/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * Copyright (c) 2012 by Delphix. All rights reserved. */ #include #include #include #include #include static kmem_cache_t *space_seg_cache; void space_map_init(void) { ASSERT(space_seg_cache == NULL); space_seg_cache = kmem_cache_create("space_seg_cache", sizeof (space_seg_t), 0, NULL, NULL, NULL, NULL, NULL, 0); } void space_map_fini(void) { kmem_cache_destroy(space_seg_cache); space_seg_cache = NULL; } /* * Space map routines. * NOTE: caller is responsible for all locking. */ static int space_map_seg_compare(const void *x1, const void *x2) { const space_seg_t *s1 = x1; const space_seg_t *s2 = x2; if (s1->ss_start < s2->ss_start) { if (s1->ss_end > s2->ss_start) return (0); return (-1); } if (s1->ss_start > s2->ss_start) { if (s1->ss_start < s2->ss_end) return (0); return (1); } return (0); } void space_map_create(space_map_t *sm, uint64_t start, uint64_t size, uint8_t shift, kmutex_t *lp) { bzero(sm, sizeof (*sm)); cv_init(&sm->sm_load_cv, NULL, CV_DEFAULT, NULL); avl_create(&sm->sm_root, space_map_seg_compare, sizeof (space_seg_t), offsetof(struct space_seg, ss_node)); sm->sm_start = start; sm->sm_size = size; sm->sm_shift = shift; sm->sm_lock = lp; } void space_map_destroy(space_map_t *sm) { ASSERT(!sm->sm_loaded && !sm->sm_loading); VERIFY0(sm->sm_space); avl_destroy(&sm->sm_root); cv_destroy(&sm->sm_load_cv); } void space_map_add(space_map_t *sm, uint64_t start, uint64_t size) { avl_index_t where; space_seg_t *ss_before, *ss_after, *ss; uint64_t end = start + size; int merge_before, merge_after; ASSERT(MUTEX_HELD(sm->sm_lock)); VERIFY(!sm->sm_condensing); VERIFY(size != 0); VERIFY3U(start, >=, sm->sm_start); VERIFY3U(end, <=, sm->sm_start + sm->sm_size); VERIFY(sm->sm_space + size <= sm->sm_size); VERIFY(P2PHASE(start, 1ULL << sm->sm_shift) == 0); VERIFY(P2PHASE(size, 1ULL << sm->sm_shift) == 0); ss = space_map_find(sm, start, size, &where); if (ss != NULL) { zfs_panic_recover("zfs: allocating allocated segment" "(offset=%llu size=%llu)\n", (longlong_t)start, (longlong_t)size); return; } /* Make sure we don't overlap with either of our neighbors */ VERIFY(ss == NULL); ss_before = avl_nearest(&sm->sm_root, where, AVL_BEFORE); ss_after = avl_nearest(&sm->sm_root, where, AVL_AFTER); merge_before = (ss_before != NULL && ss_before->ss_end == start); merge_after = (ss_after != NULL && ss_after->ss_start == end); if (merge_before && merge_after) { avl_remove(&sm->sm_root, ss_before); if (sm->sm_pp_root) { avl_remove(sm->sm_pp_root, ss_before); avl_remove(sm->sm_pp_root, ss_after); } ss_after->ss_start = ss_before->ss_start; kmem_cache_free(space_seg_cache, ss_before); ss = ss_after; } else if (merge_before) { ss_before->ss_end = end; if (sm->sm_pp_root) avl_remove(sm->sm_pp_root, ss_before); ss = ss_before; } else if (merge_after) { ss_after->ss_start = start; if (sm->sm_pp_root) avl_remove(sm->sm_pp_root, ss_after); ss = ss_after; } else { ss = kmem_cache_alloc(space_seg_cache, KM_SLEEP); ss->ss_start = start; ss->ss_end = end; avl_insert(&sm->sm_root, ss, where); } if (sm->sm_pp_root) avl_add(sm->sm_pp_root, ss); sm->sm_space += size; } void space_map_remove(space_map_t *sm, uint64_t start, uint64_t size) { avl_index_t where; space_seg_t *ss, *newseg; uint64_t end = start + size; int left_over, right_over; VERIFY(!sm->sm_condensing); ss = space_map_find(sm, start, size, &where); /* Make sure we completely overlap with someone */ if (ss == NULL) { zfs_panic_recover("zfs: freeing free segment " "(offset=%llu size=%llu)", (longlong_t)start, (longlong_t)size); return; } VERIFY3U(ss->ss_start, <=, start); VERIFY3U(ss->ss_end, >=, end); VERIFY(sm->sm_space - size <= sm->sm_size); left_over = (ss->ss_start != start); right_over = (ss->ss_end != end); if (sm->sm_pp_root) avl_remove(sm->sm_pp_root, ss); if (left_over && right_over) { newseg = kmem_cache_alloc(space_seg_cache, KM_SLEEP); newseg->ss_start = end; newseg->ss_end = ss->ss_end; ss->ss_end = start; avl_insert_here(&sm->sm_root, newseg, ss, AVL_AFTER); if (sm->sm_pp_root) avl_add(sm->sm_pp_root, newseg); } else if (left_over) { ss->ss_end = start; } else if (right_over) { ss->ss_start = end; } else { avl_remove(&sm->sm_root, ss); kmem_cache_free(space_seg_cache, ss); ss = NULL; } if (sm->sm_pp_root && ss != NULL) avl_add(sm->sm_pp_root, ss); sm->sm_space -= size; } space_seg_t * space_map_find(space_map_t *sm, uint64_t start, uint64_t size, avl_index_t *wherep) { space_seg_t ssearch, *ss; ASSERT(MUTEX_HELD(sm->sm_lock)); VERIFY(size != 0); VERIFY(P2PHASE(start, 1ULL << sm->sm_shift) == 0); VERIFY(P2PHASE(size, 1ULL << sm->sm_shift) == 0); ssearch.ss_start = start; ssearch.ss_end = start + size; ss = avl_find(&sm->sm_root, &ssearch, wherep); if (ss != NULL && ss->ss_start <= start && ss->ss_end >= start + size) return (ss); return (NULL); } boolean_t space_map_contains(space_map_t *sm, uint64_t start, uint64_t size) { avl_index_t where; return (space_map_find(sm, start, size, &where) != 0); } void space_map_swap(space_map_t **msrc, space_map_t **mdst) { space_map_t *sm; ASSERT(MUTEX_HELD((*msrc)->sm_lock)); ASSERT0((*mdst)->sm_space); ASSERT0(avl_numnodes(&(*mdst)->sm_root)); sm = *msrc; *msrc = *mdst; *mdst = sm; } void space_map_vacate(space_map_t *sm, space_map_func_t *func, space_map_t *mdest) { space_seg_t *ss; void *cookie = NULL; ASSERT(MUTEX_HELD(sm->sm_lock)); while ((ss = avl_destroy_nodes(&sm->sm_root, &cookie)) != NULL) { if (func != NULL) func(mdest, ss->ss_start, ss->ss_end - ss->ss_start); kmem_cache_free(space_seg_cache, ss); } sm->sm_space = 0; } void space_map_walk(space_map_t *sm, space_map_func_t *func, space_map_t *mdest) { space_seg_t *ss; ASSERT(MUTEX_HELD(sm->sm_lock)); for (ss = avl_first(&sm->sm_root); ss; ss = AVL_NEXT(&sm->sm_root, ss)) func(mdest, ss->ss_start, ss->ss_end - ss->ss_start); } /* * Wait for any in-progress space_map_load() to complete. */ void space_map_load_wait(space_map_t *sm) { ASSERT(MUTEX_HELD(sm->sm_lock)); while (sm->sm_loading) { ASSERT(!sm->sm_loaded); cv_wait(&sm->sm_load_cv, sm->sm_lock); } } /* * Note: space_map_load() will drop sm_lock across dmu_read() calls. * The caller must be OK with this. */ int space_map_load(space_map_t *sm, space_map_ops_t *ops, uint8_t maptype, space_map_obj_t *smo, objset_t *os) { uint64_t *entry, *entry_map, *entry_map_end; uint64_t bufsize, size, offset, end, space; uint64_t mapstart = sm->sm_start; int error = 0; ASSERT(MUTEX_HELD(sm->sm_lock)); ASSERT(!sm->sm_loaded); ASSERT(!sm->sm_loading); sm->sm_loading = B_TRUE; end = smo->smo_objsize; space = smo->smo_alloc; ASSERT(sm->sm_ops == NULL); VERIFY0(sm->sm_space); if (maptype == SM_FREE) { space_map_add(sm, sm->sm_start, sm->sm_size); space = sm->sm_size - space; } bufsize = 1ULL << SPACE_MAP_BLOCKSHIFT; entry_map = zio_buf_alloc(bufsize); mutex_exit(sm->sm_lock); if (end > bufsize) dmu_prefetch(os, smo->smo_object, bufsize, end - bufsize); mutex_enter(sm->sm_lock); for (offset = 0; offset < end; offset += bufsize) { size = MIN(end - offset, bufsize); VERIFY(P2PHASE(size, sizeof (uint64_t)) == 0); VERIFY(size != 0); dprintf("object=%llu offset=%llx size=%llx\n", smo->smo_object, offset, size); mutex_exit(sm->sm_lock); error = dmu_read(os, smo->smo_object, offset, size, entry_map, DMU_READ_PREFETCH); mutex_enter(sm->sm_lock); if (error != 0) break; entry_map_end = entry_map + (size / sizeof (uint64_t)); for (entry = entry_map; entry < entry_map_end; entry++) { uint64_t e = *entry; if (SM_DEBUG_DECODE(e)) /* Skip debug entries */ continue; (SM_TYPE_DECODE(e) == maptype ? space_map_add : space_map_remove)(sm, (SM_OFFSET_DECODE(e) << sm->sm_shift) + mapstart, SM_RUN_DECODE(e) << sm->sm_shift); } } if (error == 0) { VERIFY3U(sm->sm_space, ==, space); sm->sm_loaded = B_TRUE; sm->sm_ops = ops; if (ops != NULL) ops->smop_load(sm); } else { space_map_vacate(sm, NULL, NULL); } zio_buf_free(entry_map, bufsize); sm->sm_loading = B_FALSE; cv_broadcast(&sm->sm_load_cv); return (error); } void space_map_unload(space_map_t *sm) { ASSERT(MUTEX_HELD(sm->sm_lock)); if (sm->sm_loaded && sm->sm_ops != NULL) sm->sm_ops->smop_unload(sm); sm->sm_loaded = B_FALSE; sm->sm_ops = NULL; space_map_vacate(sm, NULL, NULL); } uint64_t space_map_maxsize(space_map_t *sm) { ASSERT(sm->sm_ops != NULL); return (sm->sm_ops->smop_max(sm)); } uint64_t space_map_alloc(space_map_t *sm, uint64_t size) { uint64_t start; start = sm->sm_ops->smop_alloc(sm, size); if (start != -1ULL) space_map_remove(sm, start, size); return (start); } void space_map_claim(space_map_t *sm, uint64_t start, uint64_t size) { sm->sm_ops->smop_claim(sm, start, size); space_map_remove(sm, start, size); } void space_map_free(space_map_t *sm, uint64_t start, uint64_t size) { space_map_add(sm, start, size); sm->sm_ops->smop_free(sm, start, size); } /* * Note: space_map_sync() will drop sm_lock across dmu_write() calls. */ void space_map_sync(space_map_t *sm, uint8_t maptype, space_map_obj_t *smo, objset_t *os, dmu_tx_t *tx) { spa_t *spa = dmu_objset_spa(os); avl_tree_t *t = &sm->sm_root; space_seg_t *ss; uint64_t bufsize, start, size, run_len, total, sm_space, nodes; uint64_t *entry, *entry_map, *entry_map_end; ASSERT(MUTEX_HELD(sm->sm_lock)); if (sm->sm_space == 0) return; dprintf("object %4llu, txg %llu, pass %d, %c, count %lu, space %llx\n", smo->smo_object, dmu_tx_get_txg(tx), spa_sync_pass(spa), maptype == SM_ALLOC ? 'A' : 'F', avl_numnodes(&sm->sm_root), sm->sm_space); if (maptype == SM_ALLOC) smo->smo_alloc += sm->sm_space; else smo->smo_alloc -= sm->sm_space; bufsize = (8 + avl_numnodes(&sm->sm_root)) * sizeof (uint64_t); bufsize = MIN(bufsize, 1ULL << SPACE_MAP_BLOCKSHIFT); entry_map = zio_buf_alloc(bufsize); entry_map_end = entry_map + (bufsize / sizeof (uint64_t)); entry = entry_map; *entry++ = SM_DEBUG_ENCODE(1) | SM_DEBUG_ACTION_ENCODE(maptype) | SM_DEBUG_SYNCPASS_ENCODE(spa_sync_pass(spa)) | SM_DEBUG_TXG_ENCODE(dmu_tx_get_txg(tx)); total = 0; nodes = avl_numnodes(&sm->sm_root); sm_space = sm->sm_space; for (ss = avl_first(t); ss != NULL; ss = AVL_NEXT(t, ss)) { size = ss->ss_end - ss->ss_start; start = (ss->ss_start - sm->sm_start) >> sm->sm_shift; total += size; size >>= sm->sm_shift; while (size) { run_len = MIN(size, SM_RUN_MAX); if (entry == entry_map_end) { mutex_exit(sm->sm_lock); dmu_write(os, smo->smo_object, smo->smo_objsize, bufsize, entry_map, tx); mutex_enter(sm->sm_lock); smo->smo_objsize += bufsize; entry = entry_map; } *entry++ = SM_OFFSET_ENCODE(start) | SM_TYPE_ENCODE(maptype) | SM_RUN_ENCODE(run_len); start += run_len; size -= run_len; } } if (entry != entry_map) { size = (entry - entry_map) * sizeof (uint64_t); mutex_exit(sm->sm_lock); dmu_write(os, smo->smo_object, smo->smo_objsize, size, entry_map, tx); mutex_enter(sm->sm_lock); smo->smo_objsize += size; } /* * Ensure that the space_map's accounting wasn't changed * while we were in the middle of writing it out. */ VERIFY3U(nodes, ==, avl_numnodes(&sm->sm_root)); VERIFY3U(sm->sm_space, ==, sm_space); VERIFY3U(sm->sm_space, ==, total); zio_buf_free(entry_map, bufsize); } void space_map_truncate(space_map_obj_t *smo, objset_t *os, dmu_tx_t *tx) { VERIFY(dmu_free_range(os, smo->smo_object, 0, -1ULL, tx) == 0); smo->smo_objsize = 0; smo->smo_alloc = 0; } /* * Space map reference trees. * * A space map is a collection of integers. Every integer is either * in the map, or it's not. A space map reference tree generalizes * the idea: it allows its members to have arbitrary reference counts, * as opposed to the implicit reference count of 0 or 1 in a space map. * This representation comes in handy when computing the union or * intersection of multiple space maps. For example, the union of * N space maps is the subset of the reference tree with refcnt >= 1. * The intersection of N space maps is the subset with refcnt >= N. * * [It's very much like a Fourier transform. Unions and intersections * are hard to perform in the 'space map domain', so we convert the maps * into the 'reference count domain', where it's trivial, then invert.] * * vdev_dtl_reassess() uses computations of this form to determine * DTL_MISSING and DTL_OUTAGE for interior vdevs -- e.g. a RAID-Z vdev * has an outage wherever refcnt >= vdev_nparity + 1, and a mirror vdev * has an outage wherever refcnt >= vdev_children. */ static int space_map_ref_compare(const void *x1, const void *x2) { const space_ref_t *sr1 = x1; const space_ref_t *sr2 = x2; if (sr1->sr_offset < sr2->sr_offset) return (-1); if (sr1->sr_offset > sr2->sr_offset) return (1); if (sr1 < sr2) return (-1); if (sr1 > sr2) return (1); return (0); } void space_map_ref_create(avl_tree_t *t) { avl_create(t, space_map_ref_compare, sizeof (space_ref_t), offsetof(space_ref_t, sr_node)); } void space_map_ref_destroy(avl_tree_t *t) { space_ref_t *sr; void *cookie = NULL; while ((sr = avl_destroy_nodes(t, &cookie)) != NULL) kmem_free(sr, sizeof (*sr)); avl_destroy(t); } static void space_map_ref_add_node(avl_tree_t *t, uint64_t offset, int64_t refcnt) { space_ref_t *sr; sr = kmem_alloc(sizeof (*sr), KM_SLEEP); sr->sr_offset = offset; sr->sr_refcnt = refcnt; avl_add(t, sr); } void space_map_ref_add_seg(avl_tree_t *t, uint64_t start, uint64_t end, int64_t refcnt) { space_map_ref_add_node(t, start, refcnt); space_map_ref_add_node(t, end, -refcnt); } /* * Convert (or add) a space map into a reference tree. */ void space_map_ref_add_map(avl_tree_t *t, space_map_t *sm, int64_t refcnt) { space_seg_t *ss; ASSERT(MUTEX_HELD(sm->sm_lock)); for (ss = avl_first(&sm->sm_root); ss; ss = AVL_NEXT(&sm->sm_root, ss)) space_map_ref_add_seg(t, ss->ss_start, ss->ss_end, refcnt); } /* * Convert a reference tree into a space map. The space map will contain * all members of the reference tree for which refcnt >= minref. */ void space_map_ref_generate_map(avl_tree_t *t, space_map_t *sm, int64_t minref) { uint64_t start = -1ULL; int64_t refcnt = 0; space_ref_t *sr; ASSERT(MUTEX_HELD(sm->sm_lock)); space_map_vacate(sm, NULL, NULL); for (sr = avl_first(t); sr != NULL; sr = AVL_NEXT(t, sr)) { refcnt += sr->sr_refcnt; if (refcnt >= minref) { if (start == -1ULL) { start = sr->sr_offset; } } else { if (start != -1ULL) { uint64_t end = sr->sr_offset; ASSERT(start <= end); if (end > start) space_map_add(sm, start, end - start); start = -1ULL; } } } ASSERT(refcnt == 0); ASSERT(start == -1ULL); }