/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2010 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ /* All Rights Reserved */ /* * University Copyright- Copyright (c) 1982, 1986, 1988 * The Regents of the University of California * All Rights Reserved * * University Acknowledgment- Portions of this document are derived from * software developed by the University of California, Berkeley, and its * contributors. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Determine if this vnode is a file that is read-only */ #define ISROFILE(vp) \ ((vp)->v_type != VCHR && (vp)->v_type != VBLK && \ (vp)->v_type != VFIFO && vn_is_readonly(vp)) /* Tunable via /etc/system; used only by admin/install */ int nfs_global_client_only; /* * Array of vopstats_t for per-FS-type vopstats. This array has the same * number of entries as and parallel to the vfssw table. (Arguably, it could * be part of the vfssw table.) Once it's initialized, it's accessed using * the same fstype index that is used to index into the vfssw table. */ vopstats_t **vopstats_fstype; /* vopstats initialization template used for fast initialization via bcopy() */ static vopstats_t *vs_templatep; /* Kmem cache handle for vsk_anchor_t allocations */ kmem_cache_t *vsk_anchor_cache; /* file events cleanup routine */ extern void free_fopdata(vnode_t *); /* * Root of AVL tree for the kstats associated with vopstats. Lock protects * updates to vsktat_tree. */ avl_tree_t vskstat_tree; kmutex_t vskstat_tree_lock; /* Global variable which enables/disables the vopstats collection */ int vopstats_enabled = 1; /* * forward declarations for internal vnode specific data (vsd) */ static void *vsd_realloc(void *, size_t, size_t); /* * forward declarations for reparse point functions */ static int fs_reparse_mark(char *target, vattr_t *vap, xvattr_t *xvattr); /* * VSD -- VNODE SPECIFIC DATA * The v_data pointer is typically used by a file system to store a * pointer to the file system's private node (e.g. ufs inode, nfs rnode). * However, there are times when additional project private data needs * to be stored separately from the data (node) pointed to by v_data. * This additional data could be stored by the file system itself or * by a completely different kernel entity. VSD provides a way for * callers to obtain a key and store a pointer to private data associated * with a vnode. * * Callers are responsible for protecting the vsd by holding v_vsd_lock * for calls to vsd_set() and vsd_get(). */ /* * vsd_lock protects: * vsd_nkeys - creation and deletion of vsd keys * vsd_list - insertion and deletion of vsd_node in the vsd_list * vsd_destructor - adding and removing destructors to the list */ static kmutex_t vsd_lock; static uint_t vsd_nkeys; /* size of destructor array */ /* list of vsd_node's */ static list_t *vsd_list = NULL; /* per-key destructor funcs */ static void (**vsd_destructor)(void *); /* * The following is the common set of actions needed to update the * vopstats structure from a vnode op. Both VOPSTATS_UPDATE() and * VOPSTATS_UPDATE_IO() do almost the same thing, except for the * recording of the bytes transferred. Since the code is similar * but small, it is nearly a duplicate. Consequently any changes * to one may need to be reflected in the other. * Rundown of the variables: * vp - Pointer to the vnode * counter - Partial name structure member to update in vopstats for counts * bytecounter - Partial name structure member to update in vopstats for bytes * bytesval - Value to update in vopstats for bytes * fstype - Index into vsanchor_fstype[], same as index into vfssw[] * vsp - Pointer to vopstats structure (either in vfs or vsanchor_fstype[i]) */ #define VOPSTATS_UPDATE(vp, counter) { \ vfs_t *vfsp = (vp)->v_vfsp; \ if (vfsp && vfsp->vfs_implp && \ (vfsp->vfs_flag & VFS_STATS) && (vp)->v_type != VBAD) { \ vopstats_t *vsp = &vfsp->vfs_vopstats; \ uint64_t *stataddr = &(vsp->n##counter.value.ui64); \ extern void __dtrace_probe___fsinfo_##counter(vnode_t *, \ size_t, uint64_t *); \ __dtrace_probe___fsinfo_##counter(vp, 0, stataddr); \ (*stataddr)++; \ if ((vsp = vfsp->vfs_fstypevsp) != NULL) { \ vsp->n##counter.value.ui64++; \ } \ } \ } #define VOPSTATS_UPDATE_IO(vp, counter, bytecounter, bytesval) { \ vfs_t *vfsp = (vp)->v_vfsp; \ if (vfsp && vfsp->vfs_implp && \ (vfsp->vfs_flag & VFS_STATS) && (vp)->v_type != VBAD) { \ vopstats_t *vsp = &vfsp->vfs_vopstats; \ uint64_t *stataddr = &(vsp->n##counter.value.ui64); \ extern void __dtrace_probe___fsinfo_##counter(vnode_t *, \ size_t, uint64_t *); \ __dtrace_probe___fsinfo_##counter(vp, bytesval, stataddr); \ (*stataddr)++; \ vsp->bytecounter.value.ui64 += bytesval; \ if ((vsp = vfsp->vfs_fstypevsp) != NULL) { \ vsp->n##counter.value.ui64++; \ vsp->bytecounter.value.ui64 += bytesval; \ } \ } \ } /* * If the filesystem does not support XIDs map credential * If the vfsp is NULL, perhaps we should also map? */ #define VOPXID_MAP_CR(vp, cr) { \ vfs_t *vfsp = (vp)->v_vfsp; \ if (vfsp != NULL && (vfsp->vfs_flag & VFS_XID) == 0) \ cr = crgetmapped(cr); \ } /* * Convert stat(2) formats to vnode types and vice versa. (Knows about * numerical order of S_IFMT and vnode types.) */ enum vtype iftovt_tab[] = { VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON, VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON }; ushort_t vttoif_tab[] = { 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK, S_IFIFO, S_IFDOOR, 0, S_IFSOCK, S_IFPORT, 0 }; /* * The system vnode cache. */ kmem_cache_t *vn_cache; /* * Vnode operations vector. */ static const fs_operation_trans_def_t vn_ops_table[] = { VOPNAME_OPEN, offsetof(struct vnodeops, vop_open), fs_nosys, fs_nosys, VOPNAME_CLOSE, offsetof(struct vnodeops, vop_close), fs_nosys, fs_nosys, VOPNAME_READ, offsetof(struct vnodeops, vop_read), fs_nosys, fs_nosys, VOPNAME_WRITE, offsetof(struct vnodeops, vop_write), fs_nosys, fs_nosys, VOPNAME_IOCTL, offsetof(struct vnodeops, vop_ioctl), fs_nosys, fs_nosys, VOPNAME_SETFL, offsetof(struct vnodeops, vop_setfl), fs_setfl, fs_nosys, VOPNAME_GETATTR, offsetof(struct vnodeops, vop_getattr), fs_nosys, fs_nosys, VOPNAME_SETATTR, offsetof(struct vnodeops, vop_setattr), fs_nosys, fs_nosys, VOPNAME_ACCESS, offsetof(struct vnodeops, vop_access), fs_nosys, fs_nosys, VOPNAME_LOOKUP, offsetof(struct vnodeops, vop_lookup), fs_nosys, fs_nosys, VOPNAME_CREATE, offsetof(struct vnodeops, vop_create), fs_nosys, fs_nosys, VOPNAME_REMOVE, offsetof(struct vnodeops, vop_remove), fs_nosys, fs_nosys, VOPNAME_LINK, offsetof(struct vnodeops, vop_link), fs_nosys, fs_nosys, VOPNAME_RENAME, offsetof(struct vnodeops, vop_rename), fs_nosys, fs_nosys, VOPNAME_MKDIR, offsetof(struct vnodeops, vop_mkdir), fs_nosys, fs_nosys, VOPNAME_RMDIR, offsetof(struct vnodeops, vop_rmdir), fs_nosys, fs_nosys, VOPNAME_READDIR, offsetof(struct vnodeops, vop_readdir), fs_nosys, fs_nosys, VOPNAME_SYMLINK, offsetof(struct vnodeops, vop_symlink), fs_nosys, fs_nosys, VOPNAME_READLINK, offsetof(struct vnodeops, vop_readlink), fs_nosys, fs_nosys, VOPNAME_FSYNC, offsetof(struct vnodeops, vop_fsync), fs_nosys, fs_nosys, VOPNAME_INACTIVE, offsetof(struct vnodeops, vop_inactive), fs_nosys, fs_nosys, VOPNAME_FID, offsetof(struct vnodeops, vop_fid), fs_nosys, fs_nosys, VOPNAME_RWLOCK, offsetof(struct vnodeops, vop_rwlock), fs_rwlock, fs_rwlock, VOPNAME_RWUNLOCK, offsetof(struct vnodeops, vop_rwunlock), (fs_generic_func_p) fs_rwunlock, (fs_generic_func_p) fs_rwunlock, /* no errors allowed */ VOPNAME_SEEK, offsetof(struct vnodeops, vop_seek), fs_nosys, fs_nosys, VOPNAME_CMP, offsetof(struct vnodeops, vop_cmp), fs_cmp, fs_cmp, /* no errors allowed */ VOPNAME_FRLOCK, offsetof(struct vnodeops, vop_frlock), fs_frlock, fs_nosys, VOPNAME_SPACE, offsetof(struct vnodeops, vop_space), fs_nosys, fs_nosys, VOPNAME_REALVP, offsetof(struct vnodeops, vop_realvp), fs_nosys, fs_nosys, VOPNAME_GETPAGE, offsetof(struct vnodeops, vop_getpage), fs_nosys, fs_nosys, VOPNAME_PUTPAGE, offsetof(struct vnodeops, vop_putpage), fs_nosys, fs_nosys, VOPNAME_MAP, offsetof(struct vnodeops, vop_map), (fs_generic_func_p) fs_nosys_map, (fs_generic_func_p) fs_nosys_map, VOPNAME_ADDMAP, offsetof(struct vnodeops, vop_addmap), (fs_generic_func_p) fs_nosys_addmap, (fs_generic_func_p) fs_nosys_addmap, VOPNAME_DELMAP, offsetof(struct vnodeops, vop_delmap), fs_nosys, fs_nosys, VOPNAME_POLL, offsetof(struct vnodeops, vop_poll), (fs_generic_func_p) fs_poll, (fs_generic_func_p) fs_nosys_poll, VOPNAME_DUMP, offsetof(struct vnodeops, vop_dump), fs_nosys, fs_nosys, VOPNAME_PATHCONF, offsetof(struct vnodeops, vop_pathconf), fs_pathconf, fs_nosys, VOPNAME_PAGEIO, offsetof(struct vnodeops, vop_pageio), fs_nosys, fs_nosys, VOPNAME_DUMPCTL, offsetof(struct vnodeops, vop_dumpctl), fs_nosys, fs_nosys, VOPNAME_DISPOSE, offsetof(struct vnodeops, vop_dispose), (fs_generic_func_p) fs_dispose, (fs_generic_func_p) fs_nodispose, VOPNAME_SETSECATTR, offsetof(struct vnodeops, vop_setsecattr), fs_nosys, fs_nosys, VOPNAME_GETSECATTR, offsetof(struct vnodeops, vop_getsecattr), fs_fab_acl, fs_nosys, VOPNAME_SHRLOCK, offsetof(struct vnodeops, vop_shrlock), fs_shrlock, fs_nosys, VOPNAME_VNEVENT, offsetof(struct vnodeops, vop_vnevent), (fs_generic_func_p) fs_vnevent_nosupport, (fs_generic_func_p) fs_vnevent_nosupport, VOPNAME_REQZCBUF, offsetof(struct vnodeops, vop_reqzcbuf), fs_nosys, fs_nosys, VOPNAME_RETZCBUF, offsetof(struct vnodeops, vop_retzcbuf), fs_nosys, fs_nosys, NULL, 0, NULL, NULL }; /* Extensible attribute (xva) routines. */ /* * Zero out the structure, set the size of the requested/returned bitmaps, * set AT_XVATTR in the embedded vattr_t's va_mask, and set up the pointer * to the returned attributes array. */ void xva_init(xvattr_t *xvap) { bzero(xvap, sizeof (xvattr_t)); xvap->xva_mapsize = XVA_MAPSIZE; xvap->xva_magic = XVA_MAGIC; xvap->xva_vattr.va_mask = AT_XVATTR; xvap->xva_rtnattrmapp = &(xvap->xva_rtnattrmap)[0]; } /* * If AT_XVATTR is set, returns a pointer to the embedded xoptattr_t * structure. Otherwise, returns NULL. */ xoptattr_t * xva_getxoptattr(xvattr_t *xvap) { xoptattr_t *xoap = NULL; if (xvap->xva_vattr.va_mask & AT_XVATTR) xoap = &xvap->xva_xoptattrs; return (xoap); } /* * Used by the AVL routines to compare two vsk_anchor_t structures in the tree. * We use the f_fsid reported by VFS_STATVFS() since we use that for the * kstat name. */ static int vska_compar(const void *n1, const void *n2) { int ret; ulong_t p1 = ((vsk_anchor_t *)n1)->vsk_fsid; ulong_t p2 = ((vsk_anchor_t *)n2)->vsk_fsid; if (p1 < p2) { ret = -1; } else if (p1 > p2) { ret = 1; } else { ret = 0; } return (ret); } /* * Used to create a single template which will be bcopy()ed to a newly * allocated vsanchor_combo_t structure in new_vsanchor(), below. */ static vopstats_t * create_vopstats_template() { vopstats_t *vsp; vsp = kmem_alloc(sizeof (vopstats_t), KM_SLEEP); bzero(vsp, sizeof (*vsp)); /* Start fresh */ /* VOP_OPEN */ kstat_named_init(&vsp->nopen, "nopen", KSTAT_DATA_UINT64); /* VOP_CLOSE */ kstat_named_init(&vsp->nclose, "nclose", KSTAT_DATA_UINT64); /* VOP_READ I/O */ kstat_named_init(&vsp->nread, "nread", KSTAT_DATA_UINT64); kstat_named_init(&vsp->read_bytes, "read_bytes", KSTAT_DATA_UINT64); /* VOP_WRITE I/O */ kstat_named_init(&vsp->nwrite, "nwrite", KSTAT_DATA_UINT64); kstat_named_init(&vsp->write_bytes, "write_bytes", KSTAT_DATA_UINT64); /* VOP_IOCTL */ kstat_named_init(&vsp->nioctl, "nioctl", KSTAT_DATA_UINT64); /* VOP_SETFL */ kstat_named_init(&vsp->nsetfl, "nsetfl", KSTAT_DATA_UINT64); /* VOP_GETATTR */ kstat_named_init(&vsp->ngetattr, "ngetattr", KSTAT_DATA_UINT64); /* VOP_SETATTR */ kstat_named_init(&vsp->nsetattr, "nsetattr", KSTAT_DATA_UINT64); /* VOP_ACCESS */ kstat_named_init(&vsp->naccess, "naccess", KSTAT_DATA_UINT64); /* VOP_LOOKUP */ kstat_named_init(&vsp->nlookup, "nlookup", KSTAT_DATA_UINT64); /* VOP_CREATE */ kstat_named_init(&vsp->ncreate, "ncreate", KSTAT_DATA_UINT64); /* VOP_REMOVE */ kstat_named_init(&vsp->nremove, "nremove", KSTAT_DATA_UINT64); /* VOP_LINK */ kstat_named_init(&vsp->nlink, "nlink", KSTAT_DATA_UINT64); /* VOP_RENAME */ kstat_named_init(&vsp->nrename, "nrename", KSTAT_DATA_UINT64); /* VOP_MKDIR */ kstat_named_init(&vsp->nmkdir, "nmkdir", KSTAT_DATA_UINT64); /* VOP_RMDIR */ kstat_named_init(&vsp->nrmdir, "nrmdir", KSTAT_DATA_UINT64); /* VOP_READDIR I/O */ kstat_named_init(&vsp->nreaddir, "nreaddir", KSTAT_DATA_UINT64); kstat_named_init(&vsp->readdir_bytes, "readdir_bytes", KSTAT_DATA_UINT64); /* VOP_SYMLINK */ kstat_named_init(&vsp->nsymlink, "nsymlink", KSTAT_DATA_UINT64); /* VOP_READLINK */ kstat_named_init(&vsp->nreadlink, "nreadlink", KSTAT_DATA_UINT64); /* VOP_FSYNC */ kstat_named_init(&vsp->nfsync, "nfsync", KSTAT_DATA_UINT64); /* VOP_INACTIVE */ kstat_named_init(&vsp->ninactive, "ninactive", KSTAT_DATA_UINT64); /* VOP_FID */ kstat_named_init(&vsp->nfid, "nfid", KSTAT_DATA_UINT64); /* VOP_RWLOCK */ kstat_named_init(&vsp->nrwlock, "nrwlock", KSTAT_DATA_UINT64); /* VOP_RWUNLOCK */ kstat_named_init(&vsp->nrwunlock, "nrwunlock", KSTAT_DATA_UINT64); /* VOP_SEEK */ kstat_named_init(&vsp->nseek, "nseek", KSTAT_DATA_UINT64); /* VOP_CMP */ kstat_named_init(&vsp->ncmp, "ncmp", KSTAT_DATA_UINT64); /* VOP_FRLOCK */ kstat_named_init(&vsp->nfrlock, "nfrlock", KSTAT_DATA_UINT64); /* VOP_SPACE */ kstat_named_init(&vsp->nspace, "nspace", KSTAT_DATA_UINT64); /* VOP_REALVP */ kstat_named_init(&vsp->nrealvp, "nrealvp", KSTAT_DATA_UINT64); /* VOP_GETPAGE */ kstat_named_init(&vsp->ngetpage, "ngetpage", KSTAT_DATA_UINT64); /* VOP_PUTPAGE */ kstat_named_init(&vsp->nputpage, "nputpage", KSTAT_DATA_UINT64); /* VOP_MAP */ kstat_named_init(&vsp->nmap, "nmap", KSTAT_DATA_UINT64); /* VOP_ADDMAP */ kstat_named_init(&vsp->naddmap, "naddmap", KSTAT_DATA_UINT64); /* VOP_DELMAP */ kstat_named_init(&vsp->ndelmap, "ndelmap", KSTAT_DATA_UINT64); /* VOP_POLL */ kstat_named_init(&vsp->npoll, "npoll", KSTAT_DATA_UINT64); /* VOP_DUMP */ kstat_named_init(&vsp->ndump, "ndump", KSTAT_DATA_UINT64); /* VOP_PATHCONF */ kstat_named_init(&vsp->npathconf, "npathconf", KSTAT_DATA_UINT64); /* VOP_PAGEIO */ kstat_named_init(&vsp->npageio, "npageio", KSTAT_DATA_UINT64); /* VOP_DUMPCTL */ kstat_named_init(&vsp->ndumpctl, "ndumpctl", KSTAT_DATA_UINT64); /* VOP_DISPOSE */ kstat_named_init(&vsp->ndispose, "ndispose", KSTAT_DATA_UINT64); /* VOP_SETSECATTR */ kstat_named_init(&vsp->nsetsecattr, "nsetsecattr", KSTAT_DATA_UINT64); /* VOP_GETSECATTR */ kstat_named_init(&vsp->ngetsecattr, "ngetsecattr", KSTAT_DATA_UINT64); /* VOP_SHRLOCK */ kstat_named_init(&vsp->nshrlock, "nshrlock", KSTAT_DATA_UINT64); /* VOP_VNEVENT */ kstat_named_init(&vsp->nvnevent, "nvnevent", KSTAT_DATA_UINT64); /* VOP_REQZCBUF */ kstat_named_init(&vsp->nreqzcbuf, "nreqzcbuf", KSTAT_DATA_UINT64); /* VOP_RETZCBUF */ kstat_named_init(&vsp->nretzcbuf, "nretzcbuf", KSTAT_DATA_UINT64); return (vsp); } /* * Creates a kstat structure associated with a vopstats structure. */ kstat_t * new_vskstat(char *ksname, vopstats_t *vsp) { kstat_t *ksp; if (!vopstats_enabled) { return (NULL); } ksp = kstat_create("unix", 0, ksname, "misc", KSTAT_TYPE_NAMED, sizeof (vopstats_t)/sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL|KSTAT_FLAG_WRITABLE); if (ksp) { ksp->ks_data = vsp; kstat_install(ksp); } return (ksp); } /* * Called from vfsinit() to initialize the support mechanisms for vopstats */ void vopstats_startup() { if (!vopstats_enabled) return; /* * Creates the AVL tree which holds per-vfs vopstat anchors. This * is necessary since we need to check if a kstat exists before we * attempt to create it. Also, initialize its lock. */ avl_create(&vskstat_tree, vska_compar, sizeof (vsk_anchor_t), offsetof(vsk_anchor_t, vsk_node)); mutex_init(&vskstat_tree_lock, NULL, MUTEX_DEFAULT, NULL); vsk_anchor_cache = kmem_cache_create("vsk_anchor_cache", sizeof (vsk_anchor_t), sizeof (uintptr_t), NULL, NULL, NULL, NULL, NULL, 0); /* * Set up the array of pointers for the vopstats-by-FS-type. * The entries will be allocated/initialized as each file system * goes through modload/mod_installfs. */ vopstats_fstype = (vopstats_t **)kmem_zalloc( (sizeof (vopstats_t *) * nfstype), KM_SLEEP); /* Set up the global vopstats initialization template */ vs_templatep = create_vopstats_template(); } /* * We need to have the all of the counters zeroed. * The initialization of the vopstats_t includes on the order of * 50 calls to kstat_named_init(). Rather that do that on every call, * we do it once in a template (vs_templatep) then bcopy it over. */ void initialize_vopstats(vopstats_t *vsp) { if (vsp == NULL) return; bcopy(vs_templatep, vsp, sizeof (vopstats_t)); } /* * If possible, determine which vopstats by fstype to use and * return a pointer to the caller. */ vopstats_t * get_fstype_vopstats(vfs_t *vfsp, struct vfssw *vswp) { int fstype = 0; /* Index into vfssw[] */ vopstats_t *vsp = NULL; if (vfsp == NULL || (vfsp->vfs_flag & VFS_STATS) == 0 || !vopstats_enabled) return (NULL); /* * Set up the fstype. We go to so much trouble because all versions * of NFS use the same fstype in their vfs even though they have * distinct entries in the vfssw[] table. * NOTE: A special vfs (e.g., EIO_vfs) may not have an entry. */ if (vswp) { fstype = vswp - vfssw; /* Gets us the index */ } else { fstype = vfsp->vfs_fstype; } /* * Point to the per-fstype vopstats. The only valid values are * non-zero positive values less than the number of vfssw[] table * entries. */ if (fstype > 0 && fstype < nfstype) { vsp = vopstats_fstype[fstype]; } return (vsp); } /* * Generate a kstat name, create the kstat structure, and allocate a * vsk_anchor_t to hold it together. Return the pointer to the vsk_anchor_t * to the caller. This must only be called from a mount. */ vsk_anchor_t * get_vskstat_anchor(vfs_t *vfsp) { char kstatstr[KSTAT_STRLEN]; /* kstat name for vopstats */ statvfs64_t statvfsbuf; /* Needed to find f_fsid */ vsk_anchor_t *vskp = NULL; /* vfs <--> kstat anchor */ kstat_t *ksp; /* Ptr to new kstat */ avl_index_t where; /* Location in the AVL tree */ if (vfsp == NULL || vfsp->vfs_implp == NULL || (vfsp->vfs_flag & VFS_STATS) == 0 || !vopstats_enabled) return (NULL); /* Need to get the fsid to build a kstat name */ if (VFS_STATVFS(vfsp, &statvfsbuf) == 0) { /* Create a name for our kstats based on fsid */ (void) snprintf(kstatstr, KSTAT_STRLEN, "%s%lx", VOPSTATS_STR, statvfsbuf.f_fsid); /* Allocate and initialize the vsk_anchor_t */ vskp = kmem_cache_alloc(vsk_anchor_cache, KM_SLEEP); bzero(vskp, sizeof (*vskp)); vskp->vsk_fsid = statvfsbuf.f_fsid; mutex_enter(&vskstat_tree_lock); if (avl_find(&vskstat_tree, vskp, &where) == NULL) { avl_insert(&vskstat_tree, vskp, where); mutex_exit(&vskstat_tree_lock); /* * Now that we've got the anchor in the AVL * tree, we can create the kstat. */ ksp = new_vskstat(kstatstr, &vfsp->vfs_vopstats); if (ksp) { vskp->vsk_ksp = ksp; } } else { /* Oops, found one! Release memory and lock. */ mutex_exit(&vskstat_tree_lock); kmem_cache_free(vsk_anchor_cache, vskp); vskp = NULL; } } return (vskp); } /* * We're in the process of tearing down the vfs and need to cleanup * the data structures associated with the vopstats. Must only be called * from dounmount(). */ void teardown_vopstats(vfs_t *vfsp) { vsk_anchor_t *vskap; avl_index_t where; if (vfsp == NULL || vfsp->vfs_implp == NULL || (vfsp->vfs_flag & VFS_STATS) == 0 || !vopstats_enabled) return; /* This is a safe check since VFS_STATS must be set (see above) */ if ((vskap = vfsp->vfs_vskap) == NULL) return; /* Whack the pointer right away */ vfsp->vfs_vskap = NULL; /* Lock the tree, remove the node, and delete the kstat */ mutex_enter(&vskstat_tree_lock); if (avl_find(&vskstat_tree, vskap, &where)) { avl_remove(&vskstat_tree, vskap); } if (vskap->vsk_ksp) { kstat_delete(vskap->vsk_ksp); } mutex_exit(&vskstat_tree_lock); kmem_cache_free(vsk_anchor_cache, vskap); } /* * Read or write a vnode. Called from kernel code. */ int vn_rdwr( enum uio_rw rw, struct vnode *vp, caddr_t base, ssize_t len, offset_t offset, enum uio_seg seg, int ioflag, rlim64_t ulimit, /* meaningful only if rw is UIO_WRITE */ cred_t *cr, ssize_t *residp) { struct uio uio; struct iovec iov; int error; int in_crit = 0; if (rw == UIO_WRITE && ISROFILE(vp)) return (EROFS); if (len < 0) return (EIO); VOPXID_MAP_CR(vp, cr); iov.iov_base = base; iov.iov_len = len; uio.uio_iov = &iov; uio.uio_iovcnt = 1; uio.uio_loffset = offset; uio.uio_segflg = (short)seg; uio.uio_resid = len; uio.uio_llimit = ulimit; /* * We have to enter the critical region before calling VOP_RWLOCK * to avoid a deadlock with ufs. */ if (nbl_need_check(vp)) { int svmand; nbl_start_crit(vp, RW_READER); in_crit = 1; error = nbl_svmand(vp, cr, &svmand); if (error != 0) goto done; if (nbl_conflict(vp, rw == UIO_WRITE ? NBL_WRITE : NBL_READ, uio.uio_offset, uio.uio_resid, svmand, NULL)) { error = EACCES; goto done; } } (void) VOP_RWLOCK(vp, rw == UIO_WRITE ? V_WRITELOCK_TRUE : V_WRITELOCK_FALSE, NULL); if (rw == UIO_WRITE) { uio.uio_fmode = FWRITE; uio.uio_extflg = UIO_COPY_DEFAULT; error = VOP_WRITE(vp, &uio, ioflag, cr, NULL); } else { uio.uio_fmode = FREAD; uio.uio_extflg = UIO_COPY_CACHED; error = VOP_READ(vp, &uio, ioflag, cr, NULL); } VOP_RWUNLOCK(vp, rw == UIO_WRITE ? V_WRITELOCK_TRUE : V_WRITELOCK_FALSE, NULL); if (residp) *residp = uio.uio_resid; else if (uio.uio_resid) error = EIO; done: if (in_crit) nbl_end_crit(vp); return (error); } /* * Release a vnode. Call VOP_INACTIVE on last reference or * decrement reference count. * * To avoid race conditions, the v_count is left at 1 for * the call to VOP_INACTIVE. This prevents another thread * from reclaiming and releasing the vnode *before* the * VOP_INACTIVE routine has a chance to destroy the vnode. * We can't have more than 1 thread calling VOP_INACTIVE * on a vnode. */ void vn_rele(vnode_t *vp) { VERIFY(vp->v_count > 0); mutex_enter(&vp->v_lock); if (vp->v_count == 1) { mutex_exit(&vp->v_lock); VOP_INACTIVE(vp, CRED(), NULL); return; } vp->v_count--; mutex_exit(&vp->v_lock); } /* * Release a vnode referenced by the DNLC. Multiple DNLC references are treated * as a single reference, so v_count is not decremented until the last DNLC hold * is released. This makes it possible to distinguish vnodes that are referenced * only by the DNLC. */ void vn_rele_dnlc(vnode_t *vp) { VERIFY((vp->v_count > 0) && (vp->v_count_dnlc > 0)); mutex_enter(&vp->v_lock); if (--vp->v_count_dnlc == 0) { if (vp->v_count == 1) { mutex_exit(&vp->v_lock); VOP_INACTIVE(vp, CRED(), NULL); return; } vp->v_count--; } mutex_exit(&vp->v_lock); } /* * Like vn_rele() except that it clears v_stream under v_lock. * This is used by sockfs when it dismantels the association between * the sockfs node and the vnode in the underlaying file system. * v_lock has to be held to prevent a thread coming through the lookupname * path from accessing a stream head that is going away. */ void vn_rele_stream(vnode_t *vp) { VERIFY(vp->v_count > 0); mutex_enter(&vp->v_lock); vp->v_stream = NULL; if (vp->v_count == 1) { mutex_exit(&vp->v_lock); VOP_INACTIVE(vp, CRED(), NULL); return; } vp->v_count--; mutex_exit(&vp->v_lock); } static void vn_rele_inactive(vnode_t *vp) { VOP_INACTIVE(vp, CRED(), NULL); } /* * Like vn_rele() except if we are going to call VOP_INACTIVE() then do it * asynchronously using a taskq. This can avoid deadlocks caused by re-entering * the file system as a result of releasing the vnode. Note, file systems * already have to handle the race where the vnode is incremented before the * inactive routine is called and does its locking. * * Warning: Excessive use of this routine can lead to performance problems. * This is because taskqs throttle back allocation if too many are created. */ void vn_rele_async(vnode_t *vp, taskq_t *taskq) { VERIFY(vp->v_count > 0); mutex_enter(&vp->v_lock); if (vp->v_count == 1) { mutex_exit(&vp->v_lock); VERIFY(taskq_dispatch(taskq, (task_func_t *)vn_rele_inactive, vp, TQ_SLEEP) != NULL); return; } vp->v_count--; mutex_exit(&vp->v_lock); } int vn_open( char *pnamep, enum uio_seg seg, int filemode, int createmode, struct vnode **vpp, enum create crwhy, mode_t umask) { return (vn_openat(pnamep, seg, filemode, createmode, vpp, crwhy, umask, NULL, -1)); } /* * Open/create a vnode. * This may be callable by the kernel, the only known use * of user context being that the current user credentials * are used for permissions. crwhy is defined iff filemode & FCREAT. */ int vn_openat( char *pnamep, enum uio_seg seg, int filemode, int createmode, struct vnode **vpp, enum create crwhy, mode_t umask, struct vnode *startvp, int fd) { struct vnode *vp; int mode; int accessflags; int error; int in_crit = 0; int open_done = 0; int shrlock_done = 0; struct vattr vattr; enum symfollow follow; int estale_retry = 0; struct shrlock shr; struct shr_locowner shr_own; mode = 0; accessflags = 0; if (filemode & FREAD) mode |= VREAD; if (filemode & (FWRITE|FTRUNC)) mode |= VWRITE; if (filemode & FXATTRDIROPEN) mode |= VEXEC; /* symlink interpretation */ if (filemode & FNOFOLLOW) follow = NO_FOLLOW; else follow = FOLLOW; if (filemode & FAPPEND) accessflags |= V_APPEND; top: if (filemode & FCREAT) { enum vcexcl excl; /* * Wish to create a file. */ vattr.va_type = VREG; vattr.va_mode = createmode; vattr.va_mask = AT_TYPE|AT_MODE; if (filemode & FTRUNC) { vattr.va_size = 0; vattr.va_mask |= AT_SIZE; } if (filemode & FEXCL) excl = EXCL; else excl = NONEXCL; if (error = vn_createat(pnamep, seg, &vattr, excl, mode, &vp, crwhy, (filemode & ~(FTRUNC|FEXCL)), umask, startvp)) return (error); } else { /* * Wish to open a file. Just look it up. */ if (error = lookupnameat(pnamep, seg, follow, NULLVPP, &vp, startvp)) { if ((error == ESTALE) && fs_need_estale_retry(estale_retry++)) goto top; return (error); } /* * Get the attributes to check whether file is large. * We do this only if the FOFFMAX flag is not set and * only for regular files. */ if (!(filemode & FOFFMAX) && (vp->v_type == VREG)) { vattr.va_mask = AT_SIZE; if ((error = VOP_GETATTR(vp, &vattr, 0, CRED(), NULL))) { goto out; } if (vattr.va_size > (u_offset_t)MAXOFF32_T) { /* * Large File API - regular open fails * if FOFFMAX flag is set in file mode */ error = EOVERFLOW; goto out; } } /* * Can't write directories, active texts, or * read-only filesystems. Can't truncate files * on which mandatory locking is in effect. */ if (filemode & (FWRITE|FTRUNC)) { /* * Allow writable directory if VDIROPEN flag is set. */ if (vp->v_type == VDIR && !(vp->v_flag & VDIROPEN)) { error = EISDIR; goto out; } if (ISROFILE(vp)) { error = EROFS; goto out; } /* * Can't truncate files on which * sysv mandatory locking is in effect. */ if (filemode & FTRUNC) { vnode_t *rvp; if (VOP_REALVP(vp, &rvp, NULL) != 0) rvp = vp; if (rvp->v_filocks != NULL) { vattr.va_mask = AT_MODE; if ((error = VOP_GETATTR(vp, &vattr, 0, CRED(), NULL)) == 0 && MANDLOCK(vp, vattr.va_mode)) error = EAGAIN; } } if (error) goto out; } /* * Check permissions. */ if (error = VOP_ACCESS(vp, mode, accessflags, CRED(), NULL)) goto out; } /* * Do remaining checks for FNOFOLLOW and FNOLINKS. */ if ((filemode & FNOFOLLOW) && vp->v_type == VLNK) { error = ELOOP; goto out; } if (filemode & FNOLINKS) { vattr.va_mask = AT_NLINK; if ((error = VOP_GETATTR(vp, &vattr, 0, CRED(), NULL))) { goto out; } if (vattr.va_nlink != 1) { error = EMLINK; goto out; } } /* * Opening a socket corresponding to the AF_UNIX pathname * in the filesystem name space is not supported. * However, VSOCK nodes in namefs are supported in order * to make fattach work for sockets. * * XXX This uses VOP_REALVP to distinguish between * an unopened namefs node (where VOP_REALVP returns a * different VSOCK vnode) and a VSOCK created by vn_create * in some file system (where VOP_REALVP would never return * a different vnode). */ if (vp->v_type == VSOCK) { struct vnode *nvp; error = VOP_REALVP(vp, &nvp, NULL); if (error != 0 || nvp == NULL || nvp == vp || nvp->v_type != VSOCK) { error = EOPNOTSUPP; goto out; } } if ((vp->v_type == VREG) && nbl_need_check(vp)) { /* get share reservation */ shr.s_access = 0; if (filemode & FWRITE) shr.s_access |= F_WRACC; if (filemode & FREAD) shr.s_access |= F_RDACC; shr.s_deny = 0; shr.s_sysid = 0; shr.s_pid = ttoproc(curthread)->p_pid; shr_own.sl_pid = shr.s_pid; shr_own.sl_id = fd; shr.s_own_len = sizeof (shr_own); shr.s_owner = (caddr_t)&shr_own; error = VOP_SHRLOCK(vp, F_SHARE_NBMAND, &shr, filemode, CRED(), NULL); if (error) goto out; shrlock_done = 1; /* nbmand conflict check if truncating file */ if ((filemode & FTRUNC) && !(filemode & FCREAT)) { nbl_start_crit(vp, RW_READER); in_crit = 1; vattr.va_mask = AT_SIZE; if (error = VOP_GETATTR(vp, &vattr, 0, CRED(), NULL)) goto out; if (nbl_conflict(vp, NBL_WRITE, 0, vattr.va_size, 0, NULL)) { error = EACCES; goto out; } } } /* * Do opening protocol. */ error = VOP_OPEN(&vp, filemode, CRED(), NULL); if (error) goto out; open_done = 1; /* * Truncate if required. */ if ((filemode & FTRUNC) && !(filemode & FCREAT)) { vattr.va_size = 0; vattr.va_mask = AT_SIZE; if ((error = VOP_SETATTR(vp, &vattr, 0, CRED(), NULL)) != 0) goto out; } out: ASSERT(vp->v_count > 0); if (in_crit) { nbl_end_crit(vp); in_crit = 0; } if (error) { if (open_done) { (void) VOP_CLOSE(vp, filemode, 1, (offset_t)0, CRED(), NULL); open_done = 0; shrlock_done = 0; } if (shrlock_done) { (void) VOP_SHRLOCK(vp, F_UNSHARE, &shr, 0, CRED(), NULL); shrlock_done = 0; } /* * The following clause was added to handle a problem * with NFS consistency. It is possible that a lookup * of the file to be opened succeeded, but the file * itself doesn't actually exist on the server. This * is chiefly due to the DNLC containing an entry for * the file which has been removed on the server. In * this case, we just start over. If there was some * other cause for the ESTALE error, then the lookup * of the file will fail and the error will be returned * above instead of looping around from here. */ VN_RELE(vp); if ((error == ESTALE) && fs_need_estale_retry(estale_retry++)) goto top; } else *vpp = vp; return (error); } /* * The following two accessor functions are for the NFSv4 server. Since there * is no VOP_OPEN_UP/DOWNGRADE we need a way for the NFS server to keep the * vnode open counts correct when a client "upgrades" an open or does an * open_downgrade. In NFS, an upgrade or downgrade can not only change the * open mode (add or subtract read or write), but also change the share/deny * modes. However, share reservations are not integrated with OPEN, yet, so * we need to handle each separately. These functions are cleaner than having * the NFS server manipulate the counts directly, however, nobody else should * use these functions. */ void vn_open_upgrade( vnode_t *vp, int filemode) { ASSERT(vp->v_type == VREG); if (filemode & FREAD) atomic_add_32(&(vp->v_rdcnt), 1); if (filemode & FWRITE) atomic_add_32(&(vp->v_wrcnt), 1); } void vn_open_downgrade( vnode_t *vp, int filemode) { ASSERT(vp->v_type == VREG); if (filemode & FREAD) { ASSERT(vp->v_rdcnt > 0); atomic_add_32(&(vp->v_rdcnt), -1); } if (filemode & FWRITE) { ASSERT(vp->v_wrcnt > 0); atomic_add_32(&(vp->v_wrcnt), -1); } } int vn_create( char *pnamep, enum uio_seg seg, struct vattr *vap, enum vcexcl excl, int mode, struct vnode **vpp, enum create why, int flag, mode_t umask) { return (vn_createat(pnamep, seg, vap, excl, mode, vpp, why, flag, umask, NULL)); } /* * Create a vnode (makenode). */ int vn_createat( char *pnamep, enum uio_seg seg, struct vattr *vap, enum vcexcl excl, int mode, struct vnode **vpp, enum create why, int flag, mode_t umask, struct vnode *startvp) { struct vnode *dvp; /* ptr to parent dir vnode */ struct vnode *vp = NULL; struct pathname pn; int error; int in_crit = 0; struct vattr vattr; enum symfollow follow; int estale_retry = 0; ASSERT((vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE)); /* symlink interpretation */ if ((flag & FNOFOLLOW) || excl == EXCL) follow = NO_FOLLOW; else follow = FOLLOW; flag &= ~(FNOFOLLOW|FNOLINKS); top: /* * Lookup directory. * If new object is a file, call lower level to create it. * Note that it is up to the lower level to enforce exclusive * creation, if the file is already there. * This allows the lower level to do whatever * locking or protocol that is needed to prevent races. * If the new object is directory call lower level to make * the new directory, with "." and "..". */ if (error = pn_get(pnamep, seg, &pn)) return (error); if (audit_active) audit_vncreate_start(); dvp = NULL; *vpp = NULL; /* * lookup will find the parent directory for the vnode. * When it is done the pn holds the name of the entry * in the directory. * If this is a non-exclusive create we also find the node itself. */ error = lookuppnat(&pn, NULL, follow, &dvp, (excl == EXCL) ? NULLVPP : vpp, startvp); if (error) { pn_free(&pn); if ((error == ESTALE) && fs_need_estale_retry(estale_retry++)) goto top; if (why == CRMKDIR && error == EINVAL) error = EEXIST; /* SVID */ return (error); } if (why != CRMKNOD) vap->va_mode &= ~VSVTX; /* * If default ACLs are defined for the directory don't apply the * umask if umask is passed. */ if (umask) { vsecattr_t vsec; vsec.vsa_aclcnt = 0; vsec.vsa_aclentp = NULL; vsec.vsa_dfaclcnt = 0; vsec.vsa_dfaclentp = NULL; vsec.vsa_mask = VSA_DFACLCNT; error = VOP_GETSECATTR(dvp, &vsec, 0, CRED(), NULL); /* * If error is ENOSYS then treat it as no error * Don't want to force all file systems to support * aclent_t style of ACL's. */ if (error == ENOSYS) error = 0; if (error) { if (*vpp != NULL) VN_RELE(*vpp); goto out; } else { /* * Apply the umask if no default ACLs. */ if (vsec.vsa_dfaclcnt == 0) vap->va_mode &= ~umask; /* * VOP_GETSECATTR() may have allocated memory for * ACLs we didn't request, so double-check and * free it if necessary. */ if (vsec.vsa_aclcnt && vsec.vsa_aclentp != NULL) kmem_free((caddr_t)vsec.vsa_aclentp, vsec.vsa_aclcnt * sizeof (aclent_t)); if (vsec.vsa_dfaclcnt && vsec.vsa_dfaclentp != NULL) kmem_free((caddr_t)vsec.vsa_dfaclentp, vsec.vsa_dfaclcnt * sizeof (aclent_t)); } } /* * In general we want to generate EROFS if the file system is * readonly. However, POSIX (IEEE Std. 1003.1) section 5.3.1 * documents the open system call, and it says that O_CREAT has no * effect if the file already exists. Bug 1119649 states * that open(path, O_CREAT, ...) fails when attempting to open an * existing file on a read only file system. Thus, the first part * of the following if statement has 3 checks: * if the file exists && * it is being open with write access && * the file system is read only * then generate EROFS */ if ((*vpp != NULL && (mode & VWRITE) && ISROFILE(*vpp)) || (*vpp == NULL && dvp->v_vfsp->vfs_flag & VFS_RDONLY)) { if (*vpp) VN_RELE(*vpp); error = EROFS; } else if (excl == NONEXCL && *vpp != NULL) { vnode_t *rvp; /* * File already exists. If a mandatory lock has been * applied, return error. */ vp = *vpp; if (VOP_REALVP(vp, &rvp, NULL) != 0) rvp = vp; if ((vap->va_mask & AT_SIZE) && nbl_need_check(vp)) { nbl_start_crit(vp, RW_READER); in_crit = 1; } if (rvp->v_filocks != NULL || rvp->v_shrlocks != NULL) { vattr.va_mask = AT_MODE|AT_SIZE; if (error = VOP_GETATTR(vp, &vattr, 0, CRED(), NULL)) { goto out; } if (MANDLOCK(vp, vattr.va_mode)) { error = EAGAIN; goto out; } /* * File cannot be truncated if non-blocking mandatory * locks are currently on the file. */ if ((vap->va_mask & AT_SIZE) && in_crit) { u_offset_t offset; ssize_t length; offset = vap->va_size > vattr.va_size ? vattr.va_size : vap->va_size; length = vap->va_size > vattr.va_size ? vap->va_size - vattr.va_size : vattr.va_size - vap->va_size; if (nbl_conflict(vp, NBL_WRITE, offset, length, 0, NULL)) { error = EACCES; goto out; } } } /* * If the file is the root of a VFS, we've crossed a * mount point and the "containing" directory that we * acquired above (dvp) is irrelevant because it's in * a different file system. We apply VOP_CREATE to the * target itself instead of to the containing directory * and supply a null path name to indicate (conventionally) * the node itself as the "component" of interest. * * The intercession of the file system is necessary to * ensure that the appropriate permission checks are * done. */ if (vp->v_flag & VROOT) { ASSERT(why != CRMKDIR); error = VOP_CREATE(vp, "", vap, excl, mode, vpp, CRED(), flag, NULL, NULL); /* * If the create succeeded, it will have created * a new reference to the vnode. Give up the * original reference. The assertion should not * get triggered because NBMAND locks only apply to * VREG files. And if in_crit is non-zero for some * reason, detect that here, rather than when we * deference a null vp. */ ASSERT(in_crit == 0); VN_RELE(vp); vp = NULL; goto out; } /* * Large File API - non-large open (FOFFMAX flag not set) * of regular file fails if the file size exceeds MAXOFF32_T. */ if (why != CRMKDIR && !(flag & FOFFMAX) && (vp->v_type == VREG)) { vattr.va_mask = AT_SIZE; if ((error = VOP_GETATTR(vp, &vattr, 0, CRED(), NULL))) { goto out; } if ((vattr.va_size > (u_offset_t)MAXOFF32_T)) { error = EOVERFLOW; goto out; } } } if (error == 0) { /* * Call mkdir() if specified, otherwise create(). */ int must_be_dir = pn_fixslash(&pn); /* trailing '/'? */ if (why == CRMKDIR) /* * N.B., if vn_createat() ever requests * case-insensitive behavior then it will need * to be passed to VOP_MKDIR(). VOP_CREATE() * will already get it via "flag" */ error = VOP_MKDIR(dvp, pn.pn_path, vap, vpp, CRED(), NULL, 0, NULL); else if (!must_be_dir) error = VOP_CREATE(dvp, pn.pn_path, vap, excl, mode, vpp, CRED(), flag, NULL, NULL); else error = ENOTDIR; } out: if (audit_active) audit_vncreate_finish(*vpp, error); if (in_crit) { nbl_end_crit(vp); in_crit = 0; } if (vp != NULL) { VN_RELE(vp); vp = NULL; } pn_free(&pn); VN_RELE(dvp); /* * The following clause was added to handle a problem * with NFS consistency. It is possible that a lookup * of the file to be created succeeded, but the file * itself doesn't actually exist on the server. This * is chiefly due to the DNLC containing an entry for * the file which has been removed on the server. In * this case, we just start over. If there was some * other cause for the ESTALE error, then the lookup * of the file will fail and the error will be returned * above instead of looping around from here. */ if ((error == ESTALE) && fs_need_estale_retry(estale_retry++)) goto top; return (error); } int vn_link(char *from, char *to, enum uio_seg seg) { struct vnode *fvp; /* from vnode ptr */ struct vnode *tdvp; /* to directory vnode ptr */ struct pathname pn; int error; struct vattr vattr; dev_t fsid; int estale_retry = 0; top: fvp = tdvp = NULL; if (error = pn_get(to, seg, &pn)) return (error); if (error = lookupname(from, seg, NO_FOLLOW, NULLVPP, &fvp)) goto out; if (error = lookuppn(&pn, NULL, NO_FOLLOW, &tdvp, NULLVPP)) goto out; /* * Make sure both source vnode and target directory vnode are * in the same vfs and that it is writeable. */ vattr.va_mask = AT_FSID; if (error = VOP_GETATTR(fvp, &vattr, 0, CRED(), NULL)) goto out; fsid = vattr.va_fsid; vattr.va_mask = AT_FSID; if (error = VOP_GETATTR(tdvp, &vattr, 0, CRED(), NULL)) goto out; if (fsid != vattr.va_fsid) { error = EXDEV; goto out; } if (tdvp->v_vfsp->vfs_flag & VFS_RDONLY) { error = EROFS; goto out; } /* * Do the link. */ (void) pn_fixslash(&pn); error = VOP_LINK(tdvp, fvp, pn.pn_path, CRED(), NULL, 0); out: pn_free(&pn); if (fvp) VN_RELE(fvp); if (tdvp) VN_RELE(tdvp); if ((error == ESTALE) && fs_need_estale_retry(estale_retry++)) goto top; return (error); } int vn_rename(char *from, char *to, enum uio_seg seg) { return (vn_renameat(NULL, from, NULL, to, seg)); } int vn_renameat(vnode_t *fdvp, char *fname, vnode_t *tdvp, char *tname, enum uio_seg seg) { int error; struct vattr vattr; struct pathname fpn; /* from pathname */ struct pathname tpn; /* to pathname */ dev_t fsid; int in_crit_src, in_crit_targ; vnode_t *fromvp, *fvp; vnode_t *tovp, *targvp; int estale_retry = 0; top: fvp = fromvp = tovp = targvp = NULL; in_crit_src = in_crit_targ = 0; /* * Get to and from pathnames. */ if (error = pn_get(fname, seg, &fpn)) return (error); if (error = pn_get(tname, seg, &tpn)) { pn_free(&fpn); return (error); } /* * First we need to resolve the correct directories * The passed in directories may only be a starting point, * but we need the real directories the file(s) live in. * For example the fname may be something like usr/lib/sparc * and we were passed in the / directory, but we need to * use the lib directory for the rename. */ if (audit_active) audit_setfsat_path(1); /* * Lookup to and from directories. */ if (error = lookuppnat(&fpn, NULL, NO_FOLLOW, &fromvp, &fvp, fdvp)) { goto out; } /* * Make sure there is an entry. */ if (fvp == NULL) { error = ENOENT; goto out; } if (audit_active) audit_setfsat_path(3); if (error = lookuppnat(&tpn, NULL, NO_FOLLOW, &tovp, &targvp, tdvp)) { goto out; } /* * Make sure both the from vnode directory and the to directory * are in the same vfs and the to directory is writable. * We check fsid's, not vfs pointers, so loopback fs works. */ if (fromvp != tovp) { vattr.va_mask = AT_FSID; if (error = VOP_GETATTR(fromvp, &vattr, 0, CRED(), NULL)) goto out; fsid = vattr.va_fsid; vattr.va_mask = AT_FSID; if (error = VOP_GETATTR(tovp, &vattr, 0, CRED(), NULL)) goto out; if (fsid != vattr.va_fsid) { error = EXDEV; goto out; } } if (tovp->v_vfsp->vfs_flag & VFS_RDONLY) { error = EROFS; goto out; } if (targvp && (fvp != targvp)) { nbl_start_crit(targvp, RW_READER); in_crit_targ = 1; if (nbl_conflict(targvp, NBL_REMOVE, 0, 0, 0, NULL)) { error = EACCES; goto out; } } if (nbl_need_check(fvp)) { nbl_start_crit(fvp, RW_READER); in_crit_src = 1; if (nbl_conflict(fvp, NBL_RENAME, 0, 0, 0, NULL)) { error = EACCES; goto out; } } /* * Do the rename. */ (void) pn_fixslash(&tpn); error = VOP_RENAME(fromvp, fpn.pn_path, tovp, tpn.pn_path, CRED(), NULL, 0); out: pn_free(&fpn); pn_free(&tpn); if (in_crit_src) nbl_end_crit(fvp); if (in_crit_targ) nbl_end_crit(targvp); if (fromvp) VN_RELE(fromvp); if (tovp) VN_RELE(tovp); if (targvp) VN_RELE(targvp); if (fvp) VN_RELE(fvp); if ((error == ESTALE) && fs_need_estale_retry(estale_retry++)) goto top; return (error); } /* * Remove a file or directory. */ int vn_remove(char *fnamep, enum uio_seg seg, enum rm dirflag) { return (vn_removeat(NULL, fnamep, seg, dirflag)); } int vn_removeat(vnode_t *startvp, char *fnamep, enum uio_seg seg, enum rm dirflag) { struct vnode *vp; /* entry vnode */ struct vnode *dvp; /* ptr to parent dir vnode */ struct vnode *coveredvp; struct pathname pn; /* name of entry */ enum vtype vtype; int error; struct vfs *vfsp; struct vfs *dvfsp; /* ptr to parent dir vfs */ int in_crit = 0; int estale_retry = 0; top: if (error = pn_get(fnamep, seg, &pn)) return (error); dvp = vp = NULL; if (error = lookuppnat(&pn, NULL, NO_FOLLOW, &dvp, &vp, startvp)) { pn_free(&pn); if ((error == ESTALE) && fs_need_estale_retry(estale_retry++)) goto top; return (error); } /* * Make sure there is an entry. */ if (vp == NULL) { error = ENOENT; goto out; } vfsp = vp->v_vfsp; dvfsp = dvp->v_vfsp; /* * If the named file is the root of a mounted filesystem, fail, * unless it's marked unlinkable. In that case, unmount the * filesystem and proceed to unlink the covered vnode. (If the * covered vnode is a directory, use rmdir instead of unlink, * to avoid file system corruption.) */ if (vp->v_flag & VROOT) { if ((vfsp->vfs_flag & VFS_UNLINKABLE) == 0) { error = EBUSY; goto out; } /* * Namefs specific code starts here. */ if (dirflag == RMDIRECTORY) { /* * User called rmdir(2) on a file that has * been namefs mounted on top of. Since * namefs doesn't allow directories to * be mounted on other files we know * vp is not of type VDIR so fail to operation. */ error = ENOTDIR; goto out; } /* * If VROOT is still set after grabbing vp->v_lock, * noone has finished nm_unmount so far and coveredvp * is valid. * If we manage to grab vn_vfswlock(coveredvp) before releasing * vp->v_lock, any race window is eliminated. */ mutex_enter(&vp->v_lock); if ((vp->v_flag & VROOT) == 0) { /* Someone beat us to the unmount */ mutex_exit(&vp->v_lock); error = EBUSY; goto out; } vfsp = vp->v_vfsp; coveredvp = vfsp->vfs_vnodecovered; ASSERT(coveredvp); /* * Note: Implementation of vn_vfswlock shows that ordering of * v_lock / vn_vfswlock is not an issue here. */ error = vn_vfswlock(coveredvp); mutex_exit(&vp->v_lock); if (error) goto out; VN_HOLD(coveredvp); VN_RELE(vp); error = dounmount(vfsp, 0, CRED()); /* * Unmounted the namefs file system; now get * the object it was mounted over. */ vp = coveredvp; /* * If namefs was mounted over a directory, then * we want to use rmdir() instead of unlink(). */ if (vp->v_type == VDIR) dirflag = RMDIRECTORY; if (error) goto out; } /* * Make sure filesystem is writeable. * We check the parent directory's vfs in case this is an lofs vnode. */ if (dvfsp && dvfsp->vfs_flag & VFS_RDONLY) { error = EROFS; goto out; } vtype = vp->v_type; /* * If there is the possibility of an nbmand share reservation, make * sure it's okay to remove the file. Keep a reference to the * vnode, so that we can exit the nbl critical region after * calling VOP_REMOVE. * If there is no possibility of an nbmand share reservation, * release the vnode reference now. Filesystems like NFS may * behave differently if there is an extra reference, so get rid of * this one. Fortunately, we can't have nbmand mounts on NFS * filesystems. */ if (nbl_need_check(vp)) { nbl_start_crit(vp, RW_READER); in_crit = 1; if (nbl_conflict(vp, NBL_REMOVE, 0, 0, 0, NULL)) { error = EACCES; goto out; } } else { VN_RELE(vp); vp = NULL; } if (dirflag == RMDIRECTORY) { /* * Caller is using rmdir(2), which can only be applied to * directories. */ if (vtype != VDIR) { error = ENOTDIR; } else { vnode_t *cwd; proc_t *pp = curproc; mutex_enter(&pp->p_lock); cwd = PTOU(pp)->u_cdir; VN_HOLD(cwd); mutex_exit(&pp->p_lock); error = VOP_RMDIR(dvp, pn.pn_path, cwd, CRED(), NULL, 0); VN_RELE(cwd); } } else { /* * Unlink(2) can be applied to anything. */ error = VOP_REMOVE(dvp, pn.pn_path, CRED(), NULL, 0); } out: pn_free(&pn); if (in_crit) { nbl_end_crit(vp); in_crit = 0; } if (vp != NULL) VN_RELE(vp); if (dvp != NULL) VN_RELE(dvp); if ((error == ESTALE) && fs_need_estale_retry(estale_retry++)) goto top; return (error); } /* * Utility function to compare equality of vnodes. * Compare the underlying real vnodes, if there are underlying vnodes. * This is a more thorough comparison than the VN_CMP() macro provides. */ int vn_compare(vnode_t *vp1, vnode_t *vp2) { vnode_t *realvp; if (vp1 != NULL && VOP_REALVP(vp1, &realvp, NULL) == 0) vp1 = realvp; if (vp2 != NULL && VOP_REALVP(vp2, &realvp, NULL) == 0) vp2 = realvp; return (VN_CMP(vp1, vp2)); } /* * The number of locks to hash into. This value must be a power * of 2 minus 1 and should probably also be prime. */ #define NUM_BUCKETS 1023 struct vn_vfslocks_bucket { kmutex_t vb_lock; vn_vfslocks_entry_t *vb_list; char pad[64 - sizeof (kmutex_t) - sizeof (void *)]; }; /* * Total number of buckets will be NUM_BUCKETS + 1 . */ #pragma align 64(vn_vfslocks_buckets) static struct vn_vfslocks_bucket vn_vfslocks_buckets[NUM_BUCKETS + 1]; #define VN_VFSLOCKS_SHIFT 9 #define VN_VFSLOCKS_HASH(vfsvpptr) \ ((((intptr_t)(vfsvpptr)) >> VN_VFSLOCKS_SHIFT) & NUM_BUCKETS) /* * vn_vfslocks_getlock() uses an HASH scheme to generate * rwstlock using vfs/vnode pointer passed to it. * * vn_vfslocks_rele() releases a reference in the * HASH table which allows the entry allocated by * vn_vfslocks_getlock() to be freed at a later * stage when the refcount drops to zero. */ vn_vfslocks_entry_t * vn_vfslocks_getlock(void *vfsvpptr) { struct vn_vfslocks_bucket *bp; vn_vfslocks_entry_t *vep; vn_vfslocks_entry_t *tvep; ASSERT(vfsvpptr != NULL); bp = &vn_vfslocks_buckets[VN_VFSLOCKS_HASH(vfsvpptr)]; mutex_enter(&bp->vb_lock); for (vep = bp->vb_list; vep != NULL; vep = vep->ve_next) { if (vep->ve_vpvfs == vfsvpptr) { vep->ve_refcnt++; mutex_exit(&bp->vb_lock); return (vep); } } mutex_exit(&bp->vb_lock); vep = kmem_alloc(sizeof (*vep), KM_SLEEP); rwst_init(&vep->ve_lock, NULL, RW_DEFAULT, NULL); vep->ve_vpvfs = (char *)vfsvpptr; vep->ve_refcnt = 1; mutex_enter(&bp->vb_lock); for (tvep = bp->vb_list; tvep != NULL; tvep = tvep->ve_next) { if (tvep->ve_vpvfs == vfsvpptr) { tvep->ve_refcnt++; mutex_exit(&bp->vb_lock); /* * There is already an entry in the hash * destroy what we just allocated. */ rwst_destroy(&vep->ve_lock); kmem_free(vep, sizeof (*vep)); return (tvep); } } vep->ve_next = bp->vb_list; bp->vb_list = vep; mutex_exit(&bp->vb_lock); return (vep); } void vn_vfslocks_rele(vn_vfslocks_entry_t *vepent) { struct vn_vfslocks_bucket *bp; vn_vfslocks_entry_t *vep; vn_vfslocks_entry_t *pvep; ASSERT(vepent != NULL); ASSERT(vepent->ve_vpvfs != NULL); bp = &vn_vfslocks_buckets[VN_VFSLOCKS_HASH(vepent->ve_vpvfs)]; mutex_enter(&bp->vb_lock); vepent->ve_refcnt--; if ((int32_t)vepent->ve_refcnt < 0) cmn_err(CE_PANIC, "vn_vfslocks_rele: refcount negative"); if (vepent->ve_refcnt == 0) { for (vep = bp->vb_list; vep != NULL; vep = vep->ve_next) { if (vep->ve_vpvfs == vepent->ve_vpvfs) { if (bp->vb_list == vep) bp->vb_list = vep->ve_next; else { /* LINTED */ pvep->ve_next = vep->ve_next; } mutex_exit(&bp->vb_lock); rwst_destroy(&vep->ve_lock); kmem_free(vep, sizeof (*vep)); return; } pvep = vep; } cmn_err(CE_PANIC, "vn_vfslocks_rele: vp/vfs not found"); } mutex_exit(&bp->vb_lock); } /* * vn_vfswlock_wait is used to implement a lock which is logically a writers * lock protecting the v_vfsmountedhere field. * vn_vfswlock_wait has been modified to be similar to vn_vfswlock, * except that it blocks to acquire the lock VVFSLOCK. * * traverse() and routines re-implementing part of traverse (e.g. autofs) * need to hold this lock. mount(), vn_rename(), vn_remove() and so on * need the non-blocking version of the writers lock i.e. vn_vfswlock */ int vn_vfswlock_wait(vnode_t *vp) { int retval; vn_vfslocks_entry_t *vpvfsentry; ASSERT(vp != NULL); vpvfsentry = vn_vfslocks_getlock(vp); retval = rwst_enter_sig(&vpvfsentry->ve_lock, RW_WRITER); if (retval == EINTR) { vn_vfslocks_rele(vpvfsentry); return (EINTR); } return (retval); } int vn_vfsrlock_wait(vnode_t *vp) { int retval; vn_vfslocks_entry_t *vpvfsentry; ASSERT(vp != NULL); vpvfsentry = vn_vfslocks_getlock(vp); retval = rwst_enter_sig(&vpvfsentry->ve_lock, RW_READER); if (retval == EINTR) { vn_vfslocks_rele(vpvfsentry); return (EINTR); } return (retval); } /* * vn_vfswlock is used to implement a lock which is logically a writers lock * protecting the v_vfsmountedhere field. */ int vn_vfswlock(vnode_t *vp) { vn_vfslocks_entry_t *vpvfsentry; /* * If vp is NULL then somebody is trying to lock the covered vnode * of /. (vfs_vnodecovered is NULL for /). This situation will * only happen when unmounting /. Since that operation will fail * anyway, return EBUSY here instead of in VFS_UNMOUNT. */ if (vp == NULL) return (EBUSY); vpvfsentry = vn_vfslocks_getlock(vp); if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER)) return (0); vn_vfslocks_rele(vpvfsentry); return (EBUSY); } int vn_vfsrlock(vnode_t *vp) { vn_vfslocks_entry_t *vpvfsentry; /* * If vp is NULL then somebody is trying to lock the covered vnode * of /. (vfs_vnodecovered is NULL for /). This situation will * only happen when unmounting /. Since that operation will fail * anyway, return EBUSY here instead of in VFS_UNMOUNT. */ if (vp == NULL) return (EBUSY); vpvfsentry = vn_vfslocks_getlock(vp); if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER)) return (0); vn_vfslocks_rele(vpvfsentry); return (EBUSY); } void vn_vfsunlock(vnode_t *vp) { vn_vfslocks_entry_t *vpvfsentry; /* * ve_refcnt needs to be decremented twice. * 1. To release refernce after a call to vn_vfslocks_getlock() * 2. To release the reference from the locking routines like * vn_vfsrlock/vn_vfswlock etc,. */ vpvfsentry = vn_vfslocks_getlock(vp); vn_vfslocks_rele(vpvfsentry); rwst_exit(&vpvfsentry->ve_lock); vn_vfslocks_rele(vpvfsentry); } int vn_vfswlock_held(vnode_t *vp) { int held; vn_vfslocks_entry_t *vpvfsentry; ASSERT(vp != NULL); vpvfsentry = vn_vfslocks_getlock(vp); held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER); vn_vfslocks_rele(vpvfsentry); return (held); } int vn_make_ops( const char *name, /* Name of file system */ const fs_operation_def_t *templ, /* Operation specification */ vnodeops_t **actual) /* Return the vnodeops */ { int unused_ops; int error; *actual = (vnodeops_t *)kmem_alloc(sizeof (vnodeops_t), KM_SLEEP); (*actual)->vnop_name = name; error = fs_build_vector(*actual, &unused_ops, vn_ops_table, templ); if (error) { kmem_free(*actual, sizeof (vnodeops_t)); } #if DEBUG if (unused_ops != 0) cmn_err(CE_WARN, "vn_make_ops: %s: %d operations supplied " "but not used", name, unused_ops); #endif return (error); } /* * Free the vnodeops created as a result of vn_make_ops() */ void vn_freevnodeops(vnodeops_t *vnops) { kmem_free(vnops, sizeof (vnodeops_t)); } /* * Vnode cache. */ /* ARGSUSED */ static int vn_cache_constructor(void *buf, void *cdrarg, int kmflags) { struct vnode *vp; vp = buf; mutex_init(&vp->v_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&vp->v_vsd_lock, NULL, MUTEX_DEFAULT, NULL); cv_init(&vp->v_cv, NULL, CV_DEFAULT, NULL); rw_init(&vp->v_nbllock, NULL, RW_DEFAULT, NULL); vp->v_femhead = NULL; /* Must be done before vn_reinit() */ vp->v_path = NULL; vp->v_mpssdata = NULL; vp->v_vsd = NULL; vp->v_fopdata = NULL; return (0); } /* ARGSUSED */ static void vn_cache_destructor(void *buf, void *cdrarg) { struct vnode *vp; vp = buf; rw_destroy(&vp->v_nbllock); cv_destroy(&vp->v_cv); mutex_destroy(&vp->v_vsd_lock); mutex_destroy(&vp->v_lock); } void vn_create_cache(void) { vn_cache = kmem_cache_create("vn_cache", sizeof (struct vnode), 64, vn_cache_constructor, vn_cache_destructor, NULL, NULL, NULL, 0); } void vn_destroy_cache(void) { kmem_cache_destroy(vn_cache); } /* * Used by file systems when fs-specific nodes (e.g., ufs inodes) are * cached by the file system and vnodes remain associated. */ void vn_recycle(vnode_t *vp) { ASSERT(vp->v_pages == NULL); /* * XXX - This really belongs in vn_reinit(), but we have some issues * with the counts. Best to have it here for clean initialization. */ vp->v_rdcnt = 0; vp->v_wrcnt = 0; vp->v_mmap_read = 0; vp->v_mmap_write = 0; /* * If FEM was in use, make sure everything gets cleaned up * NOTE: vp->v_femhead is initialized to NULL in the vnode * constructor. */ if (vp->v_femhead) { /* XXX - There should be a free_femhead() that does all this */ ASSERT(vp->v_femhead->femh_list == NULL); mutex_destroy(&vp->v_femhead->femh_lock); kmem_free(vp->v_femhead, sizeof (*(vp->v_femhead))); vp->v_femhead = NULL; } if (vp->v_path) { kmem_free(vp->v_path, strlen(vp->v_path) + 1); vp->v_path = NULL; } if (vp->v_fopdata != NULL) { free_fopdata(vp); } vp->v_mpssdata = NULL; vsd_free(vp); } /* * Used to reset the vnode fields including those that are directly accessible * as well as those which require an accessor function. * * Does not initialize: * synchronization objects: v_lock, v_vsd_lock, v_nbllock, v_cv * v_data (since FS-nodes and vnodes point to each other and should * be updated simultaneously) * v_op (in case someone needs to make a VOP call on this object) */ void vn_reinit(vnode_t *vp) { vp->v_count = 1; vp->v_count_dnlc = 0; vp->v_vfsp = NULL; vp->v_stream = NULL; vp->v_vfsmountedhere = NULL; vp->v_flag = 0; vp->v_type = VNON; vp->v_rdev = NODEV; vp->v_filocks = NULL; vp->v_shrlocks = NULL; vp->v_pages = NULL; vp->v_locality = NULL; vp->v_xattrdir = NULL; /* Handles v_femhead, v_path, and the r/w/map counts */ vn_recycle(vp); } vnode_t * vn_alloc(int kmflag) { vnode_t *vp; vp = kmem_cache_alloc(vn_cache, kmflag); if (vp != NULL) { vp->v_femhead = NULL; /* Must be done before vn_reinit() */ vp->v_fopdata = NULL; vn_reinit(vp); } return (vp); } void vn_free(vnode_t *vp) { ASSERT(vp->v_shrlocks == NULL); ASSERT(vp->v_filocks == NULL); /* * Some file systems call vn_free() with v_count of zero, * some with v_count of 1. In any case, the value should * never be anything else. */ ASSERT((vp->v_count == 0) || (vp->v_count == 1)); ASSERT(vp->v_count_dnlc == 0); if (vp->v_path != NULL) { kmem_free(vp->v_path, strlen(vp->v_path) + 1); vp->v_path = NULL; } /* If FEM was in use, make sure everything gets cleaned up */ if (vp->v_femhead) { /* XXX - There should be a free_femhead() that does all this */ ASSERT(vp->v_femhead->femh_list == NULL); mutex_destroy(&vp->v_femhead->femh_lock); kmem_free(vp->v_femhead, sizeof (*(vp->v_femhead))); vp->v_femhead = NULL; } if (vp->v_fopdata != NULL) { free_fopdata(vp); } vp->v_mpssdata = NULL; vsd_free(vp); kmem_cache_free(vn_cache, vp); } /* * vnode status changes, should define better states than 1, 0. */ void vn_reclaim(vnode_t *vp) { vfs_t *vfsp = vp->v_vfsp; if (vfsp == NULL || vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) { return; } (void) VFS_VNSTATE(vfsp, vp, VNTRANS_RECLAIMED); } void vn_idle(vnode_t *vp) { vfs_t *vfsp = vp->v_vfsp; if (vfsp == NULL || vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) { return; } (void) VFS_VNSTATE(vfsp, vp, VNTRANS_IDLED); } void vn_exists(vnode_t *vp) { vfs_t *vfsp = vp->v_vfsp; if (vfsp == NULL || vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) { return; } (void) VFS_VNSTATE(vfsp, vp, VNTRANS_EXISTS); } void vn_invalid(vnode_t *vp) { vfs_t *vfsp = vp->v_vfsp; if (vfsp == NULL || vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) { return; } (void) VFS_VNSTATE(vfsp, vp, VNTRANS_DESTROYED); } /* Vnode event notification */ int vnevent_support(vnode_t *vp, caller_context_t *ct) { if (vp == NULL) return (EINVAL); return (VOP_VNEVENT(vp, VE_SUPPORT, NULL, NULL, ct)); } void vnevent_rename_src(vnode_t *vp, vnode_t *dvp, char *name, caller_context_t *ct) { if (vp == NULL || vp->v_femhead == NULL) { return; } (void) VOP_VNEVENT(vp, VE_RENAME_SRC, dvp, name, ct); } void vnevent_rename_dest(vnode_t *vp, vnode_t *dvp, char *name, caller_context_t *ct) { if (vp == NULL || vp->v_femhead == NULL) { return; } (void) VOP_VNEVENT(vp, VE_RENAME_DEST, dvp, name, ct); } void vnevent_rename_dest_dir(vnode_t *vp, caller_context_t *ct) { if (vp == NULL || vp->v_femhead == NULL) { return; } (void) VOP_VNEVENT(vp, VE_RENAME_DEST_DIR, NULL, NULL, ct); } void vnevent_remove(vnode_t *vp, vnode_t *dvp, char *name, caller_context_t *ct) { if (vp == NULL || vp->v_femhead == NULL) { return; } (void) VOP_VNEVENT(vp, VE_REMOVE, dvp, name, ct); } void vnevent_rmdir(vnode_t *vp, vnode_t *dvp, char *name, caller_context_t *ct) { if (vp == NULL || vp->v_femhead == NULL) { return; } (void) VOP_VNEVENT(vp, VE_RMDIR, dvp, name, ct); } void vnevent_create(vnode_t *vp, caller_context_t *ct) { if (vp == NULL || vp->v_femhead == NULL) { return; } (void) VOP_VNEVENT(vp, VE_CREATE, NULL, NULL, ct); } void vnevent_link(vnode_t *vp, caller_context_t *ct) { if (vp == NULL || vp->v_femhead == NULL) { return; } (void) VOP_VNEVENT(vp, VE_LINK, NULL, NULL, ct); } void vnevent_mountedover(vnode_t *vp, caller_context_t *ct) { if (vp == NULL || vp->v_femhead == NULL) { return; } (void) VOP_VNEVENT(vp, VE_MOUNTEDOVER, NULL, NULL, ct); } /* * Vnode accessors. */ int vn_is_readonly(vnode_t *vp) { return (vp->v_vfsp->vfs_flag & VFS_RDONLY); } int vn_has_flocks(vnode_t *vp) { return (vp->v_filocks != NULL); } int vn_has_mandatory_locks(vnode_t *vp, int mode) { return ((vp->v_filocks != NULL) && (MANDLOCK(vp, mode))); } int vn_has_cached_data(vnode_t *vp) { return (vp->v_pages != NULL); } /* * Return 0 if the vnode in question shouldn't be permitted into a zone via * zone_enter(2). */ int vn_can_change_zones(vnode_t *vp) { struct vfssw *vswp; int allow = 1; vnode_t *rvp; if (nfs_global_client_only != 0) return (1); /* * We always want to look at the underlying vnode if there is one. */ if (VOP_REALVP(vp, &rvp, NULL) != 0) rvp = vp; /* * Some pseudo filesystems (including doorfs) don't actually register * their vfsops_t, so the following may return NULL; we happily let * such vnodes switch zones. */ vswp = vfs_getvfsswbyvfsops(vfs_getops(rvp->v_vfsp)); if (vswp != NULL) { if (vswp->vsw_flag & VSW_NOTZONESAFE) allow = 0; vfs_unrefvfssw(vswp); } return (allow); } /* * Return nonzero if the vnode is a mount point, zero if not. */ int vn_ismntpt(vnode_t *vp) { return (vp->v_vfsmountedhere != NULL); } /* Retrieve the vfs (if any) mounted on this vnode */ vfs_t * vn_mountedvfs(vnode_t *vp) { return (vp->v_vfsmountedhere); } /* * Return nonzero if the vnode is referenced by the dnlc, zero if not. */ int vn_in_dnlc(vnode_t *vp) { return (vp->v_count_dnlc > 0); } /* * vn_has_other_opens() checks whether a particular file is opened by more than * just the caller and whether the open is for read and/or write. * This routine is for calling after the caller has already called VOP_OPEN() * and the caller wishes to know if they are the only one with it open for * the mode(s) specified. * * Vnode counts are only kept on regular files (v_type=VREG). */ int vn_has_other_opens( vnode_t *vp, v_mode_t mode) { ASSERT(vp != NULL); switch (mode) { case V_WRITE: if (vp->v_wrcnt > 1) return (V_TRUE); break; case V_RDORWR: if ((vp->v_rdcnt > 1) || (vp->v_wrcnt > 1)) return (V_TRUE); break; case V_RDANDWR: if ((vp->v_rdcnt > 1) && (vp->v_wrcnt > 1)) return (V_TRUE); break; case V_READ: if (vp->v_rdcnt > 1) return (V_TRUE); break; } return (V_FALSE); } /* * vn_is_opened() checks whether a particular file is opened and * whether the open is for read and/or write. * * Vnode counts are only kept on regular files (v_type=VREG). */ int vn_is_opened( vnode_t *vp, v_mode_t mode) { ASSERT(vp != NULL); switch (mode) { case V_WRITE: if (vp->v_wrcnt) return (V_TRUE); break; case V_RDANDWR: if (vp->v_rdcnt && vp->v_wrcnt) return (V_TRUE); break; case V_RDORWR: if (vp->v_rdcnt || vp->v_wrcnt) return (V_TRUE); break; case V_READ: if (vp->v_rdcnt) return (V_TRUE); break; } return (V_FALSE); } /* * vn_is_mapped() checks whether a particular file is mapped and whether * the file is mapped read and/or write. */ int vn_is_mapped( vnode_t *vp, v_mode_t mode) { ASSERT(vp != NULL); #if !defined(_LP64) switch (mode) { /* * The atomic_add_64_nv functions force atomicity in the * case of 32 bit architectures. Otherwise the 64 bit values * require two fetches. The value of the fields may be * (potentially) changed between the first fetch and the * second */ case V_WRITE: if (atomic_add_64_nv((&(vp->v_mmap_write)), 0)) return (V_TRUE); break; case V_RDANDWR: if ((atomic_add_64_nv((&(vp->v_mmap_read)), 0)) && (atomic_add_64_nv((&(vp->v_mmap_write)), 0))) return (V_TRUE); break; case V_RDORWR: if ((atomic_add_64_nv((&(vp->v_mmap_read)), 0)) || (atomic_add_64_nv((&(vp->v_mmap_write)), 0))) return (V_TRUE); break; case V_READ: if (atomic_add_64_nv((&(vp->v_mmap_read)), 0)) return (V_TRUE); break; } #else switch (mode) { case V_WRITE: if (vp->v_mmap_write) return (V_TRUE); break; case V_RDANDWR: if (vp->v_mmap_read && vp->v_mmap_write) return (V_TRUE); break; case V_RDORWR: if (vp->v_mmap_read || vp->v_mmap_write) return (V_TRUE); break; case V_READ: if (vp->v_mmap_read) return (V_TRUE); break; } #endif return (V_FALSE); } /* * Set the operations vector for a vnode. * * FEM ensures that the v_femhead pointer is filled in before the * v_op pointer is changed. This means that if the v_femhead pointer * is NULL, and the v_op field hasn't changed since before which checked * the v_femhead pointer; then our update is ok - we are not racing with * FEM. */ void vn_setops(vnode_t *vp, vnodeops_t *vnodeops) { vnodeops_t *op; ASSERT(vp != NULL); ASSERT(vnodeops != NULL); op = vp->v_op; membar_consumer(); /* * If vp->v_femhead == NULL, then we'll call casptr() to do the * compare-and-swap on vp->v_op. If either fails, then FEM is * in effect on the vnode and we need to have FEM deal with it. */ if (vp->v_femhead != NULL || casptr(&vp->v_op, op, vnodeops) != op) { fem_setvnops(vp, vnodeops); } } /* * Retrieve the operations vector for a vnode * As with vn_setops(above); make sure we aren't racing with FEM. * FEM sets the v_op to a special, internal, vnodeops that wouldn't * make sense to the callers of this routine. */ vnodeops_t * vn_getops(vnode_t *vp) { vnodeops_t *op; ASSERT(vp != NULL); op = vp->v_op; membar_consumer(); if (vp->v_femhead == NULL && op == vp->v_op) { return (op); } else { return (fem_getvnops(vp)); } } /* * Returns non-zero (1) if the vnodeops matches that of the vnode. * Returns zero (0) if not. */ int vn_matchops(vnode_t *vp, vnodeops_t *vnodeops) { return (vn_getops(vp) == vnodeops); } /* * Returns non-zero (1) if the specified operation matches the * corresponding operation for that the vnode. * Returns zero (0) if not. */ #define MATCHNAME(n1, n2) (((n1)[0] == (n2)[0]) && (strcmp((n1), (n2)) == 0)) int vn_matchopval(vnode_t *vp, char *vopname, fs_generic_func_p funcp) { const fs_operation_trans_def_t *otdp; fs_generic_func_p *loc = NULL; vnodeops_t *vop = vn_getops(vp); ASSERT(vopname != NULL); for (otdp = vn_ops_table; otdp->name != NULL; otdp++) { if (MATCHNAME(otdp->name, vopname)) { loc = (fs_generic_func_p *) ((char *)(vop) + otdp->offset); break; } } return ((loc != NULL) && (*loc == funcp)); } /* * fs_new_caller_id() needs to return a unique ID on a given local system. * The IDs do not need to survive across reboots. These are primarily * used so that (FEM) monitors can detect particular callers (such as * the NFS server) to a given vnode/vfs operation. */ u_longlong_t fs_new_caller_id() { static uint64_t next_caller_id = 0LL; /* First call returns 1 */ return ((u_longlong_t)atomic_add_64_nv(&next_caller_id, 1)); } /* * Given a starting vnode and a path, updates the path in the target vnode in * a safe manner. If the vnode already has path information embedded, then the * cached path is left untouched. */ size_t max_vnode_path = 4 * MAXPATHLEN; void vn_setpath(vnode_t *rootvp, struct vnode *startvp, struct vnode *vp, const char *path, size_t plen) { char *rpath; vnode_t *base; size_t rpathlen, rpathalloc; int doslash = 1; if (*path == '/') { base = rootvp; path++; plen--; } else { base = startvp; } /* * We cannot grab base->v_lock while we hold vp->v_lock because of * the potential for deadlock. */ mutex_enter(&base->v_lock); if (base->v_path == NULL) { mutex_exit(&base->v_lock); return; } rpathlen = strlen(base->v_path); rpathalloc = rpathlen + plen + 1; /* Avoid adding a slash if there's already one there */ if (base->v_path[rpathlen-1] == '/') doslash = 0; else rpathalloc++; /* * We don't want to call kmem_alloc(KM_SLEEP) with kernel locks held, * so we must do this dance. If, by chance, something changes the path, * just give up since there is no real harm. */ mutex_exit(&base->v_lock); /* Paths should stay within reason */ if (rpathalloc > max_vnode_path) return; rpath = kmem_alloc(rpathalloc, KM_SLEEP); mutex_enter(&base->v_lock); if (base->v_path == NULL || strlen(base->v_path) != rpathlen) { mutex_exit(&base->v_lock); kmem_free(rpath, rpathalloc); return; } bcopy(base->v_path, rpath, rpathlen); mutex_exit(&base->v_lock); if (doslash) rpath[rpathlen++] = '/'; bcopy(path, rpath + rpathlen, plen); rpath[rpathlen + plen] = '\0'; mutex_enter(&vp->v_lock); if (vp->v_path != NULL) { mutex_exit(&vp->v_lock); kmem_free(rpath, rpathalloc); } else { vp->v_path = rpath; mutex_exit(&vp->v_lock); } } /* * Sets the path to the vnode to be the given string, regardless of current * context. The string must be a complete path from rootdir. This is only used * by fsop_root() for setting the path based on the mountpoint. */ void vn_setpath_str(struct vnode *vp, const char *str, size_t len) { char *buf = kmem_alloc(len + 1, KM_SLEEP); mutex_enter(&vp->v_lock); if (vp->v_path != NULL) { mutex_exit(&vp->v_lock); kmem_free(buf, len + 1); return; } vp->v_path = buf; bcopy(str, vp->v_path, len); vp->v_path[len] = '\0'; mutex_exit(&vp->v_lock); } /* * Called from within filesystem's vop_rename() to handle renames once the * target vnode is available. */ void vn_renamepath(vnode_t *dvp, vnode_t *vp, const char *nm, size_t len) { char *tmp; mutex_enter(&vp->v_lock); tmp = vp->v_path; vp->v_path = NULL; mutex_exit(&vp->v_lock); vn_setpath(rootdir, dvp, vp, nm, len); if (tmp != NULL) kmem_free(tmp, strlen(tmp) + 1); } /* * Similar to vn_setpath_str(), this function sets the path of the destination * vnode to the be the same as the source vnode. */ void vn_copypath(struct vnode *src, struct vnode *dst) { char *buf; int alloc; mutex_enter(&src->v_lock); if (src->v_path == NULL) { mutex_exit(&src->v_lock); return; } alloc = strlen(src->v_path) + 1; /* avoid kmem_alloc() with lock held */ mutex_exit(&src->v_lock); buf = kmem_alloc(alloc, KM_SLEEP); mutex_enter(&src->v_lock); if (src->v_path == NULL || strlen(src->v_path) + 1 != alloc) { mutex_exit(&src->v_lock); kmem_free(buf, alloc); return; } bcopy(src->v_path, buf, alloc); mutex_exit(&src->v_lock); mutex_enter(&dst->v_lock); if (dst->v_path != NULL) { mutex_exit(&dst->v_lock); kmem_free(buf, alloc); return; } dst->v_path = buf; mutex_exit(&dst->v_lock); } /* * XXX Private interface for segvn routines that handle vnode * large page segments. * * return 1 if vp's file system VOP_PAGEIO() implementation * can be safely used instead of VOP_GETPAGE() for handling * pagefaults against regular non swap files. VOP_PAGEIO() * interface is considered safe here if its implementation * is very close to VOP_GETPAGE() implementation. * e.g. It zero's out the part of the page beyond EOF. Doesn't * panic if there're file holes but instead returns an error. * Doesn't assume file won't be changed by user writes, etc. * * return 0 otherwise. * * For now allow segvn to only use VOP_PAGEIO() with ufs and nfs. */ int vn_vmpss_usepageio(vnode_t *vp) { vfs_t *vfsp = vp->v_vfsp; char *fsname = vfssw[vfsp->vfs_fstype].vsw_name; char *pageio_ok_fss[] = {"ufs", "nfs", NULL}; char **fsok = pageio_ok_fss; if (fsname == NULL) { return (0); } for (; *fsok; fsok++) { if (strcmp(*fsok, fsname) == 0) { return (1); } } return (0); } /* VOP_XXX() macros call the corresponding fop_xxx() function */ int fop_open( vnode_t **vpp, int mode, cred_t *cr, caller_context_t *ct) { int ret; vnode_t *vp = *vpp; VN_HOLD(vp); /* * Adding to the vnode counts before calling open * avoids the need for a mutex. It circumvents a race * condition where a query made on the vnode counts results in a * false negative. The inquirer goes away believing the file is * not open when there is an open on the file already under way. * * The counts are meant to prevent NFS from granting a delegation * when it would be dangerous to do so. * * The vnode counts are only kept on regular files */ if ((*vpp)->v_type == VREG) { if (mode & FREAD) atomic_add_32(&((*vpp)->v_rdcnt), 1); if (mode & FWRITE) atomic_add_32(&((*vpp)->v_wrcnt), 1); } VOPXID_MAP_CR(vp, cr); ret = (*(*(vpp))->v_op->vop_open)(vpp, mode, cr, ct); if (ret) { /* * Use the saved vp just in case the vnode ptr got trashed * by the error. */ VOPSTATS_UPDATE(vp, open); if ((vp->v_type == VREG) && (mode & FREAD)) atomic_add_32(&(vp->v_rdcnt), -1); if ((vp->v_type == VREG) && (mode & FWRITE)) atomic_add_32(&(vp->v_wrcnt), -1); } else { /* * Some filesystems will return a different vnode, * but the same path was still used to open it. * So if we do change the vnode and need to * copy over the path, do so here, rather than special * casing each filesystem. Adjust the vnode counts to * reflect the vnode switch. */ VOPSTATS_UPDATE(*vpp, open); if (*vpp != vp && *vpp != NULL) { vn_copypath(vp, *vpp); if (((*vpp)->v_type == VREG) && (mode & FREAD)) atomic_add_32(&((*vpp)->v_rdcnt), 1); if ((vp->v_type == VREG) && (mode & FREAD)) atomic_add_32(&(vp->v_rdcnt), -1); if (((*vpp)->v_type == VREG) && (mode & FWRITE)) atomic_add_32(&((*vpp)->v_wrcnt), 1); if ((vp->v_type == VREG) && (mode & FWRITE)) atomic_add_32(&(vp->v_wrcnt), -1); } } VN_RELE(vp); return (ret); } int fop_close( vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, caller_context_t *ct) { int err; VOPXID_MAP_CR(vp, cr); err = (*(vp)->v_op->vop_close)(vp, flag, count, offset, cr, ct); VOPSTATS_UPDATE(vp, close); /* * Check passed in count to handle possible dups. Vnode counts are only * kept on regular files */ if ((vp->v_type == VREG) && (count == 1)) { if (flag & FREAD) { ASSERT(vp->v_rdcnt > 0); atomic_add_32(&(vp->v_rdcnt), -1); } if (flag & FWRITE) { ASSERT(vp->v_wrcnt > 0); atomic_add_32(&(vp->v_wrcnt), -1); } } return (err); } int fop_read( vnode_t *vp, uio_t *uiop, int ioflag, cred_t *cr, caller_context_t *ct) { int err; ssize_t resid_start = uiop->uio_resid; VOPXID_MAP_CR(vp, cr); err = (*(vp)->v_op->vop_read)(vp, uiop, ioflag, cr, ct); VOPSTATS_UPDATE_IO(vp, read, read_bytes, (resid_start - uiop->uio_resid)); return (err); } int fop_write( vnode_t *vp, uio_t *uiop, int ioflag, cred_t *cr, caller_context_t *ct) { int err; ssize_t resid_start = uiop->uio_resid; VOPXID_MAP_CR(vp, cr); err = (*(vp)->v_op->vop_write)(vp, uiop, ioflag, cr, ct); VOPSTATS_UPDATE_IO(vp, write, write_bytes, (resid_start - uiop->uio_resid)); return (err); } int fop_ioctl( vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp, caller_context_t *ct) { int err; VOPXID_MAP_CR(vp, cr); err = (*(vp)->v_op->vop_ioctl)(vp, cmd, arg, flag, cr, rvalp, ct); VOPSTATS_UPDATE(vp, ioctl); return (err); } int fop_setfl( vnode_t *vp, int oflags, int nflags, cred_t *cr, caller_context_t *ct) { int err; VOPXID_MAP_CR(vp, cr); err = (*(vp)->v_op->vop_setfl)(vp, oflags, nflags, cr, ct); VOPSTATS_UPDATE(vp, setfl); return (err); } int fop_getattr( vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, caller_context_t *ct) { int err; VOPXID_MAP_CR(vp, cr); /* * If this file system doesn't understand the xvattr extensions * then turn off the xvattr bit. */ if (vfs_has_feature(vp->v_vfsp, VFSFT_XVATTR) == 0) { vap->va_mask &= ~AT_XVATTR; } /* * We're only allowed to skip the ACL check iff we used a 32 bit * ACE mask with VOP_ACCESS() to determine permissions. */ if ((flags & ATTR_NOACLCHECK) && vfs_has_feature(vp->v_vfsp, VFSFT_ACEMASKONACCESS) == 0) { return (EINVAL); } err = (*(vp)->v_op->vop_getattr)(vp, vap, flags, cr, ct); VOPSTATS_UPDATE(vp, getattr); return (err); } int fop_setattr( vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, caller_context_t *ct) { int err; VOPXID_MAP_CR(vp, cr); /* * If this file system doesn't understand the xvattr extensions * then turn off the xvattr bit. */ if (vfs_has_feature(vp->v_vfsp, VFSFT_XVATTR) == 0) { vap->va_mask &= ~AT_XVATTR; } /* * We're only allowed to skip the ACL check iff we used a 32 bit * ACE mask with VOP_ACCESS() to determine permissions. */ if ((flags & ATTR_NOACLCHECK) && vfs_has_feature(vp->v_vfsp, VFSFT_ACEMASKONACCESS) == 0) { return (EINVAL); } err = (*(vp)->v_op->vop_setattr)(vp, vap, flags, cr, ct); VOPSTATS_UPDATE(vp, setattr); return (err); } int fop_access( vnode_t *vp, int mode, int flags, cred_t *cr, caller_context_t *ct) { int err; if ((flags & V_ACE_MASK) && vfs_has_feature(vp->v_vfsp, VFSFT_ACEMASKONACCESS) == 0) { return (EINVAL); } VOPXID_MAP_CR(vp, cr); err = (*(vp)->v_op->vop_access)(vp, mode, flags, cr, ct); VOPSTATS_UPDATE(vp, access); return (err); } int fop_lookup( vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp, int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, int *deflags, /* Returned per-dirent flags */ pathname_t *ppnp) /* Returned case-preserved name in directory */ { int ret; /* * If this file system doesn't support case-insensitive access * and said access is requested, fail quickly. It is required * that if the vfs supports case-insensitive lookup, it also * supports extended dirent flags. */ if (flags & FIGNORECASE && (vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 && vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0)) return (EINVAL); VOPXID_MAP_CR(dvp, cr); if ((flags & LOOKUP_XATTR) && (flags & LOOKUP_HAVE_SYSATTR_DIR) == 0) { ret = xattr_dir_lookup(dvp, vpp, flags, cr); } else { ret = (*(dvp)->v_op->vop_lookup) (dvp, nm, vpp, pnp, flags, rdir, cr, ct, deflags, ppnp); } if (ret == 0 && *vpp) { VOPSTATS_UPDATE(*vpp, lookup); if ((*vpp)->v_path == NULL) { vn_setpath(rootdir, dvp, *vpp, nm, strlen(nm)); } } return (ret); } int fop_create( vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl, int mode, vnode_t **vpp, cred_t *cr, int flags, caller_context_t *ct, vsecattr_t *vsecp) /* ACL to set during create */ { int ret; if (vsecp != NULL && vfs_has_feature(dvp->v_vfsp, VFSFT_ACLONCREATE) == 0) { return (EINVAL); } /* * If this file system doesn't support case-insensitive access * and said access is requested, fail quickly. */ if (flags & FIGNORECASE && (vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 && vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0)) return (EINVAL); VOPXID_MAP_CR(dvp, cr); ret = (*(dvp)->v_op->vop_create) (dvp, name, vap, excl, mode, vpp, cr, flags, ct, vsecp); if (ret == 0 && *vpp) { VOPSTATS_UPDATE(*vpp, create); if ((*vpp)->v_path == NULL) { vn_setpath(rootdir, dvp, *vpp, name, strlen(name)); } } return (ret); } int fop_remove( vnode_t *dvp, char *nm, cred_t *cr, caller_context_t *ct, int flags) { int err; /* * If this file system doesn't support case-insensitive access * and said access is requested, fail quickly. */ if (flags & FIGNORECASE && (vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 && vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0)) return (EINVAL); VOPXID_MAP_CR(dvp, cr); err = (*(dvp)->v_op->vop_remove)(dvp, nm, cr, ct, flags); VOPSTATS_UPDATE(dvp, remove); return (err); } int fop_link( vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr, caller_context_t *ct, int flags) { int err; /* * If the target file system doesn't support case-insensitive access * and said access is requested, fail quickly. */ if (flags & FIGNORECASE && (vfs_has_feature(tdvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 && vfs_has_feature(tdvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0)) return (EINVAL); VOPXID_MAP_CR(tdvp, cr); err = (*(tdvp)->v_op->vop_link)(tdvp, svp, tnm, cr, ct, flags); VOPSTATS_UPDATE(tdvp, link); return (err); } int fop_rename( vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr, caller_context_t *ct, int flags) { int err; /* * If the file system involved does not support * case-insensitive access and said access is requested, fail * quickly. */ if (flags & FIGNORECASE && ((vfs_has_feature(sdvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 && vfs_has_feature(sdvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0))) return (EINVAL); VOPXID_MAP_CR(tdvp, cr); err = (*(sdvp)->v_op->vop_rename)(sdvp, snm, tdvp, tnm, cr, ct, flags); VOPSTATS_UPDATE(sdvp, rename); return (err); } int fop_mkdir( vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr, caller_context_t *ct, int flags, vsecattr_t *vsecp) /* ACL to set during create */ { int ret; if (vsecp != NULL && vfs_has_feature(dvp->v_vfsp, VFSFT_ACLONCREATE) == 0) { return (EINVAL); } /* * If this file system doesn't support case-insensitive access * and said access is requested, fail quickly. */ if (flags & FIGNORECASE && (vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 && vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0)) return (EINVAL); VOPXID_MAP_CR(dvp, cr); ret = (*(dvp)->v_op->vop_mkdir) (dvp, dirname, vap, vpp, cr, ct, flags, vsecp); if (ret == 0 && *vpp) { VOPSTATS_UPDATE(*vpp, mkdir); if ((*vpp)->v_path == NULL) { vn_setpath(rootdir, dvp, *vpp, dirname, strlen(dirname)); } } return (ret); } int fop_rmdir( vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr, caller_context_t *ct, int flags) { int err; /* * If this file system doesn't support case-insensitive access * and said access is requested, fail quickly. */ if (flags & FIGNORECASE && (vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 && vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0)) return (EINVAL); VOPXID_MAP_CR(dvp, cr); err = (*(dvp)->v_op->vop_rmdir)(dvp, nm, cdir, cr, ct, flags); VOPSTATS_UPDATE(dvp, rmdir); return (err); } int fop_readdir( vnode_t *vp, uio_t *uiop, cred_t *cr, int *eofp, caller_context_t *ct, int flags) { int err; ssize_t resid_start = uiop->uio_resid; /* * If this file system doesn't support retrieving directory * entry flags and said access is requested, fail quickly. */ if (flags & V_RDDIR_ENTFLAGS && vfs_has_feature(vp->v_vfsp, VFSFT_DIRENTFLAGS) == 0) return (EINVAL); VOPXID_MAP_CR(vp, cr); err = (*(vp)->v_op->vop_readdir)(vp, uiop, cr, eofp, ct, flags); VOPSTATS_UPDATE_IO(vp, readdir, readdir_bytes, (resid_start - uiop->uio_resid)); return (err); } int fop_symlink( vnode_t *dvp, char *linkname, vattr_t *vap, char *target, cred_t *cr, caller_context_t *ct, int flags) { int err; xvattr_t xvattr; /* * If this file system doesn't support case-insensitive access * and said access is requested, fail quickly. */ if (flags & FIGNORECASE && (vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 && vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0)) return (EINVAL); VOPXID_MAP_CR(dvp, cr); /* check for reparse point */ if ((vfs_has_feature(dvp->v_vfsp, VFSFT_REPARSE)) && (strncmp(target, FS_REPARSE_TAG_STR, strlen(FS_REPARSE_TAG_STR)) == 0)) { if (!fs_reparse_mark(target, vap, &xvattr)) vap = (vattr_t *)&xvattr; } err = (*(dvp)->v_op->vop_symlink) (dvp, linkname, vap, target, cr, ct, flags); VOPSTATS_UPDATE(dvp, symlink); return (err); } int fop_readlink( vnode_t *vp, uio_t *uiop, cred_t *cr, caller_context_t *ct) { int err; VOPXID_MAP_CR(vp, cr); err = (*(vp)->v_op->vop_readlink)(vp, uiop, cr, ct); VOPSTATS_UPDATE(vp, readlink); return (err); } int fop_fsync( vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) { int err; VOPXID_MAP_CR(vp, cr); err = (*(vp)->v_op->vop_fsync)(vp, syncflag, cr, ct); VOPSTATS_UPDATE(vp, fsync); return (err); } void fop_inactive( vnode_t *vp, cred_t *cr, caller_context_t *ct) { /* Need to update stats before vop call since we may lose the vnode */ VOPSTATS_UPDATE(vp, inactive); VOPXID_MAP_CR(vp, cr); (*(vp)->v_op->vop_inactive)(vp, cr, ct); } int fop_fid( vnode_t *vp, fid_t *fidp, caller_context_t *ct) { int err; err = (*(vp)->v_op->vop_fid)(vp, fidp, ct); VOPSTATS_UPDATE(vp, fid); return (err); } int fop_rwlock( vnode_t *vp, int write_lock, caller_context_t *ct) { int ret; ret = ((*(vp)->v_op->vop_rwlock)(vp, write_lock, ct)); VOPSTATS_UPDATE(vp, rwlock); return (ret); } void fop_rwunlock( vnode_t *vp, int write_lock, caller_context_t *ct) { (*(vp)->v_op->vop_rwunlock)(vp, write_lock, ct); VOPSTATS_UPDATE(vp, rwunlock); } int fop_seek( vnode_t *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct) { int err; err = (*(vp)->v_op->vop_seek)(vp, ooff, noffp, ct); VOPSTATS_UPDATE(vp, seek); return (err); } int fop_cmp( vnode_t *vp1, vnode_t *vp2, caller_context_t *ct) { int err; err = (*(vp1)->v_op->vop_cmp)(vp1, vp2, ct); VOPSTATS_UPDATE(vp1, cmp); return (err); } int fop_frlock( vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset, struct flk_callback *flk_cbp, cred_t *cr, caller_context_t *ct) { int err; VOPXID_MAP_CR(vp, cr); err = (*(vp)->v_op->vop_frlock) (vp, cmd, bfp, flag, offset, flk_cbp, cr, ct); VOPSTATS_UPDATE(vp, frlock); return (err); } int fop_space( vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset, cred_t *cr, caller_context_t *ct) { int err; VOPXID_MAP_CR(vp, cr); err = (*(vp)->v_op->vop_space)(vp, cmd, bfp, flag, offset, cr, ct); VOPSTATS_UPDATE(vp, space); return (err); } int fop_realvp( vnode_t *vp, vnode_t **vpp, caller_context_t *ct) { int err; err = (*(vp)->v_op->vop_realvp)(vp, vpp, ct); VOPSTATS_UPDATE(vp, realvp); return (err); } int fop_getpage( vnode_t *vp, offset_t off, size_t len, uint_t *protp, page_t **plarr, size_t plsz, struct seg *seg, caddr_t addr, enum seg_rw rw, cred_t *cr, caller_context_t *ct) { int err; VOPXID_MAP_CR(vp, cr); err = (*(vp)->v_op->vop_getpage) (vp, off, len, protp, plarr, plsz, seg, addr, rw, cr, ct); VOPSTATS_UPDATE(vp, getpage); return (err); } int fop_putpage( vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, caller_context_t *ct) { int err; VOPXID_MAP_CR(vp, cr); err = (*(vp)->v_op->vop_putpage)(vp, off, len, flags, cr, ct); VOPSTATS_UPDATE(vp, putpage); return (err); } int fop_map( vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, caller_context_t *ct) { int err; VOPXID_MAP_CR(vp, cr); err = (*(vp)->v_op->vop_map) (vp, off, as, addrp, len, prot, maxprot, flags, cr, ct); VOPSTATS_UPDATE(vp, map); return (err); } int fop_addmap( vnode_t *vp, offset_t off, struct as *as, caddr_t addr, size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, caller_context_t *ct) { int error; u_longlong_t delta; VOPXID_MAP_CR(vp, cr); error = (*(vp)->v_op->vop_addmap) (vp, off, as, addr, len, prot, maxprot, flags, cr, ct); if ((!error) && (vp->v_type == VREG)) { delta = (u_longlong_t)btopr(len); /* * If file is declared MAP_PRIVATE, it can't be written back * even if open for write. Handle as read. */ if (flags & MAP_PRIVATE) { atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), (int64_t)delta); } else { /* * atomic_add_64 forces the fetch of a 64 bit value to * be atomic on 32 bit machines */ if (maxprot & PROT_WRITE) atomic_add_64((uint64_t *)(&(vp->v_mmap_write)), (int64_t)delta); if (maxprot & PROT_READ) atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), (int64_t)delta); if (maxprot & PROT_EXEC) atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), (int64_t)delta); } } VOPSTATS_UPDATE(vp, addmap); return (error); } int fop_delmap( vnode_t *vp, offset_t off, struct as *as, caddr_t addr, size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, caller_context_t *ct) { int error; u_longlong_t delta; VOPXID_MAP_CR(vp, cr); error = (*(vp)->v_op->vop_delmap) (vp, off, as, addr, len, prot, maxprot, flags, cr, ct); /* * NFS calls into delmap twice, the first time * it simply establishes a callback mechanism and returns EAGAIN * while the real work is being done upon the second invocation. * We have to detect this here and only decrement the counts upon * the second delmap request. */ if ((error != EAGAIN) && (vp->v_type == VREG)) { delta = (u_longlong_t)btopr(len); if (flags & MAP_PRIVATE) { atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), (int64_t)(-delta)); } else { /* * atomic_add_64 forces the fetch of a 64 bit value * to be atomic on 32 bit machines */ if (maxprot & PROT_WRITE) atomic_add_64((uint64_t *)(&(vp->v_mmap_write)), (int64_t)(-delta)); if (maxprot & PROT_READ) atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), (int64_t)(-delta)); if (maxprot & PROT_EXEC) atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), (int64_t)(-delta)); } } VOPSTATS_UPDATE(vp, delmap); return (error); } int fop_poll( vnode_t *vp, short events, int anyyet, short *reventsp, struct pollhead **phpp, caller_context_t *ct) { int err; err = (*(vp)->v_op->vop_poll)(vp, events, anyyet, reventsp, phpp, ct); VOPSTATS_UPDATE(vp, poll); return (err); } int fop_dump( vnode_t *vp, caddr_t addr, offset_t lbdn, offset_t dblks, caller_context_t *ct) { int err; /* ensure lbdn and dblks can be passed safely to bdev_dump */ if ((lbdn != (daddr_t)lbdn) || (dblks != (int)dblks)) return (EIO); err = (*(vp)->v_op->vop_dump)(vp, addr, lbdn, dblks, ct); VOPSTATS_UPDATE(vp, dump); return (err); } int fop_pathconf( vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, caller_context_t *ct) { int err; VOPXID_MAP_CR(vp, cr); err = (*(vp)->v_op->vop_pathconf)(vp, cmd, valp, cr, ct); VOPSTATS_UPDATE(vp, pathconf); return (err); } int fop_pageio( vnode_t *vp, struct page *pp, u_offset_t io_off, size_t io_len, int flags, cred_t *cr, caller_context_t *ct) { int err; VOPXID_MAP_CR(vp, cr); err = (*(vp)->v_op->vop_pageio)(vp, pp, io_off, io_len, flags, cr, ct); VOPSTATS_UPDATE(vp, pageio); return (err); } int fop_dumpctl( vnode_t *vp, int action, offset_t *blkp, caller_context_t *ct) { int err; err = (*(vp)->v_op->vop_dumpctl)(vp, action, blkp, ct); VOPSTATS_UPDATE(vp, dumpctl); return (err); } void fop_dispose( vnode_t *vp, page_t *pp, int flag, int dn, cred_t *cr, caller_context_t *ct) { /* Must do stats first since it's possible to lose the vnode */ VOPSTATS_UPDATE(vp, dispose); VOPXID_MAP_CR(vp, cr); (*(vp)->v_op->vop_dispose)(vp, pp, flag, dn, cr, ct); } int fop_setsecattr( vnode_t *vp, vsecattr_t *vsap, int flag, cred_t *cr, caller_context_t *ct) { int err; VOPXID_MAP_CR(vp, cr); /* * We're only allowed to skip the ACL check iff we used a 32 bit * ACE mask with VOP_ACCESS() to determine permissions. */ if ((flag & ATTR_NOACLCHECK) && vfs_has_feature(vp->v_vfsp, VFSFT_ACEMASKONACCESS) == 0) { return (EINVAL); } err = (*(vp)->v_op->vop_setsecattr) (vp, vsap, flag, cr, ct); VOPSTATS_UPDATE(vp, setsecattr); return (err); } int fop_getsecattr( vnode_t *vp, vsecattr_t *vsap, int flag, cred_t *cr, caller_context_t *ct) { int err; /* * We're only allowed to skip the ACL check iff we used a 32 bit * ACE mask with VOP_ACCESS() to determine permissions. */ if ((flag & ATTR_NOACLCHECK) && vfs_has_feature(vp->v_vfsp, VFSFT_ACEMASKONACCESS) == 0) { return (EINVAL); } VOPXID_MAP_CR(vp, cr); err = (*(vp)->v_op->vop_getsecattr) (vp, vsap, flag, cr, ct); VOPSTATS_UPDATE(vp, getsecattr); return (err); } int fop_shrlock( vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr, caller_context_t *ct) { int err; VOPXID_MAP_CR(vp, cr); err = (*(vp)->v_op->vop_shrlock)(vp, cmd, shr, flag, cr, ct); VOPSTATS_UPDATE(vp, shrlock); return (err); } int fop_vnevent(vnode_t *vp, vnevent_t vnevent, vnode_t *dvp, char *fnm, caller_context_t *ct) { int err; err = (*(vp)->v_op->vop_vnevent)(vp, vnevent, dvp, fnm, ct); VOPSTATS_UPDATE(vp, vnevent); return (err); } int fop_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *uiop, cred_t *cr, caller_context_t *ct) { int err; if (vfs_has_feature(vp->v_vfsp, VFSFT_ZEROCOPY_SUPPORTED) == 0) return (ENOTSUP); err = (*(vp)->v_op->vop_reqzcbuf)(vp, ioflag, uiop, cr, ct); VOPSTATS_UPDATE(vp, reqzcbuf); return (err); } int fop_retzcbuf(vnode_t *vp, xuio_t *uiop, cred_t *cr, caller_context_t *ct) { int err; if (vfs_has_feature(vp->v_vfsp, VFSFT_ZEROCOPY_SUPPORTED) == 0) return (ENOTSUP); err = (*(vp)->v_op->vop_retzcbuf)(vp, uiop, cr, ct); VOPSTATS_UPDATE(vp, retzcbuf); return (err); } /* * Default destructor * Needed because NULL destructor means that the key is unused */ /* ARGSUSED */ void vsd_defaultdestructor(void *value) {} /* * Create a key (index into per vnode array) * Locks out vsd_create, vsd_destroy, and vsd_free * May allocate memory with lock held */ void vsd_create(uint_t *keyp, void (*destructor)(void *)) { int i; uint_t nkeys; /* * if key is allocated, do nothing */ mutex_enter(&vsd_lock); if (*keyp) { mutex_exit(&vsd_lock); return; } /* * find an unused key */ if (destructor == NULL) destructor = vsd_defaultdestructor; for (i = 0; i < vsd_nkeys; ++i) if (vsd_destructor[i] == NULL) break; /* * if no unused keys, increase the size of the destructor array */ if (i == vsd_nkeys) { if ((nkeys = (vsd_nkeys << 1)) == 0) nkeys = 1; vsd_destructor = (void (**)(void *))vsd_realloc((void *)vsd_destructor, (size_t)(vsd_nkeys * sizeof (void (*)(void *))), (size_t)(nkeys * sizeof (void (*)(void *)))); vsd_nkeys = nkeys; } /* * allocate the next available unused key */ vsd_destructor[i] = destructor; *keyp = i + 1; /* create vsd_list, if it doesn't exist */ if (vsd_list == NULL) { vsd_list = kmem_alloc(sizeof (list_t), KM_SLEEP); list_create(vsd_list, sizeof (struct vsd_node), offsetof(struct vsd_node, vs_nodes)); } mutex_exit(&vsd_lock); } /* * Destroy a key * * Assumes that the caller is preventing vsd_set and vsd_get * Locks out vsd_create, vsd_destroy, and vsd_free * May free memory with lock held */ void vsd_destroy(uint_t *keyp) { uint_t key; struct vsd_node *vsd; /* * protect the key namespace and our destructor lists */ mutex_enter(&vsd_lock); key = *keyp; *keyp = 0; ASSERT(key <= vsd_nkeys); /* * if the key is valid */ if (key != 0) { uint_t k = key - 1; /* * for every vnode with VSD, call key's destructor */ for (vsd = list_head(vsd_list); vsd != NULL; vsd = list_next(vsd_list, vsd)) { /* * no VSD for key in this vnode */ if (key > vsd->vs_nkeys) continue; /* * call destructor for key */ if (vsd->vs_value[k] && vsd_destructor[k]) (*vsd_destructor[k])(vsd->vs_value[k]); /* * reset value for key */ vsd->vs_value[k] = NULL; } /* * actually free the key (NULL destructor == unused) */ vsd_destructor[k] = NULL; } mutex_exit(&vsd_lock); } /* * Quickly return the per vnode value that was stored with the specified key * Assumes the caller is protecting key from vsd_create and vsd_destroy * Assumes the caller is holding v_vsd_lock to protect the vsd. */ void * vsd_get(vnode_t *vp, uint_t key) { struct vsd_node *vsd; ASSERT(vp != NULL); ASSERT(mutex_owned(&vp->v_vsd_lock)); vsd = vp->v_vsd; if (key && vsd != NULL && key <= vsd->vs_nkeys) return (vsd->vs_value[key - 1]); return (NULL); } /* * Set a per vnode value indexed with the specified key * Assumes the caller is holding v_vsd_lock to protect the vsd. */ int vsd_set(vnode_t *vp, uint_t key, void *value) { struct vsd_node *vsd; ASSERT(vp != NULL); ASSERT(mutex_owned(&vp->v_vsd_lock)); if (key == 0) return (EINVAL); vsd = vp->v_vsd; if (vsd == NULL) vsd = vp->v_vsd = kmem_zalloc(sizeof (*vsd), KM_SLEEP); /* * If the vsd was just allocated, vs_nkeys will be 0, so the following * code won't happen and we will continue down and allocate space for * the vs_value array. * If the caller is replacing one value with another, then it is up * to the caller to free/rele/destroy the previous value (if needed). */ if (key <= vsd->vs_nkeys) { vsd->vs_value[key - 1] = value; return (0); } ASSERT(key <= vsd_nkeys); if (vsd->vs_nkeys == 0) { mutex_enter(&vsd_lock); /* lock out vsd_destroy() */ /* * Link onto list of all VSD nodes. */ list_insert_head(vsd_list, vsd); mutex_exit(&vsd_lock); } /* * Allocate vnode local storage and set the value for key */ vsd->vs_value = vsd_realloc(vsd->vs_value, vsd->vs_nkeys * sizeof (void *), key * sizeof (void *)); vsd->vs_nkeys = key; vsd->vs_value[key - 1] = value; return (0); } /* * Called from vn_free() to run the destructor function for each vsd * Locks out vsd_create and vsd_destroy * Assumes that the destructor *DOES NOT* use vsd */ void vsd_free(vnode_t *vp) { int i; struct vsd_node *vsd = vp->v_vsd; if (vsd == NULL) return; if (vsd->vs_nkeys == 0) { kmem_free(vsd, sizeof (*vsd)); vp->v_vsd = NULL; return; } /* * lock out vsd_create and vsd_destroy, call * the destructor, and mark the value as destroyed. */ mutex_enter(&vsd_lock); for (i = 0; i < vsd->vs_nkeys; i++) { if (vsd->vs_value[i] && vsd_destructor[i]) (*vsd_destructor[i])(vsd->vs_value[i]); vsd->vs_value[i] = NULL; } /* * remove from linked list of VSD nodes */ list_remove(vsd_list, vsd); mutex_exit(&vsd_lock); /* * free up the VSD */ kmem_free(vsd->vs_value, vsd->vs_nkeys * sizeof (void *)); kmem_free(vsd, sizeof (struct vsd_node)); vp->v_vsd = NULL; } /* * realloc */ static void * vsd_realloc(void *old, size_t osize, size_t nsize) { void *new; new = kmem_zalloc(nsize, KM_SLEEP); if (old) { bcopy(old, new, osize); kmem_free(old, osize); } return (new); } /* * Setup the extensible system attribute for creating a reparse point. * The symlink data 'target' is validated for proper format of a reparse * string and a check also made to make sure the symlink data does not * point to an existing file. * * return 0 if ok else -1. */ static int fs_reparse_mark(char *target, vattr_t *vap, xvattr_t *xvattr) { xoptattr_t *xoap; if ((!target) || (!vap) || (!xvattr)) return (-1); /* validate reparse string */ if (reparse_validate((const char *)target)) return (-1); xva_init(xvattr); xvattr->xva_vattr = *vap; xvattr->xva_vattr.va_mask |= AT_XVATTR; xoap = xva_getxoptattr(xvattr); ASSERT(xoap); XVA_SET_REQ(xvattr, XAT_REPARSE); xoap->xoa_reparse = 1; return (0); } /* * Function to check whether a symlink is a reparse point. * Return B_TRUE if it is a reparse point, else return B_FALSE */ boolean_t vn_is_reparse(vnode_t *vp, cred_t *cr, caller_context_t *ct) { xvattr_t xvattr; xoptattr_t *xoap; if ((vp->v_type != VLNK) || !(vfs_has_feature(vp->v_vfsp, VFSFT_XVATTR))) return (B_FALSE); xva_init(&xvattr); xoap = xva_getxoptattr(&xvattr); ASSERT(xoap); XVA_SET_REQ(&xvattr, XAT_REPARSE); if (VOP_GETATTR(vp, &xvattr.xva_vattr, 0, cr, ct)) return (B_FALSE); if ((!(xvattr.xva_vattr.va_mask & AT_XVATTR)) || (!(XVA_ISSET_RTN(&xvattr, XAT_REPARSE)))) return (B_FALSE); return (xoap->xoa_reparse ? B_TRUE : B_FALSE); }