Now grab both ill locks in the right order, and the phyint lock of * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq * of neither ill can change. * 4. Merge the phyint and thus the ipsq as well of this ill onto the * other ill. * 5. Release all locks. */ /* * Look for IPv4 if we are initializing IPv6 or look for IPv6 if * we are initializing IPv4. */ if (phyi != NULL) { ill_other = (isv6) ? phyi->phyint_illv4 : phyi->phyint_illv6; ASSERT(ill_other->ill_phyint != NULL); ASSERT((isv6 && !ill_other->ill_isv6) || (!isv6 && ill_other->ill_isv6)); GRAB_ILL_LOCKS(ill, ill_other); /* * We are potentially throwing away phyint_flags which * could be different from the one that we obtain from * ill_other->ill_phyint. But it is okay as we are assuming * that the state maintained within IP is correct. */ mutex_enter(&phyi->phyint_lock); if (isv6) { ASSERT(phyi->phyint_illv6 == NULL); phyi->phyint_illv6 = ill; } else { ASSERT(phyi->phyint_illv4 == NULL); phyi->phyint_illv4 = ill; } /* * Delete the old phyint and make its ipsq eligible * to be freed in ipsq_exit(). */ phyi_old->phyint_illv4 = NULL; phyi_old->phyint_illv6 = NULL; phyi_old->phyint_ipsq->ipsq_phyint = NULL; phyi_old->phyint_name[0] = '\0'; mi_free(phyi_old); } else { mutex_enter(&ill->ill_lock); /* * We don't need to acquire any lock, since * the ill is not yet visible globally and we * have not yet released the ill_g_lock. */ phyi = phyi_old; mutex_enter(&phyi->phyint_lock); /* XXX We need a recovery strategy here. */ if (!phyint_assign_ifindex(phyi, ipst)) cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, (void *)phyi, where); (void) avl_find(&ipst->ips_phyint_g_list-> phyint_list_avl_by_index, &phyi->phyint_ifindex, &where); avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, (void *)phyi, where); } /* * Reassigning ill_phyint automatically reassigns the ipsq also. * pending mp is not affected because that is per ill basis. */ ill->ill_phyint = phyi; /* * Now that the phyint's ifindex has been assigned, complete the * remaining */ ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; if (ill->ill_isv6) { ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = ill->ill_phyint->phyint_ifindex; ill->ill_mcast_type = ipst->ips_mld_max_version; } else { ill->ill_mcast_type = ipst->ips_igmp_max_version; } /* * Generate an event within the hooks framework to indicate that * a new interface has just been added to IP. For this event to * be generated, the network interface must, at least, have an * ifindex assigned to it. (We don't generate the event for * loopback since ill_lookup_on_name() has its own NE_PLUMB event.) * * This needs to be run inside the ill_g_lock perimeter to ensure * that the ordering of delivered events to listeners matches the * order of them in the kernel. */ if (!IS_LOOPBACK(ill)) { ill_nic_event_dispatch(ill, 0, NE_PLUMB, ill->ill_name, ill->ill_name_length); } RELEASE_ILL_LOCKS(ill, ill_other); mutex_exit(&phyi->phyint_lock); } /* * Notify any downstream modules of the name of this interface. * An M_IOCTL is used even though we don't expect a successful reply. * Any reply message from the driver (presumably an M_IOCNAK) will * eventually get discarded somewhere upstream. The message format is * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig * to IP. */ static void ip_ifname_notify(ill_t *ill, queue_t *q) { mblk_t *mp1, *mp2; struct iocblk *iocp; struct lifreq *lifr; mp1 = mkiocb(SIOCSLIFNAME); if (mp1 == NULL) return; mp2 = allocb(sizeof (struct lifreq), BPRI_HI); if (mp2 == NULL) { freeb(mp1); return; } mp1->b_cont = mp2; iocp = (struct iocblk *)mp1->b_rptr; iocp->ioc_count = sizeof (struct lifreq); lifr = (struct lifreq *)mp2->b_rptr; mp2->b_wptr += sizeof (struct lifreq); bzero(lifr, sizeof (struct lifreq)); (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); lifr->lifr_ppa = ill->ill_ppa; lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); DTRACE_PROBE3(ill__dlpi, char *, "ip_ifname_notify", char *, "SIOCSLIFNAME", ill_t *, ill); putnext(q, mp1); } static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) { int err; ip_stack_t *ipst = ill->ill_ipst; phyint_t *phyi = ill->ill_phyint; /* * Now that ill_name is set, the configuration for the IPMP * meta-interface can be performed. */ if (IS_IPMP(ill)) { rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); /* * If phyi->phyint_grp is NULL, then this is the first IPMP * meta-interface and we need to create the IPMP group. */ if (phyi->phyint_grp == NULL) { /* * If someone has renamed another IPMP group to have * the same name as our interface, bail. */ if (ipmp_grp_lookup(ill->ill_name, ipst) != NULL) { rw_exit(&ipst->ips_ipmp_lock); return (EEXIST); } phyi->phyint_grp = ipmp_grp_create(ill->ill_name, phyi); if (phyi->phyint_grp == NULL) { rw_exit(&ipst->ips_ipmp_lock); return (ENOMEM); } } rw_exit(&ipst->ips_ipmp_lock); } /* Tell downstream modules where they are. */ ip_ifname_notify(ill, q); /* * ill_dl_phys returns EINPROGRESS in the usual case. * Error cases are ENOMEM ... */ err = ill_dl_phys(ill, ipif, mp, q); if (ill->ill_isv6) { mutex_enter(&ipst->ips_mld_slowtimeout_lock); if (ipst->ips_mld_slowtimeout_id == 0) { ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo, (void *)ipst, MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); } mutex_exit(&ipst->ips_mld_slowtimeout_lock); } else { mutex_enter(&ipst->ips_igmp_slowtimeout_lock); if (ipst->ips_igmp_slowtimeout_id == 0) { ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo, (void *)ipst, MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); } mutex_exit(&ipst->ips_igmp_slowtimeout_lock); } return (err); } /* * Common routine for ppa and ifname setting. Should be called exclusive. * * Returns EINPROGRESS when mp has been consumed by queueing it on * ipx_pending_mp and the ioctl will complete in ip_rput. * * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return * the new name and new ppa in lifr_name and lifr_ppa respectively. * For SLIFNAME, we pass these values back to the userland. */ static int ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) { ill_t *ill; ipif_t *ipif; ipsq_t *ipsq; char *ppa_ptr; char *old_ptr; char old_char; int error; ip_stack_t *ipst; ip1dbg(("ipif_set_values: interface %s\n", interf_name)); ASSERT(q->q_next != NULL); ASSERT(interf_name != NULL); ill = (ill_t *)q->q_ptr; ipst = ill->ill_ipst; ASSERT(ill->ill_ipst != NULL); ASSERT(ill->ill_name[0] == '\0'); ASSERT(IAM_WRITER_ILL(ill)); ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); ASSERT(ill->ill_ppa == UINT_MAX); ill->ill_defend_start = ill->ill_defend_count = 0; /* The ppa is sent down by ifconfig or is chosen */ if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { return (EINVAL); } /* * make sure ppa passed in is same as ppa in the name. * This check is not made when ppa == UINT_MAX in that case ppa * in the name could be anything. System will choose a ppa and * update new_ppa_ptr and inter_name to contain the choosen ppa. */ if (*new_ppa_ptr != UINT_MAX) { /* stoi changes the pointer */ old_ptr = ppa_ptr; /* * ifconfig passed in 0 for the ppa for DLPI 1 style devices * (they don't have an externally visible ppa). We assign one * here so that we can manage the interface. Note that in * the past this value was always 0 for DLPI 1 drivers. */ if (*new_ppa_ptr == 0) *new_ppa_ptr = stoi(&old_ptr); else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) return (EINVAL); } /* * terminate string before ppa * save char at that location. */ old_char = ppa_ptr[0]; ppa_ptr[0] = '\0'; ill->ill_ppa = *new_ppa_ptr; /* * Finish as much work now as possible before calling ill_glist_insert * which makes the ill globally visible and also merges it with the * other protocol instance of this phyint. The remaining work is * done after entering the ipsq which may happen sometime later. */ ipif = ill->ill_ipif; /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ ipif_assign_seqid(ipif); if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) ill->ill_flags |= ILLF_IPV4; ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ ASSERT((ipif->ipif_flags & IPIF_UP) == 0); if (ill->ill_flags & ILLF_IPV6) { ill->ill_isv6 = B_TRUE; ill_set_inputfn(ill); if (ill->ill_rq != NULL) { ill->ill_rq->q_qinfo = &iprinitv6; } /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ ipif->ipif_v6lcl_addr = ipv6_all_zeros; ipif->ipif_v6subnet = ipv6_all_zeros; ipif->ipif_v6net_mask = ipv6_all_zeros; ipif->ipif_v6brd_addr = ipv6_all_zeros; ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; /* * point-to-point or Non-mulicast capable * interfaces won't do NUD unless explicitly * configured to do so. */ if (ipif->ipif_flags & IPIF_POINTOPOINT || !(ill->ill_flags & ILLF_MULTICAST)) { ill->ill_flags |= ILLF_NONUD; } /* Make sure IPv4 specific flag is not set on IPv6 if */ if (ill->ill_flags & ILLF_NOARP) { /* * Note: xresolv interfaces will eventually need * NOARP set here as well, but that will require * those external resolvers to have some * knowledge of that flag and act appropriately. * Not to be changed at present. */ ill->ill_flags &= ~ILLF_NOARP; } /* * Set the ILLF_ROUTER flag according to the global * IPv6 forwarding policy. */ if (ipst->ips_ipv6_forwarding != 0) ill->ill_flags |= ILLF_ROUTER; } else if (ill->ill_flags & ILLF_IPV4) { ill->ill_isv6 = B_FALSE; ill_set_inputfn(ill); ill->ill_reachable_retrans_time = ARP_RETRANS_TIMER; IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); /* * Set the ILLF_ROUTER flag according to the global * IPv4 forwarding policy. */ if (ipst->ips_ip_forwarding != 0) ill->ill_flags |= ILLF_ROUTER; } ASSERT(ill->ill_phyint != NULL); /* * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will * be completed in ill_glist_insert -> ill_phyint_reinit */ if (!ill_allocate_mibs(ill)) return (ENOMEM); /* * Pick a default sap until we get the DL_INFO_ACK back from * the driver. */ ill->ill_sap = (ill->ill_isv6) ? ill->ill_media->ip_m_ipv6sap : ill->ill_media->ip_m_ipv4sap; ill->ill_ifname_pending = 1; ill->ill_ifname_pending_err = 0; /* * When the first ipif comes up in ipif_up_done(), multicast groups * that were joined while this ill was not bound to the DLPI link need * to be recovered by ill_recover_multicast(). */ ill->ill_need_recover_multicast = 1; ill_refhold(ill); rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); if ((error = ill_glist_insert(ill, interf_name, (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { ill->ill_ppa = UINT_MAX; ill->ill_name[0] = '\0'; /* * undo null termination done above. */ ppa_ptr[0] = old_char; rw_exit(&ipst->ips_ill_g_lock); ill_refrele(ill); return (error); } ASSERT(ill->ill_name_length <= LIFNAMSIZ); /* * When we return the buffer pointed to by interf_name should contain * the same name as in ill_name. * If a ppa was choosen by the system (ppa passed in was UINT_MAX) * the buffer pointed to by new_ppa_ptr would not contain the right ppa * so copy full name and update the ppa ptr. * When ppa passed in != UINT_MAX all values are correct just undo * null termination, this saves a bcopy. */ if (*new_ppa_ptr == UINT_MAX) { bcopy(ill->ill_name, interf_name, ill->ill_name_length); *new_ppa_ptr = ill->ill_ppa; } else { /* * undo null termination done above. */ ppa_ptr[0] = old_char; } /* Let SCTP know about this ILL */ sctp_update_ill(ill, SCTP_ILL_INSERT); /* * ill_glist_insert has made the ill visible globally, and * ill_phyint_reinit could have changed the ipsq. At this point, * we need to hold the ips_ill_g_lock across the call to enter the * ipsq to enforce atomicity and prevent reordering. In the event * the ipsq has changed, and if the new ipsq is currently busy, * we need to make sure that this half-completed ioctl is ahead of * any subsequent ioctl. We achieve this by not dropping the * ips_ill_g_lock which prevents any ill lookup itself thereby * ensuring that new ioctls can't start. */ ipsq = ipsq_try_enter_internal(ill, q, mp, ip_reprocess_ioctl, NEW_OP, B_TRUE); rw_exit(&ipst->ips_ill_g_lock); ill_refrele(ill); if (ipsq == NULL) return (EINPROGRESS); /* * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq. */ if (ipsq->ipsq_xop->ipx_current_ipif == NULL) ipsq_current_start(ipsq, ipif, SIOCSLIFNAME); else ASSERT(ipsq->ipsq_xop->ipx_current_ipif == ipif); error = ipif_set_values_tail(ill, ipif, mp, q); ipsq_exit(ipsq); if (error != 0 && error != EINPROGRESS) { /* * restore previous values */ ill->ill_isv6 = B_FALSE; ill_set_inputfn(ill); } return (error); } void ipif_init(ip_stack_t *ipst) { int i; for (i = 0; i < MAX_G_HEADS; i++) { ipst->ips_ill_g_heads[i].ill_g_list_head = (ill_if_t *)&ipst->ips_ill_g_heads[i]; ipst->ips_ill_g_heads[i].ill_g_list_tail = (ill_if_t *)&ipst->ips_ill_g_heads[i]; } avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, ill_phyint_compare_index, sizeof (phyint_t), offsetof(struct phyint, phyint_avl_by_index)); avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, ill_phyint_compare_name, sizeof (phyint_t), offsetof(struct phyint, phyint_avl_by_name)); } /* * Save enough information so that we can recreate the IRE if * the interface goes down and then up. */ void ill_save_ire(ill_t *ill, ire_t *ire) { mblk_t *save_mp; save_mp = allocb(sizeof (ifrt_t), BPRI_MED); if (save_mp != NULL) { ifrt_t *ifrt; save_mp->b_wptr += sizeof (ifrt_t); ifrt = (ifrt_t *)save_mp->b_rptr; bzero(ifrt, sizeof (ifrt_t)); ifrt->ifrt_type = ire->ire_type; if (ire->ire_ipversion == IPV4_VERSION) { ASSERT(!ill->ill_isv6); ifrt->ifrt_addr = ire->ire_addr; ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; ifrt->ifrt_setsrc_addr = ire->ire_setsrc_addr; ifrt->ifrt_mask = ire->ire_mask; } else { ASSERT(ill->ill_isv6); ifrt->ifrt_v6addr = ire->ire_addr_v6; /* ire_gateway_addr_v6 can change due to RTM_CHANGE */ mutex_enter(&ire->ire_lock); ifrt->ifrt_v6gateway_addr = ire->ire_gateway_addr_v6; mutex_exit(&ire->ire_lock); ifrt->ifrt_v6setsrc_addr = ire->ire_setsrc_addr_v6; ifrt->ifrt_v6mask = ire->ire_mask_v6; } ifrt->ifrt_flags = ire->ire_flags; ifrt->ifrt_zoneid = ire->ire_zoneid; mutex_enter(&ill->ill_saved_ire_lock); save_mp->b_cont = ill->ill_saved_ire_mp; ill->ill_saved_ire_mp = save_mp; ill->ill_saved_ire_cnt++; mutex_exit(&ill->ill_saved_ire_lock); } } /* * Remove one entry from ill_saved_ire_mp. */ void ill_remove_saved_ire(ill_t *ill, ire_t *ire) { mblk_t **mpp; mblk_t *mp; ifrt_t *ifrt; /* Remove from ill_saved_ire_mp list if it is there */ mutex_enter(&ill->ill_saved_ire_lock); for (mpp = &ill->ill_saved_ire_mp; *mpp != NULL; mpp = &(*mpp)->b_cont) { in6_addr_t gw_addr_v6; /* * On a given ill, the tuple of address, gateway, mask, * ire_type, and zoneid is unique for each saved IRE. */ mp = *mpp; ifrt = (ifrt_t *)mp->b_rptr; /* ire_gateway_addr_v6 can change - need lock */ mutex_enter(&ire->ire_lock); gw_addr_v6 = ire->ire_gateway_addr_v6; mutex_exit(&ire->ire_lock); if (ifrt->ifrt_zoneid != ire->ire_zoneid || ifrt->ifrt_type != ire->ire_type) continue; if (ill->ill_isv6 ? (IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6addr, &ire->ire_addr_v6) && IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6gateway_addr, &gw_addr_v6) && IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6mask, &ire->ire_mask_v6)) : (ifrt->ifrt_addr == ire->ire_addr && ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && ifrt->ifrt_mask == ire->ire_mask)) { *mpp = mp->b_cont; ill->ill_saved_ire_cnt--; freeb(mp); break; } } mutex_exit(&ill->ill_saved_ire_lock); } /* * IP multirouting broadcast routes handling * Append CGTP broadcast IREs to regular ones created * at ifconfig time. * The usage is a route add -multirt i.e., both * the destination and the gateway are broadcast addresses. * The caller has verified that the destination is an IRE_BROADCAST and that * RTF_MULTIRT was set. Here if the gateway is a broadcast address, then * we create a MULTIRT IRE_BROADCAST. * Note that the IRE_HOST created by ire_rt_add doesn't get found by anything * since the IRE_BROADCAST takes precedence; ire_add_v4 does head insertion. */ static void ip_cgtp_bcast_add(ire_t *ire, ip_stack_t *ipst) { ire_t *ire_prim; ASSERT(ire != NULL); ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0, IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, NULL); if (ire_prim != NULL) { /* * We are in the special case of broadcasts for * CGTP. We add an IRE_BROADCAST that holds * the RTF_MULTIRT flag, the destination * address and the low level * info of ire_prim. In other words, CGTP * broadcast is added to the redundant ipif. */ ill_t *ill_prim; ire_t *bcast_ire; ill_prim = ire_prim->ire_ill; ip2dbg(("ip_cgtp_filter_bcast_add: ire_prim %p, ill_prim %p\n", (void *)ire_prim, (void *)ill_prim)); bcast_ire = ire_create( (uchar_t *)&ire->ire_addr, (uchar_t *)&ip_g_all_ones, (uchar_t *)&ire->ire_gateway_addr, IRE_BROADCAST, ill_prim, GLOBAL_ZONEID, /* CGTP is only for the global zone */ ire->ire_flags | RTF_KERNEL, NULL, ipst); /* * Here we assume that ire_add does head insertion so that * the added IRE_BROADCAST comes before the existing IRE_HOST. */ if (bcast_ire != NULL) { if (ire->ire_flags & RTF_SETSRC) { bcast_ire->ire_setsrc_addr = ire->ire_setsrc_addr; } bcast_ire = ire_add(bcast_ire); if (bcast_ire != NULL) { ip2dbg(("ip_cgtp_filter_bcast_add: " "added bcast_ire %p\n", (void *)bcast_ire)); ill_save_ire(ill_prim, bcast_ire); ire_refrele(bcast_ire); } } ire_refrele(ire_prim); } } /* * IP multirouting broadcast routes handling * Remove the broadcast ire. * The usage is a route delete -multirt i.e., both * the destination and the gateway are broadcast addresses. * The caller has only verified that RTF_MULTIRT was set. We check * that the destination is broadcast and that the gateway is a broadcast * address, and if so delete the IRE added by ip_cgtp_bcast_add(). */ static void ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst) { ASSERT(ire != NULL); if (ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST) { ire_t *ire_prim; ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0, IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, NULL); if (ire_prim != NULL) { ill_t *ill_prim; ire_t *bcast_ire; ill_prim = ire_prim->ire_ill; ip2dbg(("ip_cgtp_filter_bcast_delete: " "ire_prim %p, ill_prim %p\n", (void *)ire_prim, (void *)ill_prim)); bcast_ire = ire_ftable_lookup_v4(ire->ire_addr, 0, ire->ire_gateway_addr, IRE_BROADCAST, ill_prim, ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_ILL | MATCH_IRE_MASK, 0, ipst, NULL); if (bcast_ire != NULL) { ip2dbg(("ip_cgtp_filter_bcast_delete: " "looked up bcast_ire %p\n", (void *)bcast_ire)); ill_remove_saved_ire(bcast_ire->ire_ill, bcast_ire); ire_delete(bcast_ire); ire_refrele(bcast_ire); } ire_refrele(ire_prim); } } } /* * Derive an interface id from the link layer address. * Knows about IEEE 802 and IEEE EUI-64 mappings. */ static void ip_ether_v6intfid(ill_t *ill, in6_addr_t *v6addr) { char *addr; /* * Note that some IPv6 interfaces get plumbed over links that claim to * be DL_ETHER, but don't actually have Ethernet MAC addresses (e.g. * PPP links). The ETHERADDRL check here ensures that we only set the * interface ID on IPv6 interfaces above links that actually have real * Ethernet addresses. */ if (ill->ill_phys_addr_length == ETHERADDRL) { /* Form EUI-64 like address */ addr = (char *)&v6addr->s6_addr32[2]; bcopy(ill->ill_phys_addr, addr, 3); addr[0] ^= 0x2; /* Toggle Universal/Local bit */ addr[3] = (char)0xff; addr[4] = (char)0xfe; bcopy(ill->ill_phys_addr + 3, addr + 5, 3); } } /* ARGSUSED */ static void ip_nodef_v6intfid(ill_t *ill, in6_addr_t *v6addr) { } typedef struct ipmp_ifcookie { uint32_t ic_hostid; char ic_ifname[LIFNAMSIZ]; char ic_zonename[ZONENAME_MAX]; } ipmp_ifcookie_t; /* * Construct a pseudo-random interface ID for the IPMP interface that's both * predictable and (almost) guaranteed to be unique. */ static void ip_ipmp_v6intfid(ill_t *ill, in6_addr_t *v6addr) { zone_t *zp; uint8_t *addr; uchar_t hash[16]; ulong_t hostid; MD5_CTX ctx; ipmp_ifcookie_t ic = { 0 }; ASSERT(IS_IPMP(ill)); (void) ddi_strtoul(hw_serial, NULL, 10, &hostid); ic.ic_hostid = htonl((uint32_t)hostid); (void) strlcpy(ic.ic_ifname, ill->ill_name, LIFNAMSIZ); if ((zp = zone_find_by_id(ill->ill_zoneid)) != NULL) { (void) strlcpy(ic.ic_zonename, zp->zone_name, ZONENAME_MAX); zone_rele(zp); } MD5Init(&ctx); MD5Update(&ctx, &ic, sizeof (ic)); MD5Final(hash, &ctx); /* * Map the hash to an interface ID per the basic approach in RFC3041. */ addr = &v6addr->s6_addr8[8]; bcopy(hash + 8, addr, sizeof (uint64_t)); addr[0] &= ~0x2; /* set local bit */ } /* * Map the multicast in6_addr_t in m_ip6addr to the physaddr for ethernet. */ static void ip_ether_v6_mapping(ill_t *ill, uchar_t *m_ip6addr, uchar_t *m_physaddr) { phyint_t *phyi = ill->ill_phyint; /* * Check PHYI_MULTI_BCAST and length of physical * address to determine if we use the mapping or the * broadcast address. */ if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 || ill->ill_phys_addr_length != ETHERADDRL) { ip_mbcast_mapping(ill, m_ip6addr, m_physaddr); return; } m_physaddr[0] = 0x33; m_physaddr[1] = 0x33; m_physaddr[2] = m_ip6addr[12]; m_physaddr[3] = m_ip6addr[13]; m_physaddr[4] = m_ip6addr[14]; m_physaddr[5] = m_ip6addr[15]; } /* * Map the multicast ipaddr_t in m_ipaddr to the physaddr for ethernet. */ static void ip_ether_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) { phyint_t *phyi = ill->ill_phyint; /* * Check PHYI_MULTI_BCAST and length of physical * address to determine if we use the mapping or the * broadcast address. */ if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 || ill->ill_phys_addr_length != ETHERADDRL) { ip_mbcast_mapping(ill, m_ipaddr, m_physaddr); return; } m_physaddr[0] = 0x01; m_physaddr[1] = 0x00; m_physaddr[2] = 0x5e; m_physaddr[3] = m_ipaddr[1] & 0x7f; m_physaddr[4] = m_ipaddr[2]; m_physaddr[5] = m_ipaddr[3]; } /* ARGSUSED */ static void ip_mbcast_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) { /* * for the MULTI_BCAST case and other cases when we want to * use the link-layer broadcast address for multicast. */ uint8_t *bphys_addr; dl_unitdata_req_t *dlur; dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; if (ill->ill_sap_length < 0) { bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; } else { bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + ill->ill_sap_length; } bcopy(bphys_addr, m_physaddr, ill->ill_phys_addr_length); } /* * Derive IPoIB interface id from the link layer address. */ static void ip_ib_v6intfid(ill_t *ill, in6_addr_t *v6addr) { char *addr; ASSERT(ill->ill_phys_addr_length == 20); addr = (char *)&v6addr->s6_addr32[2]; bcopy(ill->ill_phys_addr + 12, addr, 8); /* * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit * in the globally assigned EUI-64 GUID to 1, in violation of IEEE * rules. In these cases, the IBA considers these GUIDs to be in * "Modified EUI-64" format, and thus toggling the u/l bit is not * required; vendors are required not to assign global EUI-64's * that differ only in u/l bit values, thus guaranteeing uniqueness * of the interface identifier. Whether the GUID is in modified * or proper EUI-64 format, the ipv6 identifier must have the u/l * bit set to 1. */ addr[0] |= 2; /* Set Universal/Local bit to 1 */ } /* * Map the multicast ipaddr_t in m_ipaddr to the physaddr for InfiniBand. * Note on mapping from multicast IP addresses to IPoIB multicast link * addresses. IPoIB multicast link addresses are based on IBA link addresses. * The format of an IPoIB multicast address is: * * 4 byte QPN Scope Sign. Pkey * +--------------------------------------------+ * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | * +--------------------------------------------+ * * The Scope and Pkey components are properties of the IBA port and * network interface. They can be ascertained from the broadcast address. * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. */ static void ip_ib_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) { static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; uint8_t *bphys_addr; dl_unitdata_req_t *dlur; bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length); /* * RFC 4391: IPv4 MGID is 28-bit long. */ m_physaddr[16] = m_ipaddr[0] & 0x0f; m_physaddr[17] = m_ipaddr[1]; m_physaddr[18] = m_ipaddr[2]; m_physaddr[19] = m_ipaddr[3]; dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; if (ill->ill_sap_length < 0) { bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; } else { bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + ill->ill_sap_length; } /* * Now fill in the IBA scope/Pkey values from the broadcast address. */ m_physaddr[5] = bphys_addr[5]; m_physaddr[8] = bphys_addr[8]; m_physaddr[9] = bphys_addr[9]; } static void ip_ib_v6_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) { static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; uint8_t *bphys_addr; dl_unitdata_req_t *dlur; bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length); /* * RFC 4391: IPv4 MGID is 80-bit long. */ bcopy(&m_ipaddr[6], &m_physaddr[10], 10); dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; if (ill->ill_sap_length < 0) { bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; } else { bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + ill->ill_sap_length; } /* * Now fill in the IBA scope/Pkey values from the broadcast address. */ m_physaddr[5] = bphys_addr[5]; m_physaddr[8] = bphys_addr[8]; m_physaddr[9] = bphys_addr[9]; } /* * Derive IPv6 interface id from an IPv4 link-layer address (e.g. from an IPv4 * tunnel). The IPv4 address simply get placed in the lower 4 bytes of the * IPv6 interface id. This is a suggested mechanism described in section 3.7 * of RFC4213. */ static void ip_ipv4_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr) { ASSERT(ill->ill_phys_addr_length == sizeof (ipaddr_t)); v6addr->s6_addr32[2] = 0; bcopy(physaddr, &v6addr->s6_addr32[3], sizeof (ipaddr_t)); } /* * Derive IPv6 interface id from an IPv6 link-layer address (e.g. from an IPv6 * tunnel). The lower 8 bytes of the IPv6 address simply become the interface * id. */ static void ip_ipv6_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr) { in6_addr_t *v6lladdr = (in6_addr_t *)physaddr; ASSERT(ill->ill_phys_addr_length == sizeof (in6_addr_t)); bcopy(&v6lladdr->s6_addr32[2], &v6addr->s6_addr32[2], 8); } static void ip_ipv6_v6intfid(ill_t *ill, in6_addr_t *v6addr) { ip_ipv6_genv6intfid(ill, ill->ill_phys_addr, v6addr); } static void ip_ipv6_v6destintfid(ill_t *ill, in6_addr_t *v6addr) { ip_ipv6_genv6intfid(ill, ill->ill_dest_addr, v6addr); } static void ip_ipv4_v6intfid(ill_t *ill, in6_addr_t *v6addr) { ip_ipv4_genv6intfid(ill, ill->ill_phys_addr, v6addr); } static void ip_ipv4_v6destintfid(ill_t *ill, in6_addr_t *v6addr) { ip_ipv4_genv6intfid(ill, ill->ill_dest_addr, v6addr); } /* * Lookup an ill and verify that the zoneid has an ipif on that ill. * Returns an held ill, or NULL. */ ill_t * ill_lookup_on_ifindex_zoneid(uint_t index, zoneid_t zoneid, boolean_t isv6, ip_stack_t *ipst) { ill_t *ill; ipif_t *ipif; ill = ill_lookup_on_ifindex(index, isv6, ipst); if (ill == NULL) return (NULL); mutex_enter(&ill->ill_lock); for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { if (IPIF_IS_CONDEMNED(ipif)) continue; if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && ipif->ipif_zoneid != ALL_ZONES) continue; mutex_exit(&ill->ill_lock); return (ill); } mutex_exit(&ill->ill_lock); ill_refrele(ill); return (NULL); } /* * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) * If a pointer to an ipif_t is returned then the caller will need to do * an ill_refrele(). */ ipif_t * ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6, ip_stack_t *ipst) { ipif_t *ipif; ill_t *ill; ill = ill_lookup_on_ifindex(ifindex, isv6, ipst); if (ill == NULL) return (NULL); mutex_enter(&ill->ill_lock); if (ill->ill_state_flags & ILL_CONDEMNED) { mutex_exit(&ill->ill_lock); ill_refrele(ill); return (NULL); } for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { if (!IPIF_CAN_LOOKUP(ipif)) continue; if (lifidx == ipif->ipif_id) { ipif_refhold_locked(ipif); break; } } mutex_exit(&ill->ill_lock); ill_refrele(ill); return (ipif); } /* * Set ill_inputfn based on the current know state. * This needs to be called when any of the factors taken into * account changes. */ void ill_set_inputfn(ill_t *ill) { ip_stack_t *ipst = ill->ill_ipst; if (ill->ill_isv6) { if (is_system_labeled()) ill->ill_inputfn = ill_input_full_v6; else ill->ill_inputfn = ill_input_short_v6; } else { if (is_system_labeled()) ill->ill_inputfn = ill_input_full_v4; else if (ill->ill_dhcpinit != 0) ill->ill_inputfn = ill_input_full_v4; else if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_RSVP].connf_head != NULL) ill->ill_inputfn = ill_input_full_v4; else if (ipst->ips_ip_cgtp_filter && ipst->ips_ip_cgtp_filter_ops != NULL) ill->ill_inputfn = ill_input_full_v4; else ill->ill_inputfn = ill_input_short_v4; } } /* * Re-evaluate ill_inputfn for all the IPv4 ills. * Used when RSVP and CGTP comes and goes. */ void ill_set_inputfn_all(ip_stack_t *ipst) { ill_walk_context_t ctx; ill_t *ill; rw_enter(&ipst->ips_ill_g_lock, RW_READER); ill = ILL_START_WALK_V4(&ctx, ipst); for (; ill != NULL; ill = ill_next(&ctx, ill)) ill_set_inputfn(ill); rw_exit(&ipst->ips_ill_g_lock); } /* * Set the physical address information for `ill' to the contents of the * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be * asynchronous if `ill' cannot immediately be quiesced -- in which case * EINPROGRESS will be returned. */ int ill_set_phys_addr(ill_t *ill, mblk_t *mp) { ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr; ASSERT(IAM_WRITER_IPSQ(ipsq)); if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR && dlindp->dl_data != DL_CURR_DEST_ADDR && dlindp->dl_data != DL_CURR_PHYS_ADDR) { /* Changing DL_IPV6_TOKEN is not yet supported */ return (0); } /* * We need to store up to two copies of `mp' in `ill'. Due to the * design of ipsq_pending_mp_add(), we can't pass them as separate * arguments to ill_set_phys_addr_tail(). Instead, chain them * together here, then pull 'em apart in ill_set_phys_addr_tail(). */ if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) { freemsg(mp); return (ENOMEM); } ipsq_current_start(ipsq, ill->ill_ipif, 0); /* * Since we'll only do a logical down, we can't rely on ipif_down * to turn on ILL_DOWN_IN_PROGRESS, or for the DL_BIND_ACK to reset * ILL_DOWN_IN_PROGRESS. We instead manage this separately for this * case, to quiesce ire's and nce's for ill_is_quiescent. */ mutex_enter(&ill->ill_lock); ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS; /* no more ire/nce addition allowed */ mutex_exit(&ill->ill_lock); /* * If we can quiesce the ill, then set the address. If not, then * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail(). */ ill_down_ipifs(ill, B_TRUE); mutex_enter(&ill->ill_lock); if (!ill_is_quiescent(ill)) { /* call cannot fail since `conn_t *' argument is NULL */ (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, mp, ILL_DOWN); mutex_exit(&ill->ill_lock); return (EINPROGRESS); } mutex_exit(&ill->ill_lock); ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL); return (0); } /* * Once the ill associated with `q' has quiesced, set its physical address * information to the values in `addrmp'. Note that two copies of `addrmp' * are passed (linked by b_cont), since we sometimes need to save two distinct * copies in the ill_t, and our context doesn't permit sleeping or allocation * failure (we'll free the other copy if it's not needed). Since the ill_t * is quiesced, we know any stale nce's with the old address information have * already been removed, so we don't need to call nce_flush(). */ /* ARGSUSED */ static void ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy) { ill_t *ill = q->q_ptr; mblk_t *addrmp2 = unlinkb(addrmp); dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr; uint_t addrlen, addroff; int status; ASSERT(IAM_WRITER_IPSQ(ipsq)); addroff = dlindp->dl_addr_offset; addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length); switch (dlindp->dl_data) { case DL_IPV6_LINK_LAYER_ADDR: ill_set_ndmp(ill, addrmp, addroff, addrlen); freemsg(addrmp2); break; case DL_CURR_DEST_ADDR: freemsg(ill->ill_dest_addr_mp); ill->ill_dest_addr = addrmp->b_rptr + addroff; ill->ill_dest_addr_mp = addrmp; if (ill->ill_isv6) { ill_setdesttoken(ill); ipif_setdestlinklocal(ill->ill_ipif); } freemsg(addrmp2); break; case DL_CURR_PHYS_ADDR: freemsg(ill->ill_phys_addr_mp); ill->ill_phys_addr = addrmp->b_rptr + addroff; ill->ill_phys_addr_mp = addrmp; ill->ill_phys_addr_length = addrlen; if (ill->ill_isv6) ill_set_ndmp(ill, addrmp2, addroff, addrlen); else freemsg(addrmp2); if (ill->ill_isv6) { ill_setdefaulttoken(ill); ipif_setlinklocal(ill->ill_ipif); } break; default: ASSERT(0); } /* * reset ILL_DOWN_IN_PROGRESS so that we can successfully add ires * as we bring the ipifs up again. */ mutex_enter(&ill->ill_lock); ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; mutex_exit(&ill->ill_lock); /* * If there are ipifs to bring up, ill_up_ipifs() will return * EINPROGRESS, and ipsq_current_finish() will be called by * ip_rput_dlpi_writer() or arp_bringup_done() when the last ipif is * brought up. */ status = ill_up_ipifs(ill, q, addrmp); if (status != EINPROGRESS) ipsq_current_finish(ipsq); } /* * Helper routine for setting the ill_nd_lla fields. */ void ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen) { freemsg(ill->ill_nd_lla_mp); ill->ill_nd_lla = ndmp->b_rptr + addroff; ill->ill_nd_lla_mp = ndmp; ill->ill_nd_lla_len = addrlen; } /* * Replumb the ill. */ int ill_replumb(ill_t *ill, mblk_t *mp) { ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; ASSERT(IAM_WRITER_IPSQ(ipsq)); ipsq_current_start(ipsq, ill->ill_ipif, 0); /* * If we can quiesce the ill, then continue. If not, then * ill_replumb_tail() will be called from ipif_ill_refrele_tail(). */ ill_down_ipifs(ill, B_FALSE); mutex_enter(&ill->ill_lock); if (!ill_is_quiescent(ill)) { /* call cannot fail since `conn_t *' argument is NULL */ (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, mp, ILL_DOWN); mutex_exit(&ill->ill_lock); return (EINPROGRESS); } mutex_exit(&ill->ill_lock); ill_replumb_tail(ipsq, ill->ill_rq, mp, NULL); return (0); } /* ARGSUSED */ static void ill_replumb_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy) { ill_t *ill = q->q_ptr; int err; conn_t *connp = NULL; ASSERT(IAM_WRITER_IPSQ(ipsq)); freemsg(ill->ill_replumb_mp); ill->ill_replumb_mp = copyb(mp); if (ill->ill_replumb_mp == NULL) { /* out of memory */ ipsq_current_finish(ipsq); return; } mutex_enter(&ill->ill_lock); ill->ill_up_ipifs = ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, ill->ill_replumb_mp, 0); mutex_exit(&ill->ill_lock); if (!ill->ill_up_ipifs) { /* already closing */ ipsq_current_finish(ipsq); return; } ill->ill_replumbing = 1; err = ill_down_ipifs_tail(ill); /* * Successfully quiesced and brought down the interface, now we send * the DL_NOTE_REPLUMB_DONE message down to the driver. Reuse the * DL_NOTE_REPLUMB message. */ mp = mexchange(NULL, mp, sizeof (dl_notify_conf_t), M_PROTO, DL_NOTIFY_CONF); ASSERT(mp != NULL); ((dl_notify_conf_t *)mp->b_rptr)->dl_notification = DL_NOTE_REPLUMB_DONE; ill_dlpi_send(ill, mp); /* * For IPv4, we would usually get EINPROGRESS because the ETHERTYPE_ARP * streams have to be unbound. When all the DLPI exchanges are done, * ipsq_current_finish() will be called by arp_bringup_done(). The * remainder of ipif bringup via ill_up_ipifs() will also be done in * arp_bringup_done(). */ ASSERT(ill->ill_replumb_mp != NULL); if (err == EINPROGRESS) return; else ill->ill_replumb_mp = ipsq_pending_mp_get(ipsq, &connp); ASSERT(connp == NULL); if (err == 0 && ill->ill_replumb_mp != NULL && ill_up_ipifs(ill, q, ill->ill_replumb_mp) == EINPROGRESS) { return; } ipsq_current_finish(ipsq); } /* * Issue ioctl `cmd' on `lh'; caller provides the initial payload in `buf' * which is `bufsize' bytes. On success, zero is returned and `buf' updated * as per the ioctl. On failure, an errno is returned. */ static int ip_ioctl(ldi_handle_t lh, int cmd, void *buf, uint_t bufsize, cred_t *cr) { int rval; struct strioctl iocb; iocb.ic_cmd = cmd; iocb.ic_timout = 15; iocb.ic_len = bufsize; iocb.ic_dp = buf; return (ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval)); } /* * Issue an SIOCGLIFCONF for address family `af' and store the result into a * dynamically-allocated `lifcp' that will be `bufsizep' bytes on success. */ static int ip_lifconf_ioctl(ldi_handle_t lh, int af, struct lifconf *lifcp, uint_t *bufsizep, cred_t *cr) { int err; struct lifnum lifn; bzero(&lifn, sizeof (lifn)); lifn.lifn_family = af; lifn.lifn_flags = LIFC_UNDER_IPMP; if ((err = ip_ioctl(lh, SIOCGLIFNUM, &lifn, sizeof (lifn), cr)) != 0) return (err); /* * Pad the interface count to account for additional interfaces that * may have been configured between the SIOCGLIFNUM and SIOCGLIFCONF. */ lifn.lifn_count += 4; bzero(lifcp, sizeof (*lifcp)); lifcp->lifc_flags = LIFC_UNDER_IPMP; lifcp->lifc_family = af; lifcp->lifc_len = *bufsizep = lifn.lifn_count * sizeof (struct lifreq); lifcp->lifc_buf = kmem_zalloc(*bufsizep, KM_SLEEP); err = ip_ioctl(lh, SIOCGLIFCONF, lifcp, sizeof (*lifcp), cr); if (err != 0) { kmem_free(lifcp->lifc_buf, *bufsizep); return (err); } return (0); } /* * Helper for ip_interface_cleanup() that removes the loopback interface. */ static void ip_loopback_removeif(ldi_handle_t lh, boolean_t isv6, cred_t *cr) { int err; struct lifreq lifr; bzero(&lifr, sizeof (lifr)); (void) strcpy(lifr.lifr_name, ipif_loopback_name); /* * Attempt to remove the interface. It may legitimately not exist * (e.g. the zone administrator unplumbed it), so ignore ENXIO. */ err = ip_ioctl(lh, SIOCLIFREMOVEIF, &lifr, sizeof (lifr), cr); if (err != 0 && err != ENXIO) { ip0dbg(("ip_loopback_removeif: IP%s SIOCLIFREMOVEIF failed: " "error %d\n", isv6 ? "v6" : "v4", err)); } } /* * Helper for ip_interface_cleanup() that ensures no IP interfaces are in IPMP * groups and that IPMP data addresses are down. These conditions must be met * so that IPMP interfaces can be I_PUNLINK'd, as per ip_sioctl_plink_ipmp(). */ static void ip_ipmp_cleanup(ldi_handle_t lh, boolean_t isv6, cred_t *cr) { int af = isv6 ? AF_INET6 : AF_INET; int i, nifs; int err; uint_t bufsize; uint_t lifrsize = sizeof (struct lifreq); struct lifconf lifc; struct lifreq *lifrp; if ((err = ip_lifconf_ioctl(lh, af, &lifc, &bufsize, cr)) != 0) { cmn_err(CE_WARN, "ip_ipmp_cleanup: cannot get interface list " "(error %d); any IPMP interfaces cannot be shutdown", err); return; } nifs = lifc.lifc_len / lifrsize; for (lifrp = lifc.lifc_req, i = 0; i < nifs; i++, lifrp++) { err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr); if (err != 0) { cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot get " "flags: error %d", lifrp->lifr_name, err); continue; } if (lifrp->lifr_flags & IFF_IPMP) { if ((lifrp->lifr_flags & (IFF_UP|IFF_DUPLICATE)) == 0) continue; lifrp->lifr_flags &= ~IFF_UP; err = ip_ioctl(lh, SIOCSLIFFLAGS, lifrp, lifrsize, cr); if (err != 0) { cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot " "bring down (error %d); IPMP interface may " "not be shutdown", lifrp->lifr_name, err); } /* * Check if IFF_DUPLICATE is still set -- and if so, * reset the address to clear it. */ err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr); if (err != 0 || !(lifrp->lifr_flags & IFF_DUPLICATE)) continue; err = ip_ioctl(lh, SIOCGLIFADDR, lifrp, lifrsize, cr); if (err != 0 || (err = ip_ioctl(lh, SIOCGLIFADDR, lifrp, lifrsize, cr)) != 0) { cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot " "reset DAD (error %d); IPMP interface may " "not be shutdown", lifrp->lifr_name, err); } continue; } if (strchr(lifrp->lifr_name, IPIF_SEPARATOR_CHAR) == 0) { lifrp->lifr_groupname[0] = '\0'; if ((err = ip_ioctl(lh, SIOCSLIFGROUPNAME, lifrp, lifrsize, cr)) != 0) { cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot " "leave IPMP group (error %d); associated " "IPMP interface may not be shutdown", lifrp->lifr_name, err); continue; } } } kmem_free(lifc.lifc_buf, bufsize); } #define UDPDEV "/devices/pseudo/udp@0:udp" #define UDP6DEV "/devices/pseudo/udp6@0:udp6" /* * Remove the loopback interfaces and prep the IPMP interfaces to be torn down. * Non-loopback interfaces are either I_LINK'd or I_PLINK'd; the former go away * when the user-level processes in the zone are killed and the latter are * cleaned up by str_stack_shutdown(). */ void ip_interface_cleanup(ip_stack_t *ipst) { ldi_handle_t lh; ldi_ident_t li; cred_t *cr; int err; int i; char *devs[] = { UDP6DEV, UDPDEV }; netstackid_t stackid = ipst->ips_netstack->netstack_stackid; if ((err = ldi_ident_from_major(ddi_name_to_major("ip"), &li)) != 0) { cmn_err(CE_WARN, "ip_interface_cleanup: cannot get ldi ident:" " error %d", err); return; } cr = zone_get_kcred(netstackid_to_zoneid(stackid)); ASSERT(cr != NULL); /* * NOTE: loop executes exactly twice and is hardcoded to know that the * first iteration is IPv6. (Unrolling yields repetitious code, hence * the loop.) */ for (i = 0; i < 2; i++) { err = ldi_open_by_name(devs[i], FREAD|FWRITE, cr, &lh, li); if (err != 0) { cmn_err(CE_WARN, "ip_interface_cleanup: cannot open %s:" " error %d", devs[i], err); continue; } ip_loopback_removeif(lh, i == 0, cr); ip_ipmp_cleanup(lh, i == 0, cr); (void) ldi_close(lh, FREAD|FWRITE, cr); } ldi_ident_release(li); crfree(cr); } /* * This needs to be in-sync with nic_event_t definition */ static const char * ill_hook_event2str(nic_event_t event) { switch (event) { case NE_PLUMB: return ("PLUMB"); case NE_UNPLUMB: return ("UNPLUMB"); case NE_UP: return ("UP"); case NE_DOWN: return ("DOWN"); case NE_ADDRESS_CHANGE: return ("ADDRESS_CHANGE"); case NE_LIF_UP: return ("LIF_UP"); case NE_LIF_DOWN: return ("LIF_DOWN"); case NE_IFINDEX_CHANGE: return ("IFINDEX_CHANGE"); default: return ("UNKNOWN"); } } void ill_nic_event_dispatch(ill_t *ill, lif_if_t lif, nic_event_t event, nic_event_data_t data, size_t datalen) { ip_stack_t *ipst = ill->ill_ipst; hook_nic_event_int_t *info; const char *str = NULL; /* create a new nic event info */ if ((info = kmem_alloc(sizeof (*info), KM_NOSLEEP)) == NULL) goto fail; info->hnei_event.hne_nic = ill->ill_phyint->phyint_ifindex; info->hnei_event.hne_lif = lif; info->hnei_event.hne_event = event; info->hnei_event.hne_protocol = ill->ill_isv6 ? ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; info->hnei_event.hne_data = NULL; info->hnei_event.hne_datalen = 0; info->hnei_stackid = ipst->ips_netstack->netstack_stackid; if (data != NULL && datalen != 0) { info->hnei_event.hne_data = kmem_alloc(datalen, KM_NOSLEEP); if (info->hnei_event.hne_data == NULL) goto fail; bcopy(data, info->hnei_event.hne_data, datalen); info->hnei_event.hne_datalen = datalen; } if (ddi_taskq_dispatch(eventq_queue_nic, ip_ne_queue_func, info, DDI_NOSLEEP) == DDI_SUCCESS) return; fail: if (info != NULL) { if (info->hnei_event.hne_data != NULL) { kmem_free(info->hnei_event.hne_data, info->hnei_event.hne_datalen); } kmem_free(info, sizeof (hook_nic_event_t)); } str = ill_hook_event2str(event); ip2dbg(("ill_nic_event_dispatch: could not dispatch %s nic event " "information for %s (ENOMEM)\n", str, ill->ill_name)); } static int ipif_arp_up_done_tail(ipif_t *ipif, enum ip_resolver_action res_act) { int err = 0; const in_addr_t *addr = NULL; nce_t *nce = NULL; ill_t *ill = ipif->ipif_ill; ill_t *bound_ill; boolean_t added_ipif = B_FALSE; uint16_t state; uint16_t flags; DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up_done_tail", ill_t *, ill, ipif_t *, ipif); if (ipif->ipif_lcl_addr != INADDR_ANY) { addr = &ipif->ipif_lcl_addr; } if ((ipif->ipif_flags & IPIF_UNNUMBERED) || addr == NULL) { if (res_act != Res_act_initial) return (EINVAL); } if (addr != NULL) { ipmp_illgrp_t *illg = ill->ill_grp; /* add unicast nce for the local addr */ if (IS_IPMP(ill)) { /* * If we're here via ipif_up(), then the ipif * won't be bound yet -- add it to the group, * which will bind it if possible. (We would * add it in ipif_up(), but deleting on failure * there is gruesome.) If we're here via * ipmp_ill_bind_ipif(), then the ipif has * already been added to the group and we * just need to use the binding. */ if ((bound_ill = ipmp_ipif_bound_ill(ipif)) == NULL) { bound_ill = ipmp_illgrp_add_ipif(illg, ipif); if (bound_ill == NULL) { /* * We couldn't bind the ipif to an ill * yet, so we have nothing to publish. * Mark the address as ready and return. */ ipif->ipif_addr_ready = 1; return (0); } added_ipif = B_TRUE; } } else { bound_ill = ill; } flags = (NCE_F_MYADDR | NCE_F_PUBLISH | NCE_F_AUTHORITY | NCE_F_NONUD); /* * If this is an initial bring-up (or the ipif was never * completely brought up), do DAD. Otherwise, we're here * because IPMP has rebound an address to this ill: send * unsolicited advertisements (ARP announcements) to * inform others. */ if (res_act == Res_act_initial || !ipif->ipif_addr_ready) { state = ND_UNCHANGED; /* compute in nce_add_common() */ } else { state = ND_REACHABLE; flags |= NCE_F_UNSOL_ADV; } retry: err = nce_lookup_then_add_v4(ill, bound_ill->ill_phys_addr, bound_ill->ill_phys_addr_length, addr, flags, state, &nce); /* * note that we may encounter EEXIST if we are moving * the nce as a result of a rebind operation. */ switch (err) { case 0: ipif->ipif_added_nce = 1; nce->nce_ipif_cnt++; break; case EEXIST: ip1dbg(("ipif_arp_up: NCE already exists for %s\n", ill->ill_name)); if (!NCE_MYADDR(nce->nce_common)) { /* * A leftover nce from before this address * existed */ ncec_delete(nce->nce_common); nce_refrele(nce); nce = NULL; goto retry; } if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { nce_refrele(nce); nce = NULL; ip1dbg(("ipif_arp_up: NCE already exists " "for %s:%u\n", ill->ill_name, ipif->ipif_id)); goto arp_up_done; } /* * Duplicate local addresses are permissible for * IPIF_POINTOPOINT interfaces which will get marked * IPIF_UNNUMBERED later in * ip_addr_availability_check(). * * The nce_ipif_cnt field tracks the number of * ipifs that have nce_addr as their local address. */ ipif->ipif_addr_ready = 1; ipif->ipif_added_nce = 1; nce->nce_ipif_cnt++; err = 0; break; default: ASSERT(nce == NULL); goto arp_up_done; } if (arp_no_defense) { if ((ipif->ipif_flags & IPIF_UP) && !ipif->ipif_addr_ready) ipif_up_notify(ipif); ipif->ipif_addr_ready = 1; } } else { /* zero address. nothing to publish */ ipif->ipif_addr_ready = 1; } if (nce != NULL) nce_refrele(nce); arp_up_done: if (added_ipif && err != 0) ipmp_illgrp_del_ipif(ill->ill_grp, ipif); return (err); } int ipif_arp_up(ipif_t *ipif, enum ip_resolver_action res_act, boolean_t was_dup) { int err = 0; ill_t *ill = ipif->ipif_ill; boolean_t first_interface, wait_for_dlpi = B_FALSE; DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up", ill_t *, ill, ipif_t *, ipif); /* * need to bring up ARP or setup mcast mapping only * when the first interface is coming UP. */ first_interface = (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && !was_dup); if (res_act == Res_act_initial && first_interface) { /* * Send ATTACH + BIND */ err = arp_ll_up(ill); if (err != EINPROGRESS && err != 0) return (err); /* * Add NCE for local address. Start DAD. * we'll wait to hear that DAD has finished * before using the interface. */ if (err == EINPROGRESS) wait_for_dlpi = B_TRUE; } if (!wait_for_dlpi) (void) ipif_arp_up_done_tail(ipif, res_act); return (!wait_for_dlpi ? 0 : EINPROGRESS); } /* * Finish processing of "arp_up" after all the DLPI message * exchanges have completed between arp and the driver. */ void arp_bringup_done(ill_t *ill, int err) { mblk_t *mp1; ipif_t *ipif; conn_t *connp = NULL; ipsq_t *ipsq; queue_t *q; ip1dbg(("arp_bringup_done(%s)\n", ill->ill_name)); ASSERT(IAM_WRITER_ILL(ill)); ipsq = ill->ill_phyint->phyint_ipsq; ipif = ipsq->ipsq_xop->ipx_pending_ipif; mp1 = ipsq_pending_mp_get(ipsq, &connp); ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); if (mp1 == NULL) /* bringup was aborted by the user */ return; /* * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we * must have an associated conn_t. Otherwise, we're bringing this * interface back up as part of handling an asynchronous event (e.g., * physical address change). */ if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { ASSERT(connp != NULL); q = CONNP_TO_WQ(connp); } else { ASSERT(connp == NULL); q = ill->ill_rq; } if (err == 0) { if (ipif->ipif_isv6) { if ((err = ipif_up_done_v6(ipif)) != 0) ip0dbg(("arp_bringup_done: init failed\n")); } else { err = ipif_arp_up_done_tail(ipif, Res_act_initial); if (err != 0 || (err = ipif_up_done(ipif)) != 0) { ip0dbg(("arp_bringup_done: " "init failed err %x\n", err)); (void) ipif_arp_down(ipif); } } } else { ip0dbg(("arp_bringup_done: DL_BIND_REQ failed\n")); } if ((err == 0) && (ill->ill_up_ipifs)) { err = ill_up_ipifs(ill, q, mp1); if (err == EINPROGRESS) return; } /* * If we have a moved ipif to bring up, and everything has succeeded * to this point, bring it up on the IPMP ill. Otherwise, leave it * down -- the admin can try to bring it up by hand if need be. */ if (ill->ill_move_ipif != NULL) { ipif = ill->ill_move_ipif; ip1dbg(("bringing up ipif %p on ill %s\n", (void *)ipif, ipif->ipif_ill->ill_name)); ill->ill_move_ipif = NULL; if (err == 0) { err = ipif_up(ipif, q, mp1); if (err == EINPROGRESS) return; } } /* * The operation must complete without EINPROGRESS since * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. * Otherwise, the operation will be stuck forever in the ipsq. */ ASSERT(err != EINPROGRESS); if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { DTRACE_PROBE4(ipif__ioctl, char *, "arp_bringup_done finish", int, ipsq->ipsq_xop->ipx_current_ioctl, ill_t *, ill, ipif_t *, ipif); ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); } else { ipsq_current_finish(ipsq); } } /* * Finish processing of arp replumb after all the DLPI message * exchanges have completed between arp and the driver. */ void arp_replumb_done(ill_t *ill, int err) { mblk_t *mp1; ipif_t *ipif; conn_t *connp = NULL; ipsq_t *ipsq; queue_t *q; ASSERT(IAM_WRITER_ILL(ill)); ipsq = ill->ill_phyint->phyint_ipsq; ipif = ipsq->ipsq_xop->ipx_pending_ipif; mp1 = ipsq_pending_mp_get(ipsq, &connp); ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); if (mp1 == NULL) { ip0dbg(("arp_replumb_done: bringup aborted ioctl %x\n", ipsq->ipsq_xop->ipx_current_ioctl)); /* bringup was aborted by the user */ return; } /* * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we * must have an associated conn_t. Otherwise, we're bringing this * interface back up as part of handling an asynchronous event (e.g., * physical address change). */ if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { ASSERT(connp != NULL); q = CONNP_TO_WQ(connp); } else { ASSERT(connp == NULL); q = ill->ill_rq; } if ((err == 0) && (ill->ill_up_ipifs)) { err = ill_up_ipifs(ill, q, mp1); if (err == EINPROGRESS) return; } /* * The operation must complete without EINPROGRESS since * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. * Otherwise, the operation will be stuck forever in the ipsq. */ ASSERT(err != EINPROGRESS); if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { DTRACE_PROBE4(ipif__ioctl, char *, "arp_replumb_done finish", int, ipsq->ipsq_xop->ipx_current_ioctl, ill_t *, ill, ipif_t *, ipif); ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); } else { ipsq_current_finish(ipsq); } } void ipif_up_notify(ipif_t *ipif) { ip_rts_ifmsg(ipif, RTSQ_DEFAULT); ip_rts_newaddrmsg(RTM_ADD, 0, ipif, RTSQ_DEFAULT); sctp_update_ipif(ipif, SCTP_IPIF_UP); ill_nic_event_dispatch(ipif->ipif_ill, MAP_IPIF_ID(ipif->ipif_id), NE_LIF_UP, NULL, 0); } /* * ILB ioctl uses cv_wait (such as deleting a rule or adding a server) and * this assumes the context is cv_wait'able. Hence it shouldnt' be used on * TPI end points with STREAMS modules pushed above. This is assured by not * having the IPI_MODOK flag for the ioctl. And IP ensures the ILB ioctl * never ends up on an ipsq, otherwise we may end up processing the ioctl * while unwinding from the ispq and that could be a thread from the bottom. */ /* ARGSUSED */ int ip_sioctl_ilb_cmd(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *arg) { mblk_t *cmd_mp = mp->b_cont->b_cont; ilb_cmd_t command = *((ilb_cmd_t *)cmd_mp->b_rptr); int ret = 0; int i; size_t size; ip_stack_t *ipst; zoneid_t zoneid; ilb_stack_t *ilbs; ipst = CONNQ_TO_IPST(q); ilbs = ipst->ips_netstack->netstack_ilb; zoneid = Q_TO_CONN(q)->conn_zoneid; switch (command) { case ILB_CREATE_RULE: { ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr; if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) { ret = EINVAL; break; } ret = ilb_rule_add(ilbs, zoneid, cmd); break; } case ILB_DESTROY_RULE: case ILB_ENABLE_RULE: case ILB_DISABLE_RULE: { ilb_name_cmd_t *cmd = (ilb_name_cmd_t *)cmd_mp->b_rptr; if (MBLKL(cmd_mp) != sizeof (ilb_name_cmd_t)) { ret = EINVAL; break; } if (cmd->flags & ILB_RULE_ALLRULES) { if (command == ILB_DESTROY_RULE) { ilb_rule_del_all(ilbs, zoneid); break; } else if (command == ILB_ENABLE_RULE) { ilb_rule_enable_all(ilbs, zoneid); break; } else if (command == ILB_DISABLE_RULE) { ilb_rule_disable_all(ilbs, zoneid); break; } } else { if (command == ILB_DESTROY_RULE) { ret = ilb_rule_del(ilbs, zoneid, cmd->name); } else if (command == ILB_ENABLE_RULE) { ret = ilb_rule_enable(ilbs, zoneid, cmd->name, NULL); } else if (command == ILB_DISABLE_RULE) { ret = ilb_rule_disable(ilbs, zoneid, cmd->name, NULL); } } break; } case ILB_NUM_RULES: { ilb_num_rules_cmd_t *cmd; if (MBLKL(cmd_mp) != sizeof (ilb_num_rules_cmd_t)) { ret = EINVAL; break; } cmd = (ilb_num_rules_cmd_t *)cmd_mp->b_rptr; ilb_get_num_rules(ilbs, zoneid, &(cmd->num)); break; } case ILB_RULE_NAMES: { ilb_rule_names_cmd_t *cmd; cmd = (ilb_rule_names_cmd_t *)cmd_mp->b_rptr; if (MBLKL(cmd_mp) < sizeof (ilb_rule_names_cmd_t) || cmd->num_names == 0) { ret = EINVAL; break; } size = cmd->num_names * ILB_RULE_NAMESZ; if (cmd_mp->b_rptr + offsetof(ilb_rule_names_cmd_t, buf) + size != cmd_mp->b_wptr) { ret = EINVAL; break; } ilb_get_rulenames(ilbs, zoneid, &cmd->num_names, cmd->buf); break; } case ILB_NUM_SERVERS: { ilb_num_servers_cmd_t *cmd; if (MBLKL(cmd_mp) != sizeof (ilb_num_servers_cmd_t)) { ret = EINVAL; break; } cmd = (ilb_num_servers_cmd_t *)cmd_mp->b_rptr; ret = ilb_get_num_servers(ilbs, zoneid, cmd->name, &(cmd->num)); break; } case ILB_LIST_RULE: { ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr; if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) { ret = EINVAL; break; } ret = ilb_rule_list(ilbs, zoneid, cmd); break; } case ILB_LIST_SERVERS: { ilb_servers_info_cmd_t *cmd; cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr; if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t) || cmd->num_servers == 0) { ret = EINVAL; break; } size = cmd->num_servers * sizeof (ilb_server_info_t); if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) + size != cmd_mp->b_wptr) { ret = EINVAL; break; } ret = ilb_get_servers(ilbs, zoneid, cmd->name, cmd->servers, &cmd->num_servers); break; } case ILB_ADD_SERVERS: { ilb_servers_info_cmd_t *cmd; ilb_rule_t *rule; cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr; if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t)) { ret = EINVAL; break; } size = cmd->num_servers * sizeof (ilb_server_info_t); if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) + size != cmd_mp->b_wptr) { ret = EINVAL; break; } rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret); if (rule == NULL) { ASSERT(ret != 0); break; } for (i = 0; i < cmd->num_servers; i++) { ilb_server_info_t *s; s = &cmd->servers[i]; s->err = ilb_server_add(ilbs, rule, s); } ILB_RULE_REFRELE(rule); break; } case ILB_DEL_SERVERS: case ILB_ENABLE_SERVERS: case ILB_DISABLE_SERVERS: { ilb_servers_cmd_t *cmd; ilb_rule_t *rule; int (*f)(); cmd = (ilb_servers_cmd_t *)cmd_mp->b_rptr; if (MBLKL(cmd_mp) < sizeof (ilb_servers_cmd_t)) { ret = EINVAL; break; } size = cmd->num_servers * sizeof (ilb_server_arg_t); if (cmd_mp->b_rptr + offsetof(ilb_servers_cmd_t, servers) + size != cmd_mp->b_wptr) { ret = EINVAL; break; } if (command == ILB_DEL_SERVERS) f = ilb_server_del; else if (command == ILB_ENABLE_SERVERS) f = ilb_server_enable; else if (command == ILB_DISABLE_SERVERS) f = ilb_server_disable; rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret); if (rule == NULL) { ASSERT(ret != 0); break; } for (i = 0; i < cmd->num_servers; i++) { ilb_server_arg_t *s; s = &cmd->servers[i]; s->err = f(ilbs, zoneid, NULL, rule, &s->addr); } ILB_RULE_REFRELE(rule); break; } case ILB_LIST_NAT_TABLE: { ilb_list_nat_cmd_t *cmd; cmd = (ilb_list_nat_cmd_t *)cmd_mp->b_rptr; if (MBLKL(cmd_mp) < sizeof (ilb_list_nat_cmd_t)) { ret = EINVAL; break; } size = cmd->num_nat * sizeof (ilb_nat_entry_t); if (cmd_mp->b_rptr + offsetof(ilb_list_nat_cmd_t, entries) + size != cmd_mp->b_wptr) { ret = EINVAL; break; } ret = ilb_list_nat(ilbs, zoneid, cmd->entries, &cmd->num_nat, &cmd->flags); break; } case ILB_LIST_STICKY_TABLE: { ilb_list_sticky_cmd_t *cmd; cmd = (ilb_list_sticky_cmd_t *)cmd_mp->b_rptr; if (MBLKL(cmd_mp) < sizeof (ilb_list_sticky_cmd_t)) { ret = EINVAL; break; } size = cmd->num_sticky * sizeof (ilb_sticky_entry_t); if (cmd_mp->b_rptr + offsetof(ilb_list_sticky_cmd_t, entries) + size != cmd_mp->b_wptr) { ret = EINVAL; break; } ret = ilb_list_sticky(ilbs, zoneid, cmd->entries, &cmd->num_sticky, &cmd->flags); break; } default: ret = EINVAL; break; } done: return (ret); } /* Remove all cache entries for this logical interface */ void ipif_nce_down(ipif_t *ipif) { ill_t *ill = ipif->ipif_ill; nce_t *nce; DTRACE_PROBE3(ipif__downup, char *, "ipif_nce_down", ill_t *, ill, ipif_t *, ipif); if (ipif->ipif_added_nce) { if (ipif->ipif_isv6) nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr); else nce = nce_lookup_v4(ill, &ipif->ipif_lcl_addr); if (nce != NULL) { if (--nce->nce_ipif_cnt == 0) ncec_delete(nce->nce_common); ipif->ipif_added_nce = 0; nce_refrele(nce); } else { /* * nce may already be NULL because it was already * flushed, e.g., due to a call to nce_flush */ ipif->ipif_added_nce = 0; } } /* * Make IPMP aware of the deleted data address. */ if (IS_IPMP(ill)) ipmp_illgrp_del_ipif(ill->ill_grp, ipif); /* * Remove all other nces dependent on this ill when the last ipif * is going away. */ if (ill->ill_ipif_up_count == 0) { ncec_walk(ill, (pfi_t)ncec_delete_per_ill, (uchar_t *)ill, ill->ill_ipst); if (IS_UNDER_IPMP(ill)) nce_flush(ill, B_TRUE); } } /* * find the first interface that uses usill for its source address. */ ill_t * ill_lookup_usesrc(ill_t *usill) { ip_stack_t *ipst = usill->ill_ipst; ill_t *ill; ASSERT(usill != NULL); /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); rw_enter(&ipst->ips_ill_g_lock, RW_READER); for (ill = usill->ill_usesrc_grp_next; ill != NULL && ill != usill; ill = ill->ill_usesrc_grp_next) { if (!IS_UNDER_IPMP(ill) && (ill->ill_flags & ILLF_MULTICAST) && !ILL_IS_CONDEMNED(ill)) { ill_refhold(ill); break; } } rw_exit(&ipst->ips_ill_g_lock); rw_exit(&ipst->ips_ill_g_usesrc_lock); return (ill); }