/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2008 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * This file contains all the routines used when modifying on-disk SPA state. * This includes opening, importing, destroying, exporting a pool, and syncing a * pool. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "zfs_prop.h" #include "zfs_comutil.h" int zio_taskq_threads = 8; static void spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx); static boolean_t spa_has_active_shared_spare(spa_t *spa); /* * ========================================================================== * SPA properties routines * ========================================================================== */ /* * Add a (source=src, propname=propval) list to an nvlist. */ static void spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, uint64_t intval, zprop_source_t src) { const char *propname = zpool_prop_to_name(prop); nvlist_t *propval; VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); if (strval != NULL) VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); else VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); nvlist_free(propval); } /* * Get property values from the spa configuration. */ static void spa_prop_get_config(spa_t *spa, nvlist_t **nvp) { uint64_t size = spa_get_space(spa); uint64_t used = spa_get_alloc(spa); uint64_t cap, version; zprop_source_t src = ZPROP_SRC_NONE; spa_config_dirent_t *dp; /* * readonly properties */ spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa->spa_name, 0, src); spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); spa_prop_add_list(*nvp, ZPOOL_PROP_USED, NULL, used, src); spa_prop_add_list(*nvp, ZPOOL_PROP_AVAILABLE, NULL, size - used, src); cap = (size == 0) ? 0 : (used * 100 / size); spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, spa->spa_root_vdev->vdev_state, src); /* * settable properties that are not stored in the pool property object. */ version = spa_version(spa); if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) src = ZPROP_SRC_DEFAULT; else src = ZPROP_SRC_LOCAL; spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src); if (spa->spa_root != NULL) spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 0, ZPROP_SRC_LOCAL); if ((dp = list_head(&spa->spa_config_list)) != NULL) { if (dp->scd_path == NULL) { spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, "none", 0, ZPROP_SRC_LOCAL); } else if (strcmp(dp->scd_path, spa_config_path) != 0) { spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, dp->scd_path, 0, ZPROP_SRC_LOCAL); } } } /* * Get zpool property values. */ int spa_prop_get(spa_t *spa, nvlist_t **nvp) { zap_cursor_t zc; zap_attribute_t za; objset_t *mos = spa->spa_meta_objset; int err; VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); /* * Get properties from the spa config. */ spa_prop_get_config(spa, nvp); mutex_enter(&spa->spa_props_lock); /* If no pool property object, no more prop to get. */ if (spa->spa_pool_props_object == 0) { mutex_exit(&spa->spa_props_lock); return (0); } /* * Get properties from the MOS pool property object. */ for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); (err = zap_cursor_retrieve(&zc, &za)) == 0; zap_cursor_advance(&zc)) { uint64_t intval = 0; char *strval = NULL; zprop_source_t src = ZPROP_SRC_DEFAULT; zpool_prop_t prop; if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL) continue; switch (za.za_integer_length) { case 8: /* integer property */ if (za.za_first_integer != zpool_prop_default_numeric(prop)) src = ZPROP_SRC_LOCAL; if (prop == ZPOOL_PROP_BOOTFS) { dsl_pool_t *dp; dsl_dataset_t *ds = NULL; dp = spa_get_dsl(spa); rw_enter(&dp->dp_config_rwlock, RW_READER); if (err = dsl_dataset_hold_obj(dp, za.za_first_integer, FTAG, &ds)) { rw_exit(&dp->dp_config_rwlock); break; } strval = kmem_alloc( MAXNAMELEN + strlen(MOS_DIR_NAME) + 1, KM_SLEEP); dsl_dataset_name(ds, strval); dsl_dataset_rele(ds, FTAG); rw_exit(&dp->dp_config_rwlock); } else { strval = NULL; intval = za.za_first_integer; } spa_prop_add_list(*nvp, prop, strval, intval, src); if (strval != NULL) kmem_free(strval, MAXNAMELEN + strlen(MOS_DIR_NAME) + 1); break; case 1: /* string property */ strval = kmem_alloc(za.za_num_integers, KM_SLEEP); err = zap_lookup(mos, spa->spa_pool_props_object, za.za_name, 1, za.za_num_integers, strval); if (err) { kmem_free(strval, za.za_num_integers); break; } spa_prop_add_list(*nvp, prop, strval, 0, src); kmem_free(strval, za.za_num_integers); break; default: break; } } zap_cursor_fini(&zc); mutex_exit(&spa->spa_props_lock); out: if (err && err != ENOENT) { nvlist_free(*nvp); *nvp = NULL; return (err); } return (0); } /* * Validate the given pool properties nvlist and modify the list * for the property values to be set. */ static int spa_prop_validate(spa_t *spa, nvlist_t *props) { nvpair_t *elem; int error = 0, reset_bootfs = 0; uint64_t objnum; elem = NULL; while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { zpool_prop_t prop; char *propname, *strval; uint64_t intval; objset_t *os; char *slash; propname = nvpair_name(elem); if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL) return (EINVAL); switch (prop) { case ZPOOL_PROP_VERSION: error = nvpair_value_uint64(elem, &intval); if (!error && (intval < spa_version(spa) || intval > SPA_VERSION)) error = EINVAL; break; case ZPOOL_PROP_DELEGATION: case ZPOOL_PROP_AUTOREPLACE: case ZPOOL_PROP_LISTSNAPS: error = nvpair_value_uint64(elem, &intval); if (!error && intval > 1) error = EINVAL; break; case ZPOOL_PROP_BOOTFS: if (spa_version(spa) < SPA_VERSION_BOOTFS) { error = ENOTSUP; break; } /* * Make sure the vdev config is bootable */ if (!vdev_is_bootable(spa->spa_root_vdev)) { error = ENOTSUP; break; } reset_bootfs = 1; error = nvpair_value_string(elem, &strval); if (!error) { uint64_t compress; if (strval == NULL || strval[0] == '\0') { objnum = zpool_prop_default_numeric( ZPOOL_PROP_BOOTFS); break; } if (error = dmu_objset_open(strval, DMU_OST_ZFS, DS_MODE_USER | DS_MODE_READONLY, &os)) break; /* We don't support gzip bootable datasets */ if ((error = dsl_prop_get_integer(strval, zfs_prop_to_name(ZFS_PROP_COMPRESSION), &compress, NULL)) == 0 && !BOOTFS_COMPRESS_VALID(compress)) { error = ENOTSUP; } else { objnum = dmu_objset_id(os); } dmu_objset_close(os); } break; case ZPOOL_PROP_FAILUREMODE: error = nvpair_value_uint64(elem, &intval); if (!error && (intval < ZIO_FAILURE_MODE_WAIT || intval > ZIO_FAILURE_MODE_PANIC)) error = EINVAL; /* * This is a special case which only occurs when * the pool has completely failed. This allows * the user to change the in-core failmode property * without syncing it out to disk (I/Os might * currently be blocked). We do this by returning * EIO to the caller (spa_prop_set) to trick it * into thinking we encountered a property validation * error. */ if (!error && spa_state(spa) == POOL_STATE_IO_FAILURE) { spa->spa_failmode = intval; error = EIO; } break; case ZPOOL_PROP_CACHEFILE: if ((error = nvpair_value_string(elem, &strval)) != 0) break; if (strval[0] == '\0') break; if (strcmp(strval, "none") == 0) break; if (strval[0] != '/') { error = EINVAL; break; } slash = strrchr(strval, '/'); ASSERT(slash != NULL); if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || strcmp(slash, "/..") == 0) error = EINVAL; break; } if (error) break; } if (!error && reset_bootfs) { error = nvlist_remove(props, zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); if (!error) { error = nvlist_add_uint64(props, zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); } } return (error); } int spa_prop_set(spa_t *spa, nvlist_t *nvp) { int error; if ((error = spa_prop_validate(spa, nvp)) != 0) return (error); return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props, spa, nvp, 3)); } /* * If the bootfs property value is dsobj, clear it. */ void spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) { if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { VERIFY(zap_remove(spa->spa_meta_objset, spa->spa_pool_props_object, zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); spa->spa_bootfs = 0; } } /* * ========================================================================== * SPA state manipulation (open/create/destroy/import/export) * ========================================================================== */ static int spa_error_entry_compare(const void *a, const void *b) { spa_error_entry_t *sa = (spa_error_entry_t *)a; spa_error_entry_t *sb = (spa_error_entry_t *)b; int ret; ret = bcmp(&sa->se_bookmark, &sb->se_bookmark, sizeof (zbookmark_t)); if (ret < 0) return (-1); else if (ret > 0) return (1); else return (0); } /* * Utility function which retrieves copies of the current logs and * re-initializes them in the process. */ void spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) { ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); avl_create(&spa->spa_errlist_scrub, spa_error_entry_compare, sizeof (spa_error_entry_t), offsetof(spa_error_entry_t, se_avl)); avl_create(&spa->spa_errlist_last, spa_error_entry_compare, sizeof (spa_error_entry_t), offsetof(spa_error_entry_t, se_avl)); } /* * Activate an uninitialized pool. */ static void spa_activate(spa_t *spa) { int t; ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); spa->spa_state = POOL_STATE_ACTIVE; spa->spa_normal_class = metaslab_class_create(); spa->spa_log_class = metaslab_class_create(); for (t = 0; t < ZIO_TYPES; t++) { spa->spa_zio_issue_taskq[t] = taskq_create("spa_zio_issue", zio_taskq_threads, maxclsyspri, 50, INT_MAX, TASKQ_PREPOPULATE); spa->spa_zio_intr_taskq[t] = taskq_create("spa_zio_intr", zio_taskq_threads, maxclsyspri, 50, INT_MAX, TASKQ_PREPOPULATE); } list_create(&spa->spa_dirty_list, sizeof (vdev_t), offsetof(vdev_t, vdev_dirty_node)); list_create(&spa->spa_zio_list, sizeof (zio_t), offsetof(zio_t, zio_link_node)); txg_list_create(&spa->spa_vdev_txg_list, offsetof(struct vdev, vdev_txg_node)); avl_create(&spa->spa_errlist_scrub, spa_error_entry_compare, sizeof (spa_error_entry_t), offsetof(spa_error_entry_t, se_avl)); avl_create(&spa->spa_errlist_last, spa_error_entry_compare, sizeof (spa_error_entry_t), offsetof(spa_error_entry_t, se_avl)); } /* * Opposite of spa_activate(). */ static void spa_deactivate(spa_t *spa) { int t; ASSERT(spa->spa_sync_on == B_FALSE); ASSERT(spa->spa_dsl_pool == NULL); ASSERT(spa->spa_root_vdev == NULL); ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); txg_list_destroy(&spa->spa_vdev_txg_list); list_destroy(&spa->spa_dirty_list); list_destroy(&spa->spa_zio_list); for (t = 0; t < ZIO_TYPES; t++) { taskq_destroy(spa->spa_zio_issue_taskq[t]); taskq_destroy(spa->spa_zio_intr_taskq[t]); spa->spa_zio_issue_taskq[t] = NULL; spa->spa_zio_intr_taskq[t] = NULL; } metaslab_class_destroy(spa->spa_normal_class); spa->spa_normal_class = NULL; metaslab_class_destroy(spa->spa_log_class); spa->spa_log_class = NULL; /* * If this was part of an import or the open otherwise failed, we may * still have errors left in the queues. Empty them just in case. */ spa_errlog_drain(spa); avl_destroy(&spa->spa_errlist_scrub); avl_destroy(&spa->spa_errlist_last); spa->spa_state = POOL_STATE_UNINITIALIZED; } /* * Verify a pool configuration, and construct the vdev tree appropriately. This * will create all the necessary vdevs in the appropriate layout, with each vdev * in the CLOSED state. This will prep the pool before open/creation/import. * All vdev validation is done by the vdev_alloc() routine. */ static int spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, int atype) { nvlist_t **child; uint_t c, children; int error; if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) return (error); if ((*vdp)->vdev_ops->vdev_op_leaf) return (0); if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, &child, &children) != 0) { vdev_free(*vdp); *vdp = NULL; return (EINVAL); } for (c = 0; c < children; c++) { vdev_t *vd; if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, atype)) != 0) { vdev_free(*vdp); *vdp = NULL; return (error); } } ASSERT(*vdp != NULL); return (0); } /* * Opposite of spa_load(). */ static void spa_unload(spa_t *spa) { int i; /* * Stop async tasks. */ spa_async_suspend(spa); /* * Stop syncing. */ if (spa->spa_sync_on) { txg_sync_stop(spa->spa_dsl_pool); spa->spa_sync_on = B_FALSE; } /* * Wait for any outstanding prefetch I/O to complete. */ spa_config_enter(spa, RW_WRITER, FTAG); spa_config_exit(spa, FTAG); /* * Drop and purge level 2 cache */ spa_l2cache_drop(spa); /* * Close the dsl pool. */ if (spa->spa_dsl_pool) { dsl_pool_close(spa->spa_dsl_pool); spa->spa_dsl_pool = NULL; } /* * Close all vdevs. */ if (spa->spa_root_vdev) vdev_free(spa->spa_root_vdev); ASSERT(spa->spa_root_vdev == NULL); for (i = 0; i < spa->spa_spares.sav_count; i++) vdev_free(spa->spa_spares.sav_vdevs[i]); if (spa->spa_spares.sav_vdevs) { kmem_free(spa->spa_spares.sav_vdevs, spa->spa_spares.sav_count * sizeof (void *)); spa->spa_spares.sav_vdevs = NULL; } if (spa->spa_spares.sav_config) { nvlist_free(spa->spa_spares.sav_config); spa->spa_spares.sav_config = NULL; } spa->spa_spares.sav_count = 0; for (i = 0; i < spa->spa_l2cache.sav_count; i++) vdev_free(spa->spa_l2cache.sav_vdevs[i]); if (spa->spa_l2cache.sav_vdevs) { kmem_free(spa->spa_l2cache.sav_vdevs, spa->spa_l2cache.sav_count * sizeof (void *)); spa->spa_l2cache.sav_vdevs = NULL; } if (spa->spa_l2cache.sav_config) { nvlist_free(spa->spa_l2cache.sav_config); spa->spa_l2cache.sav_config = NULL; } spa->spa_l2cache.sav_count = 0; spa->spa_async_suspended = 0; } /* * Load (or re-load) the current list of vdevs describing the active spares for * this pool. When this is called, we have some form of basic information in * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and * then re-generate a more complete list including status information. */ static void spa_load_spares(spa_t *spa) { nvlist_t **spares; uint_t nspares; int i; vdev_t *vd, *tvd; /* * First, close and free any existing spare vdevs. */ for (i = 0; i < spa->spa_spares.sav_count; i++) { vd = spa->spa_spares.sav_vdevs[i]; /* Undo the call to spa_activate() below */ if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, B_FALSE)) != NULL && tvd->vdev_isspare) spa_spare_remove(tvd); vdev_close(vd); vdev_free(vd); } if (spa->spa_spares.sav_vdevs) kmem_free(spa->spa_spares.sav_vdevs, spa->spa_spares.sav_count * sizeof (void *)); if (spa->spa_spares.sav_config == NULL) nspares = 0; else VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); spa->spa_spares.sav_count = (int)nspares; spa->spa_spares.sav_vdevs = NULL; if (nspares == 0) return; /* * Construct the array of vdevs, opening them to get status in the * process. For each spare, there is potentially two different vdev_t * structures associated with it: one in the list of spares (used only * for basic validation purposes) and one in the active vdev * configuration (if it's spared in). During this phase we open and * validate each vdev on the spare list. If the vdev also exists in the * active configuration, then we also mark this vdev as an active spare. */ spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *), KM_SLEEP); for (i = 0; i < spa->spa_spares.sav_count; i++) { VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, VDEV_ALLOC_SPARE) == 0); ASSERT(vd != NULL); spa->spa_spares.sav_vdevs[i] = vd; if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, B_FALSE)) != NULL) { if (!tvd->vdev_isspare) spa_spare_add(tvd); /* * We only mark the spare active if we were successfully * able to load the vdev. Otherwise, importing a pool * with a bad active spare would result in strange * behavior, because multiple pool would think the spare * is actively in use. * * There is a vulnerability here to an equally bizarre * circumstance, where a dead active spare is later * brought back to life (onlined or otherwise). Given * the rarity of this scenario, and the extra complexity * it adds, we ignore the possibility. */ if (!vdev_is_dead(tvd)) spa_spare_activate(tvd); } if (vdev_open(vd) != 0) continue; vd->vdev_top = vd; if (vdev_validate_aux(vd) == 0) spa_spare_add(vd); } /* * Recompute the stashed list of spares, with status information * this time. */ VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), KM_SLEEP); for (i = 0; i < spa->spa_spares.sav_count; i++) spares[i] = vdev_config_generate(spa, spa->spa_spares.sav_vdevs[i], B_TRUE, B_TRUE, B_FALSE); VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); for (i = 0; i < spa->spa_spares.sav_count; i++) nvlist_free(spares[i]); kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); } /* * Load (or re-load) the current list of vdevs describing the active l2cache for * this pool. When this is called, we have some form of basic information in * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and * then re-generate a more complete list including status information. * Devices which are already active have their details maintained, and are * not re-opened. */ static void spa_load_l2cache(spa_t *spa) { nvlist_t **l2cache; uint_t nl2cache; int i, j, oldnvdevs; uint64_t guid, size; vdev_t *vd, **oldvdevs, **newvdevs; spa_aux_vdev_t *sav = &spa->spa_l2cache; if (sav->sav_config != NULL) { VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); } else { nl2cache = 0; } oldvdevs = sav->sav_vdevs; oldnvdevs = sav->sav_count; sav->sav_vdevs = NULL; sav->sav_count = 0; /* * Process new nvlist of vdevs. */ for (i = 0; i < nl2cache; i++) { VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, &guid) == 0); newvdevs[i] = NULL; for (j = 0; j < oldnvdevs; j++) { vd = oldvdevs[j]; if (vd != NULL && guid == vd->vdev_guid) { /* * Retain previous vdev for add/remove ops. */ newvdevs[i] = vd; oldvdevs[j] = NULL; break; } } if (newvdevs[i] == NULL) { /* * Create new vdev */ VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, VDEV_ALLOC_L2CACHE) == 0); ASSERT(vd != NULL); newvdevs[i] = vd; /* * Commit this vdev as an l2cache device, * even if it fails to open. */ spa_l2cache_add(vd); vd->vdev_top = vd; vd->vdev_aux = sav; spa_l2cache_activate(vd); if (vdev_open(vd) != 0) continue; (void) vdev_validate_aux(vd); if (!vdev_is_dead(vd)) { size = vdev_get_rsize(vd); l2arc_add_vdev(spa, vd, VDEV_LABEL_START_SIZE, size - VDEV_LABEL_START_SIZE); } } } /* * Purge vdevs that were dropped */ for (i = 0; i < oldnvdevs; i++) { uint64_t pool; vd = oldvdevs[i]; if (vd != NULL) { if (spa_mode & FWRITE && spa_l2cache_exists(vd->vdev_guid, &pool) && pool != 0ULL && l2arc_vdev_present(vd)) { l2arc_remove_vdev(vd); } (void) vdev_close(vd); spa_l2cache_remove(vd); } } if (oldvdevs) kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); if (sav->sav_config == NULL) goto out; sav->sav_vdevs = newvdevs; sav->sav_count = (int)nl2cache; /* * Recompute the stashed list of l2cache devices, with status * information this time. */ VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); for (i = 0; i < sav->sav_count; i++) l2cache[i] = vdev_config_generate(spa, sav->sav_vdevs[i], B_TRUE, B_FALSE, B_TRUE); VERIFY(nvlist_add_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); out: for (i = 0; i < sav->sav_count; i++) nvlist_free(l2cache[i]); if (sav->sav_count) kmem_free(l2cache, sav->sav_count * sizeof (void *)); } static int load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) { dmu_buf_t *db; char *packed = NULL; size_t nvsize = 0; int error; *value = NULL; VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); nvsize = *(uint64_t *)db->db_data; dmu_buf_rele(db, FTAG); packed = kmem_alloc(nvsize, KM_SLEEP); error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed); if (error == 0) error = nvlist_unpack(packed, nvsize, value, 0); kmem_free(packed, nvsize); return (error); } /* * Checks to see if the given vdev could not be opened, in which case we post a * sysevent to notify the autoreplace code that the device has been removed. */ static void spa_check_removed(vdev_t *vd) { int c; for (c = 0; c < vd->vdev_children; c++) spa_check_removed(vd->vdev_child[c]); if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) { zfs_post_autoreplace(vd->vdev_spa, vd); spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK); } } /* * Check for missing log devices */ int spa_check_logs(spa_t *spa) { switch (spa->spa_log_state) { case SPA_LOG_MISSING: /* need to recheck in case slog has been restored */ case SPA_LOG_UNKNOWN: if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL, DS_FIND_CHILDREN)) { spa->spa_log_state = SPA_LOG_MISSING; return (1); } break; case SPA_LOG_CLEAR: (void) dmu_objset_find(spa->spa_name, zil_clear_log_chain, NULL, DS_FIND_CHILDREN); break; } spa->spa_log_state = SPA_LOG_GOOD; return (0); } /* * Load an existing storage pool, using the pool's builtin spa_config as a * source of configuration information. */ static int spa_load(spa_t *spa, nvlist_t *config, spa_load_state_t state, int mosconfig) { int error = 0; nvlist_t *nvroot = NULL; vdev_t *rvd; uberblock_t *ub = &spa->spa_uberblock; uint64_t config_cache_txg = spa->spa_config_txg; uint64_t pool_guid; uint64_t version; zio_t *zio; uint64_t autoreplace = 0; char *ereport = FM_EREPORT_ZFS_POOL; spa->spa_load_state = state; if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) || nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) { error = EINVAL; goto out; } /* * Versioning wasn't explicitly added to the label until later, so if * it's not present treat it as the initial version. */ if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &version) != 0) version = SPA_VERSION_INITIAL; (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &spa->spa_config_txg); if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) && spa_guid_exists(pool_guid, 0)) { error = EEXIST; goto out; } spa->spa_load_guid = pool_guid; /* * Parse the configuration into a vdev tree. We explicitly set the * value that will be returned by spa_version() since parsing the * configuration requires knowing the version number. */ spa_config_enter(spa, RW_WRITER, FTAG); spa->spa_ubsync.ub_version = version; error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_LOAD); spa_config_exit(spa, FTAG); if (error != 0) goto out; ASSERT(spa->spa_root_vdev == rvd); ASSERT(spa_guid(spa) == pool_guid); /* * Try to open all vdevs, loading each label in the process. */ error = vdev_open(rvd); if (error != 0) goto out; /* * Validate the labels for all leaf vdevs. We need to grab the config * lock because all label I/O is done with the ZIO_FLAG_CONFIG_HELD * flag. */ spa_config_enter(spa, RW_READER, FTAG); error = vdev_validate(rvd); spa_config_exit(spa, FTAG); if (error != 0) goto out; if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) { error = ENXIO; goto out; } /* * Find the best uberblock. */ bzero(ub, sizeof (uberblock_t)); zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); vdev_uberblock_load(zio, rvd, ub); error = zio_wait(zio); /* * If we weren't able to find a single valid uberblock, return failure. */ if (ub->ub_txg == 0) { vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); error = ENXIO; goto out; } /* * If the pool is newer than the code, we can't open it. */ if (ub->ub_version > SPA_VERSION) { vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_VERSION_NEWER); error = ENOTSUP; goto out; } /* * If the vdev guid sum doesn't match the uberblock, we have an * incomplete configuration. */ if (rvd->vdev_guid_sum != ub->ub_guid_sum && mosconfig) { vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_BAD_GUID_SUM); error = ENXIO; goto out; } /* * Initialize internal SPA structures. */ spa->spa_state = POOL_STATE_ACTIVE; spa->spa_ubsync = spa->spa_uberblock; spa->spa_first_txg = spa_last_synced_txg(spa) + 1; error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool); if (error) { vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); goto out; } spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; if (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, sizeof (uint64_t), 1, &spa->spa_config_object) != 0) { vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); error = EIO; goto out; } if (!mosconfig) { nvlist_t *newconfig; uint64_t hostid; if (load_nvlist(spa, spa->spa_config_object, &newconfig) != 0) { vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); error = EIO; goto out; } if (!spa_is_root(spa) && nvlist_lookup_uint64(newconfig, ZPOOL_CONFIG_HOSTID, &hostid) == 0) { char *hostname; unsigned long myhostid = 0; VERIFY(nvlist_lookup_string(newconfig, ZPOOL_CONFIG_HOSTNAME, &hostname) == 0); (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid); if (hostid != 0 && myhostid != 0 && (unsigned long)hostid != myhostid) { cmn_err(CE_WARN, "pool '%s' could not be " "loaded as it was last accessed by " "another system (host: %s hostid: 0x%lx). " "See: http://www.sun.com/msg/ZFS-8000-EY", spa->spa_name, hostname, (unsigned long)hostid); error = EBADF; goto out; } } spa_config_set(spa, newconfig); spa_unload(spa); spa_deactivate(spa); spa_activate(spa); return (spa_load(spa, newconfig, state, B_TRUE)); } if (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST, sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj) != 0) { vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); error = EIO; goto out; } /* * Load the bit that tells us to use the new accounting function * (raid-z deflation). If we have an older pool, this will not * be present. */ error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, sizeof (uint64_t), 1, &spa->spa_deflate); if (error != 0 && error != ENOENT) { vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); error = EIO; goto out; } /* * Load the persistent error log. If we have an older pool, this will * not be present. */ error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_LAST, sizeof (uint64_t), 1, &spa->spa_errlog_last); if (error != 0 && error != ENOENT) { vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); error = EIO; goto out; } error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_SCRUB, sizeof (uint64_t), 1, &spa->spa_errlog_scrub); if (error != 0 && error != ENOENT) { vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); error = EIO; goto out; } /* * Load the history object. If we have an older pool, this * will not be present. */ error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_HISTORY, sizeof (uint64_t), 1, &spa->spa_history); if (error != 0 && error != ENOENT) { vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); error = EIO; goto out; } /* * Load any hot spares for this pool. */ error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SPARES, sizeof (uint64_t), 1, &spa->spa_spares.sav_object); if (error != 0 && error != ENOENT) { vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); error = EIO; goto out; } if (error == 0) { ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); if (load_nvlist(spa, spa->spa_spares.sav_object, &spa->spa_spares.sav_config) != 0) { vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); error = EIO; goto out; } spa_config_enter(spa, RW_WRITER, FTAG); spa_load_spares(spa); spa_config_exit(spa, FTAG); } /* * Load any level 2 ARC devices for this pool. */ error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_L2CACHE, sizeof (uint64_t), 1, &spa->spa_l2cache.sav_object); if (error != 0 && error != ENOENT) { vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); error = EIO; goto out; } if (error == 0) { ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); if (load_nvlist(spa, spa->spa_l2cache.sav_object, &spa->spa_l2cache.sav_config) != 0) { vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); error = EIO; goto out; } spa_config_enter(spa, RW_WRITER, FTAG); spa_load_l2cache(spa); spa_config_exit(spa, FTAG); } if (spa_check_logs(spa)) { vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_BAD_LOG); error = ENXIO; ereport = FM_EREPORT_ZFS_LOG_REPLAY; goto out; } spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, sizeof (uint64_t), 1, &spa->spa_pool_props_object); if (error && error != ENOENT) { vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, VDEV_AUX_CORRUPT_DATA); error = EIO; goto out; } if (error == 0) { (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, zpool_prop_to_name(ZPOOL_PROP_BOOTFS), sizeof (uint64_t), 1, &spa->spa_bootfs); (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE), sizeof (uint64_t), 1, &autoreplace); (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, zpool_prop_to_name(ZPOOL_PROP_DELEGATION), sizeof (uint64_t), 1, &spa->spa_delegation); (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE), sizeof (uint64_t), 1, &spa->spa_failmode); } /* * If the 'autoreplace' property is set, then post a resource notifying * the ZFS DE that it should not issue any faults for unopenable * devices. We also iterate over the vdevs, and post a sysevent for any * unopenable vdevs so that the normal autoreplace handler can take * over. */ if (autoreplace && state != SPA_LOAD_TRYIMPORT) spa_check_removed(spa->spa_root_vdev); /* * Load the vdev state for all toplevel vdevs. */ vdev_load(rvd); /* * Propagate the leaf DTLs we just loaded all the way up the tree. */ spa_config_enter(spa, RW_WRITER, FTAG); vdev_dtl_reassess(rvd, 0, 0, B_FALSE); spa_config_exit(spa, FTAG); /* * Check the state of the root vdev. If it can't be opened, it * indicates one or more toplevel vdevs are faulted. */ if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) { error = ENXIO; goto out; } if ((spa_mode & FWRITE) && state != SPA_LOAD_TRYIMPORT) { dmu_tx_t *tx; int need_update = B_FALSE; int c; /* * Claim log blocks that haven't been committed yet. * This must all happen in a single txg. */ tx = dmu_tx_create_assigned(spa_get_dsl(spa), spa_first_txg(spa)); (void) dmu_objset_find(spa->spa_name, zil_claim, tx, DS_FIND_CHILDREN); dmu_tx_commit(tx); spa->spa_sync_on = B_TRUE; txg_sync_start(spa->spa_dsl_pool); /* * Wait for all claims to sync. */ txg_wait_synced(spa->spa_dsl_pool, 0); /* * If the config cache is stale, or we have uninitialized * metaslabs (see spa_vdev_add()), then update the config. */ if (config_cache_txg != spa->spa_config_txg || state == SPA_LOAD_IMPORT) need_update = B_TRUE; for (c = 0; c < rvd->vdev_children; c++) if (rvd->vdev_child[c]->vdev_ms_array == 0) need_update = B_TRUE; /* * Update the config cache asychronously in case we're the * root pool, in which case the config cache isn't writable yet. */ if (need_update) spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); } error = 0; out: spa->spa_minref = refcount_count(&spa->spa_refcount); if (error && error != EBADF) zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0); spa->spa_load_state = SPA_LOAD_NONE; spa->spa_ena = 0; return (error); } /* * Pool Open/Import * * The import case is identical to an open except that the configuration is sent * down from userland, instead of grabbed from the configuration cache. For the * case of an open, the pool configuration will exist in the * POOL_STATE_UNINITIALIZED state. * * The stats information (gen/count/ustats) is used to gather vdev statistics at * the same time open the pool, without having to keep around the spa_t in some * ambiguous state. */ static int spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t **config) { spa_t *spa; int error; int locked = B_FALSE; *spapp = NULL; /* * As disgusting as this is, we need to support recursive calls to this * function because dsl_dir_open() is called during spa_load(), and ends * up calling spa_open() again. The real fix is to figure out how to * avoid dsl_dir_open() calling this in the first place. */ if (mutex_owner(&spa_namespace_lock) != curthread) { mutex_enter(&spa_namespace_lock); locked = B_TRUE; } if ((spa = spa_lookup(pool)) == NULL) { if (locked) mutex_exit(&spa_namespace_lock); return (ENOENT); } if (spa->spa_state == POOL_STATE_UNINITIALIZED) { spa_activate(spa); error = spa_load(spa, spa->spa_config, SPA_LOAD_OPEN, B_FALSE); if (error == EBADF) { /* * If vdev_validate() returns failure (indicated by * EBADF), it indicates that one of the vdevs indicates * that the pool has been exported or destroyed. If * this is the case, the config cache is out of sync and * we should remove the pool from the namespace. */ spa_unload(spa); spa_deactivate(spa); spa_config_sync(spa, B_TRUE, B_TRUE); spa_remove(spa); if (locked) mutex_exit(&spa_namespace_lock); return (ENOENT); } if (error) { /* * We can't open the pool, but we still have useful * information: the state of each vdev after the * attempted vdev_open(). Return this to the user. */ if (config != NULL && spa->spa_root_vdev != NULL) { spa_config_enter(spa, RW_READER, FTAG); *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); spa_config_exit(spa, FTAG); } spa_unload(spa); spa_deactivate(spa); spa->spa_last_open_failed = B_TRUE; if (locked) mutex_exit(&spa_namespace_lock); *spapp = NULL; return (error); } else { spa->spa_last_open_failed = B_FALSE; } } spa_open_ref(spa, tag); if (locked) mutex_exit(&spa_namespace_lock); *spapp = spa; if (config != NULL) { spa_config_enter(spa, RW_READER, FTAG); *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); spa_config_exit(spa, FTAG); } return (0); } int spa_open(const char *name, spa_t **spapp, void *tag) { return (spa_open_common(name, spapp, tag, NULL)); } /* * Lookup the given spa_t, incrementing the inject count in the process, * preventing it from being exported or destroyed. */ spa_t * spa_inject_addref(char *name) { spa_t *spa; mutex_enter(&spa_namespace_lock); if ((spa = spa_lookup(name)) == NULL) { mutex_exit(&spa_namespace_lock); return (NULL); } spa->spa_inject_ref++; mutex_exit(&spa_namespace_lock); return (spa); } void spa_inject_delref(spa_t *spa) { mutex_enter(&spa_namespace_lock); spa->spa_inject_ref--; mutex_exit(&spa_namespace_lock); } /* * Add spares device information to the nvlist. */ static void spa_add_spares(spa_t *spa, nvlist_t *config) { nvlist_t **spares; uint_t i, nspares; nvlist_t *nvroot; uint64_t guid; vdev_stat_t *vs; uint_t vsc; uint64_t pool; if (spa->spa_spares.sav_count == 0) return; VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); if (nspares != 0) { VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, spares, nspares) == 0); VERIFY(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); /* * Go through and find any spares which have since been * repurposed as an active spare. If this is the case, update * their status appropriately. */ for (i = 0; i < nspares; i++) { VERIFY(nvlist_lookup_uint64(spares[i], ZPOOL_CONFIG_GUID, &guid) == 0); if (spa_spare_exists(guid, &pool, NULL) && pool != 0ULL) { VERIFY(nvlist_lookup_uint64_array( spares[i], ZPOOL_CONFIG_STATS, (uint64_t **)&vs, &vsc) == 0); vs->vs_state = VDEV_STATE_CANT_OPEN; vs->vs_aux = VDEV_AUX_SPARED; } } } } /* * Add l2cache device information to the nvlist, including vdev stats. */ static void spa_add_l2cache(spa_t *spa, nvlist_t *config) { nvlist_t **l2cache; uint_t i, j, nl2cache; nvlist_t *nvroot; uint64_t guid; vdev_t *vd; vdev_stat_t *vs; uint_t vsc; if (spa->spa_l2cache.sav_count == 0) return; spa_config_enter(spa, RW_READER, FTAG); VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); if (nl2cache != 0) { VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); VERIFY(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); /* * Update level 2 cache device stats. */ for (i = 0; i < nl2cache; i++) { VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, &guid) == 0); vd = NULL; for (j = 0; j < spa->spa_l2cache.sav_count; j++) { if (guid == spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { vd = spa->spa_l2cache.sav_vdevs[j]; break; } } ASSERT(vd != NULL); VERIFY(nvlist_lookup_uint64_array(l2cache[i], ZPOOL_CONFIG_STATS, (uint64_t **)&vs, &vsc) == 0); vdev_get_stats(vd, vs); } } spa_config_exit(spa, FTAG); } int spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen) { int error; spa_t *spa; *config = NULL; error = spa_open_common(name, &spa, FTAG, config); if (spa && *config != NULL) { VERIFY(nvlist_add_uint64(*config, ZPOOL_CONFIG_ERRCOUNT, spa_get_errlog_size(spa)) == 0); spa_add_spares(spa, *config); spa_add_l2cache(spa, *config); } /* * We want to get the alternate root even for faulted pools, so we cheat * and call spa_lookup() directly. */ if (altroot) { if (spa == NULL) { mutex_enter(&spa_namespace_lock); spa = spa_lookup(name); if (spa) spa_altroot(spa, altroot, buflen); else altroot[0] = '\0'; spa = NULL; mutex_exit(&spa_namespace_lock); } else { spa_altroot(spa, altroot, buflen); } } if (spa != NULL) spa_close(spa, FTAG); return (error); } /* * Validate that the auxiliary device array is well formed. We must have an * array of nvlists, each which describes a valid leaf vdev. If this is an * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be * specified, as long as they are well-formed. */ static int spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, spa_aux_vdev_t *sav, const char *config, uint64_t version, vdev_labeltype_t label) { nvlist_t **dev; uint_t i, ndev; vdev_t *vd; int error; /* * It's acceptable to have no devs specified. */ if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) return (0); if (ndev == 0) return (EINVAL); /* * Make sure the pool is formatted with a version that supports this * device type. */ if (spa_version(spa) < version) return (ENOTSUP); /* * Set the pending device list so we correctly handle device in-use * checking. */ sav->sav_pending = dev; sav->sav_npending = ndev; for (i = 0; i < ndev; i++) { if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, mode)) != 0) goto out; if (!vd->vdev_ops->vdev_op_leaf) { vdev_free(vd); error = EINVAL; goto out; } /* * The L2ARC currently only supports disk devices. */ if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) && strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) { error = ENOTBLK; goto out; } vd->vdev_top = vd; if ((error = vdev_open(vd)) == 0 && (error = vdev_label_init(vd, crtxg, label)) == 0) { VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, vd->vdev_guid) == 0); } vdev_free(vd); if (error && (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) goto out; else error = 0; } out: sav->sav_pending = NULL; sav->sav_npending = 0; return (error); } static int spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) { int error; if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, VDEV_LABEL_SPARE)) != 0) { return (error); } return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, VDEV_LABEL_L2CACHE)); } static void spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, const char *config) { int i; if (sav->sav_config != NULL) { nvlist_t **olddevs; uint_t oldndevs; nvlist_t **newdevs; /* * Generate new dev list by concatentating with the * current dev list. */ VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, &olddevs, &oldndevs) == 0); newdevs = kmem_alloc(sizeof (void *) * (ndevs + oldndevs), KM_SLEEP); for (i = 0; i < oldndevs; i++) VERIFY(nvlist_dup(olddevs[i], &newdevs[i], KM_SLEEP) == 0); for (i = 0; i < ndevs; i++) VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], KM_SLEEP) == 0); VERIFY(nvlist_remove(sav->sav_config, config, DATA_TYPE_NVLIST_ARRAY) == 0); VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, newdevs, ndevs + oldndevs) == 0); for (i = 0; i < oldndevs + ndevs; i++) nvlist_free(newdevs[i]); kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); } else { /* * Generate a new dev list. */ VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, KM_SLEEP) == 0); VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, devs, ndevs) == 0); } } /* * Stop and drop level 2 ARC devices */ void spa_l2cache_drop(spa_t *spa) { vdev_t *vd; int i; spa_aux_vdev_t *sav = &spa->spa_l2cache; for (i = 0; i < sav->sav_count; i++) { uint64_t pool; vd = sav->sav_vdevs[i]; ASSERT(vd != NULL); if (spa_mode & FWRITE && spa_l2cache_exists(vd->vdev_guid, &pool) && pool != 0ULL && l2arc_vdev_present(vd)) { l2arc_remove_vdev(vd); } if (vd->vdev_isl2cache) spa_l2cache_remove(vd); vdev_clear_stats(vd); (void) vdev_close(vd); } } /* * Pool Creation */ int spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, const char *history_str, nvlist_t *zplprops) { spa_t *spa; char *altroot = NULL; vdev_t *rvd; dsl_pool_t *dp; dmu_tx_t *tx; int c, error = 0; uint64_t txg = TXG_INITIAL; nvlist_t **spares, **l2cache; uint_t nspares, nl2cache; uint64_t version; /* * If this pool already exists, return failure. */ mutex_enter(&spa_namespace_lock); if (spa_lookup(pool) != NULL) { mutex_exit(&spa_namespace_lock); return (EEXIST); } /* * Allocate a new spa_t structure. */ (void) nvlist_lookup_string(props, zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); spa = spa_add(pool, altroot); spa_activate(spa); spa->spa_uberblock.ub_txg = txg - 1; if (props && (error = spa_prop_validate(spa, props))) { spa_unload(spa); spa_deactivate(spa); spa_remove(spa); mutex_exit(&spa_namespace_lock); return (error); } if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) version = SPA_VERSION; ASSERT(version <= SPA_VERSION); spa->spa_uberblock.ub_version = version; spa->spa_ubsync = spa->spa_uberblock; /* * Create the root vdev. */ spa_config_enter(spa, RW_WRITER, FTAG); error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); ASSERT(error != 0 || rvd != NULL); ASSERT(error != 0 || spa->spa_root_vdev == rvd); if (error == 0 && !zfs_allocatable_devs(nvroot)) error = EINVAL; if (error == 0 && (error = vdev_create(rvd, txg, B_FALSE)) == 0 && (error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) == 0) { for (c = 0; c < rvd->vdev_children; c++) vdev_init(rvd->vdev_child[c], txg); vdev_config_dirty(rvd); } spa_config_exit(spa, FTAG); if (error != 0) { spa_unload(spa); spa_deactivate(spa); spa_remove(spa); mutex_exit(&spa_namespace_lock); return (error); } /* * Get the list of spares, if specified. */ if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0) { VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, KM_SLEEP) == 0); VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, spares, nspares) == 0); spa_config_enter(spa, RW_WRITER, FTAG); spa_load_spares(spa); spa_config_exit(spa, FTAG); spa->spa_spares.sav_sync = B_TRUE; } /* * Get the list of level 2 cache devices, if specified. */ if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0) { VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, NV_UNIQUE_NAME, KM_SLEEP) == 0); VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); spa_config_enter(spa, RW_WRITER, FTAG); spa_load_l2cache(spa); spa_config_exit(spa, FTAG); spa->spa_l2cache.sav_sync = B_TRUE; } spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg); spa->spa_meta_objset = dp->dp_meta_objset; tx = dmu_tx_create_assigned(dp, txg); /* * Create the pool config object. */ spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); if (zap_add(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { cmn_err(CE_PANIC, "failed to add pool config"); } /* Newly created pools with the right version are always deflated. */ if (version >= SPA_VERSION_RAIDZ_DEFLATE) { spa->spa_deflate = TRUE; if (zap_add(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { cmn_err(CE_PANIC, "failed to add deflate"); } } /* * Create the deferred-free bplist object. Turn off compression * because sync-to-convergence takes longer if the blocksize * keeps changing. */ spa->spa_sync_bplist_obj = bplist_create(spa->spa_meta_objset, 1 << 14, tx); dmu_object_set_compress(spa->spa_meta_objset, spa->spa_sync_bplist_obj, ZIO_COMPRESS_OFF, tx); if (zap_add(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST, sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj, tx) != 0) { cmn_err(CE_PANIC, "failed to add bplist"); } /* * Create the pool's history object. */ if (version >= SPA_VERSION_ZPOOL_HISTORY) spa_history_create_obj(spa, tx); /* * Set pool properties. */ spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); if (props) spa_sync_props(spa, props, CRED(), tx); dmu_tx_commit(tx); spa->spa_sync_on = B_TRUE; txg_sync_start(spa->spa_dsl_pool); /* * We explicitly wait for the first transaction to complete so that our * bean counters are appropriately updated. */ txg_wait_synced(spa->spa_dsl_pool, txg); spa_config_sync(spa, B_FALSE, B_TRUE); if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL) (void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE); mutex_exit(&spa_namespace_lock); spa->spa_minref = refcount_count(&spa->spa_refcount); return (0); } /* * Import the given pool into the system. We set up the necessary spa_t and * then call spa_load() to do the dirty work. */ static int spa_import_common(const char *pool, nvlist_t *config, nvlist_t *props, boolean_t isroot, boolean_t allowfaulted) { spa_t *spa; char *altroot = NULL; int error, loaderr; nvlist_t *nvroot; nvlist_t **spares, **l2cache; uint_t nspares, nl2cache; /* * If a pool with this name exists, return failure. */ mutex_enter(&spa_namespace_lock); if (spa_lookup(pool) != NULL) { mutex_exit(&spa_namespace_lock); return (EEXIST); } /* * Create and initialize the spa structure. */ (void) nvlist_lookup_string(props, zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); spa = spa_add(pool, altroot); spa_activate(spa); if (allowfaulted) spa->spa_import_faulted = B_TRUE; spa->spa_is_root = isroot; /* * Pass off the heavy lifting to spa_load(). * Pass TRUE for mosconfig (unless this is a root pool) because * the user-supplied config is actually the one to trust when * doing an import. */ loaderr = error = spa_load(spa, config, SPA_LOAD_IMPORT, !isroot); spa_config_enter(spa, RW_WRITER, FTAG); /* * Toss any existing sparelist, as it doesn't have any validity anymore, * and conflicts with spa_has_spare(). */ if (!isroot && spa->spa_spares.sav_config) { nvlist_free(spa->spa_spares.sav_config); spa->spa_spares.sav_config = NULL; spa_load_spares(spa); } if (!isroot && spa->spa_l2cache.sav_config) { nvlist_free(spa->spa_l2cache.sav_config); spa->spa_l2cache.sav_config = NULL; spa_load_l2cache(spa); } VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); if (error == 0) error = spa_validate_aux(spa, nvroot, -1ULL, VDEV_ALLOC_SPARE); if (error == 0) error = spa_validate_aux(spa, nvroot, -1ULL, VDEV_ALLOC_L2CACHE); spa_config_exit(spa, FTAG); if (error != 0 || (props && (error = spa_prop_set(spa, props)))) { if (loaderr != 0 && loaderr != EINVAL && allowfaulted) { /* * If we failed to load the pool, but 'allowfaulted' is * set, then manually set the config as if the config * passed in was specified in the cache file. */ error = 0; spa->spa_import_faulted = B_FALSE; if (spa->spa_config == NULL) { spa_config_enter(spa, RW_READER, FTAG); spa->spa_config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); spa_config_exit(spa, FTAG); } spa_unload(spa); spa_deactivate(spa); spa_config_sync(spa, B_FALSE, B_TRUE); } else { spa_unload(spa); spa_deactivate(spa); spa_remove(spa); } mutex_exit(&spa_namespace_lock); return (error); } /* * Override any spares and level 2 cache devices as specified by * the user, as these may have correct device names/devids, etc. */ if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0) { if (spa->spa_spares.sav_config) VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); else VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, KM_SLEEP) == 0); VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, spares, nspares) == 0); spa_config_enter(spa, RW_WRITER, FTAG); spa_load_spares(spa); spa_config_exit(spa, FTAG); spa->spa_spares.sav_sync = B_TRUE; } if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0) { if (spa->spa_l2cache.sav_config) VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); else VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, NV_UNIQUE_NAME, KM_SLEEP) == 0); VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); spa_config_enter(spa, RW_WRITER, FTAG); spa_load_l2cache(spa); spa_config_exit(spa, FTAG); spa->spa_l2cache.sav_sync = B_TRUE; } if (spa_mode & FWRITE) { /* * Update the config cache to include the newly-imported pool. */ spa_config_update_common(spa, SPA_CONFIG_UPDATE_POOL, isroot); } spa->spa_import_faulted = B_FALSE; mutex_exit(&spa_namespace_lock); return (0); } #ifdef _KERNEL /* * Build a "root" vdev for a top level vdev read in from a rootpool * device label. */ static void spa_build_rootpool_config(nvlist_t *config) { nvlist_t *nvtop, *nvroot; uint64_t pgid; /* * Add this top-level vdev to the child array. */ VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0); VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pgid) == 0); /* * Put this pool's top-level vdevs into a root vdev. */ VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0); VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0); VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, &nvtop, 1) == 0); /* * Replace the existing vdev_tree with the new root vdev in * this pool's configuration (remove the old, add the new). */ VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); nvlist_free(nvroot); } /* * Get the root pool information from the root disk, then import the root pool * during the system boot up time. */ extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **); int spa_check_rootconf(char *devpath, char *devid, nvlist_t **bestconf, uint64_t *besttxg) { nvlist_t *config; uint64_t txg; int error; if (error = vdev_disk_read_rootlabel(devpath, devid, &config)) return (error); VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0); if (bestconf != NULL) *bestconf = config; else nvlist_free(config); *besttxg = txg; return (0); } boolean_t spa_rootdev_validate(nvlist_t *nv) { uint64_t ival; if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, &ival) == 0 || nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, &ival) == 0 || nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, &ival) == 0) return (B_FALSE); return (B_TRUE); } /* * Given the boot device's physical path or devid, check if the device * is in a valid state. If so, return the configuration from the vdev * label. */ int spa_get_rootconf(char *devpath, char *devid, nvlist_t **bestconf) { nvlist_t *conf = NULL; uint64_t txg = 0; nvlist_t *nvtop, **child; char *type; char *bootpath = NULL; uint_t children, c; char *tmp; int error; if (devpath && ((tmp = strchr(devpath, ' ')) != NULL)) *tmp = '\0'; if (error = spa_check_rootconf(devpath, devid, &conf, &txg)) { cmn_err(CE_NOTE, "error reading device label"); return (error); } if (txg == 0) { cmn_err(CE_NOTE, "this device is detached"); nvlist_free(conf); return (EINVAL); } VERIFY(nvlist_lookup_nvlist(conf, ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0); VERIFY(nvlist_lookup_string(nvtop, ZPOOL_CONFIG_TYPE, &type) == 0); if (strcmp(type, VDEV_TYPE_DISK) == 0) { if (spa_rootdev_validate(nvtop)) { goto out; } else { nvlist_free(conf); return (EINVAL); } } ASSERT(strcmp(type, VDEV_TYPE_MIRROR) == 0); VERIFY(nvlist_lookup_nvlist_array(nvtop, ZPOOL_CONFIG_CHILDREN, &child, &children) == 0); /* * Go thru vdevs in the mirror to see if the given device * has the most recent txg. Only the device with the most * recent txg has valid information and should be booted. */ for (c = 0; c < children; c++) { char *cdevid, *cpath; uint64_t tmptxg; if (nvlist_lookup_string(child[c], ZPOOL_CONFIG_PHYS_PATH, &cpath) != 0) return (EINVAL); if (nvlist_lookup_string(child[c], ZPOOL_CONFIG_DEVID, &cdevid) != 0) return (EINVAL); if ((spa_check_rootconf(cpath, cdevid, NULL, &tmptxg) == 0) && (tmptxg > txg)) { txg = tmptxg; VERIFY(nvlist_lookup_string(child[c], ZPOOL_CONFIG_PATH, &bootpath) == 0); } } /* Does the best device match the one we've booted from? */ if (bootpath) { cmn_err(CE_NOTE, "try booting from '%s'", bootpath); return (EINVAL); } out: *bestconf = conf; return (0); } /* * Import a root pool. * * For x86. devpath_list will consist of devid and/or physpath name of * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a"). * The GRUB "findroot" command will return the vdev we should boot. * * For Sparc, devpath_list consists the physpath name of the booting device * no matter the rootpool is a single device pool or a mirrored pool. * e.g. * "/pci@1f,0/ide@d/disk@0,0:a" */ int spa_import_rootpool(char *devpath, char *devid) { nvlist_t *conf = NULL; char *pname; int error; /* * Get the vdev pathname and configuation from the most * recently updated vdev (highest txg). */ if (error = spa_get_rootconf(devpath, devid, &conf)) goto msg_out; /* * Add type "root" vdev to the config. */ spa_build_rootpool_config(conf); VERIFY(nvlist_lookup_string(conf, ZPOOL_CONFIG_POOL_NAME, &pname) == 0); /* * We specify 'allowfaulted' for this to be treated like spa_open() * instead of spa_import(). This prevents us from marking vdevs as * persistently unavailable, and generates FMA ereports as if it were a * pool open, not import. */ error = spa_import_common(pname, conf, NULL, B_TRUE, B_TRUE); if (error == EEXIST) error = 0; nvlist_free(conf); return (error); msg_out: cmn_err(CE_NOTE, "\n" " *************************************************** \n" " * This device is not bootable! * \n" " * It is either offlined or detached or faulted. * \n" " * Please try to boot from a different device. * \n" " *************************************************** "); return (error); } #endif /* * Import a non-root pool into the system. */ int spa_import(const char *pool, nvlist_t *config, nvlist_t *props) { return (spa_import_common(pool, config, props, B_FALSE, B_FALSE)); } int spa_import_faulted(const char *pool, nvlist_t *config, nvlist_t *props) { return (spa_import_common(pool, config, props, B_FALSE, B_TRUE)); } /* * This (illegal) pool name is used when temporarily importing a spa_t in order * to get the vdev stats associated with the imported devices. */ #define TRYIMPORT_NAME "$import" nvlist_t * spa_tryimport(nvlist_t *tryconfig) { nvlist_t *config = NULL; char *poolname; spa_t *spa; uint64_t state; if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) return (NULL); if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) return (NULL); /* * Create and initialize the spa structure. */ mutex_enter(&spa_namespace_lock); spa = spa_add(TRYIMPORT_NAME, NULL); spa_activate(spa); /* * Pass off the heavy lifting to spa_load(). * Pass TRUE for mosconfig because the user-supplied config * is actually the one to trust when doing an import. */ (void) spa_load(spa, tryconfig, SPA_LOAD_TRYIMPORT, B_TRUE); /* * If 'tryconfig' was at least parsable, return the current config. */ if (spa->spa_root_vdev != NULL) { spa_config_enter(spa, RW_READER, FTAG); config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); spa_config_exit(spa, FTAG); VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, poolname) == 0); VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, state) == 0); VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, spa->spa_uberblock.ub_timestamp) == 0); /* * If the bootfs property exists on this pool then we * copy it out so that external consumers can tell which * pools are bootable. */ if (spa->spa_bootfs) { char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); /* * We have to play games with the name since the * pool was opened as TRYIMPORT_NAME. */ if (dsl_dsobj_to_dsname(spa->spa_name, spa->spa_bootfs, tmpname) == 0) { char *cp; char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); cp = strchr(tmpname, '/'); if (cp == NULL) { (void) strlcpy(dsname, tmpname, MAXPATHLEN); } else { (void) snprintf(dsname, MAXPATHLEN, "%s/%s", poolname, ++cp); } VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_BOOTFS, dsname) == 0); kmem_free(dsname, MAXPATHLEN); } kmem_free(tmpname, MAXPATHLEN); } /* * Add the list of hot spares and level 2 cache devices. */ spa_add_spares(spa, config); spa_add_l2cache(spa, config); } spa_unload(spa); spa_deactivate(spa); spa_remove(spa); mutex_exit(&spa_namespace_lock); return (config); } /* * Pool export/destroy * * The act of destroying or exporting a pool is very simple. We make sure there * is no more pending I/O and any references to the pool are gone. Then, we * update the pool state and sync all the labels to disk, removing the * configuration from the cache afterwards. */ static int spa_export_common(char *pool, int new_state, nvlist_t **oldconfig, boolean_t force) { spa_t *spa; if (oldconfig) *oldconfig = NULL; if (!(spa_mode & FWRITE)) return (EROFS); mutex_enter(&spa_namespace_lock); if ((spa = spa_lookup(pool)) == NULL) { mutex_exit(&spa_namespace_lock); return (ENOENT); } /* * Put a hold on the pool, drop the namespace lock, stop async tasks, * reacquire the namespace lock, and see if we can export. */ spa_open_ref(spa, FTAG); mutex_exit(&spa_namespace_lock); spa_async_suspend(spa); mutex_enter(&spa_namespace_lock); spa_close(spa, FTAG); /* * The pool will be in core if it's openable, * in which case we can modify its state. */ if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { /* * Objsets may be open only because they're dirty, so we * have to force it to sync before checking spa_refcnt. */ txg_wait_synced(spa->spa_dsl_pool, 0); /* * A pool cannot be exported or destroyed if there are active * references. If we are resetting a pool, allow references by * fault injection handlers. */ if (!spa_refcount_zero(spa) || (spa->spa_inject_ref != 0 && new_state != POOL_STATE_UNINITIALIZED)) { spa_async_resume(spa); mutex_exit(&spa_namespace_lock); return (EBUSY); } /* * A pool cannot be exported if it has an active shared spare. * This is to prevent other pools stealing the active spare * from an exported pool. At user's own will, such pool can * be forcedly exported. */ if (!force && new_state == POOL_STATE_EXPORTED && spa_has_active_shared_spare(spa)) { spa_async_resume(spa); mutex_exit(&spa_namespace_lock); return (EXDEV); } /* * We want this to be reflected on every label, * so mark them all dirty. spa_unload() will do the * final sync that pushes these changes out. */ if (new_state != POOL_STATE_UNINITIALIZED) { spa_config_enter(spa, RW_WRITER, FTAG); spa->spa_state = new_state; spa->spa_final_txg = spa_last_synced_txg(spa) + 1; vdev_config_dirty(spa->spa_root_vdev); spa_config_exit(spa, FTAG); } } spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY); if (spa->spa_state != POOL_STATE_UNINITIALIZED) { spa_unload(spa); spa_deactivate(spa); } if (oldconfig && spa->spa_config) VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); if (new_state != POOL_STATE_UNINITIALIZED) { spa_config_sync(spa, B_TRUE, B_TRUE); spa_remove(spa); } mutex_exit(&spa_namespace_lock); return (0); } /* * Destroy a storage pool. */ int spa_destroy(char *pool) { return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, B_FALSE)); } /* * Export a storage pool. */ int spa_export(char *pool, nvlist_t **oldconfig, boolean_t force) { return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, force)); } /* * Similar to spa_export(), this unloads the spa_t without actually removing it * from the namespace in any way. */ int spa_reset(char *pool) { return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, B_FALSE)); } /* * ========================================================================== * Device manipulation * ========================================================================== */ /* * Add a device to a storage pool. */ int spa_vdev_add(spa_t *spa, nvlist_t *nvroot) { uint64_t txg; int c, error; vdev_t *rvd = spa->spa_root_vdev; vdev_t *vd, *tvd; nvlist_t **spares, **l2cache; uint_t nspares, nl2cache; txg = spa_vdev_enter(spa); if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, VDEV_ALLOC_ADD)) != 0) return (spa_vdev_exit(spa, NULL, txg, error)); spa->spa_pending_vdev = vd; if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0) nspares = 0; if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) != 0) nl2cache = 0; if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) { spa->spa_pending_vdev = NULL; return (spa_vdev_exit(spa, vd, txg, EINVAL)); } if (vd->vdev_children != 0) { if ((error = vdev_create(vd, txg, B_FALSE)) != 0) { spa->spa_pending_vdev = NULL; return (spa_vdev_exit(spa, vd, txg, error)); } } /* * We must validate the spares and l2cache devices after checking the * children. Otherwise, vdev_inuse() will blindly overwrite the spare. */ if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) { spa->spa_pending_vdev = NULL; return (spa_vdev_exit(spa, vd, txg, error)); } spa->spa_pending_vdev = NULL; /* * Transfer each new top-level vdev from vd to rvd. */ for (c = 0; c < vd->vdev_children; c++) { tvd = vd->vdev_child[c]; vdev_remove_child(vd, tvd); tvd->vdev_id = rvd->vdev_children; vdev_add_child(rvd, tvd); vdev_config_dirty(tvd); } if (nspares != 0) { spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, ZPOOL_CONFIG_SPARES); spa_load_spares(spa); spa->spa_spares.sav_sync = B_TRUE; } if (nl2cache != 0) { spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, ZPOOL_CONFIG_L2CACHE); spa_load_l2cache(spa); spa->spa_l2cache.sav_sync = B_TRUE; } /* * We have to be careful when adding new vdevs to an existing pool. * If other threads start allocating from these vdevs before we * sync the config cache, and we lose power, then upon reboot we may * fail to open the pool because there are DVAs that the config cache * can't translate. Therefore, we first add the vdevs without * initializing metaslabs; sync the config cache (via spa_vdev_exit()); * and then let spa_config_update() initialize the new metaslabs. * * spa_load() checks for added-but-not-initialized vdevs, so that * if we lose power at any point in this sequence, the remaining * steps will be completed the next time we load the pool. */ (void) spa_vdev_exit(spa, vd, txg, 0); mutex_enter(&spa_namespace_lock); spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); mutex_exit(&spa_namespace_lock); return (0); } /* * Attach a device to a mirror. The arguments are the path to any device * in the mirror, and the nvroot for the new device. If the path specifies * a device that is not mirrored, we automatically insert the mirror vdev. * * If 'replacing' is specified, the new device is intended to replace the * existing device; in this case the two devices are made into their own * mirror using the 'replacing' vdev, which is functionally identical to * the mirror vdev (it actually reuses all the same ops) but has a few * extra rules: you can't attach to it after it's been created, and upon * completion of resilvering, the first disk (the one being replaced) * is automatically detached. */ int spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) { uint64_t txg, open_txg; vdev_t *rvd = spa->spa_root_vdev; vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; vdev_ops_t *pvops; dmu_tx_t *tx; char *oldvdpath, *newvdpath; int newvd_isspare; int error; txg = spa_vdev_enter(spa); oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); if (oldvd == NULL) return (spa_vdev_exit(spa, NULL, txg, ENODEV)); if (!oldvd->vdev_ops->vdev_op_leaf) return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); pvd = oldvd->vdev_parent; if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, VDEV_ALLOC_ADD)) != 0) return (spa_vdev_exit(spa, NULL, txg, EINVAL)); if (newrootvd->vdev_children != 1) return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); newvd = newrootvd->vdev_child[0]; if (!newvd->vdev_ops->vdev_op_leaf) return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); if ((error = vdev_create(newrootvd, txg, replacing)) != 0) return (spa_vdev_exit(spa, newrootvd, txg, error)); /* * Spares can't replace logs */ if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); if (!replacing) { /* * For attach, the only allowable parent is a mirror or the root * vdev. */ if (pvd->vdev_ops != &vdev_mirror_ops && pvd->vdev_ops != &vdev_root_ops) return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); pvops = &vdev_mirror_ops; } else { /* * Active hot spares can only be replaced by inactive hot * spares. */ if (pvd->vdev_ops == &vdev_spare_ops && pvd->vdev_child[1] == oldvd && !spa_has_spare(spa, newvd->vdev_guid)) return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); /* * If the source is a hot spare, and the parent isn't already a * spare, then we want to create a new hot spare. Otherwise, we * want to create a replacing vdev. The user is not allowed to * attach to a spared vdev child unless the 'isspare' state is * the same (spare replaces spare, non-spare replaces * non-spare). */ if (pvd->vdev_ops == &vdev_replacing_ops) return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); else if (pvd->vdev_ops == &vdev_spare_ops && newvd->vdev_isspare != oldvd->vdev_isspare) return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); else if (pvd->vdev_ops != &vdev_spare_ops && newvd->vdev_isspare) pvops = &vdev_spare_ops; else pvops = &vdev_replacing_ops; } /* * Compare the new device size with the replaceable/attachable * device size. */ if (newvd->vdev_psize < vdev_get_rsize(oldvd)) return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); /* * The new device cannot have a higher alignment requirement * than the top-level vdev. */ if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); /* * If this is an in-place replacement, update oldvd's path and devid * to make it distinguishable from newvd, and unopenable from now on. */ if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { spa_strfree(oldvd->vdev_path); oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, KM_SLEEP); (void) sprintf(oldvd->vdev_path, "%s/%s", newvd->vdev_path, "old"); if (oldvd->vdev_devid != NULL) { spa_strfree(oldvd->vdev_devid); oldvd->vdev_devid = NULL; } } /* * If the parent is not a mirror, or if we're replacing, insert the new * mirror/replacing/spare vdev above oldvd. */ if (pvd->vdev_ops != pvops) pvd = vdev_add_parent(oldvd, pvops); ASSERT(pvd->vdev_top->vdev_parent == rvd); ASSERT(pvd->vdev_ops == pvops); ASSERT(oldvd->vdev_parent == pvd); /* * Extract the new device from its root and add it to pvd. */ vdev_remove_child(newrootvd, newvd); newvd->vdev_id = pvd->vdev_children; vdev_add_child(pvd, newvd); /* * If newvd is smaller than oldvd, but larger than its rsize, * the addition of newvd may have decreased our parent's asize. */ pvd->vdev_asize = MIN(pvd->vdev_asize, newvd->vdev_asize); tvd = newvd->vdev_top; ASSERT(pvd->vdev_top == tvd); ASSERT(tvd->vdev_parent == rvd); vdev_config_dirty(tvd); /* * Set newvd's DTL to [TXG_INITIAL, open_txg]. It will propagate * upward when spa_vdev_exit() calls vdev_dtl_reassess(). */ open_txg = txg + TXG_CONCURRENT_STATES - 1; mutex_enter(&newvd->vdev_dtl_lock); space_map_add(&newvd->vdev_dtl_map, TXG_INITIAL, open_txg - TXG_INITIAL + 1); mutex_exit(&newvd->vdev_dtl_lock); if (newvd->vdev_isspare) spa_spare_activate(newvd); oldvdpath = spa_strdup(vdev_description(oldvd)); newvdpath = spa_strdup(vdev_description(newvd)); newvd_isspare = newvd->vdev_isspare; /* * Mark newvd's DTL dirty in this txg. */ vdev_dirty(tvd, VDD_DTL, newvd, txg); (void) spa_vdev_exit(spa, newrootvd, open_txg, 0); tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); if (dmu_tx_assign(tx, TXG_WAIT) == 0) { spa_history_internal_log(LOG_POOL_VDEV_ATTACH, spa, tx, CRED(), "%s vdev=%s %s vdev=%s", replacing && newvd_isspare ? "spare in" : replacing ? "replace" : "attach", newvdpath, replacing ? "for" : "to", oldvdpath); dmu_tx_commit(tx); } else { dmu_tx_abort(tx); } spa_strfree(oldvdpath); spa_strfree(newvdpath); /* * Kick off a resilver to update newvd. */ VERIFY3U(spa_scrub(spa, POOL_SCRUB_RESILVER), ==, 0); return (0); } /* * Detach a device from a mirror or replacing vdev. * If 'replace_done' is specified, only detach if the parent * is a replacing vdev. */ int spa_vdev_detach(spa_t *spa, uint64_t guid, int replace_done) { uint64_t txg; int c, t, error; vdev_t *rvd = spa->spa_root_vdev; vdev_t *vd, *pvd, *cvd, *tvd; boolean_t unspare = B_FALSE; uint64_t unspare_guid; size_t len; txg = spa_vdev_enter(spa); vd = spa_lookup_by_guid(spa, guid, B_FALSE); if (vd == NULL) return (spa_vdev_exit(spa, NULL, txg, ENODEV)); if (!vd->vdev_ops->vdev_op_leaf) return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); pvd = vd->vdev_parent; /* * If replace_done is specified, only remove this device if it's * the first child of a replacing vdev. For the 'spare' vdev, either * disk can be removed. */ if (replace_done) { if (pvd->vdev_ops == &vdev_replacing_ops) { if (vd->vdev_id != 0) return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); } else if (pvd->vdev_ops != &vdev_spare_ops) { return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); } } ASSERT(pvd->vdev_ops != &vdev_spare_ops || spa_version(spa) >= SPA_VERSION_SPARES); /* * Only mirror, replacing, and spare vdevs support detach. */ if (pvd->vdev_ops != &vdev_replacing_ops && pvd->vdev_ops != &vdev_mirror_ops && pvd->vdev_ops != &vdev_spare_ops) return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); /* * If there's only one replica, you can't detach it. */ if (pvd->vdev_children <= 1) return (spa_vdev_exit(spa, NULL, txg, EBUSY)); /* * If all siblings have non-empty DTLs, this device may have the only * valid copy of the data, which means we cannot safely detach it. * * XXX -- as in the vdev_offline() case, we really want a more * precise DTL check. */ for (c = 0; c < pvd->vdev_children; c++) { uint64_t dirty; cvd = pvd->vdev_child[c]; if (cvd == vd) continue; if (vdev_is_dead(cvd)) continue; mutex_enter(&cvd->vdev_dtl_lock); dirty = cvd->vdev_dtl_map.sm_space | cvd->vdev_dtl_scrub.sm_space; mutex_exit(&cvd->vdev_dtl_lock); if (!dirty) break; } /* * If we are a replacing or spare vdev, then we can always detach the * latter child, as that is how one cancels the operation. */ if ((pvd->vdev_ops == &vdev_mirror_ops || vd->vdev_id != 1) && c == pvd->vdev_children) return (spa_vdev_exit(spa, NULL, txg, EBUSY)); /* * If we are detaching the second disk from a replacing vdev, then * check to see if we changed the original vdev's path to have "/old" * at the end in spa_vdev_attach(). If so, undo that change now. */ if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id == 1 && pvd->vdev_child[0]->vdev_path != NULL && pvd->vdev_child[1]->vdev_path != NULL) { ASSERT(pvd->vdev_child[1] == vd); cvd = pvd->vdev_child[0]; len = strlen(vd->vdev_path); if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && strcmp(cvd->vdev_path + len, "/old") == 0) { spa_strfree(cvd->vdev_path); cvd->vdev_path = spa_strdup(vd->vdev_path); } } /* * If we are detaching the original disk from a spare, then it implies * that the spare should become a real disk, and be removed from the * active spare list for the pool. */ if (pvd->vdev_ops == &vdev_spare_ops && vd->vdev_id == 0) unspare = B_TRUE; /* * Erase the disk labels so the disk can be used for other things. * This must be done after all other error cases are handled, * but before we disembowel vd (so we can still do I/O to it). * But if we can't do it, don't treat the error as fatal -- * it may be that the unwritability of the disk is the reason * it's being detached! */ error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); /* * Remove vd from its parent and compact the parent's children. */ vdev_remove_child(pvd, vd); vdev_compact_children(pvd); /* * Remember one of the remaining children so we can get tvd below. */ cvd = pvd->vdev_child[0]; /* * If we need to remove the remaining child from the list of hot spares, * do it now, marking the vdev as no longer a spare in the process. We * must do this before vdev_remove_parent(), because that can change the * GUID if it creates a new toplevel GUID. */ if (unspare) { ASSERT(cvd->vdev_isspare); spa_spare_remove(cvd); unspare_guid = cvd->vdev_guid; } /* * If the parent mirror/replacing vdev only has one child, * the parent is no longer needed. Remove it from the tree. */ if (pvd->vdev_children == 1) vdev_remove_parent(cvd); /* * We don't set tvd until now because the parent we just removed * may have been the previous top-level vdev. */ tvd = cvd->vdev_top; ASSERT(tvd->vdev_parent == rvd); /* * Reevaluate the parent vdev state. */ vdev_propagate_state(cvd); /* * If the device we just detached was smaller than the others, it may be * possible to add metaslabs (i.e. grow the pool). vdev_metaslab_init() * can't fail because the existing metaslabs are already in core, so * there's nothing to read from disk. */ VERIFY(vdev_metaslab_init(tvd, txg) == 0); vdev_config_dirty(tvd); /* * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that * vd->vdev_detached is set and free vd's DTL object in syncing context. * But first make sure we're not on any *other* txg's DTL list, to * prevent vd from being accessed after it's freed. */ for (t = 0; t < TXG_SIZE; t++) (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); vd->vdev_detached = B_TRUE; vdev_dirty(tvd, VDD_DTL, vd, txg); spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE); error = spa_vdev_exit(spa, vd, txg, 0); /* * If this was the removal of the original device in a hot spare vdev, * then we want to go through and remove the device from the hot spare * list of every other pool. */ if (unspare) { spa = NULL; mutex_enter(&spa_namespace_lock); while ((spa = spa_next(spa)) != NULL) { if (spa->spa_state != POOL_STATE_ACTIVE) continue; (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); } mutex_exit(&spa_namespace_lock); } return (error); } /* * Remove a spares vdev from the nvlist config. */ static int spa_remove_spares(spa_aux_vdev_t *sav, uint64_t guid, boolean_t unspare, nvlist_t **spares, int nspares, vdev_t *vd) { nvlist_t *nv, **newspares; int i, j; nv = NULL; for (i = 0; i < nspares; i++) { uint64_t theguid; VERIFY(nvlist_lookup_uint64(spares[i], ZPOOL_CONFIG_GUID, &theguid) == 0); if (theguid == guid) { nv = spares[i]; break; } } /* * Only remove the hot spare if it's not currently in use in this pool. */ if (nv == NULL && vd == NULL) return (ENOENT); if (nv == NULL && vd != NULL) return (ENOTSUP); if (!unspare && nv != NULL && vd != NULL) return (EBUSY); if (nspares == 1) { newspares = NULL; } else { newspares = kmem_alloc((nspares - 1) * sizeof (void *), KM_SLEEP); for (i = 0, j = 0; i < nspares; i++) { if (spares[i] != nv) VERIFY(nvlist_dup(spares[i], &newspares[j++], KM_SLEEP) == 0); } } VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); VERIFY(nvlist_add_nvlist_array(sav->sav_config, ZPOOL_CONFIG_SPARES, newspares, nspares - 1) == 0); for (i = 0; i < nspares - 1; i++) nvlist_free(newspares[i]); kmem_free(newspares, (nspares - 1) * sizeof (void *)); return (0); } /* * Remove an l2cache vdev from the nvlist config. */ static int spa_remove_l2cache(spa_aux_vdev_t *sav, uint64_t guid, nvlist_t **l2cache, int nl2cache, vdev_t *vd) { nvlist_t *nv, **newl2cache; int i, j; nv = NULL; for (i = 0; i < nl2cache; i++) { uint64_t theguid; VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, &theguid) == 0); if (theguid == guid) { nv = l2cache[i]; break; } } if (vd == NULL) { for (i = 0; i < nl2cache; i++) { if (sav->sav_vdevs[i]->vdev_guid == guid) { vd = sav->sav_vdevs[i]; break; } } } if (nv == NULL && vd == NULL) return (ENOENT); if (nv == NULL && vd != NULL) return (ENOTSUP); if (nl2cache == 1) { newl2cache = NULL; } else { newl2cache = kmem_alloc((nl2cache - 1) * sizeof (void *), KM_SLEEP); for (i = 0, j = 0; i < nl2cache; i++) { if (l2cache[i] != nv) VERIFY(nvlist_dup(l2cache[i], &newl2cache[j++], KM_SLEEP) == 0); } } VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); VERIFY(nvlist_add_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE, newl2cache, nl2cache - 1) == 0); for (i = 0; i < nl2cache - 1; i++) nvlist_free(newl2cache[i]); kmem_free(newl2cache, (nl2cache - 1) * sizeof (void *)); return (0); } /* * Remove a device from the pool. Currently, this supports removing only hot * spares and level 2 ARC devices. */ int spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) { vdev_t *vd; nvlist_t **spares, **l2cache; uint_t nspares, nl2cache; int error = 0; spa_config_enter(spa, RW_WRITER, FTAG); vd = spa_lookup_by_guid(spa, guid, B_FALSE); if (spa->spa_spares.sav_vdevs != NULL && nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0) { if ((error = spa_remove_spares(&spa->spa_spares, guid, unspare, spares, nspares, vd)) != 0) goto cache; spa_load_spares(spa); spa->spa_spares.sav_sync = B_TRUE; goto out; } cache: if (spa->spa_l2cache.sav_vdevs != NULL && nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0) { if ((error = spa_remove_l2cache(&spa->spa_l2cache, guid, l2cache, nl2cache, vd)) != 0) goto out; spa_load_l2cache(spa); spa->spa_l2cache.sav_sync = B_TRUE; } out: spa_config_exit(spa, FTAG); return (error); } /* * Find any device that's done replacing, or a vdev marked 'unspare' that's * current spared, so we can detach it. */ static vdev_t * spa_vdev_resilver_done_hunt(vdev_t *vd) { vdev_t *newvd, *oldvd; int c; for (c = 0; c < vd->vdev_children; c++) { oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); if (oldvd != NULL) return (oldvd); } /* * Check for a completed replacement. */ if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) { oldvd = vd->vdev_child[0]; newvd = vd->vdev_child[1]; mutex_enter(&newvd->vdev_dtl_lock); if (newvd->vdev_dtl_map.sm_space == 0 && newvd->vdev_dtl_scrub.sm_space == 0) { mutex_exit(&newvd->vdev_dtl_lock); return (oldvd); } mutex_exit(&newvd->vdev_dtl_lock); } /* * Check for a completed resilver with the 'unspare' flag set. */ if (vd->vdev_ops == &vdev_spare_ops && vd->vdev_children == 2) { newvd = vd->vdev_child[0]; oldvd = vd->vdev_child[1]; mutex_enter(&newvd->vdev_dtl_lock); if (newvd->vdev_unspare && newvd->vdev_dtl_map.sm_space == 0 && newvd->vdev_dtl_scrub.sm_space == 0) { newvd->vdev_unspare = 0; mutex_exit(&newvd->vdev_dtl_lock); return (oldvd); } mutex_exit(&newvd->vdev_dtl_lock); } return (NULL); } static void spa_vdev_resilver_done(spa_t *spa) { vdev_t *vd; vdev_t *pvd; uint64_t guid; uint64_t pguid = 0; spa_config_enter(spa, RW_READER, FTAG); while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { guid = vd->vdev_guid; /* * If we have just finished replacing a hot spared device, then * we need to detach the parent's first child (the original hot * spare) as well. */ pvd = vd->vdev_parent; if (pvd->vdev_parent->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0) { ASSERT(pvd->vdev_ops == &vdev_replacing_ops); ASSERT(pvd->vdev_parent->vdev_children == 2); pguid = pvd->vdev_parent->vdev_child[1]->vdev_guid; } spa_config_exit(spa, FTAG); if (spa_vdev_detach(spa, guid, B_TRUE) != 0) return; if (pguid != 0 && spa_vdev_detach(spa, pguid, B_TRUE) != 0) return; spa_config_enter(spa, RW_READER, FTAG); } spa_config_exit(spa, FTAG); } /* * Update the stored path for this vdev. Dirty the vdev configuration, relying * on spa_vdev_enter/exit() to synchronize the labels and cache. */ int spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) { vdev_t *vd; uint64_t txg; txg = spa_vdev_enter(spa); if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) { /* * Determine if this is a reference to a hot spare device. If * it is, update the path manually as there is no associated * vdev_t that can be synced to disk. */ nvlist_t **spares; uint_t i, nspares; if (spa->spa_spares.sav_config != NULL) { VERIFY(nvlist_lookup_nvlist_array( spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); for (i = 0; i < nspares; i++) { uint64_t theguid; VERIFY(nvlist_lookup_uint64(spares[i], ZPOOL_CONFIG_GUID, &theguid) == 0); if (theguid == guid) { VERIFY(nvlist_add_string(spares[i], ZPOOL_CONFIG_PATH, newpath) == 0); spa_load_spares(spa); spa->spa_spares.sav_sync = B_TRUE; return (spa_vdev_exit(spa, NULL, txg, 0)); } } } return (spa_vdev_exit(spa, NULL, txg, ENOENT)); } if (!vd->vdev_ops->vdev_op_leaf) return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); spa_strfree(vd->vdev_path); vd->vdev_path = spa_strdup(newpath); vdev_config_dirty(vd->vdev_top); return (spa_vdev_exit(spa, NULL, txg, 0)); } /* * ========================================================================== * SPA Scrubbing * ========================================================================== */ int spa_scrub(spa_t *spa, pool_scrub_type_t type) { ASSERT(!spa_config_held(spa, RW_WRITER)); if ((uint_t)type >= POOL_SCRUB_TYPES) return (ENOTSUP); /* * If a resilver was requested, but there is no DTL on a * writeable leaf device, we have nothing to do. */ if (type == POOL_SCRUB_RESILVER && !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); return (0); } if (type == POOL_SCRUB_EVERYTHING && spa->spa_dsl_pool->dp_scrub_func != SCRUB_FUNC_NONE && spa->spa_dsl_pool->dp_scrub_isresilver) return (EBUSY); if (type == POOL_SCRUB_EVERYTHING || type == POOL_SCRUB_RESILVER) { return (dsl_pool_scrub_clean(spa->spa_dsl_pool)); } else if (type == POOL_SCRUB_NONE) { return (dsl_pool_scrub_cancel(spa->spa_dsl_pool)); } else { return (EINVAL); } } /* * ========================================================================== * SPA async task processing * ========================================================================== */ static void spa_async_remove(spa_t *spa, vdev_t *vd) { int c; if (vd->vdev_remove_wanted) { vd->vdev_remove_wanted = 0; vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); vdev_clear(spa, vd, B_TRUE); vdev_config_dirty(vd->vdev_top); } for (c = 0; c < vd->vdev_children; c++) spa_async_remove(spa, vd->vdev_child[c]); } static void spa_async_thread(spa_t *spa) { int tasks, i; uint64_t txg; ASSERT(spa->spa_sync_on); mutex_enter(&spa->spa_async_lock); tasks = spa->spa_async_tasks; spa->spa_async_tasks = 0; mutex_exit(&spa->spa_async_lock); /* * See if the config needs to be updated. */ if (tasks & SPA_ASYNC_CONFIG_UPDATE) { mutex_enter(&spa_namespace_lock); spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); mutex_exit(&spa_namespace_lock); } /* * See if any devices need to be marked REMOVED. * * XXX - We avoid doing this when we are in * I/O failure state since spa_vdev_enter() grabs * the namespace lock and would not be able to obtain * the writer config lock. */ if (tasks & SPA_ASYNC_REMOVE && spa_state(spa) != POOL_STATE_IO_FAILURE) { txg = spa_vdev_enter(spa); spa_async_remove(spa, spa->spa_root_vdev); for (i = 0; i < spa->spa_l2cache.sav_count; i++) spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); for (i = 0; i < spa->spa_spares.sav_count; i++) spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); (void) spa_vdev_exit(spa, NULL, txg, 0); } /* * If any devices are done replacing, detach them. */ if (tasks & SPA_ASYNC_RESILVER_DONE) spa_vdev_resilver_done(spa); /* * Kick off a resilver. */ if (tasks & SPA_ASYNC_RESILVER) VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER) == 0); /* * Let the world know that we're done. */ mutex_enter(&spa->spa_async_lock); spa->spa_async_thread = NULL; cv_broadcast(&spa->spa_async_cv); mutex_exit(&spa->spa_async_lock); thread_exit(); } void spa_async_suspend(spa_t *spa) { mutex_enter(&spa->spa_async_lock); spa->spa_async_suspended++; while (spa->spa_async_thread != NULL) cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); mutex_exit(&spa->spa_async_lock); } void spa_async_resume(spa_t *spa) { mutex_enter(&spa->spa_async_lock); ASSERT(spa->spa_async_suspended != 0); spa->spa_async_suspended--; mutex_exit(&spa->spa_async_lock); } static void spa_async_dispatch(spa_t *spa) { mutex_enter(&spa->spa_async_lock); if (spa->spa_async_tasks && !spa->spa_async_suspended && spa->spa_async_thread == NULL && rootdir != NULL && !vn_is_readonly(rootdir)) spa->spa_async_thread = thread_create(NULL, 0, spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); mutex_exit(&spa->spa_async_lock); } void spa_async_request(spa_t *spa, int task) { mutex_enter(&spa->spa_async_lock); spa->spa_async_tasks |= task; mutex_exit(&spa->spa_async_lock); } /* * ========================================================================== * SPA syncing routines * ========================================================================== */ static void spa_sync_deferred_frees(spa_t *spa, uint64_t txg) { bplist_t *bpl = &spa->spa_sync_bplist; dmu_tx_t *tx; blkptr_t blk; uint64_t itor = 0; zio_t *zio; int error; uint8_t c = 1; zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CONFIG_HELD); while (bplist_iterate(bpl, &itor, &blk) == 0) zio_nowait(zio_free(zio, spa, txg, &blk, NULL, NULL)); error = zio_wait(zio); ASSERT3U(error, ==, 0); tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); bplist_vacate(bpl, tx); /* * Pre-dirty the first block so we sync to convergence faster. * (Usually only the first block is needed.) */ dmu_write(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 0, 1, &c, tx); dmu_tx_commit(tx); } static void spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) { char *packed = NULL; size_t bufsize; size_t nvsize = 0; dmu_buf_t *db; VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); /* * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration * information. This avoids the dbuf_will_dirty() path and * saves us a pre-read to get data we don't actually care about. */ bufsize = P2ROUNDUP(nvsize, SPA_CONFIG_BLOCKSIZE); packed = kmem_alloc(bufsize, KM_SLEEP); VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, KM_SLEEP) == 0); bzero(packed + nvsize, bufsize - nvsize); dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); kmem_free(packed, bufsize); VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); dmu_buf_will_dirty(db, tx); *(uint64_t *)db->db_data = nvsize; dmu_buf_rele(db, FTAG); } static void spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, const char *config, const char *entry) { nvlist_t *nvroot; nvlist_t **list; int i; if (!sav->sav_sync) return; /* * Update the MOS nvlist describing the list of available devices. * spa_validate_aux() will have already made sure this nvlist is * valid and the vdevs are labeled appropriately. */ if (sav->sav_object == 0) { sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); VERIFY(zap_update(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, &sav->sav_object, tx) == 0); } VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); if (sav->sav_count == 0) { VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); } else { list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); for (i = 0; i < sav->sav_count; i++) list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], B_FALSE, B_FALSE, B_TRUE); VERIFY(nvlist_add_nvlist_array(nvroot, config, list, sav->sav_count) == 0); for (i = 0; i < sav->sav_count; i++) nvlist_free(list[i]); kmem_free(list, sav->sav_count * sizeof (void *)); } spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); nvlist_free(nvroot); sav->sav_sync = B_FALSE; } static void spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) { nvlist_t *config; if (list_is_empty(&spa->spa_dirty_list)) return; config = spa_config_generate(spa, NULL, dmu_tx_get_txg(tx), B_FALSE); if (spa->spa_config_syncing) nvlist_free(spa->spa_config_syncing); spa->spa_config_syncing = config; spa_sync_nvlist(spa, spa->spa_config_object, config, tx); } /* * Set zpool properties. */ static void spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx) { spa_t *spa = arg1; objset_t *mos = spa->spa_meta_objset; nvlist_t *nvp = arg2; nvpair_t *elem; uint64_t intval; char *strval; zpool_prop_t prop; const char *propname; zprop_type_t proptype; spa_config_dirent_t *dp; elem = NULL; while ((elem = nvlist_next_nvpair(nvp, elem))) { switch (prop = zpool_name_to_prop(nvpair_name(elem))) { case ZPOOL_PROP_VERSION: /* * Only set version for non-zpool-creation cases * (set/import). spa_create() needs special care * for version setting. */ if (tx->tx_txg != TXG_INITIAL) { VERIFY(nvpair_value_uint64(elem, &intval) == 0); ASSERT(intval <= SPA_VERSION); ASSERT(intval >= spa_version(spa)); spa->spa_uberblock.ub_version = intval; vdev_config_dirty(spa->spa_root_vdev); } break; case ZPOOL_PROP_ALTROOT: /* * 'altroot' is a non-persistent property. It should * have been set temporarily at creation or import time. */ ASSERT(spa->spa_root != NULL); break; case ZPOOL_PROP_CACHEFILE: /* * 'cachefile' is a non-persistent property, but note * an async request that the config cache needs to be * udpated. */ VERIFY(nvpair_value_string(elem, &strval) == 0); dp = kmem_alloc(sizeof (spa_config_dirent_t), KM_SLEEP); if (strval[0] == '\0') dp->scd_path = spa_strdup(spa_config_path); else if (strcmp(strval, "none") == 0) dp->scd_path = NULL; else dp->scd_path = spa_strdup(strval); list_insert_head(&spa->spa_config_list, dp); spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); break; default: /* * Set pool property values in the poolprops mos object. */ mutex_enter(&spa->spa_props_lock); if (spa->spa_pool_props_object == 0) { objset_t *mos = spa->spa_meta_objset; VERIFY((spa->spa_pool_props_object = zap_create(mos, DMU_OT_POOL_PROPS, DMU_OT_NONE, 0, tx)) > 0); VERIFY(zap_update(mos, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 8, 1, &spa->spa_pool_props_object, tx) == 0); } mutex_exit(&spa->spa_props_lock); /* normalize the property name */ propname = zpool_prop_to_name(prop); proptype = zpool_prop_get_type(prop); if (nvpair_type(elem) == DATA_TYPE_STRING) { ASSERT(proptype == PROP_TYPE_STRING); VERIFY(nvpair_value_string(elem, &strval) == 0); VERIFY(zap_update(mos, spa->spa_pool_props_object, propname, 1, strlen(strval) + 1, strval, tx) == 0); } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { VERIFY(nvpair_value_uint64(elem, &intval) == 0); if (proptype == PROP_TYPE_INDEX) { const char *unused; VERIFY(zpool_prop_index_to_string( prop, intval, &unused) == 0); } VERIFY(zap_update(mos, spa->spa_pool_props_object, propname, 8, 1, &intval, tx) == 0); } else { ASSERT(0); /* not allowed */ } switch (prop) { case ZPOOL_PROP_DELEGATION: spa->spa_delegation = intval; break; case ZPOOL_PROP_BOOTFS: spa->spa_bootfs = intval; break; case ZPOOL_PROP_FAILUREMODE: spa->spa_failmode = intval; break; default: break; } } /* log internal history if this is not a zpool create */ if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY && tx->tx_txg != TXG_INITIAL) { spa_history_internal_log(LOG_POOL_PROPSET, spa, tx, cr, "%s %lld %s", nvpair_name(elem), intval, spa->spa_name); } } } /* * Sync the specified transaction group. New blocks may be dirtied as * part of the process, so we iterate until it converges. */ void spa_sync(spa_t *spa, uint64_t txg) { dsl_pool_t *dp = spa->spa_dsl_pool; objset_t *mos = spa->spa_meta_objset; bplist_t *bpl = &spa->spa_sync_bplist; vdev_t *rvd = spa->spa_root_vdev; vdev_t *vd; dmu_tx_t *tx; int dirty_vdevs; /* * Lock out configuration changes. */ spa_config_enter(spa, RW_READER, FTAG); spa->spa_syncing_txg = txg; spa->spa_sync_pass = 0; VERIFY(0 == bplist_open(bpl, mos, spa->spa_sync_bplist_obj)); tx = dmu_tx_create_assigned(dp, txg); /* * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, * set spa_deflate if we have no raid-z vdevs. */ if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { int i; for (i = 0; i < rvd->vdev_children; i++) { vd = rvd->vdev_child[i]; if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) break; } if (i == rvd->vdev_children) { spa->spa_deflate = TRUE; VERIFY(0 == zap_add(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, sizeof (uint64_t), 1, &spa->spa_deflate, tx)); } } if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { dsl_pool_create_origin(dp, tx); /* Keeping the origin open increases spa_minref */ spa->spa_minref += 3; } if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { dsl_pool_upgrade_clones(dp, tx); } /* * If anything has changed in this txg, push the deferred frees * from the previous txg. If not, leave them alone so that we * don't generate work on an otherwise idle system. */ if (!txg_list_empty(&dp->dp_dirty_datasets, txg) || !txg_list_empty(&dp->dp_dirty_dirs, txg) || !txg_list_empty(&dp->dp_sync_tasks, txg)) spa_sync_deferred_frees(spa, txg); /* * Iterate to convergence. */ do { spa->spa_sync_pass++; spa_sync_config_object(spa, tx); spa_sync_aux_dev(spa, &spa->spa_spares, tx, ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); spa_errlog_sync(spa, txg); dsl_pool_sync(dp, txg); dirty_vdevs = 0; while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) { vdev_sync(vd, txg); dirty_vdevs++; } bplist_sync(bpl, tx); } while (dirty_vdevs); bplist_close(bpl); dprintf("txg %llu passes %d\n", txg, spa->spa_sync_pass); /* * Rewrite the vdev configuration (which includes the uberblock) * to commit the transaction group. * * If there are no dirty vdevs, we sync the uberblock to a few * random top-level vdevs that are known to be visible in the * config cache (see spa_vdev_add() for details). If there *are* * dirty vdevs -- or if the sync to our random subset fails -- * then sync the uberblock to all vdevs. */ if (list_is_empty(&spa->spa_dirty_list)) { vdev_t *svd[SPA_DVAS_PER_BP]; int svdcount = 0; int children = rvd->vdev_children; int c0 = spa_get_random(children); int c; for (c = 0; c < children; c++) { vd = rvd->vdev_child[(c0 + c) % children]; if (vd->vdev_ms_array == 0 || vd->vdev_islog) continue; svd[svdcount++] = vd; if (svdcount == SPA_DVAS_PER_BP) break; } vdev_config_sync(svd, svdcount, txg); } else { vdev_config_sync(rvd->vdev_child, rvd->vdev_children, txg); } dmu_tx_commit(tx); /* * Clear the dirty config list. */ while ((vd = list_head(&spa->spa_dirty_list)) != NULL) vdev_config_clean(vd); /* * Now that the new config has synced transactionally, * let it become visible to the config cache. */ if (spa->spa_config_syncing != NULL) { spa_config_set(spa, spa->spa_config_syncing); spa->spa_config_txg = txg; spa->spa_config_syncing = NULL; } spa->spa_traverse_wanted = B_TRUE; rw_enter(&spa->spa_traverse_lock, RW_WRITER); spa->spa_traverse_wanted = B_FALSE; spa->spa_ubsync = spa->spa_uberblock; rw_exit(&spa->spa_traverse_lock); /* * Clean up the ZIL records for the synced txg. */ dsl_pool_zil_clean(dp); /* * Update usable space statistics. */ while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) vdev_sync_done(vd, txg); /* * It had better be the case that we didn't dirty anything * since vdev_config_sync(). */ ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); ASSERT(bpl->bpl_queue == NULL); spa_config_exit(spa, FTAG); /* * If any async tasks have been requested, kick them off. */ spa_async_dispatch(spa); } /* * Sync all pools. We don't want to hold the namespace lock across these * operations, so we take a reference on the spa_t and drop the lock during the * sync. */ void spa_sync_allpools(void) { spa_t *spa = NULL; mutex_enter(&spa_namespace_lock); while ((spa = spa_next(spa)) != NULL) { if (spa_state(spa) != POOL_STATE_ACTIVE) continue; spa_open_ref(spa, FTAG); mutex_exit(&spa_namespace_lock); txg_wait_synced(spa_get_dsl(spa), 0); mutex_enter(&spa_namespace_lock); spa_close(spa, FTAG); } mutex_exit(&spa_namespace_lock); } /* * ========================================================================== * Miscellaneous routines * ========================================================================== */ /* * Remove all pools in the system. */ void spa_evict_all(void) { spa_t *spa; /* * Remove all cached state. All pools should be closed now, * so every spa in the AVL tree should be unreferenced. */ mutex_enter(&spa_namespace_lock); while ((spa = spa_next(NULL)) != NULL) { /* * Stop async tasks. The async thread may need to detach * a device that's been replaced, which requires grabbing * spa_namespace_lock, so we must drop it here. */ spa_open_ref(spa, FTAG); mutex_exit(&spa_namespace_lock); spa_async_suspend(spa); mutex_enter(&spa_namespace_lock); spa_close(spa, FTAG); if (spa->spa_state != POOL_STATE_UNINITIALIZED) { spa_unload(spa); spa_deactivate(spa); } spa_remove(spa); } mutex_exit(&spa_namespace_lock); } vdev_t * spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t l2cache) { vdev_t *vd; int i; if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) return (vd); if (l2cache) { for (i = 0; i < spa->spa_l2cache.sav_count; i++) { vd = spa->spa_l2cache.sav_vdevs[i]; if (vd->vdev_guid == guid) return (vd); } } return (NULL); } void spa_upgrade(spa_t *spa, uint64_t version) { spa_config_enter(spa, RW_WRITER, FTAG); /* * This should only be called for a non-faulted pool, and since a * future version would result in an unopenable pool, this shouldn't be * possible. */ ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION); ASSERT(version >= spa->spa_uberblock.ub_version); spa->spa_uberblock.ub_version = version; vdev_config_dirty(spa->spa_root_vdev); spa_config_exit(spa, FTAG); txg_wait_synced(spa_get_dsl(spa), 0); } boolean_t spa_has_spare(spa_t *spa, uint64_t guid) { int i; uint64_t spareguid; spa_aux_vdev_t *sav = &spa->spa_spares; for (i = 0; i < sav->sav_count; i++) if (sav->sav_vdevs[i]->vdev_guid == guid) return (B_TRUE); for (i = 0; i < sav->sav_npending; i++) { if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, &spareguid) == 0 && spareguid == guid) return (B_TRUE); } return (B_FALSE); } /* * Check if a pool has an active shared spare device. * Note: reference count of an active spare is 2, as a spare and as a replace */ static boolean_t spa_has_active_shared_spare(spa_t *spa) { int i, refcnt; uint64_t pool; spa_aux_vdev_t *sav = &spa->spa_spares; for (i = 0; i < sav->sav_count; i++) { if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, &refcnt) && pool != 0ULL && pool == spa_guid(spa) && refcnt > 2) return (B_TRUE); } return (B_FALSE); } /* * Post a sysevent corresponding to the given event. The 'name' must be one of * the event definitions in sys/sysevent/eventdefs.h. The payload will be * filled in from the spa and (optionally) the vdev. This doesn't do anything * in the userland libzpool, as we don't want consumers to misinterpret ztest * or zdb as real changes. */ void spa_event_notify(spa_t *spa, vdev_t *vd, const char *name) { #ifdef _KERNEL sysevent_t *ev; sysevent_attr_list_t *attr = NULL; sysevent_value_t value; sysevent_id_t eid; ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", SE_SLEEP); value.value_type = SE_DATA_TYPE_STRING; value.value.sv_string = spa_name(spa); if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) goto done; value.value_type = SE_DATA_TYPE_UINT64; value.value.sv_uint64 = spa_guid(spa); if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) goto done; if (vd) { value.value_type = SE_DATA_TYPE_UINT64; value.value.sv_uint64 = vd->vdev_guid; if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, SE_SLEEP) != 0) goto done; if (vd->vdev_path) { value.value_type = SE_DATA_TYPE_STRING; value.value.sv_string = vd->vdev_path; if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, &value, SE_SLEEP) != 0) goto done; } } if (sysevent_attach_attributes(ev, attr) != 0) goto done; attr = NULL; (void) log_sysevent(ev, SE_SLEEP, &eid); done: if (attr) sysevent_free_attr(attr); sysevent_free(ev); #endif }