/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2014 by Delphix. All rights reserved. */ /* Portions Copyright 2010 Robert Milkowski */ #include #include #include #include #include #include #include #include #include #include #include #include #include /* * The zfs intent log (ZIL) saves transaction records of system calls * that change the file system in memory with enough information * to be able to replay them. These are stored in memory until * either the DMU transaction group (txg) commits them to the stable pool * and they can be discarded, or they are flushed to the stable log * (also in the pool) due to a fsync, O_DSYNC or other synchronous * requirement. In the event of a panic or power fail then those log * records (transactions) are replayed. * * There is one ZIL per file system. Its on-disk (pool) format consists * of 3 parts: * * - ZIL header * - ZIL blocks * - ZIL records * * A log record holds a system call transaction. Log blocks can * hold many log records and the blocks are chained together. * Each ZIL block contains a block pointer (blkptr_t) to the next * ZIL block in the chain. The ZIL header points to the first * block in the chain. Note there is not a fixed place in the pool * to hold blocks. They are dynamically allocated and freed as * needed from the blocks available. Figure X shows the ZIL structure: */ /* * Disable intent logging replay. This global ZIL switch affects all pools. */ int zil_replay_disable = 0; /* * Tunable parameter for debugging or performance analysis. Setting * zfs_nocacheflush will cause corruption on power loss if a volatile * out-of-order write cache is enabled. */ boolean_t zfs_nocacheflush = B_FALSE; static kmem_cache_t *zil_lwb_cache; static void zil_async_to_sync(zilog_t *zilog, uint64_t foid); #define LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \ sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused)) /* * ziltest is by and large an ugly hack, but very useful in * checking replay without tedious work. * When running ziltest we want to keep all itx's and so maintain * a single list in the zl_itxg[] that uses a high txg: ZILTEST_TXG * We subtract TXG_CONCURRENT_STATES to allow for common code. */ #define ZILTEST_TXG (UINT64_MAX - TXG_CONCURRENT_STATES) static int zil_bp_compare(const void *x1, const void *x2) { const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva; const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva; if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2)) return (-1); if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2)) return (1); if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2)) return (-1); if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2)) return (1); return (0); } static void zil_bp_tree_init(zilog_t *zilog) { avl_create(&zilog->zl_bp_tree, zil_bp_compare, sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node)); } static void zil_bp_tree_fini(zilog_t *zilog) { avl_tree_t *t = &zilog->zl_bp_tree; zil_bp_node_t *zn; void *cookie = NULL; while ((zn = avl_destroy_nodes(t, &cookie)) != NULL) kmem_free(zn, sizeof (zil_bp_node_t)); avl_destroy(t); } int zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp) { avl_tree_t *t = &zilog->zl_bp_tree; const dva_t *dva; zil_bp_node_t *zn; avl_index_t where; if (BP_IS_EMBEDDED(bp)) return (0); dva = BP_IDENTITY(bp); if (avl_find(t, dva, &where) != NULL) return (SET_ERROR(EEXIST)); zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP); zn->zn_dva = *dva; avl_insert(t, zn, where); return (0); } static zil_header_t * zil_header_in_syncing_context(zilog_t *zilog) { return ((zil_header_t *)zilog->zl_header); } static void zil_init_log_chain(zilog_t *zilog, blkptr_t *bp) { zio_cksum_t *zc = &bp->blk_cksum; zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL); zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL); zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os); zc->zc_word[ZIL_ZC_SEQ] = 1ULL; } /* * Read a log block and make sure it's valid. */ static int zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst, char **end) { enum zio_flag zio_flags = ZIO_FLAG_CANFAIL; uint32_t aflags = ARC_WAIT; arc_buf_t *abuf = NULL; zbookmark_phys_t zb; int error; if (zilog->zl_header->zh_claim_txg == 0) zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) zio_flags |= ZIO_FLAG_SPECULATIVE; SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET], ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]); error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); if (error == 0) { zio_cksum_t cksum = bp->blk_cksum; /* * Validate the checksummed log block. * * Sequence numbers should be... sequential. The checksum * verifier for the next block should be bp's checksum plus 1. * * Also check the log chain linkage and size used. */ cksum.zc_word[ZIL_ZC_SEQ]++; if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { zil_chain_t *zilc = abuf->b_data; char *lr = (char *)(zilc + 1); uint64_t len = zilc->zc_nused - sizeof (zil_chain_t); if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum, sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) { error = SET_ERROR(ECKSUM); } else { bcopy(lr, dst, len); *end = (char *)dst + len; *nbp = zilc->zc_next_blk; } } else { char *lr = abuf->b_data; uint64_t size = BP_GET_LSIZE(bp); zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1; if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum, sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) || (zilc->zc_nused > (size - sizeof (*zilc)))) { error = SET_ERROR(ECKSUM); } else { bcopy(lr, dst, zilc->zc_nused); *end = (char *)dst + zilc->zc_nused; *nbp = zilc->zc_next_blk; } } VERIFY(arc_buf_remove_ref(abuf, &abuf)); } return (error); } /* * Read a TX_WRITE log data block. */ static int zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf) { enum zio_flag zio_flags = ZIO_FLAG_CANFAIL; const blkptr_t *bp = &lr->lr_blkptr; uint32_t aflags = ARC_WAIT; arc_buf_t *abuf = NULL; zbookmark_phys_t zb; int error; if (BP_IS_HOLE(bp)) { if (wbuf != NULL) bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length)); return (0); } if (zilog->zl_header->zh_claim_txg == 0) zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid, ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp)); error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); if (error == 0) { if (wbuf != NULL) bcopy(abuf->b_data, wbuf, arc_buf_size(abuf)); (void) arc_buf_remove_ref(abuf, &abuf); } return (error); } /* * Parse the intent log, and call parse_func for each valid record within. */ int zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func, zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg) { const zil_header_t *zh = zilog->zl_header; boolean_t claimed = !!zh->zh_claim_txg; uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX; uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX; uint64_t max_blk_seq = 0; uint64_t max_lr_seq = 0; uint64_t blk_count = 0; uint64_t lr_count = 0; blkptr_t blk, next_blk; char *lrbuf, *lrp; int error = 0; /* * Old logs didn't record the maximum zh_claim_lr_seq. */ if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) claim_lr_seq = UINT64_MAX; /* * Starting at the block pointed to by zh_log we read the log chain. * For each block in the chain we strongly check that block to * ensure its validity. We stop when an invalid block is found. * For each block pointer in the chain we call parse_blk_func(). * For each record in each valid block we call parse_lr_func(). * If the log has been claimed, stop if we encounter a sequence * number greater than the highest claimed sequence number. */ lrbuf = zio_buf_alloc(SPA_MAXBLOCKSIZE); zil_bp_tree_init(zilog); for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) { uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; int reclen; char *end; if (blk_seq > claim_blk_seq) break; if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0) break; ASSERT3U(max_blk_seq, <, blk_seq); max_blk_seq = blk_seq; blk_count++; if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq) break; error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end); if (error != 0) break; for (lrp = lrbuf; lrp < end; lrp += reclen) { lr_t *lr = (lr_t *)lrp; reclen = lr->lrc_reclen; ASSERT3U(reclen, >=, sizeof (lr_t)); if (lr->lrc_seq > claim_lr_seq) goto done; if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0) goto done; ASSERT3U(max_lr_seq, <, lr->lrc_seq); max_lr_seq = lr->lrc_seq; lr_count++; } } done: zilog->zl_parse_error = error; zilog->zl_parse_blk_seq = max_blk_seq; zilog->zl_parse_lr_seq = max_lr_seq; zilog->zl_parse_blk_count = blk_count; zilog->zl_parse_lr_count = lr_count; ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) || (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq)); zil_bp_tree_fini(zilog); zio_buf_free(lrbuf, SPA_MAXBLOCKSIZE); return (error); } static int zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg) { /* * Claim log block if not already committed and not already claimed. * If tx == NULL, just verify that the block is claimable. */ if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg || zil_bp_tree_add(zilog, bp) != 0) return (0); return (zio_wait(zio_claim(NULL, zilog->zl_spa, tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB))); } static int zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg) { lr_write_t *lr = (lr_write_t *)lrc; int error; if (lrc->lrc_txtype != TX_WRITE) return (0); /* * If the block is not readable, don't claim it. This can happen * in normal operation when a log block is written to disk before * some of the dmu_sync() blocks it points to. In this case, the * transaction cannot have been committed to anyone (we would have * waited for all writes to be stable first), so it is semantically * correct to declare this the end of the log. */ if (lr->lr_blkptr.blk_birth >= first_txg && (error = zil_read_log_data(zilog, lr, NULL)) != 0) return (error); return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg)); } /* ARGSUSED */ static int zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg) { zio_free_zil(zilog->zl_spa, dmu_tx_get_txg(tx), bp); return (0); } static int zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg) { lr_write_t *lr = (lr_write_t *)lrc; blkptr_t *bp = &lr->lr_blkptr; /* * If we previously claimed it, we need to free it. */ if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE && bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 && !BP_IS_HOLE(bp)) zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp); return (0); } static lwb_t * zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, uint64_t txg) { lwb_t *lwb; lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); lwb->lwb_zilog = zilog; lwb->lwb_blk = *bp; lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp)); lwb->lwb_max_txg = txg; lwb->lwb_zio = NULL; lwb->lwb_tx = NULL; if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { lwb->lwb_nused = sizeof (zil_chain_t); lwb->lwb_sz = BP_GET_LSIZE(bp); } else { lwb->lwb_nused = 0; lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t); } mutex_enter(&zilog->zl_lock); list_insert_tail(&zilog->zl_lwb_list, lwb); mutex_exit(&zilog->zl_lock); return (lwb); } /* * Called when we create in-memory log transactions so that we know * to cleanup the itxs at the end of spa_sync(). */ void zilog_dirty(zilog_t *zilog, uint64_t txg) { dsl_pool_t *dp = zilog->zl_dmu_pool; dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); if (dsl_dataset_is_snapshot(ds)) panic("dirtying snapshot!"); if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) { /* up the hold count until we can be written out */ dmu_buf_add_ref(ds->ds_dbuf, zilog); } } boolean_t zilog_is_dirty(zilog_t *zilog) { dsl_pool_t *dp = zilog->zl_dmu_pool; for (int t = 0; t < TXG_SIZE; t++) { if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t)) return (B_TRUE); } return (B_FALSE); } /* * Create an on-disk intent log. */ static lwb_t * zil_create(zilog_t *zilog) { const zil_header_t *zh = zilog->zl_header; lwb_t *lwb = NULL; uint64_t txg = 0; dmu_tx_t *tx = NULL; blkptr_t blk; int error = 0; /* * Wait for any previous destroy to complete. */ txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); ASSERT(zh->zh_claim_txg == 0); ASSERT(zh->zh_replay_seq == 0); blk = zh->zh_log; /* * Allocate an initial log block if: * - there isn't one already * - the existing block is the wrong endianess */ if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) { tx = dmu_tx_create(zilog->zl_os); VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0); dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); txg = dmu_tx_get_txg(tx); if (!BP_IS_HOLE(&blk)) { zio_free_zil(zilog->zl_spa, txg, &blk); BP_ZERO(&blk); } error = zio_alloc_zil(zilog->zl_spa, txg, &blk, NULL, ZIL_MIN_BLKSZ, zilog->zl_logbias == ZFS_LOGBIAS_LATENCY); if (error == 0) zil_init_log_chain(zilog, &blk); } /* * Allocate a log write buffer (lwb) for the first log block. */ if (error == 0) lwb = zil_alloc_lwb(zilog, &blk, txg); /* * If we just allocated the first log block, commit our transaction * and wait for zil_sync() to stuff the block poiner into zh_log. * (zh is part of the MOS, so we cannot modify it in open context.) */ if (tx != NULL) { dmu_tx_commit(tx); txg_wait_synced(zilog->zl_dmu_pool, txg); } ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0); return (lwb); } /* * In one tx, free all log blocks and clear the log header. * If keep_first is set, then we're replaying a log with no content. * We want to keep the first block, however, so that the first * synchronous transaction doesn't require a txg_wait_synced() * in zil_create(). We don't need to txg_wait_synced() here either * when keep_first is set, because both zil_create() and zil_destroy() * will wait for any in-progress destroys to complete. */ void zil_destroy(zilog_t *zilog, boolean_t keep_first) { const zil_header_t *zh = zilog->zl_header; lwb_t *lwb; dmu_tx_t *tx; uint64_t txg; /* * Wait for any previous destroy to complete. */ txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); zilog->zl_old_header = *zh; /* debugging aid */ if (BP_IS_HOLE(&zh->zh_log)) return; tx = dmu_tx_create(zilog->zl_os); VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0); dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); txg = dmu_tx_get_txg(tx); mutex_enter(&zilog->zl_lock); ASSERT3U(zilog->zl_destroy_txg, <, txg); zilog->zl_destroy_txg = txg; zilog->zl_keep_first = keep_first; if (!list_is_empty(&zilog->zl_lwb_list)) { ASSERT(zh->zh_claim_txg == 0); VERIFY(!keep_first); while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { list_remove(&zilog->zl_lwb_list, lwb); if (lwb->lwb_buf != NULL) zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); zio_free_zil(zilog->zl_spa, txg, &lwb->lwb_blk); kmem_cache_free(zil_lwb_cache, lwb); } } else if (!keep_first) { zil_destroy_sync(zilog, tx); } mutex_exit(&zilog->zl_lock); dmu_tx_commit(tx); } void zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx) { ASSERT(list_is_empty(&zilog->zl_lwb_list)); (void) zil_parse(zilog, zil_free_log_block, zil_free_log_record, tx, zilog->zl_header->zh_claim_txg); } int zil_claim(const char *osname, void *txarg) { dmu_tx_t *tx = txarg; uint64_t first_txg = dmu_tx_get_txg(tx); zilog_t *zilog; zil_header_t *zh; objset_t *os; int error; error = dmu_objset_own(osname, DMU_OST_ANY, B_FALSE, FTAG, &os); if (error != 0) { /* * EBUSY indicates that the objset is inconsistent, in which * case it can not have a ZIL. */ if (error != EBUSY) { cmn_err(CE_WARN, "can't open objset for %s, error %u", osname, error); } return (0); } zilog = dmu_objset_zil(os); zh = zil_header_in_syncing_context(zilog); if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR) { if (!BP_IS_HOLE(&zh->zh_log)) zio_free_zil(zilog->zl_spa, first_txg, &zh->zh_log); BP_ZERO(&zh->zh_log); dsl_dataset_dirty(dmu_objset_ds(os), tx); dmu_objset_disown(os, FTAG); return (0); } /* * Claim all log blocks if we haven't already done so, and remember * the highest claimed sequence number. This ensures that if we can * read only part of the log now (e.g. due to a missing device), * but we can read the entire log later, we will not try to replay * or destroy beyond the last block we successfully claimed. */ ASSERT3U(zh->zh_claim_txg, <=, first_txg); if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) { (void) zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx, first_txg); zh->zh_claim_txg = first_txg; zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq; zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq; if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1) zh->zh_flags |= ZIL_REPLAY_NEEDED; zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID; dsl_dataset_dirty(dmu_objset_ds(os), tx); } ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1)); dmu_objset_disown(os, FTAG); return (0); } /* * Check the log by walking the log chain. * Checksum errors are ok as they indicate the end of the chain. * Any other error (no device or read failure) returns an error. */ int zil_check_log_chain(const char *osname, void *tx) { zilog_t *zilog; objset_t *os; blkptr_t *bp; int error; ASSERT(tx == NULL); error = dmu_objset_hold(osname, FTAG, &os); if (error != 0) { cmn_err(CE_WARN, "can't open objset for %s", osname); return (0); } zilog = dmu_objset_zil(os); bp = (blkptr_t *)&zilog->zl_header->zh_log; /* * Check the first block and determine if it's on a log device * which may have been removed or faulted prior to loading this * pool. If so, there's no point in checking the rest of the log * as its content should have already been synced to the pool. */ if (!BP_IS_HOLE(bp)) { vdev_t *vd; boolean_t valid = B_TRUE; spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER); vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0])); if (vd->vdev_islog && vdev_is_dead(vd)) valid = vdev_log_state_valid(vd); spa_config_exit(os->os_spa, SCL_STATE, FTAG); if (!valid) { dmu_objset_rele(os, FTAG); return (0); } } /* * Because tx == NULL, zil_claim_log_block() will not actually claim * any blocks, but just determine whether it is possible to do so. * In addition to checking the log chain, zil_claim_log_block() * will invoke zio_claim() with a done func of spa_claim_notify(), * which will update spa_max_claim_txg. See spa_load() for details. */ error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx, zilog->zl_header->zh_claim_txg ? -1ULL : spa_first_txg(os->os_spa)); dmu_objset_rele(os, FTAG); return ((error == ECKSUM || error == ENOENT) ? 0 : error); } static int zil_vdev_compare(const void *x1, const void *x2) { const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev; const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev; if (v1 < v2) return (-1); if (v1 > v2) return (1); return (0); } void zil_add_block(zilog_t *zilog, const blkptr_t *bp) { avl_tree_t *t = &zilog->zl_vdev_tree; avl_index_t where; zil_vdev_node_t *zv, zvsearch; int ndvas = BP_GET_NDVAS(bp); int i; if (zfs_nocacheflush) return; ASSERT(zilog->zl_writer); /* * Even though we're zl_writer, we still need a lock because the * zl_get_data() callbacks may have dmu_sync() done callbacks * that will run concurrently. */ mutex_enter(&zilog->zl_vdev_lock); for (i = 0; i < ndvas; i++) { zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]); if (avl_find(t, &zvsearch, &where) == NULL) { zv = kmem_alloc(sizeof (*zv), KM_SLEEP); zv->zv_vdev = zvsearch.zv_vdev; avl_insert(t, zv, where); } } mutex_exit(&zilog->zl_vdev_lock); } static void zil_flush_vdevs(zilog_t *zilog) { spa_t *spa = zilog->zl_spa; avl_tree_t *t = &zilog->zl_vdev_tree; void *cookie = NULL; zil_vdev_node_t *zv; zio_t *zio; ASSERT(zilog->zl_writer); /* * We don't need zl_vdev_lock here because we're the zl_writer, * and all zl_get_data() callbacks are done. */ if (avl_numnodes(t) == 0) return; spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) { vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev); if (vd != NULL) zio_flush(zio, vd); kmem_free(zv, sizeof (*zv)); } /* * Wait for all the flushes to complete. Not all devices actually * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails. */ (void) zio_wait(zio); spa_config_exit(spa, SCL_STATE, FTAG); } /* * Function called when a log block write completes */ static void zil_lwb_write_done(zio_t *zio) { lwb_t *lwb = zio->io_private; zilog_t *zilog = lwb->lwb_zilog; dmu_tx_t *tx = lwb->lwb_tx; ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG); ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER); ASSERT(!BP_IS_GANG(zio->io_bp)); ASSERT(!BP_IS_HOLE(zio->io_bp)); ASSERT(BP_GET_FILL(zio->io_bp) == 0); /* * Ensure the lwb buffer pointer is cleared before releasing * the txg. If we have had an allocation failure and * the txg is waiting to sync then we want want zil_sync() * to remove the lwb so that it's not picked up as the next new * one in zil_commit_writer(). zil_sync() will only remove * the lwb if lwb_buf is null. */ zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); mutex_enter(&zilog->zl_lock); lwb->lwb_buf = NULL; lwb->lwb_tx = NULL; mutex_exit(&zilog->zl_lock); /* * Now that we've written this log block, we have a stable pointer * to the next block in the chain, so it's OK to let the txg in * which we allocated the next block sync. */ dmu_tx_commit(tx); } /* * Initialize the io for a log block. */ static void zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb) { zbookmark_phys_t zb; SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET], ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]); if (zilog->zl_root_zio == NULL) { zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL, ZIO_FLAG_CANFAIL); } if (lwb->lwb_zio == NULL) { lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa, 0, &lwb->lwb_blk, lwb->lwb_buf, BP_GET_LSIZE(&lwb->lwb_blk), zil_lwb_write_done, lwb, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb); } } /* * Define a limited set of intent log block sizes. * * These must be a multiple of 4KB. Note only the amount used (again * aligned to 4KB) actually gets written. However, we can't always just * allocate SPA_MAXBLOCKSIZE as the slog space could be exhausted. */ uint64_t zil_block_buckets[] = { 4096, /* non TX_WRITE */ 8192+4096, /* data base */ 32*1024 + 4096, /* NFS writes */ UINT64_MAX }; /* * Use the slog as long as the logbias is 'latency' and the current commit size * is less than the limit or the total list size is less than 2X the limit. * Limit checking is disabled by setting zil_slog_limit to UINT64_MAX. */ uint64_t zil_slog_limit = 1024 * 1024; #define USE_SLOG(zilog) (((zilog)->zl_logbias == ZFS_LOGBIAS_LATENCY) && \ (((zilog)->zl_cur_used < zil_slog_limit) || \ ((zilog)->zl_itx_list_sz < (zil_slog_limit << 1)))) /* * Start a log block write and advance to the next log block. * Calls are serialized. */ static lwb_t * zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb) { lwb_t *nlwb = NULL; zil_chain_t *zilc; spa_t *spa = zilog->zl_spa; blkptr_t *bp; dmu_tx_t *tx; uint64_t txg; uint64_t zil_blksz, wsz; int i, error; if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) { zilc = (zil_chain_t *)lwb->lwb_buf; bp = &zilc->zc_next_blk; } else { zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz); bp = &zilc->zc_next_blk; } ASSERT(lwb->lwb_nused <= lwb->lwb_sz); /* * Allocate the next block and save its address in this block * before writing it in order to establish the log chain. * Note that if the allocation of nlwb synced before we wrote * the block that points at it (lwb), we'd leak it if we crashed. * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done(). * We dirty the dataset to ensure that zil_sync() will be called * to clean up in the event of allocation failure or I/O failure. */ tx = dmu_tx_create(zilog->zl_os); VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0); dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); txg = dmu_tx_get_txg(tx); lwb->lwb_tx = tx; /* * Log blocks are pre-allocated. Here we select the size of the next * block, based on size used in the last block. * - first find the smallest bucket that will fit the block from a * limited set of block sizes. This is because it's faster to write * blocks allocated from the same metaslab as they are adjacent or * close. * - next find the maximum from the new suggested size and an array of * previous sizes. This lessens a picket fence effect of wrongly * guesssing the size if we have a stream of say 2k, 64k, 2k, 64k * requests. * * Note we only write what is used, but we can't just allocate * the maximum block size because we can exhaust the available * pool log space. */ zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t); for (i = 0; zil_blksz > zil_block_buckets[i]; i++) continue; zil_blksz = zil_block_buckets[i]; if (zil_blksz == UINT64_MAX) zil_blksz = SPA_MAXBLOCKSIZE; zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz; for (i = 0; i < ZIL_PREV_BLKS; i++) zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]); zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1); BP_ZERO(bp); /* pass the old blkptr in order to spread log blocks across devs */ error = zio_alloc_zil(spa, txg, bp, &lwb->lwb_blk, zil_blksz, USE_SLOG(zilog)); if (error == 0) { ASSERT3U(bp->blk_birth, ==, txg); bp->blk_cksum = lwb->lwb_blk.blk_cksum; bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++; /* * Allocate a new log write buffer (lwb). */ nlwb = zil_alloc_lwb(zilog, bp, txg); /* Record the block for later vdev flushing */ zil_add_block(zilog, &lwb->lwb_blk); } if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) { /* For Slim ZIL only write what is used. */ wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t); ASSERT3U(wsz, <=, lwb->lwb_sz); zio_shrink(lwb->lwb_zio, wsz); } else { wsz = lwb->lwb_sz; } zilc->zc_pad = 0; zilc->zc_nused = lwb->lwb_nused; zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum; /* * clear unused data for security */ bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused); zio_nowait(lwb->lwb_zio); /* Kick off the write for the old log block */ /* * If there was an allocation failure then nlwb will be null which * forces a txg_wait_synced(). */ return (nlwb); } static lwb_t * zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb) { lr_t *lrc = &itx->itx_lr; /* common log record */ lr_write_t *lrw = (lr_write_t *)lrc; char *lr_buf; uint64_t txg = lrc->lrc_txg; uint64_t reclen = lrc->lrc_reclen; uint64_t dlen = 0; if (lwb == NULL) return (NULL); ASSERT(lwb->lwb_buf != NULL); ASSERT(zilog_is_dirty(zilog) || spa_freeze_txg(zilog->zl_spa) != UINT64_MAX); if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) dlen = P2ROUNDUP_TYPED( lrw->lr_length, sizeof (uint64_t), uint64_t); zilog->zl_cur_used += (reclen + dlen); zil_lwb_write_init(zilog, lwb); /* * If this record won't fit in the current log block, start a new one. */ if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) { lwb = zil_lwb_write_start(zilog, lwb); if (lwb == NULL) return (NULL); zil_lwb_write_init(zilog, lwb); ASSERT(LWB_EMPTY(lwb)); if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) { txg_wait_synced(zilog->zl_dmu_pool, txg); return (lwb); } } lr_buf = lwb->lwb_buf + lwb->lwb_nused; bcopy(lrc, lr_buf, reclen); lrc = (lr_t *)lr_buf; lrw = (lr_write_t *)lrc; /* * If it's a write, fetch the data or get its blkptr as appropriate. */ if (lrc->lrc_txtype == TX_WRITE) { if (txg > spa_freeze_txg(zilog->zl_spa)) txg_wait_synced(zilog->zl_dmu_pool, txg); if (itx->itx_wr_state != WR_COPIED) { char *dbuf; int error; if (dlen) { ASSERT(itx->itx_wr_state == WR_NEED_COPY); dbuf = lr_buf + reclen; lrw->lr_common.lrc_reclen += dlen; } else { ASSERT(itx->itx_wr_state == WR_INDIRECT); dbuf = NULL; } error = zilog->zl_get_data( itx->itx_private, lrw, dbuf, lwb->lwb_zio); if (error == EIO) { txg_wait_synced(zilog->zl_dmu_pool, txg); return (lwb); } if (error != 0) { ASSERT(error == ENOENT || error == EEXIST || error == EALREADY); return (lwb); } } } /* * We're actually making an entry, so update lrc_seq to be the * log record sequence number. Note that this is generally not * equal to the itx sequence number because not all transactions * are synchronous, and sometimes spa_sync() gets there first. */ lrc->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */ lwb->lwb_nused += reclen + dlen; lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg); ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz); ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t))); return (lwb); } itx_t * zil_itx_create(uint64_t txtype, size_t lrsize) { itx_t *itx; lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t); itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP); itx->itx_lr.lrc_txtype = txtype; itx->itx_lr.lrc_reclen = lrsize; itx->itx_sod = lrsize; /* if write & WR_NEED_COPY will be increased */ itx->itx_lr.lrc_seq = 0; /* defensive */ itx->itx_sync = B_TRUE; /* default is synchronous */ return (itx); } void zil_itx_destroy(itx_t *itx) { kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen); } /* * Free up the sync and async itxs. The itxs_t has already been detached * so no locks are needed. */ static void zil_itxg_clean(itxs_t *itxs) { itx_t *itx; list_t *list; avl_tree_t *t; void *cookie; itx_async_node_t *ian; list = &itxs->i_sync_list; while ((itx = list_head(list)) != NULL) { list_remove(list, itx); kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen); } cookie = NULL; t = &itxs->i_async_tree; while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { list = &ian->ia_list; while ((itx = list_head(list)) != NULL) { list_remove(list, itx); kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen); } list_destroy(list); kmem_free(ian, sizeof (itx_async_node_t)); } avl_destroy(t); kmem_free(itxs, sizeof (itxs_t)); } static int zil_aitx_compare(const void *x1, const void *x2) { const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid; const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid; if (o1 < o2) return (-1); if (o1 > o2) return (1); return (0); } /* * Remove all async itx with the given oid. */ static void zil_remove_async(zilog_t *zilog, uint64_t oid) { uint64_t otxg, txg; itx_async_node_t *ian; avl_tree_t *t; avl_index_t where; list_t clean_list; itx_t *itx; ASSERT(oid != 0); list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node)); if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ otxg = ZILTEST_TXG; else otxg = spa_last_synced_txg(zilog->zl_spa) + 1; for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; mutex_enter(&itxg->itxg_lock); if (itxg->itxg_txg != txg) { mutex_exit(&itxg->itxg_lock); continue; } /* * Locate the object node and append its list. */ t = &itxg->itxg_itxs->i_async_tree; ian = avl_find(t, &oid, &where); if (ian != NULL) list_move_tail(&clean_list, &ian->ia_list); mutex_exit(&itxg->itxg_lock); } while ((itx = list_head(&clean_list)) != NULL) { list_remove(&clean_list, itx); kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen); } list_destroy(&clean_list); } void zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx) { uint64_t txg; itxg_t *itxg; itxs_t *itxs, *clean = NULL; /* * Object ids can be re-instantiated in the next txg so * remove any async transactions to avoid future leaks. * This can happen if a fsync occurs on the re-instantiated * object for a WR_INDIRECT or WR_NEED_COPY write, which gets * the new file data and flushes a write record for the old object. */ if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE) zil_remove_async(zilog, itx->itx_oid); /* * Ensure the data of a renamed file is committed before the rename. */ if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME) zil_async_to_sync(zilog, itx->itx_oid); if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) txg = ZILTEST_TXG; else txg = dmu_tx_get_txg(tx); itxg = &zilog->zl_itxg[txg & TXG_MASK]; mutex_enter(&itxg->itxg_lock); itxs = itxg->itxg_itxs; if (itxg->itxg_txg != txg) { if (itxs != NULL) { /* * The zil_clean callback hasn't got around to cleaning * this itxg. Save the itxs for release below. * This should be rare. */ atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod); itxg->itxg_sod = 0; clean = itxg->itxg_itxs; } ASSERT(itxg->itxg_sod == 0); itxg->itxg_txg = txg; itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP); list_create(&itxs->i_sync_list, sizeof (itx_t), offsetof(itx_t, itx_node)); avl_create(&itxs->i_async_tree, zil_aitx_compare, sizeof (itx_async_node_t), offsetof(itx_async_node_t, ia_node)); } if (itx->itx_sync) { list_insert_tail(&itxs->i_sync_list, itx); atomic_add_64(&zilog->zl_itx_list_sz, itx->itx_sod); itxg->itxg_sod += itx->itx_sod; } else { avl_tree_t *t = &itxs->i_async_tree; uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid; itx_async_node_t *ian; avl_index_t where; ian = avl_find(t, &foid, &where); if (ian == NULL) { ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP); list_create(&ian->ia_list, sizeof (itx_t), offsetof(itx_t, itx_node)); ian->ia_foid = foid; avl_insert(t, ian, where); } list_insert_tail(&ian->ia_list, itx); } itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx); zilog_dirty(zilog, txg); mutex_exit(&itxg->itxg_lock); /* Release the old itxs now we've dropped the lock */ if (clean != NULL) zil_itxg_clean(clean); } /* * If there are any in-memory intent log transactions which have now been * synced then start up a taskq to free them. We should only do this after we * have written out the uberblocks (i.e. txg has been comitted) so that * don't inadvertently clean out in-memory log records that would be required * by zil_commit(). */ void zil_clean(zilog_t *zilog, uint64_t synced_txg) { itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK]; itxs_t *clean_me; mutex_enter(&itxg->itxg_lock); if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) { mutex_exit(&itxg->itxg_lock); return; } ASSERT3U(itxg->itxg_txg, <=, synced_txg); ASSERT(itxg->itxg_txg != 0); ASSERT(zilog->zl_clean_taskq != NULL); atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod); itxg->itxg_sod = 0; clean_me = itxg->itxg_itxs; itxg->itxg_itxs = NULL; itxg->itxg_txg = 0; mutex_exit(&itxg->itxg_lock); /* * Preferably start a task queue to free up the old itxs but * if taskq_dispatch can't allocate resources to do that then * free it in-line. This should be rare. Note, using TQ_SLEEP * created a bad performance problem. */ if (taskq_dispatch(zilog->zl_clean_taskq, (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == NULL) zil_itxg_clean(clean_me); } /* * Get the list of itxs to commit into zl_itx_commit_list. */ static void zil_get_commit_list(zilog_t *zilog) { uint64_t otxg, txg; list_t *commit_list = &zilog->zl_itx_commit_list; uint64_t push_sod = 0; if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ otxg = ZILTEST_TXG; else otxg = spa_last_synced_txg(zilog->zl_spa) + 1; for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; mutex_enter(&itxg->itxg_lock); if (itxg->itxg_txg != txg) { mutex_exit(&itxg->itxg_lock); continue; } list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list); push_sod += itxg->itxg_sod; itxg->itxg_sod = 0; mutex_exit(&itxg->itxg_lock); } atomic_add_64(&zilog->zl_itx_list_sz, -push_sod); } /* * Move the async itxs for a specified object to commit into sync lists. */ static void zil_async_to_sync(zilog_t *zilog, uint64_t foid) { uint64_t otxg, txg; itx_async_node_t *ian; avl_tree_t *t; avl_index_t where; if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ otxg = ZILTEST_TXG; else otxg = spa_last_synced_txg(zilog->zl_spa) + 1; for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; mutex_enter(&itxg->itxg_lock); if (itxg->itxg_txg != txg) { mutex_exit(&itxg->itxg_lock); continue; } /* * If a foid is specified then find that node and append its * list. Otherwise walk the tree appending all the lists * to the sync list. We add to the end rather than the * beginning to ensure the create has happened. */ t = &itxg->itxg_itxs->i_async_tree; if (foid != 0) { ian = avl_find(t, &foid, &where); if (ian != NULL) { list_move_tail(&itxg->itxg_itxs->i_sync_list, &ian->ia_list); } } else { void *cookie = NULL; while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { list_move_tail(&itxg->itxg_itxs->i_sync_list, &ian->ia_list); list_destroy(&ian->ia_list); kmem_free(ian, sizeof (itx_async_node_t)); } } mutex_exit(&itxg->itxg_lock); } } static void zil_commit_writer(zilog_t *zilog) { uint64_t txg; itx_t *itx; lwb_t *lwb; spa_t *spa = zilog->zl_spa; int error = 0; ASSERT(zilog->zl_root_zio == NULL); mutex_exit(&zilog->zl_lock); zil_get_commit_list(zilog); /* * Return if there's nothing to commit before we dirty the fs by * calling zil_create(). */ if (list_head(&zilog->zl_itx_commit_list) == NULL) { mutex_enter(&zilog->zl_lock); return; } if (zilog->zl_suspend) { lwb = NULL; } else { lwb = list_tail(&zilog->zl_lwb_list); if (lwb == NULL) lwb = zil_create(zilog); } DTRACE_PROBE1(zil__cw1, zilog_t *, zilog); while (itx = list_head(&zilog->zl_itx_commit_list)) { txg = itx->itx_lr.lrc_txg; ASSERT(txg); if (txg > spa_last_synced_txg(spa) || txg > spa_freeze_txg(spa)) lwb = zil_lwb_commit(zilog, itx, lwb); list_remove(&zilog->zl_itx_commit_list, itx); kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen); } DTRACE_PROBE1(zil__cw2, zilog_t *, zilog); /* write the last block out */ if (lwb != NULL && lwb->lwb_zio != NULL) lwb = zil_lwb_write_start(zilog, lwb); zilog->zl_cur_used = 0; /* * Wait if necessary for the log blocks to be on stable storage. */ if (zilog->zl_root_zio) { error = zio_wait(zilog->zl_root_zio); zilog->zl_root_zio = NULL; zil_flush_vdevs(zilog); } if (error || lwb == NULL) txg_wait_synced(zilog->zl_dmu_pool, 0); mutex_enter(&zilog->zl_lock); /* * Remember the highest committed log sequence number for ztest. * We only update this value when all the log writes succeeded, * because ztest wants to ASSERT that it got the whole log chain. */ if (error == 0 && lwb != NULL) zilog->zl_commit_lr_seq = zilog->zl_lr_seq; } /* * Commit zfs transactions to stable storage. * If foid is 0 push out all transactions, otherwise push only those * for that object or might reference that object. * * itxs are committed in batches. In a heavily stressed zil there will be * a commit writer thread who is writing out a bunch of itxs to the log * for a set of committing threads (cthreads) in the same batch as the writer. * Those cthreads are all waiting on the same cv for that batch. * * There will also be a different and growing batch of threads that are * waiting to commit (qthreads). When the committing batch completes * a transition occurs such that the cthreads exit and the qthreads become * cthreads. One of the new cthreads becomes the writer thread for the * batch. Any new threads arriving become new qthreads. * * Only 2 condition variables are needed and there's no transition * between the two cvs needed. They just flip-flop between qthreads * and cthreads. * * Using this scheme we can efficiently wakeup up only those threads * that have been committed. */ void zil_commit(zilog_t *zilog, uint64_t foid) { uint64_t mybatch; if (zilog->zl_sync == ZFS_SYNC_DISABLED) return; /* move the async itxs for the foid to the sync queues */ zil_async_to_sync(zilog, foid); mutex_enter(&zilog->zl_lock); mybatch = zilog->zl_next_batch; while (zilog->zl_writer) { cv_wait(&zilog->zl_cv_batch[mybatch & 1], &zilog->zl_lock); if (mybatch <= zilog->zl_com_batch) { mutex_exit(&zilog->zl_lock); return; } } zilog->zl_next_batch++; zilog->zl_writer = B_TRUE; zil_commit_writer(zilog); zilog->zl_com_batch = mybatch; zilog->zl_writer = B_FALSE; mutex_exit(&zilog->zl_lock); /* wake up one thread to become the next writer */ cv_signal(&zilog->zl_cv_batch[(mybatch+1) & 1]); /* wake up all threads waiting for this batch to be committed */ cv_broadcast(&zilog->zl_cv_batch[mybatch & 1]); } /* * Called in syncing context to free committed log blocks and update log header. */ void zil_sync(zilog_t *zilog, dmu_tx_t *tx) { zil_header_t *zh = zil_header_in_syncing_context(zilog); uint64_t txg = dmu_tx_get_txg(tx); spa_t *spa = zilog->zl_spa; uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK]; lwb_t *lwb; /* * We don't zero out zl_destroy_txg, so make sure we don't try * to destroy it twice. */ if (spa_sync_pass(spa) != 1) return; mutex_enter(&zilog->zl_lock); ASSERT(zilog->zl_stop_sync == 0); if (*replayed_seq != 0) { ASSERT(zh->zh_replay_seq < *replayed_seq); zh->zh_replay_seq = *replayed_seq; *replayed_seq = 0; } if (zilog->zl_destroy_txg == txg) { blkptr_t blk = zh->zh_log; ASSERT(list_head(&zilog->zl_lwb_list) == NULL); bzero(zh, sizeof (zil_header_t)); bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq)); if (zilog->zl_keep_first) { /* * If this block was part of log chain that couldn't * be claimed because a device was missing during * zil_claim(), but that device later returns, * then this block could erroneously appear valid. * To guard against this, assign a new GUID to the new * log chain so it doesn't matter what blk points to. */ zil_init_log_chain(zilog, &blk); zh->zh_log = blk; } } while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { zh->zh_log = lwb->lwb_blk; if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg) break; list_remove(&zilog->zl_lwb_list, lwb); zio_free_zil(spa, txg, &lwb->lwb_blk); kmem_cache_free(zil_lwb_cache, lwb); /* * If we don't have anything left in the lwb list then * we've had an allocation failure and we need to zero * out the zil_header blkptr so that we don't end * up freeing the same block twice. */ if (list_head(&zilog->zl_lwb_list) == NULL) BP_ZERO(&zh->zh_log); } mutex_exit(&zilog->zl_lock); } void zil_init(void) { zil_lwb_cache = kmem_cache_create("zil_lwb_cache", sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0); } void zil_fini(void) { kmem_cache_destroy(zil_lwb_cache); } void zil_set_sync(zilog_t *zilog, uint64_t sync) { zilog->zl_sync = sync; } void zil_set_logbias(zilog_t *zilog, uint64_t logbias) { zilog->zl_logbias = logbias; } zilog_t * zil_alloc(objset_t *os, zil_header_t *zh_phys) { zilog_t *zilog; zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP); zilog->zl_header = zh_phys; zilog->zl_os = os; zilog->zl_spa = dmu_objset_spa(os); zilog->zl_dmu_pool = dmu_objset_pool(os); zilog->zl_destroy_txg = TXG_INITIAL - 1; zilog->zl_logbias = dmu_objset_logbias(os); zilog->zl_sync = dmu_objset_syncprop(os); zilog->zl_next_batch = 1; mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL); for (int i = 0; i < TXG_SIZE; i++) { mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL, MUTEX_DEFAULT, NULL); } list_create(&zilog->zl_lwb_list, sizeof (lwb_t), offsetof(lwb_t, lwb_node)); list_create(&zilog->zl_itx_commit_list, sizeof (itx_t), offsetof(itx_t, itx_node)); mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL); avl_create(&zilog->zl_vdev_tree, zil_vdev_compare, sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node)); cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL); cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL); cv_init(&zilog->zl_cv_batch[0], NULL, CV_DEFAULT, NULL); cv_init(&zilog->zl_cv_batch[1], NULL, CV_DEFAULT, NULL); return (zilog); } void zil_free(zilog_t *zilog) { zilog->zl_stop_sync = 1; ASSERT0(zilog->zl_suspend); ASSERT0(zilog->zl_suspending); ASSERT(list_is_empty(&zilog->zl_lwb_list)); list_destroy(&zilog->zl_lwb_list); avl_destroy(&zilog->zl_vdev_tree); mutex_destroy(&zilog->zl_vdev_lock); ASSERT(list_is_empty(&zilog->zl_itx_commit_list)); list_destroy(&zilog->zl_itx_commit_list); for (int i = 0; i < TXG_SIZE; i++) { /* * It's possible for an itx to be generated that doesn't dirty * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean() * callback to remove the entry. We remove those here. * * Also free up the ziltest itxs. */ if (zilog->zl_itxg[i].itxg_itxs) zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs); mutex_destroy(&zilog->zl_itxg[i].itxg_lock); } mutex_destroy(&zilog->zl_lock); cv_destroy(&zilog->zl_cv_writer); cv_destroy(&zilog->zl_cv_suspend); cv_destroy(&zilog->zl_cv_batch[0]); cv_destroy(&zilog->zl_cv_batch[1]); kmem_free(zilog, sizeof (zilog_t)); } /* * Open an intent log. */ zilog_t * zil_open(objset_t *os, zil_get_data_t *get_data) { zilog_t *zilog = dmu_objset_zil(os); ASSERT(zilog->zl_clean_taskq == NULL); ASSERT(zilog->zl_get_data == NULL); ASSERT(list_is_empty(&zilog->zl_lwb_list)); zilog->zl_get_data = get_data; zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri, 2, 2, TASKQ_PREPOPULATE); return (zilog); } /* * Close an intent log. */ void zil_close(zilog_t *zilog) { lwb_t *lwb; uint64_t txg = 0; zil_commit(zilog, 0); /* commit all itx */ /* * The lwb_max_txg for the stubby lwb will reflect the last activity * for the zil. After a txg_wait_synced() on the txg we know all the * callbacks have occurred that may clean the zil. Only then can we * destroy the zl_clean_taskq. */ mutex_enter(&zilog->zl_lock); lwb = list_tail(&zilog->zl_lwb_list); if (lwb != NULL) txg = lwb->lwb_max_txg; mutex_exit(&zilog->zl_lock); if (txg) txg_wait_synced(zilog->zl_dmu_pool, txg); ASSERT(!zilog_is_dirty(zilog)); taskq_destroy(zilog->zl_clean_taskq); zilog->zl_clean_taskq = NULL; zilog->zl_get_data = NULL; /* * We should have only one LWB left on the list; remove it now. */ mutex_enter(&zilog->zl_lock); lwb = list_head(&zilog->zl_lwb_list); if (lwb != NULL) { ASSERT(lwb == list_tail(&zilog->zl_lwb_list)); list_remove(&zilog->zl_lwb_list, lwb); zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); kmem_cache_free(zil_lwb_cache, lwb); } mutex_exit(&zilog->zl_lock); } static char *suspend_tag = "zil suspending"; /* * Suspend an intent log. While in suspended mode, we still honor * synchronous semantics, but we rely on txg_wait_synced() to do it. * On old version pools, we suspend the log briefly when taking a * snapshot so that it will have an empty intent log. * * Long holds are not really intended to be used the way we do here -- * held for such a short time. A concurrent caller of dsl_dataset_long_held() * could fail. Therefore we take pains to only put a long hold if it is * actually necessary. Fortunately, it will only be necessary if the * objset is currently mounted (or the ZVOL equivalent). In that case it * will already have a long hold, so we are not really making things any worse. * * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or * zvol_state_t), and use their mechanism to prevent their hold from being * dropped (e.g. VFS_HOLD()). However, that would be even more pain for * very little gain. * * if cookiep == NULL, this does both the suspend & resume. * Otherwise, it returns with the dataset "long held", and the cookie * should be passed into zil_resume(). */ int zil_suspend(const char *osname, void **cookiep) { objset_t *os; zilog_t *zilog; const zil_header_t *zh; int error; error = dmu_objset_hold(osname, suspend_tag, &os); if (error != 0) return (error); zilog = dmu_objset_zil(os); mutex_enter(&zilog->zl_lock); zh = zilog->zl_header; if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */ mutex_exit(&zilog->zl_lock); dmu_objset_rele(os, suspend_tag); return (SET_ERROR(EBUSY)); } /* * Don't put a long hold in the cases where we can avoid it. This * is when there is no cookie so we are doing a suspend & resume * (i.e. called from zil_vdev_offline()), and there's nothing to do * for the suspend because it's already suspended, or there's no ZIL. */ if (cookiep == NULL && !zilog->zl_suspending && (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) { mutex_exit(&zilog->zl_lock); dmu_objset_rele(os, suspend_tag); return (0); } dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag); dsl_pool_rele(dmu_objset_pool(os), suspend_tag); zilog->zl_suspend++; if (zilog->zl_suspend > 1) { /* * Someone else is already suspending it. * Just wait for them to finish. */ while (zilog->zl_suspending) cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock); mutex_exit(&zilog->zl_lock); if (cookiep == NULL) zil_resume(os); else *cookiep = os; return (0); } /* * If there is no pointer to an on-disk block, this ZIL must not * be active (e.g. filesystem not mounted), so there's nothing * to clean up. */ if (BP_IS_HOLE(&zh->zh_log)) { ASSERT(cookiep != NULL); /* fast path already handled */ *cookiep = os; mutex_exit(&zilog->zl_lock); return (0); } zilog->zl_suspending = B_TRUE; mutex_exit(&zilog->zl_lock); zil_commit(zilog, 0); zil_destroy(zilog, B_FALSE); mutex_enter(&zilog->zl_lock); zilog->zl_suspending = B_FALSE; cv_broadcast(&zilog->zl_cv_suspend); mutex_exit(&zilog->zl_lock); if (cookiep == NULL) zil_resume(os); else *cookiep = os; return (0); } void zil_resume(void *cookie) { objset_t *os = cookie; zilog_t *zilog = dmu_objset_zil(os); mutex_enter(&zilog->zl_lock); ASSERT(zilog->zl_suspend != 0); zilog->zl_suspend--; mutex_exit(&zilog->zl_lock); dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag); dsl_dataset_rele(dmu_objset_ds(os), suspend_tag); } typedef struct zil_replay_arg { zil_replay_func_t **zr_replay; void *zr_arg; boolean_t zr_byteswap; char *zr_lr; } zil_replay_arg_t; static int zil_replay_error(zilog_t *zilog, lr_t *lr, int error) { char name[MAXNAMELEN]; zilog->zl_replaying_seq--; /* didn't actually replay this one */ dmu_objset_name(zilog->zl_os, name); cmn_err(CE_WARN, "ZFS replay transaction error %d, " "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name, (u_longlong_t)lr->lrc_seq, (u_longlong_t)(lr->lrc_txtype & ~TX_CI), (lr->lrc_txtype & TX_CI) ? "CI" : ""); return (error); } static int zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg) { zil_replay_arg_t *zr = zra; const zil_header_t *zh = zilog->zl_header; uint64_t reclen = lr->lrc_reclen; uint64_t txtype = lr->lrc_txtype; int error = 0; zilog->zl_replaying_seq = lr->lrc_seq; if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */ return (0); if (lr->lrc_txg < claim_txg) /* already committed */ return (0); /* Strip case-insensitive bit, still present in log record */ txtype &= ~TX_CI; if (txtype == 0 || txtype >= TX_MAX_TYPE) return (zil_replay_error(zilog, lr, EINVAL)); /* * If this record type can be logged out of order, the object * (lr_foid) may no longer exist. That's legitimate, not an error. */ if (TX_OOO(txtype)) { error = dmu_object_info(zilog->zl_os, ((lr_ooo_t *)lr)->lr_foid, NULL); if (error == ENOENT || error == EEXIST) return (0); } /* * Make a copy of the data so we can revise and extend it. */ bcopy(lr, zr->zr_lr, reclen); /* * If this is a TX_WRITE with a blkptr, suck in the data. */ if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) { error = zil_read_log_data(zilog, (lr_write_t *)lr, zr->zr_lr + reclen); if (error != 0) return (zil_replay_error(zilog, lr, error)); } /* * The log block containing this lr may have been byteswapped * so that we can easily examine common fields like lrc_txtype. * However, the log is a mix of different record types, and only the * replay vectors know how to byteswap their records. Therefore, if * the lr was byteswapped, undo it before invoking the replay vector. */ if (zr->zr_byteswap) byteswap_uint64_array(zr->zr_lr, reclen); /* * We must now do two things atomically: replay this log record, * and update the log header sequence number to reflect the fact that * we did so. At the end of each replay function the sequence number * is updated if we are in replay mode. */ error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap); if (error != 0) { /* * The DMU's dnode layer doesn't see removes until the txg * commits, so a subsequent claim can spuriously fail with * EEXIST. So if we receive any error we try syncing out * any removes then retry the transaction. Note that we * specify B_FALSE for byteswap now, so we don't do it twice. */ txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0); error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE); if (error != 0) return (zil_replay_error(zilog, lr, error)); } return (0); } /* ARGSUSED */ static int zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg) { zilog->zl_replay_blks++; return (0); } /* * If this dataset has a non-empty intent log, replay it and destroy it. */ void zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE]) { zilog_t *zilog = dmu_objset_zil(os); const zil_header_t *zh = zilog->zl_header; zil_replay_arg_t zr; if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) { zil_destroy(zilog, B_TRUE); return; } zr.zr_replay = replay_func; zr.zr_arg = arg; zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log); zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP); /* * Wait for in-progress removes to sync before starting replay. */ txg_wait_synced(zilog->zl_dmu_pool, 0); zilog->zl_replay = B_TRUE; zilog->zl_replay_time = ddi_get_lbolt(); ASSERT(zilog->zl_replay_blks == 0); (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr, zh->zh_claim_txg); kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE); zil_destroy(zilog, B_FALSE); txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); zilog->zl_replay = B_FALSE; } boolean_t zil_replaying(zilog_t *zilog, dmu_tx_t *tx) { if (zilog->zl_sync == ZFS_SYNC_DISABLED) return (B_TRUE); if (zilog->zl_replay) { dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] = zilog->zl_replaying_seq; return (B_TRUE); } return (B_FALSE); } /* ARGSUSED */ int zil_vdev_offline(const char *osname, void *arg) { int error; error = zil_suspend(osname, NULL); if (error != 0) return (SET_ERROR(EEXIST)); return (0); }