/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #include #include #include #include #include #include /* for dsl_dataset_block_freeable() */ #include /* for dsl_dir_tempreserve_*() */ #include #include /* for ZAP_BLOCK_SHIFT */ #include #include typedef void (*dmu_tx_hold_func_t)(dmu_tx_t *tx, struct dnode *dn, uint64_t arg1, uint64_t arg2); #ifdef ZFS_DEBUG int dmu_use_tx_debug_bufs = 1; #endif dmu_tx_t * dmu_tx_create_ds(dsl_dir_t *dd) { dmu_tx_t *tx = kmem_zalloc(sizeof (dmu_tx_t), KM_SLEEP); tx->tx_dir = dd; if (dd) tx->tx_pool = dd->dd_pool; list_create(&tx->tx_holds, sizeof (dmu_tx_hold_t), offsetof(dmu_tx_hold_t, dth_node)); refcount_create(&tx->tx_space_written); refcount_create(&tx->tx_space_freed); return (tx); } dmu_tx_t * dmu_tx_create(objset_t *os) { dmu_tx_t *tx = dmu_tx_create_ds(os->os->os_dsl_dataset->ds_dir); tx->tx_objset = os; tx->tx_lastsnap_txg = dsl_dataset_prev_snap_txg(os->os->os_dsl_dataset); return (tx); } dmu_tx_t * dmu_tx_create_assigned(struct dsl_pool *dp, uint64_t txg) { dmu_tx_t *tx = dmu_tx_create_ds(NULL); ASSERT3U(txg, <=, dp->dp_tx.tx_open_txg); tx->tx_pool = dp; tx->tx_txg = txg; tx->tx_anyobj = TRUE; return (tx); } int dmu_tx_is_syncing(dmu_tx_t *tx) { return (tx->tx_anyobj); } int dmu_tx_private_ok(dmu_tx_t *tx) { return (tx->tx_anyobj); } static void dmu_tx_hold_object_impl(dmu_tx_t *tx, objset_t *os, uint64_t object, enum dmu_tx_hold_type type, dmu_tx_hold_func_t func, uint64_t arg1, uint64_t arg2) { dmu_tx_hold_t *dth; dnode_t *dn = NULL; int err; if (object != DMU_NEW_OBJECT) { err = dnode_hold(os->os, object, tx, &dn); if (err) { tx->tx_err = err; return; } if (err == 0 && tx->tx_txg != 0) { mutex_enter(&dn->dn_mtx); /* * dn->dn_assigned_txg == tx->tx_txg doesn't pose a * problem, but there's no way for it to happen (for * now, at least). */ ASSERT(dn->dn_assigned_txg == 0); ASSERT(dn->dn_assigned_tx == NULL); dn->dn_assigned_txg = tx->tx_txg; dn->dn_assigned_tx = tx; (void) refcount_add(&dn->dn_tx_holds, tx); mutex_exit(&dn->dn_mtx); } } dth = kmem_zalloc(sizeof (dmu_tx_hold_t), KM_SLEEP); dth->dth_dnode = dn; dth->dth_type = type; dth->dth_arg1 = arg1; dth->dth_arg2 = arg2; list_insert_tail(&tx->tx_holds, dth); if (func) func(tx, dn, arg1, arg2); } void dmu_tx_add_new_object(dmu_tx_t *tx, objset_t *os, uint64_t object) { /* * If we're syncing, they can manipulate any object anyhow, and * the hold on the dnode_t can cause problems. */ if (!dmu_tx_is_syncing(tx)) { dmu_tx_hold_object_impl(tx, os, object, THT_NEWOBJECT, NULL, 0, 0); } } static int dmu_tx_check_ioerr(zio_t *zio, dnode_t *dn, int level, uint64_t blkid) { int err; dmu_buf_impl_t *db; rw_enter(&dn->dn_struct_rwlock, RW_READER); db = dbuf_hold_level(dn, level, blkid, FTAG); rw_exit(&dn->dn_struct_rwlock); if (db == NULL) return (EIO); err = dbuf_read(db, zio, DB_RF_CANFAIL); dbuf_rele(db, FTAG); return (err); } /* ARGSUSED */ static void dmu_tx_count_write(dmu_tx_t *tx, dnode_t *dn, uint64_t off, uint64_t len) { uint64_t start, end, i, space; int min_bs, max_bs, min_ibs, max_ibs, epbs, bits; if (len == 0) return; min_bs = SPA_MINBLOCKSHIFT; max_bs = SPA_MAXBLOCKSHIFT; min_ibs = DN_MIN_INDBLKSHIFT; max_ibs = DN_MAX_INDBLKSHIFT; /* * For i/o error checking, read the first and last level-0 * blocks, and all the level-1 blocks. We needn't do this on * the meta-dnode, because we've already read it in. */ if (dn && dn->dn_object != DMU_META_DNODE_OBJECT) { int err; if (dn->dn_maxblkid == 0) { err = dmu_tx_check_ioerr(NULL, dn, 0, 0); if (err) { tx->tx_err = err; return; } } else { zio_t *zio = zio_root(tx->tx_pool->dp_spa, NULL, NULL, ZIO_FLAG_CANFAIL); /* first level-0 block */ start = off/dn->dn_datablksz; err = dmu_tx_check_ioerr(zio, dn, 0, start); if (err) { tx->tx_err = err; return; } /* last level-0 block */ end = (off+len)/dn->dn_datablksz; if (end != start) { err = dmu_tx_check_ioerr(zio, dn, 0, end); if (err) { tx->tx_err = err; return; } } /* level-1 blocks */ if (dn->dn_nlevels > 1) { start >>= dn->dn_indblkshift - SPA_BLKPTRSHIFT; end >>= dn->dn_indblkshift - SPA_BLKPTRSHIFT; for (i = start+1; i < end; i++) { err = dmu_tx_check_ioerr(zio, dn, 1, i); if (err) { tx->tx_err = err; return; } } } err = zio_wait(zio); if (err) { tx->tx_err = err; return; } } } /* * If there's more than one block, the blocksize can't change, * so we can make a more precise estimate. Alternatively, * if the dnode's ibs is larger than max_ibs, always use that. * This ensures that if we reduce DN_MAX_INDBLKSHIFT, * the code will still work correctly on existing pools. */ if (dn && (dn->dn_maxblkid != 0 || dn->dn_indblkshift > max_ibs)) { min_ibs = max_ibs = dn->dn_indblkshift; if (dn->dn_datablkshift != 0) min_bs = max_bs = dn->dn_datablkshift; } /* * 'end' is the last thing we will access, not one past. * This way we won't overflow when accessing the last byte. */ start = P2ALIGN(off, 1ULL << max_bs); end = P2ROUNDUP(off + len, 1ULL << max_bs) - 1; space = end - start + 1; start >>= min_bs; end >>= min_bs; epbs = min_ibs - SPA_BLKPTRSHIFT; /* * The object contains at most 2^(64 - min_bs) blocks, * and each indirect level maps 2^epbs. */ for (bits = 64 - min_bs; bits >= 0; bits -= epbs) { start >>= epbs; end >>= epbs; /* * If we increase the number of levels of indirection, * we'll need new blkid=0 indirect blocks. If start == 0, * we're already accounting for that blocks; and if end == 0, * we can't increase the number of levels beyond that. */ if (start != 0 && end != 0) space += 1ULL << max_ibs; space += (end - start + 1) << max_ibs; } ASSERT(space < 2 * DMU_MAX_ACCESS); tx->tx_space_towrite += space; } static void dmu_tx_count_dnode(dmu_tx_t *tx, dnode_t *dn) { dnode_t *mdn = tx->tx_objset->os->os_meta_dnode; uint64_t object = dn ? dn->dn_object : DN_MAX_OBJECT - 1; uint64_t pre_write_space; ASSERT(object < DN_MAX_OBJECT); pre_write_space = tx->tx_space_towrite; dmu_tx_count_write(tx, mdn, object << DNODE_SHIFT, 1 << DNODE_SHIFT); if (dn && dn->dn_dbuf->db_blkptr && dsl_dataset_block_freeable(dn->dn_objset->os_dsl_dataset, dn->dn_dbuf->db_blkptr->blk_birth)) { tx->tx_space_tooverwrite += tx->tx_space_towrite - pre_write_space; tx->tx_space_towrite = pre_write_space; } } /* ARGSUSED */ static void dmu_tx_hold_write_impl(dmu_tx_t *tx, dnode_t *dn, uint64_t off, uint64_t len) { dmu_tx_count_write(tx, dn, off, len); dmu_tx_count_dnode(tx, dn); } void dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len) { ASSERT(tx->tx_txg == 0); ASSERT(len < DMU_MAX_ACCESS); ASSERT(len == 0 || UINT64_MAX - off >= len - 1); dmu_tx_hold_object_impl(tx, tx->tx_objset, object, THT_WRITE, dmu_tx_hold_write_impl, off, len); } static void dmu_tx_count_free(dmu_tx_t *tx, dnode_t *dn, uint64_t off, uint64_t len) { uint64_t blkid, nblks; uint64_t space = 0; dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; int dirty; /* * We don't need to use any locking to check for dirtyness * because it's OK if we get stale data -- the dnode may become * dirty immediately after our check anyway. This is just a * means to avoid the expensive count when we aren't sure we * need it. We need to be able to deal with a dirty dnode. */ dirty = list_link_active(&dn->dn_dirty_link[0]) | list_link_active(&dn->dn_dirty_link[1]) | list_link_active(&dn->dn_dirty_link[2]) | list_link_active(&dn->dn_dirty_link[3]); if (dirty || dn->dn_assigned_tx || dn->dn_phys->dn_nlevels == 0) return; /* * the struct_rwlock protects us against dn_phys->dn_nlevels * changing, in case (against all odds) we manage to dirty & * sync out the changes after we check for being dirty. * also, dbuf_hold_impl() wants us to have the struct_rwlock. * * It's fine to use dn_datablkshift rather than the dn_phys * equivalent because if it is changing, maxblkid==0 and we will * bail. */ rw_enter(&dn->dn_struct_rwlock, RW_READER); if (dn->dn_phys->dn_maxblkid == 0) { if (off == 0 && len >= dn->dn_datablksz) { blkid = 0; nblks = 1; } else { rw_exit(&dn->dn_struct_rwlock); return; } } else { blkid = off >> dn->dn_datablkshift; nblks = (off + len) >> dn->dn_datablkshift; if (blkid >= dn->dn_phys->dn_maxblkid) { rw_exit(&dn->dn_struct_rwlock); return; } if (blkid + nblks > dn->dn_phys->dn_maxblkid) nblks = dn->dn_phys->dn_maxblkid - blkid; /* don't bother after 128,000 blocks */ nblks = MIN(nblks, 128*1024); } if (dn->dn_phys->dn_nlevels == 1) { int i; for (i = 0; i < nblks; i++) { blkptr_t *bp = dn->dn_phys->dn_blkptr; ASSERT3U(blkid + i, <, dn->dn_phys->dn_nblkptr); bp += blkid + i; if (dsl_dataset_block_freeable(ds, bp->blk_birth)) { dprintf_bp(bp, "can free old%s", ""); space += BP_GET_ASIZE(bp); } } nblks = 0; } while (nblks) { dmu_buf_impl_t *dbuf; int err, epbs, blkoff, tochk; epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; blkoff = P2PHASE(blkid, 1<> epbs, TRUE, FTAG, &dbuf); if (err == 0) { int i; blkptr_t *bp; err = dbuf_read(dbuf, NULL, DB_RF_HAVESTRUCT | DB_RF_CANFAIL); if (err != 0) { tx->tx_err = err; dbuf_rele(dbuf, FTAG); break; } bp = dbuf->db.db_data; bp += blkoff; for (i = 0; i < tochk; i++) { if (dsl_dataset_block_freeable(ds, bp[i].blk_birth)) { dprintf_bp(&bp[i], "can free old%s", ""); space += BP_GET_ASIZE(&bp[i]); } } dbuf_rele(dbuf, FTAG); } if (err != 0 && err != ENOENT) { tx->tx_err = err; break; } blkid += tochk; nblks -= tochk; } rw_exit(&dn->dn_struct_rwlock); tx->tx_space_tofree += space; } static void dmu_tx_hold_free_impl(dmu_tx_t *tx, dnode_t *dn, uint64_t off, uint64_t len) { uint64_t start, end, i; int err, shift; zio_t *zio; /* first block */ if (off != 0) dmu_tx_count_write(tx, dn, off, 1); /* last block */ if (len != DMU_OBJECT_END) dmu_tx_count_write(tx, dn, off+len, 1); if (off >= (dn->dn_maxblkid+1) * dn->dn_datablksz) return; if (len == DMU_OBJECT_END) len = (dn->dn_maxblkid+1) * dn->dn_datablksz - off; /* * For i/o error checking, read the first and last level-0 * blocks, and all the level-1 blocks. The above count_write's * will take care of the level-0 blocks. */ if (dn->dn_nlevels > 1) { shift = dn->dn_datablkshift + dn->dn_indblkshift - SPA_BLKPTRSHIFT; start = off >> shift; end = dn->dn_datablkshift ? ((off+len) >> shift) : 0; zio = zio_root(tx->tx_pool->dp_spa, NULL, NULL, ZIO_FLAG_CANFAIL); for (i = start; i <= end; i++) { uint64_t ibyte = i << shift; err = dnode_next_offset(dn, FALSE, &ibyte, 2, 1); i = ibyte >> shift; if (err == ESRCH) break; if (err) { tx->tx_err = err; return; } err = dmu_tx_check_ioerr(zio, dn, 1, i); if (err) { tx->tx_err = err; return; } } err = zio_wait(zio); if (err) { tx->tx_err = err; return; } } dmu_tx_count_dnode(tx, dn); dmu_tx_count_free(tx, dn, off, len); } void dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off, uint64_t len) { ASSERT(tx->tx_txg == 0); dmu_tx_hold_object_impl(tx, tx->tx_objset, object, THT_FREE, dmu_tx_hold_free_impl, off, len); } /* ARGSUSED */ static void dmu_tx_hold_zap_impl(dmu_tx_t *tx, dnode_t *dn, uint64_t add, uint64_t iname) { uint64_t nblocks; int epbs, err; char *name = (char *)(uintptr_t)iname; dmu_tx_count_dnode(tx, dn); if (dn == NULL) { /* * We will be able to fit a new object's entries into one leaf * block. So there will be at most 2 blocks total, * including the header block. */ dmu_tx_count_write(tx, dn, 0, 2 << fzap_default_block_shift); return; } ASSERT3P(dmu_ot[dn->dn_type].ot_byteswap, ==, zap_byteswap); if (dn->dn_maxblkid == 0 && !add) { /* * If there is only one block (i.e. this is a micro-zap) * and we are not adding anything, the accounting is simple. */ err = dmu_tx_check_ioerr(NULL, dn, 0, 0); if (err) { tx->tx_err = err; return; } if (dsl_dataset_block_freeable(dn->dn_objset->os_dsl_dataset, dn->dn_phys->dn_blkptr[0].blk_birth)) tx->tx_space_tooverwrite += dn->dn_datablksz; else tx->tx_space_towrite += dn->dn_datablksz; return; } if (dn->dn_maxblkid > 0 && name) { /* * access the name in this fat-zap so that we'll check * for i/o errors to the leaf blocks, etc. */ err = zap_lookup(&dn->dn_objset->os, dn->dn_object, name, 8, 0, NULL); if (err == EIO) { tx->tx_err = err; return; } } /* * 3 blocks overwritten: target leaf, ptrtbl block, header block * 3 new blocks written if adding: new split leaf, 2 grown ptrtbl blocks */ dmu_tx_count_write(tx, dn, dn->dn_maxblkid * dn->dn_datablksz, (3 + add ? 3 : 0) << dn->dn_datablkshift); /* * If the modified blocks are scattered to the four winds, * we'll have to modify an indirect twig for each. */ epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; for (nblocks = dn->dn_maxblkid >> epbs; nblocks != 0; nblocks >>= epbs) tx->tx_space_towrite += 3 << dn->dn_indblkshift; } void dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, char *name) { ASSERT(tx->tx_txg == 0); dmu_tx_hold_object_impl(tx, tx->tx_objset, object, THT_ZAP, dmu_tx_hold_zap_impl, add, (uintptr_t)name); } void dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object) { ASSERT(tx->tx_txg == 0); dmu_tx_hold_object_impl(tx, tx->tx_objset, object, THT_BONUS, dmu_tx_hold_write_impl, 0, 0); } /* ARGSUSED */ static void dmu_tx_hold_space_impl(dmu_tx_t *tx, dnode_t *dn, uint64_t space, uint64_t unused) { tx->tx_space_towrite += space; } void dmu_tx_hold_space(dmu_tx_t *tx, uint64_t space) { ASSERT(tx->tx_txg == 0); dmu_tx_hold_object_impl(tx, tx->tx_objset, DMU_NEW_OBJECT, THT_SPACE, dmu_tx_hold_space_impl, space, 0); } int dmu_tx_holds(dmu_tx_t *tx, uint64_t object) { dmu_tx_hold_t *dth; int holds = 0; /* * By asserting that the tx is assigned, we're counting the * number of dn_tx_holds, which is the same as the number of * dn_holds. Otherwise, we'd be counting dn_holds, but * dn_tx_holds could be 0. */ ASSERT(tx->tx_txg != 0); /* if (tx->tx_anyobj == TRUE) */ /* return (0); */ for (dth = list_head(&tx->tx_holds); dth; dth = list_next(&tx->tx_holds, dth)) { if (dth->dth_dnode && dth->dth_dnode->dn_object == object) holds++; } return (holds); } #ifdef ZFS_DEBUG void dmu_tx_dirty_buf(dmu_tx_t *tx, dmu_buf_impl_t *db) { dmu_tx_hold_t *dth; int match_object = FALSE, match_offset = FALSE; dnode_t *dn = db->db_dnode; ASSERT(tx->tx_txg != 0); ASSERT(tx->tx_objset == NULL || dn->dn_objset == tx->tx_objset->os); ASSERT3U(dn->dn_object, ==, db->db.db_object); if (tx->tx_anyobj) return; /* XXX No checking on the meta dnode for now */ if (db->db.db_object == DMU_META_DNODE_OBJECT) return; for (dth = list_head(&tx->tx_holds); dth; dth = list_next(&tx->tx_holds, dth)) { ASSERT(dn == NULL || dn->dn_assigned_txg == tx->tx_txg); if (dth->dth_dnode == dn && dth->dth_type != THT_NEWOBJECT) match_object = TRUE; if (dth->dth_dnode == NULL || dth->dth_dnode == dn) { int datablkshift = dn->dn_datablkshift ? dn->dn_datablkshift : SPA_MAXBLOCKSHIFT; int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; int shift = datablkshift + epbs * db->db_level; uint64_t beginblk = shift >= 64 ? 0 : (dth->dth_arg1 >> shift); uint64_t endblk = shift >= 64 ? 0 : ((dth->dth_arg1 + dth->dth_arg2 - 1) >> shift); uint64_t blkid = db->db_blkid; /* XXX dth_arg2 better not be zero... */ dprintf("found dth type %x beginblk=%llx endblk=%llx\n", dth->dth_type, beginblk, endblk); switch (dth->dth_type) { case THT_WRITE: if (blkid >= beginblk && blkid <= endblk) match_offset = TRUE; /* * We will let this hold work for the bonus * buffer so that we don't need to hold it * when creating a new object. */ if (blkid == DB_BONUS_BLKID) match_offset = TRUE; /* * They might have to increase nlevels, * thus dirtying the new TLIBs. Or the * might have to change the block size, * thus dirying the new lvl=0 blk=0. */ if (blkid == 0) match_offset = TRUE; break; case THT_FREE: if (blkid == beginblk && (dth->dth_arg1 != 0 || dn->dn_maxblkid == 0)) match_offset = TRUE; if (blkid == endblk && dth->dth_arg2 != DMU_OBJECT_END) match_offset = TRUE; break; case THT_BONUS: if (blkid == DB_BONUS_BLKID) match_offset = TRUE; break; case THT_ZAP: match_offset = TRUE; break; case THT_NEWOBJECT: match_object = TRUE; break; default: ASSERT(!"bad dth_type"); } } if (match_object && match_offset) return; } panic("dirtying dbuf obj=%llx lvl=%u blkid=%llx but not tx_held\n", (u_longlong_t)db->db.db_object, db->db_level, (u_longlong_t)db->db_blkid); } #endif static int dmu_tx_try_assign(dmu_tx_t *tx, uint64_t txg_how, dmu_tx_hold_t **last_dth) { dmu_tx_hold_t *dth; uint64_t lsize, asize, fsize, towrite; *last_dth = NULL; tx->tx_txg = txg_hold_open(tx->tx_pool, &tx->tx_txgh); if (txg_how >= TXG_INITIAL && txg_how != tx->tx_txg) return (ERESTART); if (tx->tx_err) return (tx->tx_err); for (dth = list_head(&tx->tx_holds); dth; dth = list_next(&tx->tx_holds, dth)) { dnode_t *dn = dth->dth_dnode; if (dn != NULL) { mutex_enter(&dn->dn_mtx); while (dn->dn_assigned_txg == tx->tx_txg - 1) { if (txg_how != TXG_WAIT) { mutex_exit(&dn->dn_mtx); return (ERESTART); } cv_wait(&dn->dn_notxholds, &dn->dn_mtx); } if (dn->dn_assigned_txg == 0) { ASSERT(dn->dn_assigned_tx == NULL); dn->dn_assigned_txg = tx->tx_txg; dn->dn_assigned_tx = tx; } else { ASSERT(dn->dn_assigned_txg == tx->tx_txg); if (dn->dn_assigned_tx != tx) dn->dn_assigned_tx = NULL; } (void) refcount_add(&dn->dn_tx_holds, tx); mutex_exit(&dn->dn_mtx); } *last_dth = dth; if (tx->tx_err) return (tx->tx_err); } /* * If a snapshot has been taken since we made our estimates, * assume that we won't be able to free or overwrite anything. */ if (tx->tx_objset && dsl_dataset_prev_snap_txg(tx->tx_objset->os->os_dsl_dataset) > tx->tx_lastsnap_txg) { tx->tx_space_towrite += tx->tx_space_tooverwrite; tx->tx_space_tooverwrite = 0; tx->tx_space_tofree = 0; } /* * Convert logical size to worst-case allocated size. */ fsize = spa_get_asize(tx->tx_pool->dp_spa, tx->tx_space_tooverwrite) + tx->tx_space_tofree; lsize = tx->tx_space_towrite + tx->tx_space_tooverwrite; asize = spa_get_asize(tx->tx_pool->dp_spa, lsize); towrite = tx->tx_space_towrite; tx->tx_space_towrite = asize; if (tx->tx_dir && asize != 0) { int err = dsl_dir_tempreserve_space(tx->tx_dir, lsize, asize, fsize, &tx->tx_tempreserve_cookie, tx); if (err) { tx->tx_space_towrite = towrite; return (err); } } return (0); } static uint64_t dmu_tx_unassign(dmu_tx_t *tx, dmu_tx_hold_t *last_dth) { uint64_t txg = tx->tx_txg; dmu_tx_hold_t *dth; ASSERT(txg != 0); txg_rele_to_quiesce(&tx->tx_txgh); for (dth = last_dth; dth; dth = list_prev(&tx->tx_holds, dth)) { dnode_t *dn = dth->dth_dnode; if (dn == NULL) continue; mutex_enter(&dn->dn_mtx); ASSERT3U(dn->dn_assigned_txg, ==, txg); if (refcount_remove(&dn->dn_tx_holds, tx) == 0) { dn->dn_assigned_txg = 0; dn->dn_assigned_tx = NULL; cv_broadcast(&dn->dn_notxholds); } mutex_exit(&dn->dn_mtx); } txg_rele_to_sync(&tx->tx_txgh); tx->tx_txg = 0; return (txg); } /* * Assign tx to a transaction group. txg_how can be one of: * * (1) TXG_WAIT. If the current open txg is full, waits until there's * a new one. This should be used when you're not holding locks. * If will only fail if we're truly out of space (or over quota). * * (2) TXG_NOWAIT. If we can't assign into the current open txg without * blocking, returns immediately with ERESTART. This should be used * whenever you're holding locks. On an ERESTART error, the caller * should drop locks, do a txg_wait_open(dp, 0), and try again. * * (3) A specific txg. Use this if you need to ensure that multiple * transactions all sync in the same txg. Like TXG_NOWAIT, it * returns ERESTART if it can't assign you into the requested txg. */ int dmu_tx_assign(dmu_tx_t *tx, uint64_t txg_how) { dmu_tx_hold_t *last_dth; int err; ASSERT(tx->tx_txg == 0); ASSERT(txg_how != 0); ASSERT(!dsl_pool_sync_context(tx->tx_pool)); while ((err = dmu_tx_try_assign(tx, txg_how, &last_dth)) != 0) { uint64_t txg = dmu_tx_unassign(tx, last_dth); if (err != ERESTART || txg_how != TXG_WAIT) return (err); txg_wait_open(tx->tx_pool, txg + 1); } txg_rele_to_quiesce(&tx->tx_txgh); return (0); } void dmu_tx_willuse_space(dmu_tx_t *tx, int64_t delta) { if (tx->tx_dir == NULL || delta == 0) return; if (delta > 0) { ASSERT3U(refcount_count(&tx->tx_space_written) + delta, <=, tx->tx_space_towrite); (void) refcount_add_many(&tx->tx_space_written, delta, NULL); } else { (void) refcount_add_many(&tx->tx_space_freed, -delta, NULL); } } void dmu_tx_commit(dmu_tx_t *tx) { dmu_tx_hold_t *dth; ASSERT(tx->tx_txg != 0); while (dth = list_head(&tx->tx_holds)) { dnode_t *dn = dth->dth_dnode; list_remove(&tx->tx_holds, dth); kmem_free(dth, sizeof (dmu_tx_hold_t)); if (dn == NULL) continue; mutex_enter(&dn->dn_mtx); ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg); if (refcount_remove(&dn->dn_tx_holds, tx) == 0) { dn->dn_assigned_txg = 0; dn->dn_assigned_tx = NULL; cv_broadcast(&dn->dn_notxholds); } mutex_exit(&dn->dn_mtx); dnode_rele(dn, tx); } if (tx->tx_dir && tx->tx_space_towrite > 0) { dsl_dir_tempreserve_clear(tx->tx_tempreserve_cookie, tx); } if (tx->tx_anyobj == FALSE) txg_rele_to_sync(&tx->tx_txgh); dprintf("towrite=%llu written=%llu tofree=%llu freed=%llu\n", tx->tx_space_towrite, refcount_count(&tx->tx_space_written), tx->tx_space_tofree, refcount_count(&tx->tx_space_freed)); refcount_destroy_many(&tx->tx_space_written, refcount_count(&tx->tx_space_written)); refcount_destroy_many(&tx->tx_space_freed, refcount_count(&tx->tx_space_freed)); #ifdef ZFS_DEBUG if (tx->tx_debug_buf) kmem_free(tx->tx_debug_buf, 4096); #endif kmem_free(tx, sizeof (dmu_tx_t)); } void dmu_tx_abort(dmu_tx_t *tx) { dmu_tx_hold_t *dth; ASSERT(tx->tx_txg == 0); while (dth = list_head(&tx->tx_holds)) { dnode_t *dn = dth->dth_dnode; list_remove(&tx->tx_holds, dth); kmem_free(dth, sizeof (dmu_tx_hold_t)); if (dn != NULL) dnode_rele(dn, tx); } refcount_destroy_many(&tx->tx_space_written, refcount_count(&tx->tx_space_written)); refcount_destroy_many(&tx->tx_space_freed, refcount_count(&tx->tx_space_freed)); #ifdef ZFS_DEBUG if (tx->tx_debug_buf) kmem_free(tx->tx_debug_buf, 4096); #endif kmem_free(tx, sizeof (dmu_tx_t)); } uint64_t dmu_tx_get_txg(dmu_tx_t *tx) { ASSERT(tx->tx_txg != 0); return (tx->tx_txg); }