/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T. * All Rights Reserved */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Arguments passed to thread to free data structures from forced unmount. */ typedef struct { vfs_t *fm_vfsp; int fm_flag; cred_t *fm_cr; } freemountargs_t; static void async_free_mount(vfs_t *, int, cred_t *); static void nfs4_free_mount(vfs_t *, int, cred_t *); static void nfs4_free_mount_thread(freemountargs_t *); static int nfs4_chkdup_servinfo4(servinfo4_t *, servinfo4_t *); /* * From rpcsec module (common/rpcsec). */ extern int sec_clnt_loadinfo(struct sec_data *, struct sec_data **, model_t); extern void sec_clnt_freeinfo(struct sec_data *); /* * The order and contents of this structure must be kept in sync with that of * rfsreqcnt_v4_tmpl in nfs_stats.c */ static char *rfsnames_v4[] = { "null", "compound", "reserved", "access", "close", "commit", "create", "delegpurge", "delegreturn", "getattr", "getfh", "link", "lock", "lockt", "locku", "lookup", "lookupp", "nverify", "open", "openattr", "open_confirm", "open_downgrade", "putfh", "putpubfh", "putrootfh", "read", "readdir", "readlink", "remove", "rename", "renew", "restorefh", "savefh", "secinfo", "setattr", "setclientid", "setclientid_confirm", "verify", "write" }; /* * nfs4_max_mount_retry is the number of times the client will redrive * a mount compound before giving up and returning failure. The intent * is to redrive mount compounds which fail NFS4ERR_STALE so that * if a component of the server path being mounted goes stale, it can * "recover" by redriving the mount compund (LOOKUP ops). This recovery * code is needed outside of the recovery framework because mount is a * special case. The client doesn't create vnodes/rnodes for components * of the server path being mounted. The recovery code recovers real * client objects, not STALE FHs which map to components of the server * path being mounted. * * We could just fail the mount on the first time, but that would * instantly trigger failover (from nfs4_mount), and the client should * try to re-lookup the STALE FH before doing failover. The easiest * way to "re-lookup" is to simply redrive the mount compound. */ static int nfs4_max_mount_retry = 2; /* * nfs4 vfs operations. */ int nfs4_mount(vfs_t *, vnode_t *, struct mounta *, cred_t *); static int nfs4_unmount(vfs_t *, int, cred_t *); static int nfs4_root(vfs_t *, vnode_t **); static int nfs4_statvfs(vfs_t *, struct statvfs64 *); static int nfs4_sync(vfs_t *, short, cred_t *); static int nfs4_vget(vfs_t *, vnode_t **, fid_t *); static int nfs4_mountroot(vfs_t *, whymountroot_t); static void nfs4_freevfs(vfs_t *); static int nfs4rootvp(vnode_t **, vfs_t *, struct servinfo4 *, int, cred_t *, zone_t *); vfsops_t *nfs4_vfsops; int nfs4_vfsinit(void); void nfs4_vfsfini(void); static void nfs4setclientid_init(void); static void nfs4setclientid_fini(void); static void nfs4setclientid_otw(mntinfo4_t *, servinfo4_t *, cred_t *, struct nfs4_server *, nfs4_error_t *, int *); static void destroy_nfs4_server(nfs4_server_t *); static void remove_mi(nfs4_server_t *, mntinfo4_t *); extern void nfs4_ephemeral_init(void); extern void nfs4_ephemeral_fini(void); /* referral related routines */ static servinfo4_t *copy_svp(servinfo4_t *); static void free_knconf_contents(struct knetconfig *k); static char *extract_referral_point(const char *, int); static void setup_newsvpath(servinfo4_t *, int); static void update_servinfo4(servinfo4_t *, fs_location4 *, struct nfs_fsl_info *, char *, int); /* * Initialize the vfs structure */ static int nfs4fstyp; /* * Debug variable to check for rdma based * transport startup and cleanup. Controlled * through /etc/system. Off by default. */ extern int rdma_debug; int nfs4init(int fstyp, char *name) { static const fs_operation_def_t nfs4_vfsops_template[] = { VFSNAME_MOUNT, { .vfs_mount = nfs4_mount }, VFSNAME_UNMOUNT, { .vfs_unmount = nfs4_unmount }, VFSNAME_ROOT, { .vfs_root = nfs4_root }, VFSNAME_STATVFS, { .vfs_statvfs = nfs4_statvfs }, VFSNAME_SYNC, { .vfs_sync = nfs4_sync }, VFSNAME_VGET, { .vfs_vget = nfs4_vget }, VFSNAME_MOUNTROOT, { .vfs_mountroot = nfs4_mountroot }, VFSNAME_FREEVFS, { .vfs_freevfs = nfs4_freevfs }, NULL, NULL }; int error; nfs4_vfsops = NULL; nfs4_vnodeops = NULL; nfs4_trigger_vnodeops = NULL; error = vfs_setfsops(fstyp, nfs4_vfsops_template, &nfs4_vfsops); if (error != 0) { zcmn_err(GLOBAL_ZONEID, CE_WARN, "nfs4init: bad vfs ops template"); goto out; } error = vn_make_ops(name, nfs4_vnodeops_template, &nfs4_vnodeops); if (error != 0) { zcmn_err(GLOBAL_ZONEID, CE_WARN, "nfs4init: bad vnode ops template"); goto out; } error = vn_make_ops("nfs4_trigger", nfs4_trigger_vnodeops_template, &nfs4_trigger_vnodeops); if (error != 0) { zcmn_err(GLOBAL_ZONEID, CE_WARN, "nfs4init: bad trigger vnode ops template"); goto out; } nfs4fstyp = fstyp; (void) nfs4_vfsinit(); (void) nfs4_init_dot_entries(); out: if (error) { if (nfs4_trigger_vnodeops != NULL) vn_freevnodeops(nfs4_trigger_vnodeops); if (nfs4_vnodeops != NULL) vn_freevnodeops(nfs4_vnodeops); (void) vfs_freevfsops_by_type(fstyp); } return (error); } void nfs4fini(void) { (void) nfs4_destroy_dot_entries(); nfs4_vfsfini(); } /* * Create a new sec_data structure to store AUTH_DH related data: * netname, syncaddr, knetconfig. There is no AUTH_F_RPCTIMESYNC * flag set for NFS V4 since we are avoiding to contact the rpcbind * daemon and is using the IP time service (IPPORT_TIMESERVER). * * sec_data can be freed by sec_clnt_freeinfo(). */ static struct sec_data * create_authdh_data(char *netname, int nlen, struct netbuf *syncaddr, struct knetconfig *knconf) { struct sec_data *secdata; dh_k4_clntdata_t *data; char *pf, *p; if (syncaddr == NULL || syncaddr->buf == NULL || nlen == 0) return (NULL); secdata = kmem_alloc(sizeof (*secdata), KM_SLEEP); secdata->flags = 0; data = kmem_alloc(sizeof (*data), KM_SLEEP); data->syncaddr.maxlen = syncaddr->maxlen; data->syncaddr.len = syncaddr->len; data->syncaddr.buf = (char *)kmem_alloc(syncaddr->len, KM_SLEEP); bcopy(syncaddr->buf, data->syncaddr.buf, syncaddr->len); /* * duplicate the knconf information for the * new opaque data. */ data->knconf = kmem_alloc(sizeof (*knconf), KM_SLEEP); *data->knconf = *knconf; pf = kmem_alloc(KNC_STRSIZE, KM_SLEEP); p = kmem_alloc(KNC_STRSIZE, KM_SLEEP); bcopy(knconf->knc_protofmly, pf, KNC_STRSIZE); bcopy(knconf->knc_proto, p, KNC_STRSIZE); data->knconf->knc_protofmly = pf; data->knconf->knc_proto = p; /* move server netname to the sec_data structure */ data->netname = kmem_alloc(nlen, KM_SLEEP); bcopy(netname, data->netname, nlen); data->netnamelen = (int)nlen; secdata->secmod = AUTH_DH; secdata->rpcflavor = AUTH_DH; secdata->data = (caddr_t)data; return (secdata); } /* * Returns (deep) copy of sec_data_t. Allocates all memory required; caller * is responsible for freeing. */ sec_data_t * copy_sec_data(sec_data_t *fsecdata) { sec_data_t *tsecdata; if (fsecdata == NULL) return (NULL); if (fsecdata->rpcflavor == AUTH_DH) { dh_k4_clntdata_t *fdata = (dh_k4_clntdata_t *)fsecdata->data; if (fdata == NULL) return (NULL); tsecdata = (sec_data_t *)create_authdh_data(fdata->netname, fdata->netnamelen, &fdata->syncaddr, fdata->knconf); return (tsecdata); } tsecdata = kmem_zalloc(sizeof (sec_data_t), KM_SLEEP); tsecdata->secmod = fsecdata->secmod; tsecdata->rpcflavor = fsecdata->rpcflavor; tsecdata->flags = fsecdata->flags; tsecdata->uid = fsecdata->uid; if (fsecdata->rpcflavor == RPCSEC_GSS) { gss_clntdata_t *gcd = (gss_clntdata_t *)fsecdata->data; tsecdata->data = (caddr_t)copy_sec_data_gss(gcd); } else { tsecdata->data = NULL; } return (tsecdata); } gss_clntdata_t * copy_sec_data_gss(gss_clntdata_t *fdata) { gss_clntdata_t *tdata; if (fdata == NULL) return (NULL); tdata = kmem_zalloc(sizeof (gss_clntdata_t), KM_SLEEP); tdata->mechanism.length = fdata->mechanism.length; tdata->mechanism.elements = kmem_zalloc(fdata->mechanism.length, KM_SLEEP); bcopy(fdata->mechanism.elements, tdata->mechanism.elements, fdata->mechanism.length); tdata->service = fdata->service; (void) strcpy(tdata->uname, fdata->uname); (void) strcpy(tdata->inst, fdata->inst); (void) strcpy(tdata->realm, fdata->realm); tdata->qop = fdata->qop; return (tdata); } static int nfs4_chkdup_servinfo4(servinfo4_t *svp_head, servinfo4_t *svp) { servinfo4_t *si; /* * Iterate over the servinfo4 list to make sure * we do not have a duplicate. Skip any servinfo4 * that has been marked "NOT IN USE" */ for (si = svp_head; si; si = si->sv_next) { (void) nfs_rw_enter_sig(&si->sv_lock, RW_READER, 0); if (si->sv_flags & SV4_NOTINUSE) { nfs_rw_exit(&si->sv_lock); continue; } nfs_rw_exit(&si->sv_lock); if (si == svp) continue; if (si->sv_addr.len == svp->sv_addr.len && strcmp(si->sv_knconf->knc_protofmly, svp->sv_knconf->knc_protofmly) == 0 && bcmp(si->sv_addr.buf, svp->sv_addr.buf, si->sv_addr.len) == 0) { /* it's a duplicate */ return (1); } } /* it's not a duplicate */ return (0); } void nfs4_free_args(struct nfs_args *nargs) { if (nargs->knconf) { if (nargs->knconf->knc_protofmly) kmem_free(nargs->knconf->knc_protofmly, KNC_STRSIZE); if (nargs->knconf->knc_proto) kmem_free(nargs->knconf->knc_proto, KNC_STRSIZE); kmem_free(nargs->knconf, sizeof (*nargs->knconf)); nargs->knconf = NULL; } if (nargs->fh) { kmem_free(nargs->fh, strlen(nargs->fh) + 1); nargs->fh = NULL; } if (nargs->hostname) { kmem_free(nargs->hostname, strlen(nargs->hostname) + 1); nargs->hostname = NULL; } if (nargs->addr) { if (nargs->addr->buf) { ASSERT(nargs->addr->len); kmem_free(nargs->addr->buf, nargs->addr->len); } kmem_free(nargs->addr, sizeof (struct netbuf)); nargs->addr = NULL; } if (nargs->syncaddr) { ASSERT(nargs->syncaddr->len); if (nargs->syncaddr->buf) { ASSERT(nargs->syncaddr->len); kmem_free(nargs->syncaddr->buf, nargs->syncaddr->len); } kmem_free(nargs->syncaddr, sizeof (struct netbuf)); nargs->syncaddr = NULL; } if (nargs->netname) { kmem_free(nargs->netname, strlen(nargs->netname) + 1); nargs->netname = NULL; } if (nargs->nfs_ext_u.nfs_extA.secdata) { sec_clnt_freeinfo( nargs->nfs_ext_u.nfs_extA.secdata); nargs->nfs_ext_u.nfs_extA.secdata = NULL; } } int nfs4_copyin(char *data, int datalen, struct nfs_args *nargs) { int error; size_t hlen; /* length of hostname */ size_t nlen; /* length of netname */ char netname[MAXNETNAMELEN+1]; /* server's netname */ struct netbuf addr; /* server's address */ struct netbuf syncaddr; /* AUTH_DES time sync addr */ struct knetconfig *knconf; /* transport structure */ struct sec_data *secdata = NULL; /* security data */ STRUCT_DECL(nfs_args, args); /* nfs mount arguments */ STRUCT_DECL(knetconfig, knconf_tmp); STRUCT_DECL(netbuf, addr_tmp); int flags; char *p, *pf; struct pathname pn; char *userbufptr; bzero(nargs, sizeof (*nargs)); STRUCT_INIT(args, get_udatamodel()); bzero(STRUCT_BUF(args), SIZEOF_STRUCT(nfs_args, DATAMODEL_NATIVE)); if (copyin(data, STRUCT_BUF(args), MIN(datalen, STRUCT_SIZE(args)))) return (EFAULT); nargs->wsize = STRUCT_FGET(args, wsize); nargs->rsize = STRUCT_FGET(args, rsize); nargs->timeo = STRUCT_FGET(args, timeo); nargs->retrans = STRUCT_FGET(args, retrans); nargs->acregmin = STRUCT_FGET(args, acregmin); nargs->acregmax = STRUCT_FGET(args, acregmax); nargs->acdirmin = STRUCT_FGET(args, acdirmin); nargs->acdirmax = STRUCT_FGET(args, acdirmax); flags = STRUCT_FGET(args, flags); nargs->flags = flags; addr.buf = NULL; syncaddr.buf = NULL; /* * Allocate space for a knetconfig structure and * its strings and copy in from user-land. */ knconf = kmem_zalloc(sizeof (*knconf), KM_SLEEP); STRUCT_INIT(knconf_tmp, get_udatamodel()); if (copyin(STRUCT_FGETP(args, knconf), STRUCT_BUF(knconf_tmp), STRUCT_SIZE(knconf_tmp))) { kmem_free(knconf, sizeof (*knconf)); return (EFAULT); } knconf->knc_semantics = STRUCT_FGET(knconf_tmp, knc_semantics); knconf->knc_protofmly = STRUCT_FGETP(knconf_tmp, knc_protofmly); knconf->knc_proto = STRUCT_FGETP(knconf_tmp, knc_proto); if (get_udatamodel() != DATAMODEL_LP64) { knconf->knc_rdev = expldev(STRUCT_FGET(knconf_tmp, knc_rdev)); } else { knconf->knc_rdev = STRUCT_FGET(knconf_tmp, knc_rdev); } pf = kmem_alloc(KNC_STRSIZE, KM_SLEEP); p = kmem_alloc(KNC_STRSIZE, KM_SLEEP); error = copyinstr(knconf->knc_protofmly, pf, KNC_STRSIZE, NULL); if (error) { kmem_free(pf, KNC_STRSIZE); kmem_free(p, KNC_STRSIZE); kmem_free(knconf, sizeof (*knconf)); return (error); } error = copyinstr(knconf->knc_proto, p, KNC_STRSIZE, NULL); if (error) { kmem_free(pf, KNC_STRSIZE); kmem_free(p, KNC_STRSIZE); kmem_free(knconf, sizeof (*knconf)); return (error); } knconf->knc_protofmly = pf; knconf->knc_proto = p; nargs->knconf = knconf; /* * Get server address */ STRUCT_INIT(addr_tmp, get_udatamodel()); if (copyin(STRUCT_FGETP(args, addr), STRUCT_BUF(addr_tmp), STRUCT_SIZE(addr_tmp))) { error = EFAULT; goto errout; } nargs->addr = kmem_zalloc(sizeof (struct netbuf), KM_SLEEP); userbufptr = STRUCT_FGETP(addr_tmp, buf); addr.len = STRUCT_FGET(addr_tmp, len); addr.buf = kmem_alloc(addr.len, KM_SLEEP); addr.maxlen = addr.len; if (copyin(userbufptr, addr.buf, addr.len)) { kmem_free(addr.buf, addr.len); error = EFAULT; goto errout; } bcopy(&addr, nargs->addr, sizeof (struct netbuf)); /* * Get the root fhandle */ error = pn_get(STRUCT_FGETP(args, fh), UIO_USERSPACE, &pn); if (error) goto errout; /* Volatile fh: keep server paths, so use actual-size strings */ nargs->fh = kmem_alloc(pn.pn_pathlen + 1, KM_SLEEP); bcopy(pn.pn_path, nargs->fh, pn.pn_pathlen); nargs->fh[pn.pn_pathlen] = '\0'; pn_free(&pn); /* * Get server's hostname */ if (flags & NFSMNT_HOSTNAME) { error = copyinstr(STRUCT_FGETP(args, hostname), netname, sizeof (netname), &hlen); if (error) goto errout; nargs->hostname = kmem_zalloc(hlen, KM_SLEEP); (void) strcpy(nargs->hostname, netname); } else { nargs->hostname = NULL; } /* * If there are syncaddr and netname data, load them in. This is * to support data needed for NFSV4 when AUTH_DH is the negotiated * flavor via SECINFO. (instead of using MOUNT protocol in V3). */ netname[0] = '\0'; if (flags & NFSMNT_SECURE) { /* get syncaddr */ STRUCT_INIT(addr_tmp, get_udatamodel()); if (copyin(STRUCT_FGETP(args, syncaddr), STRUCT_BUF(addr_tmp), STRUCT_SIZE(addr_tmp))) { error = EINVAL; goto errout; } userbufptr = STRUCT_FGETP(addr_tmp, buf); syncaddr.len = STRUCT_FGET(addr_tmp, len); syncaddr.buf = kmem_alloc(syncaddr.len, KM_SLEEP); syncaddr.maxlen = syncaddr.len; if (copyin(userbufptr, syncaddr.buf, syncaddr.len)) { kmem_free(syncaddr.buf, syncaddr.len); error = EFAULT; goto errout; } nargs->syncaddr = kmem_alloc(sizeof (struct netbuf), KM_SLEEP); bcopy(&syncaddr, nargs->syncaddr, sizeof (struct netbuf)); /* get server's netname */ if (copyinstr(STRUCT_FGETP(args, netname), netname, sizeof (netname), &nlen)) { error = EFAULT; goto errout; } netname[nlen] = '\0'; nargs->netname = kmem_zalloc(nlen, KM_SLEEP); (void) strcpy(nargs->netname, netname); } /* * Get the extention data which has the security data structure. * This includes data for AUTH_SYS as well. */ if (flags & NFSMNT_NEWARGS) { nargs->nfs_args_ext = STRUCT_FGET(args, nfs_args_ext); if (nargs->nfs_args_ext == NFS_ARGS_EXTA || nargs->nfs_args_ext == NFS_ARGS_EXTB) { /* * Indicating the application is using the new * sec_data structure to pass in the security * data. */ if (STRUCT_FGETP(args, nfs_ext_u.nfs_extA.secdata) != NULL) { error = sec_clnt_loadinfo( (struct sec_data *)STRUCT_FGETP(args, nfs_ext_u.nfs_extA.secdata), &secdata, get_udatamodel()); } nargs->nfs_ext_u.nfs_extA.secdata = secdata; } } if (error) goto errout; /* * Failover support: * * We may have a linked list of nfs_args structures, * which means the user is looking for failover. If * the mount is either not "read-only" or "soft", * we want to bail out with EINVAL. */ if (nargs->nfs_args_ext == NFS_ARGS_EXTB) nargs->nfs_ext_u.nfs_extB.next = STRUCT_FGETP(args, nfs_ext_u.nfs_extB.next); errout: if (error) nfs4_free_args(nargs); return (error); } /* * nfs mount vfsop * Set up mount info record and attach it to vfs struct. */ int nfs4_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) { char *data = uap->dataptr; int error; vnode_t *rtvp; /* the server's root */ mntinfo4_t *mi; /* mount info, pointed at by vfs */ struct knetconfig *rdma_knconf; /* rdma transport structure */ rnode4_t *rp; struct servinfo4 *svp; /* nfs server info */ struct servinfo4 *svp_tail = NULL; /* previous nfs server info */ struct servinfo4 *svp_head; /* first nfs server info */ struct servinfo4 *svp_2ndlast; /* 2nd last in server info list */ struct sec_data *secdata; /* security data */ struct nfs_args *args = NULL; int flags, addr_type, removed; zone_t *zone = nfs_zone(); nfs4_error_t n4e; zone_t *mntzone = NULL; if (secpolicy_fs_mount(cr, mvp, vfsp) != 0) return (EPERM); if (mvp->v_type != VDIR) return (ENOTDIR); /* * get arguments * * nfs_args is now versioned and is extensible, so * uap->datalen might be different from sizeof (args) * in a compatible situation. */ more: if (!(uap->flags & MS_SYSSPACE)) { if (args == NULL) args = kmem_zalloc(sizeof (struct nfs_args), KM_SLEEP); else nfs4_free_args(args); error = nfs4_copyin(data, uap->datalen, args); if (error) { if (args) { kmem_free(args, sizeof (*args)); } return (error); } } else { args = (struct nfs_args *)data; } flags = args->flags; /* * If the request changes the locking type, disallow the remount, * because it's questionable whether we can transfer the * locking state correctly. */ if (uap->flags & MS_REMOUNT) { if (!(uap->flags & MS_SYSSPACE)) { nfs4_free_args(args); kmem_free(args, sizeof (*args)); } if ((mi = VFTOMI4(vfsp)) != NULL) { uint_t new_mi_llock; uint_t old_mi_llock; new_mi_llock = (flags & NFSMNT_LLOCK) ? 1 : 0; old_mi_llock = (mi->mi_flags & MI4_LLOCK) ? 1 : 0; if (old_mi_llock != new_mi_llock) return (EBUSY); } return (0); } /* * For ephemeral mount trigger stub vnodes, we have two problems * to solve: racing threads will likely fail the v_count check, and * we want only one to proceed with the mount. * * For stubs, if the mount has already occurred (via a racing thread), * just return success. If not, skip the v_count check and proceed. * Note that we are already serialised at this point. */ mutex_enter(&mvp->v_lock); if (vn_matchops(mvp, nfs4_trigger_vnodeops)) { /* mntpt is a v4 stub vnode */ ASSERT(RP_ISSTUB(VTOR4(mvp))); ASSERT(!(uap->flags & MS_OVERLAY)); ASSERT(!(mvp->v_flag & VROOT)); if (vn_mountedvfs(mvp) != NULL) { /* ephemeral mount has already occurred */ ASSERT(uap->flags & MS_SYSSPACE); mutex_exit(&mvp->v_lock); return (0); } } else { /* mntpt is a non-v4 or v4 non-stub vnode */ if (!(uap->flags & MS_OVERLAY) && (mvp->v_count != 1 || (mvp->v_flag & VROOT))) { mutex_exit(&mvp->v_lock); if (!(uap->flags & MS_SYSSPACE)) { nfs4_free_args(args); kmem_free(args, sizeof (*args)); } return (EBUSY); } } mutex_exit(&mvp->v_lock); /* make sure things are zeroed for errout: */ rtvp = NULL; mi = NULL; secdata = NULL; /* * A valid knetconfig structure is required. */ if (!(flags & NFSMNT_KNCONF) || args->knconf == NULL || args->knconf->knc_protofmly == NULL || args->knconf->knc_proto == NULL || (strcmp(args->knconf->knc_proto, NC_UDP) == 0)) { if (!(uap->flags & MS_SYSSPACE)) { nfs4_free_args(args); kmem_free(args, sizeof (*args)); } return (EINVAL); } if ((strlen(args->knconf->knc_protofmly) >= KNC_STRSIZE) || (strlen(args->knconf->knc_proto) >= KNC_STRSIZE)) { if (!(uap->flags & MS_SYSSPACE)) { nfs4_free_args(args); kmem_free(args, sizeof (*args)); } return (EINVAL); } /* * Allocate a servinfo4 struct. */ svp = kmem_zalloc(sizeof (*svp), KM_SLEEP); nfs_rw_init(&svp->sv_lock, NULL, RW_DEFAULT, NULL); if (svp_tail) { svp_2ndlast = svp_tail; svp_tail->sv_next = svp; } else { svp_head = svp; svp_2ndlast = svp; } svp_tail = svp; svp->sv_knconf = args->knconf; args->knconf = NULL; /* * Get server address */ if (args->addr == NULL || args->addr->buf == NULL) { error = EINVAL; goto errout; } svp->sv_addr.maxlen = args->addr->maxlen; svp->sv_addr.len = args->addr->len; svp->sv_addr.buf = args->addr->buf; args->addr->buf = NULL; /* * Get the root fhandle */ if (args->fh == NULL || (strlen(args->fh) >= MAXPATHLEN)) { error = EINVAL; goto errout; } svp->sv_path = args->fh; svp->sv_pathlen = strlen(args->fh) + 1; args->fh = NULL; /* * Get server's hostname */ if (flags & NFSMNT_HOSTNAME) { if (args->hostname == NULL || (strlen(args->hostname) > MAXNETNAMELEN)) { error = EINVAL; goto errout; } svp->sv_hostnamelen = strlen(args->hostname) + 1; svp->sv_hostname = args->hostname; args->hostname = NULL; } else { char *p = "unknown-host"; svp->sv_hostnamelen = strlen(p) + 1; svp->sv_hostname = kmem_zalloc(svp->sv_hostnamelen, KM_SLEEP); (void) strcpy(svp->sv_hostname, p); } /* * RDMA MOUNT SUPPORT FOR NFS v4. * Establish, is it possible to use RDMA, if so overload the * knconf with rdma specific knconf and free the orignal knconf. */ if ((flags & NFSMNT_TRYRDMA) || (flags & NFSMNT_DORDMA)) { /* * Determine the addr type for RDMA, IPv4 or v6. */ if (strcmp(svp->sv_knconf->knc_protofmly, NC_INET) == 0) addr_type = AF_INET; else if (strcmp(svp->sv_knconf->knc_protofmly, NC_INET6) == 0) addr_type = AF_INET6; if (rdma_reachable(addr_type, &svp->sv_addr, &rdma_knconf) == 0) { /* * If successful, hijack the orignal knconf and * replace with the new one, depending on the flags. */ svp->sv_origknconf = svp->sv_knconf; svp->sv_knconf = rdma_knconf; } else { if (flags & NFSMNT_TRYRDMA) { #ifdef DEBUG if (rdma_debug) zcmn_err(getzoneid(), CE_WARN, "no RDMA onboard, revert\n"); #endif } if (flags & NFSMNT_DORDMA) { /* * If proto=rdma is specified and no RDMA * path to this server is avialable then * ditch this server. * This is not included in the mountable * server list or the replica list. * Check if more servers are specified; * Failover case, otherwise bail out of mount. */ if (args->nfs_args_ext == NFS_ARGS_EXTB && args->nfs_ext_u.nfs_extB.next != NULL) { data = (char *) args->nfs_ext_u.nfs_extB.next; if (uap->flags & MS_RDONLY && !(flags & NFSMNT_SOFT)) { if (svp_head->sv_next == NULL) { svp_tail = NULL; svp_2ndlast = NULL; sv4_free(svp_head); goto more; } else { svp_tail = svp_2ndlast; svp_2ndlast->sv_next = NULL; sv4_free(svp); goto more; } } } else { /* * This is the last server specified * in the nfs_args list passed down * and its not rdma capable. */ if (svp_head->sv_next == NULL) { /* * Is this the only one */ error = EINVAL; #ifdef DEBUG if (rdma_debug) zcmn_err(getzoneid(), CE_WARN, "No RDMA srv"); #endif goto errout; } else { /* * There is list, since some * servers specified before * this passed all requirements */ svp_tail = svp_2ndlast; svp_2ndlast->sv_next = NULL; sv4_free(svp); goto proceed; } } } } } /* * If there are syncaddr and netname data, load them in. This is * to support data needed for NFSV4 when AUTH_DH is the negotiated * flavor via SECINFO. (instead of using MOUNT protocol in V3). */ if (args->flags & NFSMNT_SECURE) { svp->sv_dhsec = create_authdh_data(args->netname, strlen(args->netname), args->syncaddr, svp->sv_knconf); } /* * Get the extention data which has the security data structure. * This includes data for AUTH_SYS as well. */ if (flags & NFSMNT_NEWARGS) { switch (args->nfs_args_ext) { case NFS_ARGS_EXTA: case NFS_ARGS_EXTB: /* * Indicating the application is using the new * sec_data structure to pass in the security * data. */ secdata = args->nfs_ext_u.nfs_extA.secdata; if (secdata == NULL) { error = EINVAL; } else if (uap->flags & MS_SYSSPACE) { /* * Need to validate the flavor here if * sysspace, userspace was already * validate from the nfs_copyin function. */ switch (secdata->rpcflavor) { case AUTH_NONE: case AUTH_UNIX: case AUTH_LOOPBACK: case AUTH_DES: case RPCSEC_GSS: break; default: error = EINVAL; goto errout; } } args->nfs_ext_u.nfs_extA.secdata = NULL; break; default: error = EINVAL; break; } } else if (flags & NFSMNT_SECURE) { /* * NFSMNT_SECURE is deprecated but we keep it * to support the rogue user-generated application * that may use this undocumented interface to do * AUTH_DH security, e.g. our own rexd. * * Also note that NFSMNT_SECURE is used for passing * AUTH_DH info to be used in negotiation. */ secdata = create_authdh_data(args->netname, strlen(args->netname), args->syncaddr, svp->sv_knconf); } else { secdata = kmem_alloc(sizeof (*secdata), KM_SLEEP); secdata->secmod = secdata->rpcflavor = AUTH_SYS; secdata->data = NULL; } svp->sv_secdata = secdata; /* * User does not explictly specify a flavor, and a user * defined default flavor is passed down. */ if (flags & NFSMNT_SECDEFAULT) { (void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0); svp->sv_flags |= SV4_TRYSECDEFAULT; nfs_rw_exit(&svp->sv_lock); } /* * Failover support: * * We may have a linked list of nfs_args structures, * which means the user is looking for failover. If * the mount is either not "read-only" or "soft", * we want to bail out with EINVAL. */ if (args->nfs_args_ext == NFS_ARGS_EXTB && args->nfs_ext_u.nfs_extB.next != NULL) { if (uap->flags & MS_RDONLY && !(flags & NFSMNT_SOFT)) { data = (char *)args->nfs_ext_u.nfs_extB.next; goto more; } error = EINVAL; goto errout; } /* * Determine the zone we're being mounted into. */ zone_hold(mntzone = zone); /* start with this assumption */ if (getzoneid() == GLOBAL_ZONEID) { zone_rele(mntzone); mntzone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt)); ASSERT(mntzone != NULL); if (mntzone != zone) { error = EBUSY; goto errout; } } if (is_system_labeled()) { error = nfs_mount_label_policy(vfsp, &svp->sv_addr, svp->sv_knconf, cr); if (error > 0) goto errout; if (error == -1) { /* change mount to read-only to prevent write-down */ vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0); } } /* * Stop the mount from going any further if the zone is going away. */ if (zone_status_get(mntzone) >= ZONE_IS_SHUTTING_DOWN) { error = EBUSY; goto errout; } /* * Get root vnode. */ proceed: error = nfs4rootvp(&rtvp, vfsp, svp_head, flags, cr, mntzone); if (error) { /* if nfs4rootvp failed, it will free svp_head */ svp_head = NULL; goto errout; } mi = VTOMI4(rtvp); /* * Send client id to the server, if necessary */ nfs4_error_zinit(&n4e); nfs4setclientid(mi, cr, FALSE, &n4e); error = n4e.error; if (error) goto errout; /* * Set option fields in the mount info record */ if (svp_head->sv_next) { mutex_enter(&mi->mi_lock); mi->mi_flags |= MI4_LLOCK; mutex_exit(&mi->mi_lock); } error = nfs4_setopts(rtvp, DATAMODEL_NATIVE, args); if (error) goto errout; /* * Time to tie in the mirror mount info at last! */ if (flags & NFSMNT_EPHEMERAL) error = nfs4_record_ephemeral_mount(mi, mvp); errout: if (error) { if (rtvp != NULL) { rp = VTOR4(rtvp); if (rp->r_flags & R4HASHED) rp4_rmhash(rp); } if (mi != NULL) { nfs4_async_stop(vfsp); nfs4_async_manager_stop(vfsp); nfs4_remove_mi_from_server(mi, NULL); if (rtvp != NULL) VN_RELE(rtvp); if (mntzone != NULL) zone_rele(mntzone); /* need to remove it from the zone */ removed = nfs4_mi_zonelist_remove(mi); if (removed) zone_rele(mi->mi_zone); MI4_RELE(mi); if (!(uap->flags & MS_SYSSPACE) && args) { nfs4_free_args(args); kmem_free(args, sizeof (*args)); } return (error); } if (svp_head) sv4_free(svp_head); } if (!(uap->flags & MS_SYSSPACE) && args) { nfs4_free_args(args); kmem_free(args, sizeof (*args)); } if (rtvp != NULL) VN_RELE(rtvp); if (mntzone != NULL) zone_rele(mntzone); return (error); } #ifdef DEBUG #define VERS_MSG "NFS4 server " #else #define VERS_MSG "NFS server " #endif #define READ_MSG \ VERS_MSG "%s returned 0 for read transfer size" #define WRITE_MSG \ VERS_MSG "%s returned 0 for write transfer size" #define SIZE_MSG \ VERS_MSG "%s returned 0 for maximum file size" /* * Get the symbolic link text from the server for a given filehandle * of that symlink. * * (get symlink text) PUTFH READLINK */ static int getlinktext_otw(mntinfo4_t *mi, nfs_fh4 *fh, char **linktextp, cred_t *cr, int flags) { COMPOUND4args_clnt args; COMPOUND4res_clnt res; int doqueue; nfs_argop4 argop[2]; nfs_resop4 *resop; READLINK4res *lr_res; uint_t len; bool_t needrecov = FALSE; nfs4_recov_state_t recov_state; nfs4_sharedfh_t *sfh; nfs4_error_t e; int num_retry = nfs4_max_mount_retry; int recovery = !(flags & NFS4_GETFH_NEEDSOP); sfh = sfh4_get(fh, mi); recov_state.rs_flags = 0; recov_state.rs_num_retry_despite_err = 0; recov_retry: nfs4_error_zinit(&e); args.array_len = 2; args.array = argop; args.ctag = TAG_GET_SYMLINK; if (! recovery) { e.error = nfs4_start_op(mi, NULL, NULL, &recov_state); if (e.error) { sfh4_rele(&sfh); return (e.error); } } /* 0. putfh symlink fh */ argop[0].argop = OP_CPUTFH; argop[0].nfs_argop4_u.opcputfh.sfh = sfh; /* 1. readlink */ argop[1].argop = OP_READLINK; doqueue = 1; rfs4call(mi, &args, &res, cr, &doqueue, 0, &e); needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp); if (needrecov && !recovery && num_retry-- > 0) { NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, "getlinktext_otw: initiating recovery\n")); if (nfs4_start_recovery(&e, mi, NULL, NULL, NULL, NULL, OP_READLINK, NULL, NULL, NULL) == FALSE) { nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov); if (!e.error) (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); goto recov_retry; } } /* * If non-NFS4 pcol error and/or we weren't able to recover. */ if (e.error != 0) { if (! recovery) nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov); sfh4_rele(&sfh); return (e.error); } if (res.status) { e.error = geterrno4(res.status); (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); if (! recovery) nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov); sfh4_rele(&sfh); return (e.error); } /* res.status == NFS4_OK */ ASSERT(res.status == NFS4_OK); resop = &res.array[1]; /* readlink res */ lr_res = &resop->nfs_resop4_u.opreadlink; /* treat symlink name as data */ *linktextp = utf8_to_str(&lr_res->link, &len, NULL); if (! recovery) nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov); sfh4_rele(&sfh); (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); return (0); } /* * Skip over consecutive slashes and "/./" in a pathname. */ void pathname_skipslashdot(struct pathname *pnp) { char *c1, *c2; while (pnp->pn_pathlen > 0 && *pnp->pn_path == '/') { c1 = pnp->pn_path + 1; c2 = pnp->pn_path + 2; if (*c1 == '.' && (*c2 == '/' || *c2 == '\0')) { pnp->pn_path = pnp->pn_path + 2; /* skip "/." */ pnp->pn_pathlen = pnp->pn_pathlen - 2; } else { pnp->pn_path++; pnp->pn_pathlen--; } } } /* * Resolve a symbolic link path. The symlink is in the nth component of * svp->sv_path and has an nfs4 file handle "fh". * Upon return, the sv_path will point to the new path that has the nth * component resolved to its symlink text. */ int resolve_sympath(mntinfo4_t *mi, servinfo4_t *svp, int nth, nfs_fh4 *fh, cred_t *cr, int flags) { char *oldpath; char *symlink, *newpath; struct pathname oldpn, newpn; char component[MAXNAMELEN]; int i, addlen, error = 0; int oldpathlen; /* Get the symbolic link text over the wire. */ error = getlinktext_otw(mi, fh, &symlink, cr, flags); if (error || symlink == NULL || strlen(symlink) == 0) return (error); /* * Compose the new pathname. * Note: * - only the nth component is resolved for the pathname. * - pathname.pn_pathlen does not count the ending null byte. */ (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); oldpath = svp->sv_path; oldpathlen = svp->sv_pathlen; if (error = pn_get(oldpath, UIO_SYSSPACE, &oldpn)) { nfs_rw_exit(&svp->sv_lock); kmem_free(symlink, strlen(symlink) + 1); return (error); } nfs_rw_exit(&svp->sv_lock); pn_alloc(&newpn); /* * Skip over previous components from the oldpath so that the * oldpn.pn_path will point to the symlink component. Skip * leading slashes and "/./" (no OP_LOOKUP on ".") so that * pn_getcompnent can get the component. */ for (i = 1; i < nth; i++) { pathname_skipslashdot(&oldpn); error = pn_getcomponent(&oldpn, component); if (error) goto out; } /* * Copy the old path upto the component right before the symlink * if the symlink is not an absolute path. */ if (symlink[0] != '/') { addlen = oldpn.pn_path - oldpn.pn_buf; bcopy(oldpn.pn_buf, newpn.pn_path, addlen); newpn.pn_pathlen += addlen; newpn.pn_path += addlen; newpn.pn_buf[newpn.pn_pathlen] = '/'; newpn.pn_pathlen++; newpn.pn_path++; } /* copy the resolved symbolic link text */ addlen = strlen(symlink); if (newpn.pn_pathlen + addlen >= newpn.pn_bufsize) { error = ENAMETOOLONG; goto out; } bcopy(symlink, newpn.pn_path, addlen); newpn.pn_pathlen += addlen; newpn.pn_path += addlen; /* * Check if there is any remaining path after the symlink component. * First, skip the symlink component. */ pathname_skipslashdot(&oldpn); if (error = pn_getcomponent(&oldpn, component)) goto out; addlen = pn_pathleft(&oldpn); /* includes counting the slash */ /* * Copy the remaining path to the new pathname if there is any. */ if (addlen > 0) { if (newpn.pn_pathlen + addlen >= newpn.pn_bufsize) { error = ENAMETOOLONG; goto out; } bcopy(oldpn.pn_path, newpn.pn_path, addlen); newpn.pn_pathlen += addlen; } newpn.pn_buf[newpn.pn_pathlen] = '\0'; /* get the newpath and store it in the servinfo4_t */ newpath = kmem_alloc(newpn.pn_pathlen + 1, KM_SLEEP); bcopy(newpn.pn_buf, newpath, newpn.pn_pathlen); newpath[newpn.pn_pathlen] = '\0'; (void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0); svp->sv_path = newpath; svp->sv_pathlen = strlen(newpath) + 1; nfs_rw_exit(&svp->sv_lock); kmem_free(oldpath, oldpathlen); out: kmem_free(symlink, strlen(symlink) + 1); pn_free(&newpn); pn_free(&oldpn); return (error); } /* * This routine updates servinfo4 structure with the new referred server * info. * nfsfsloc has the location related information * fsp has the hostname and pathname info. * new path = pathname from referral + part of orig pathname(based on nth). */ static void update_servinfo4(servinfo4_t *svp, fs_location4 *fsp, struct nfs_fsl_info *nfsfsloc, char *orig_path, int nth) { struct knetconfig *knconf, *svknconf; struct netbuf *saddr; sec_data_t *secdata; utf8string *host; int i = 0, num_slashes = 0; char *p, *spath, *op, *new_path; /* Update knconf */ knconf = svp->sv_knconf; free_knconf_contents(knconf); bzero(knconf, sizeof (struct knetconfig)); svknconf = nfsfsloc->knconf; knconf->knc_semantics = svknconf->knc_semantics; knconf->knc_protofmly = kmem_zalloc(KNC_STRSIZE, KM_SLEEP); knconf->knc_proto = kmem_zalloc(KNC_STRSIZE, KM_SLEEP); knconf->knc_rdev = svknconf->knc_rdev; bcopy(svknconf->knc_protofmly, knconf->knc_protofmly, KNC_STRSIZE); bcopy(svknconf->knc_proto, knconf->knc_proto, KNC_STRSIZE); /* Update server address */ saddr = &svp->sv_addr; if (saddr->buf != NULL) kmem_free(saddr->buf, saddr->maxlen); saddr->buf = kmem_alloc(nfsfsloc->addr->maxlen, KM_SLEEP); saddr->len = nfsfsloc->addr->len; saddr->maxlen = nfsfsloc->addr->maxlen; bcopy(nfsfsloc->addr->buf, saddr->buf, nfsfsloc->addr->len); /* Update server name */ host = fsp->server_val; kmem_free(svp->sv_hostname, svp->sv_hostnamelen); svp->sv_hostname = kmem_zalloc(host->utf8string_len + 1, KM_SLEEP); bcopy(host->utf8string_val, svp->sv_hostname, host->utf8string_len); svp->sv_hostname[host->utf8string_len] = '\0'; svp->sv_hostnamelen = host->utf8string_len + 1; /* * Update server path. * We need to setup proper path here. * For ex., If we got a path name serv1:/rp/aaa/bbb * where aaa is a referral and points to serv2:/rpool/aa * we need to set the path to serv2:/rpool/aa/bbb * The first part of this below code generates /rpool/aa * and the second part appends /bbb to the server path. */ spath = p = kmem_zalloc(MAXPATHLEN, KM_SLEEP); *p++ = '/'; for (i = 0; i < fsp->rootpath.pathname4_len; i++) { component4 *comp; comp = &fsp->rootpath.pathname4_val[i]; /* If no space, null the string and bail */ if ((p - spath) + comp->utf8string_len + 1 > MAXPATHLEN) { p = spath + MAXPATHLEN - 1; spath[0] = '\0'; break; } bcopy(comp->utf8string_val, p, comp->utf8string_len); p += comp->utf8string_len; *p++ = '/'; } if (fsp->rootpath.pathname4_len != 0) *(p - 1) = '\0'; else *p = '\0'; p = spath; new_path = kmem_zalloc(MAXPATHLEN, KM_SLEEP); (void) strlcpy(new_path, p, MAXPATHLEN); kmem_free(p, MAXPATHLEN); i = strlen(new_path); for (op = orig_path; *op; op++) { if (*op == '/') num_slashes++; if (num_slashes == nth + 2) { while (*op != '\0') { new_path[i] = *op; i++; op++; } break; } } new_path[i] = '\0'; kmem_free(svp->sv_path, svp->sv_pathlen); svp->sv_pathlen = strlen(new_path) + 1; svp->sv_path = kmem_alloc(svp->sv_pathlen, KM_SLEEP); bcopy(new_path, svp->sv_path, svp->sv_pathlen); kmem_free(new_path, MAXPATHLEN); /* * All the security data is specific to old server. * Clean it up except secdata which deals with mount options. * We need to inherit that data. Copy secdata into our new servinfo4. */ if (svp->sv_dhsec) { sec_clnt_freeinfo(svp->sv_dhsec); svp->sv_dhsec = NULL; } if (svp->sv_save_secinfo && svp->sv_save_secinfo != svp->sv_secinfo) { secinfo_free(svp->sv_save_secinfo); svp->sv_save_secinfo = NULL; } if (svp->sv_secinfo) { secinfo_free(svp->sv_secinfo); svp->sv_secinfo = NULL; } svp->sv_currsec = NULL; secdata = kmem_alloc(sizeof (*secdata), KM_SLEEP); *secdata = *svp->sv_secdata; secdata->data = NULL; if (svp->sv_secdata) { sec_clnt_freeinfo(svp->sv_secdata); svp->sv_secdata = NULL; } svp->sv_secdata = secdata; } /* * Resolve a referral. The referral is in the n+1th component of * svp->sv_path and has a parent nfs4 file handle "fh". * Upon return, the sv_path will point to the new path that has referral * component resolved to its referred path and part of original path. * Hostname and other address information is also updated. */ int resolve_referral(mntinfo4_t *mi, servinfo4_t *svp, cred_t *cr, int nth, nfs_fh4 *fh) { nfs4_sharedfh_t *sfh; struct nfs_fsl_info nfsfsloc; nfs4_ga_res_t garp; COMPOUND4res_clnt callres; fs_location4 *fsp; char *nm, *orig_path; int orig_pathlen = 0, ret = -1, index; if (svp->sv_pathlen <= 0) return (ret); (void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0); orig_pathlen = svp->sv_pathlen; orig_path = kmem_alloc(orig_pathlen, KM_SLEEP); bcopy(svp->sv_path, orig_path, orig_pathlen); nm = extract_referral_point(svp->sv_path, nth); setup_newsvpath(svp, nth); nfs_rw_exit(&svp->sv_lock); sfh = sfh4_get(fh, mi); index = nfs4_process_referral(mi, sfh, nm, cr, &garp, &callres, &nfsfsloc); sfh4_rele(&sfh); kmem_free(nm, MAXPATHLEN); if (index < 0) { kmem_free(orig_path, orig_pathlen); return (index); } fsp = &garp.n4g_ext_res->n4g_fslocations.locations_val[index]; (void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0); update_servinfo4(svp, fsp, &nfsfsloc, orig_path, nth); nfs_rw_exit(&svp->sv_lock); mutex_enter(&mi->mi_lock); mi->mi_vfs_referral_loop_cnt++; mutex_exit(&mi->mi_lock); ret = 0; bad: /* Free up XDR memory allocated in nfs4_process_referral() */ xdr_free(xdr_nfs_fsl_info, (char *)&nfsfsloc); xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&callres); kmem_free(orig_path, orig_pathlen); return (ret); } /* * Get the root filehandle for the given filesystem and server, and update * svp. * * If NFS4_GETFH_NEEDSOP is set, then use nfs4_start_fop and nfs4_end_fop * to coordinate with recovery. Otherwise, the caller is assumed to be * the recovery thread or have already done a start_fop. * * Errors are returned by the nfs4_error_t parameter. */ static void nfs4getfh_otw(struct mntinfo4 *mi, servinfo4_t *svp, vtype_t *vtp, int flags, cred_t *cr, nfs4_error_t *ep) { COMPOUND4args_clnt args; COMPOUND4res_clnt res; int doqueue = 1; nfs_argop4 *argop; nfs_resop4 *resop; nfs4_ga_res_t *garp; int num_argops; lookup4_param_t lookuparg; nfs_fh4 *tmpfhp; nfs_fh4 *resfhp; bool_t needrecov = FALSE; nfs4_recov_state_t recov_state; int llndx; int nthcomp; int recovery = !(flags & NFS4_GETFH_NEEDSOP); (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); ASSERT(svp->sv_path != NULL); if (svp->sv_path[0] == '\0') { nfs_rw_exit(&svp->sv_lock); nfs4_error_init(ep, EINVAL); return; } nfs_rw_exit(&svp->sv_lock); recov_state.rs_flags = 0; recov_state.rs_num_retry_despite_err = 0; recov_retry: if (mi->mi_vfs_referral_loop_cnt >= NFS4_REFERRAL_LOOP_MAX) { DTRACE_PROBE3(nfs4clnt__debug__referral__loop, mntinfo4 *, mi, servinfo4_t *, svp, char *, "nfs4getfh_otw"); nfs4_error_init(ep, EINVAL); return; } nfs4_error_zinit(ep); if (!recovery) { ep->error = nfs4_start_fop(mi, NULL, NULL, OH_MOUNT, &recov_state, NULL); /* * If recovery has been started and this request as * initiated by a mount, then we must wait for recovery * to finish before proceeding, otherwise, the error * cleanup would remove data structures needed by the * recovery thread. */ if (ep->error) { mutex_enter(&mi->mi_lock); if (mi->mi_flags & MI4_MOUNTING) { mi->mi_flags |= MI4_RECOV_FAIL; mi->mi_error = EIO; NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, "nfs4getfh_otw: waiting 4 recovery\n")); while (mi->mi_flags & MI4_RECOV_ACTIV) cv_wait(&mi->mi_failover_cv, &mi->mi_lock); } mutex_exit(&mi->mi_lock); return; } /* * If the client does not specify a specific flavor to use * and has not gotten a secinfo list from the server yet, * retrieve the secinfo list from the server and use a * flavor from the list to mount. * * If fail to get the secinfo list from the server, then * try the default flavor. */ if ((svp->sv_flags & SV4_TRYSECDEFAULT) && svp->sv_secinfo == NULL) { (void) nfs4_secinfo_path(mi, cr, FALSE); } } if (recovery) args.ctag = TAG_REMAP_MOUNT; else args.ctag = TAG_MOUNT; lookuparg.l4_getattrs = LKP4_ALL_ATTRIBUTES; lookuparg.argsp = &args; lookuparg.resp = &res; lookuparg.header_len = 2; /* Putrootfh, getfh */ lookuparg.trailer_len = 0; lookuparg.ga_bits = FATTR4_FSINFO_MASK; lookuparg.mi = mi; (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); ASSERT(svp->sv_path != NULL); llndx = nfs4lookup_setup(svp->sv_path, &lookuparg, 0); nfs_rw_exit(&svp->sv_lock); argop = args.array; num_argops = args.array_len; /* choose public or root filehandle */ if (flags & NFS4_GETFH_PUBLIC) argop[0].argop = OP_PUTPUBFH; else argop[0].argop = OP_PUTROOTFH; /* get fh */ argop[1].argop = OP_GETFH; NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE, "nfs4getfh_otw: %s call, mi 0x%p", needrecov ? "recov" : "first", (void *)mi)); rfs4call(mi, &args, &res, cr, &doqueue, RFSCALL_SOFT, ep); needrecov = nfs4_needs_recovery(ep, FALSE, mi->mi_vfsp); if (needrecov) { bool_t abort; if (recovery) { nfs4args_lookup_free(argop, num_argops); kmem_free(argop, lookuparg.arglen * sizeof (nfs_argop4)); if (!ep->error) (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); return; } NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, "nfs4getfh_otw: initiating recovery\n")); abort = nfs4_start_recovery(ep, mi, NULL, NULL, NULL, NULL, OP_GETFH, NULL, NULL, NULL); if (!ep->error) { ep->error = geterrno4(res.status); (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); } nfs4args_lookup_free(argop, num_argops); kmem_free(argop, lookuparg.arglen * sizeof (nfs_argop4)); nfs4_end_fop(mi, NULL, NULL, OH_MOUNT, &recov_state, needrecov); /* have another go? */ if (abort == FALSE) goto recov_retry; return; } /* * No recovery, but check if error is set. */ if (ep->error) { nfs4args_lookup_free(argop, num_argops); kmem_free(argop, lookuparg.arglen * sizeof (nfs_argop4)); if (!recovery) nfs4_end_fop(mi, NULL, NULL, OH_MOUNT, &recov_state, needrecov); return; } is_link_err: /* for non-recovery errors */ if (res.status && res.status != NFS4ERR_SYMLINK && res.status != NFS4ERR_MOVED) { if (!recovery) { nfs4_end_fop(mi, NULL, NULL, OH_MOUNT, &recov_state, needrecov); } nfs4args_lookup_free(argop, num_argops); kmem_free(argop, lookuparg.arglen * sizeof (nfs_argop4)); (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); return; } /* * If any intermediate component in the path is a symbolic link, * resolve the symlink, then try mount again using the new path. */ if (res.status == NFS4ERR_SYMLINK || res.status == NFS4ERR_MOVED) { int where; /* * Need to call nfs4_end_op before resolve_sympath to avoid * potential nfs4_start_op deadlock. */ if (!recovery) nfs4_end_fop(mi, NULL, NULL, OH_MOUNT, &recov_state, needrecov); /* * This must be from OP_LOOKUP failure. The (cfh) for this * OP_LOOKUP is a symlink node. Found out where the * OP_GETFH is for the (cfh) that is a symlink node. * * Example: * (mount) PUTROOTFH, GETFH, LOOKUP comp1, GETFH, GETATTR, * LOOKUP comp2, GETFH, GETATTR, LOOKUP comp3, GETFH, GETATTR * * LOOKUP comp3 fails with SYMLINK because comp2 is a symlink. * In this case, where = 7, nthcomp = 2. */ where = res.array_len - 2; ASSERT(where > 0); if (res.status == NFS4ERR_SYMLINK) { resop = &res.array[where - 1]; ASSERT(resop->resop == OP_GETFH); tmpfhp = &resop->nfs_resop4_u.opgetfh.object; nthcomp = res.array_len/3 - 1; ep->error = resolve_sympath(mi, svp, nthcomp, tmpfhp, cr, flags); } else if (res.status == NFS4ERR_MOVED) { resop = &res.array[where - 2]; ASSERT(resop->resop == OP_GETFH); tmpfhp = &resop->nfs_resop4_u.opgetfh.object; nthcomp = res.array_len/3 - 1; ep->error = resolve_referral(mi, svp, cr, nthcomp, tmpfhp); } nfs4args_lookup_free(argop, num_argops); kmem_free(argop, lookuparg.arglen * sizeof (nfs_argop4)); (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); if (ep->error) return; goto recov_retry; } /* getfh */ resop = &res.array[res.array_len - 2]; ASSERT(resop->resop == OP_GETFH); resfhp = &resop->nfs_resop4_u.opgetfh.object; /* getattr fsinfo res */ resop++; garp = &resop->nfs_resop4_u.opgetattr.ga_res; *vtp = garp->n4g_va.va_type; mi->mi_fh_expire_type = garp->n4g_ext_res->n4g_fet; mutex_enter(&mi->mi_lock); if (garp->n4g_ext_res->n4g_pc4.pc4_link_support) mi->mi_flags |= MI4_LINK; if (garp->n4g_ext_res->n4g_pc4.pc4_symlink_support) mi->mi_flags |= MI4_SYMLINK; if (garp->n4g_ext_res->n4g_suppattrs & FATTR4_ACL_MASK) mi->mi_flags |= MI4_ACL; mutex_exit(&mi->mi_lock); if (garp->n4g_ext_res->n4g_maxread == 0) mi->mi_tsize = MIN(MAXBSIZE, mi->mi_tsize); else mi->mi_tsize = MIN(garp->n4g_ext_res->n4g_maxread, mi->mi_tsize); if (garp->n4g_ext_res->n4g_maxwrite == 0) mi->mi_stsize = MIN(MAXBSIZE, mi->mi_stsize); else mi->mi_stsize = MIN(garp->n4g_ext_res->n4g_maxwrite, mi->mi_stsize); if (garp->n4g_ext_res->n4g_maxfilesize != 0) mi->mi_maxfilesize = MIN(garp->n4g_ext_res->n4g_maxfilesize, mi->mi_maxfilesize); /* * If the final component is a a symbolic link, resolve the symlink, * then try mount again using the new path. * * Assume no symbolic link for root filesysm "/". */ if (*vtp == VLNK) { /* * nthcomp is the total result length minus * the 1st 2 OPs (PUTROOTFH, GETFH), * then divided by 3 (LOOKUP,GETFH,GETATTR) * * e.g. PUTROOTFH GETFH LOOKUP 1st-comp GETFH GETATTR * LOOKUP 2nd-comp GETFH GETATTR * * (8 - 2)/3 = 2 */ nthcomp = (res.array_len - 2)/3; /* * Need to call nfs4_end_op before resolve_sympath to avoid * potential nfs4_start_op deadlock. See RFE 4777612. */ if (!recovery) nfs4_end_fop(mi, NULL, NULL, OH_MOUNT, &recov_state, needrecov); ep->error = resolve_sympath(mi, svp, nthcomp, resfhp, cr, flags); nfs4args_lookup_free(argop, num_argops); kmem_free(argop, lookuparg.arglen * sizeof (nfs_argop4)); (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); if (ep->error) return; goto recov_retry; } /* * We need to figure out where in the compound the getfh * for the parent directory is. If the object to be mounted is * the root, then there is no lookup at all: * PUTROOTFH, GETFH. * If the object to be mounted is in the root, then the compound is: * PUTROOTFH, GETFH, LOOKUP, GETFH, GETATTR. * In either of these cases, the index of the GETFH is 1. * If it is not at the root, then it's something like: * PUTROOTFH, GETFH, LOOKUP, GETFH, GETATTR, * LOOKUP, GETFH, GETATTR * In this case, the index is llndx (last lookup index) - 2. */ if (llndx == -1 || llndx == 2) resop = &res.array[1]; else { ASSERT(llndx > 2); resop = &res.array[llndx-2]; } ASSERT(resop->resop == OP_GETFH); tmpfhp = &resop->nfs_resop4_u.opgetfh.object; /* save the filehandles for the replica */ (void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0); ASSERT(tmpfhp->nfs_fh4_len <= NFS4_FHSIZE); svp->sv_pfhandle.fh_len = tmpfhp->nfs_fh4_len; bcopy(tmpfhp->nfs_fh4_val, svp->sv_pfhandle.fh_buf, tmpfhp->nfs_fh4_len); ASSERT(resfhp->nfs_fh4_len <= NFS4_FHSIZE); svp->sv_fhandle.fh_len = resfhp->nfs_fh4_len; bcopy(resfhp->nfs_fh4_val, svp->sv_fhandle.fh_buf, resfhp->nfs_fh4_len); /* initialize fsid and supp_attrs for server fs */ svp->sv_fsid = garp->n4g_fsid; svp->sv_supp_attrs = garp->n4g_ext_res->n4g_suppattrs | FATTR4_MANDATTR_MASK; nfs_rw_exit(&svp->sv_lock); nfs4args_lookup_free(argop, num_argops); kmem_free(argop, lookuparg.arglen * sizeof (nfs_argop4)); (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); if (!recovery) nfs4_end_fop(mi, NULL, NULL, OH_MOUNT, &recov_state, needrecov); } /* * Save a copy of Servinfo4_t structure. * We might need when there is a failure in getting file handle * in case of a referral to replace servinfo4 struct and try again. */ static struct servinfo4 * copy_svp(servinfo4_t *nsvp) { servinfo4_t *svp = NULL; struct knetconfig *sknconf, *tknconf; struct netbuf *saddr, *taddr; svp = kmem_zalloc(sizeof (*svp), KM_SLEEP); nfs_rw_init(&svp->sv_lock, NULL, RW_DEFAULT, NULL); svp->sv_flags = nsvp->sv_flags; svp->sv_fsid = nsvp->sv_fsid; svp->sv_hostnamelen = nsvp->sv_hostnamelen; svp->sv_pathlen = nsvp->sv_pathlen; svp->sv_supp_attrs = nsvp->sv_supp_attrs; svp->sv_path = kmem_alloc(svp->sv_pathlen, KM_SLEEP); svp->sv_hostname = kmem_alloc(svp->sv_hostnamelen, KM_SLEEP); bcopy(nsvp->sv_hostname, svp->sv_hostname, svp->sv_hostnamelen); bcopy(nsvp->sv_path, svp->sv_path, svp->sv_pathlen); saddr = &nsvp->sv_addr; taddr = &svp->sv_addr; taddr->maxlen = saddr->maxlen; taddr->len = saddr->len; if (saddr->len > 0) { taddr->buf = kmem_zalloc(saddr->maxlen, KM_SLEEP); bcopy(saddr->buf, taddr->buf, saddr->len); } svp->sv_knconf = kmem_zalloc(sizeof (struct knetconfig), KM_SLEEP); sknconf = nsvp->sv_knconf; tknconf = svp->sv_knconf; tknconf->knc_semantics = sknconf->knc_semantics; tknconf->knc_rdev = sknconf->knc_rdev; if (sknconf->knc_proto != NULL) { tknconf->knc_proto = kmem_zalloc(KNC_STRSIZE, KM_SLEEP); bcopy(sknconf->knc_proto, (char *)tknconf->knc_proto, KNC_STRSIZE); } if (sknconf->knc_protofmly != NULL) { tknconf->knc_protofmly = kmem_zalloc(KNC_STRSIZE, KM_SLEEP); bcopy(sknconf->knc_protofmly, (char *)tknconf->knc_protofmly, KNC_STRSIZE); } if (nsvp->sv_origknconf != NULL) { svp->sv_origknconf = kmem_zalloc(sizeof (struct knetconfig), KM_SLEEP); sknconf = nsvp->sv_origknconf; tknconf = svp->sv_origknconf; tknconf->knc_semantics = sknconf->knc_semantics; tknconf->knc_rdev = sknconf->knc_rdev; if (sknconf->knc_proto != NULL) { tknconf->knc_proto = kmem_zalloc(KNC_STRSIZE, KM_SLEEP); bcopy(sknconf->knc_proto, (char *)tknconf->knc_proto, KNC_STRSIZE); } if (sknconf->knc_protofmly != NULL) { tknconf->knc_protofmly = kmem_zalloc(KNC_STRSIZE, KM_SLEEP); bcopy(sknconf->knc_protofmly, (char *)tknconf->knc_protofmly, KNC_STRSIZE); } } svp->sv_secdata = copy_sec_data(nsvp->sv_secdata); svp->sv_dhsec = copy_sec_data(svp->sv_dhsec); /* * Rest of the security information is not copied as they are built * with the information available from secdata and dhsec. */ svp->sv_next = NULL; return (svp); } servinfo4_t * restore_svp(mntinfo4_t *mi, servinfo4_t *svp, servinfo4_t *origsvp) { servinfo4_t *srvnext, *tmpsrv; if (strcmp(svp->sv_hostname, origsvp->sv_hostname) != 0) { /* * Since the hostname changed, we must be dealing * with a referral, and the lookup failed. We will * restore the whole servinfo4_t to what it was before. */ srvnext = svp->sv_next; svp->sv_next = NULL; tmpsrv = copy_svp(origsvp); sv4_free(svp); svp = tmpsrv; svp->sv_next = srvnext; mutex_enter(&mi->mi_lock); mi->mi_servers = svp; mi->mi_curr_serv = svp; mutex_exit(&mi->mi_lock); } else if (origsvp->sv_pathlen != svp->sv_pathlen) { /* * For symlink case: restore original path because * it might have contained symlinks that were * expanded by nfsgetfh_otw before the failure occurred. */ nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); kmem_free(svp->sv_path, svp->sv_pathlen); svp->sv_path = kmem_alloc(origsvp->sv_pathlen, KM_SLEEP); svp->sv_pathlen = origsvp->sv_pathlen; bcopy(origsvp->sv_path, svp->sv_path, origsvp->sv_pathlen); nfs_rw_exit(&svp->sv_lock); } return (svp); } static ushort_t nfs4_max_threads = 8; /* max number of active async threads */ static uint_t nfs4_bsize = 32 * 1024; /* client `block' size */ static uint_t nfs4_async_clusters = 1; /* # of reqs from each async queue */ static uint_t nfs4_cots_timeo = NFS_COTS_TIMEO; /* * Remap the root filehandle for the given filesystem. * * results returned via the nfs4_error_t parameter. */ void nfs4_remap_root(mntinfo4_t *mi, nfs4_error_t *ep, int flags) { struct servinfo4 *svp, *origsvp; vtype_t vtype; nfs_fh4 rootfh; int getfh_flags; int num_retry; mutex_enter(&mi->mi_lock); remap_retry: svp = mi->mi_curr_serv; getfh_flags = (flags & NFS4_REMAP_NEEDSOP) ? NFS4_GETFH_NEEDSOP : 0; getfh_flags |= (mi->mi_flags & MI4_PUBLIC) ? NFS4_GETFH_PUBLIC : 0; mutex_exit(&mi->mi_lock); /* * Just in case server path being mounted contains * symlinks and fails w/STALE, save the initial sv_path * so we can redrive the initial mount compound with the * initial sv_path -- not a symlink-expanded version. * * This could only happen if a symlink was expanded * and the expanded mount compound failed stale. Because * it could be the case that the symlink was removed at * the server (and replaced with another symlink/dir, * we need to use the initial sv_path when attempting * to re-lookup everything and recover. */ (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); origsvp = copy_svp(svp); nfs_rw_exit(&svp->sv_lock); num_retry = nfs4_max_mount_retry; do { /* * Get the root fh from the server. Retry nfs4_max_mount_retry * (2) times if it fails with STALE since the recovery * infrastructure doesn't do STALE recovery for components * of the server path to the object being mounted. */ nfs4getfh_otw(mi, svp, &vtype, getfh_flags, CRED(), ep); if (ep->error == 0 && ep->stat == NFS4_OK) break; /* * For some reason, the mount compound failed. Before * retrying, we need to restore original conditions. */ svp = restore_svp(mi, svp, origsvp); } while (num_retry-- > 0); sv4_free(origsvp); if (ep->error != 0 || ep->stat != 0) { return; } if (vtype != VNON && vtype != mi->mi_type) { /* shouldn't happen */ zcmn_err(mi->mi_zone->zone_id, CE_WARN, "nfs4_remap_root: server root vnode type (%d) doesn't " "match mount info (%d)", vtype, mi->mi_type); } (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); rootfh.nfs_fh4_val = svp->sv_fhandle.fh_buf; rootfh.nfs_fh4_len = svp->sv_fhandle.fh_len; nfs_rw_exit(&svp->sv_lock); sfh4_update(mi->mi_rootfh, &rootfh); /* * It's possible that recovery took place on the filesystem * and the server has been updated between the time we did * the nfs4getfh_otw and now. Re-drive the otw operation * to make sure we have a good fh. */ mutex_enter(&mi->mi_lock); if (mi->mi_curr_serv != svp) goto remap_retry; mutex_exit(&mi->mi_lock); } static int nfs4rootvp(vnode_t **rtvpp, vfs_t *vfsp, struct servinfo4 *svp_head, int flags, cred_t *cr, zone_t *zone) { vnode_t *rtvp = NULL; mntinfo4_t *mi; dev_t nfs_dev; int error = 0; rnode4_t *rp; int i, len; struct vattr va; vtype_t vtype = VNON; vtype_t tmp_vtype = VNON; struct servinfo4 *firstsvp = NULL, *svp = svp_head; nfs4_oo_hash_bucket_t *bucketp; nfs_fh4 fh; char *droptext = ""; struct nfs_stats *nfsstatsp; nfs4_fname_t *mfname; nfs4_error_t e; int num_retry, removed; cred_t *lcr = NULL, *tcr = cr; struct servinfo4 *origsvp; char *resource; nfsstatsp = zone_getspecific(nfsstat_zone_key, nfs_zone()); ASSERT(nfsstatsp != NULL); ASSERT(nfs_zone() == zone); ASSERT(crgetref(cr)); /* * Create a mount record and link it to the vfs struct. */ mi = kmem_zalloc(sizeof (*mi), KM_SLEEP); mutex_init(&mi->mi_lock, NULL, MUTEX_DEFAULT, NULL); nfs_rw_init(&mi->mi_recovlock, NULL, RW_DEFAULT, NULL); nfs_rw_init(&mi->mi_rename_lock, NULL, RW_DEFAULT, NULL); nfs_rw_init(&mi->mi_fh_lock, NULL, RW_DEFAULT, NULL); if (!(flags & NFSMNT_SOFT)) mi->mi_flags |= MI4_HARD; if ((flags & NFSMNT_NOPRINT)) mi->mi_flags |= MI4_NOPRINT; if (flags & NFSMNT_INT) mi->mi_flags |= MI4_INT; if (flags & NFSMNT_PUBLIC) mi->mi_flags |= MI4_PUBLIC; if (flags & NFSMNT_MIRRORMOUNT) mi->mi_flags |= MI4_MIRRORMOUNT; if (flags & NFSMNT_REFERRAL) mi->mi_flags |= MI4_REFERRAL; mi->mi_retrans = NFS_RETRIES; if (svp->sv_knconf->knc_semantics == NC_TPI_COTS_ORD || svp->sv_knconf->knc_semantics == NC_TPI_COTS) mi->mi_timeo = nfs4_cots_timeo; else mi->mi_timeo = NFS_TIMEO; mi->mi_prog = NFS_PROGRAM; mi->mi_vers = NFS_V4; mi->mi_rfsnames = rfsnames_v4; mi->mi_reqs = nfsstatsp->nfs_stats_v4.rfsreqcnt_ptr; cv_init(&mi->mi_failover_cv, NULL, CV_DEFAULT, NULL); mi->mi_servers = svp; mi->mi_curr_serv = svp; mi->mi_acregmin = SEC2HR(ACREGMIN); mi->mi_acregmax = SEC2HR(ACREGMAX); mi->mi_acdirmin = SEC2HR(ACDIRMIN); mi->mi_acdirmax = SEC2HR(ACDIRMAX); mi->mi_fh_expire_type = FH4_PERSISTENT; mi->mi_clientid_next = NULL; mi->mi_clientid_prev = NULL; mi->mi_srv = NULL; mi->mi_grace_wait = 0; mi->mi_error = 0; mi->mi_srvsettime = 0; mi->mi_srvset_cnt = 0; mi->mi_count = 1; mi->mi_tsize = nfs4_tsize(svp->sv_knconf); mi->mi_stsize = mi->mi_tsize; if (flags & NFSMNT_DIRECTIO) mi->mi_flags |= MI4_DIRECTIO; mi->mi_flags |= MI4_MOUNTING; /* * Make a vfs struct for nfs. We do this here instead of below * because rtvp needs a vfs before we can do a getattr on it. * * Assign a unique device id to the mount */ mutex_enter(&nfs_minor_lock); do { nfs_minor = (nfs_minor + 1) & MAXMIN32; nfs_dev = makedevice(nfs_major, nfs_minor); } while (vfs_devismounted(nfs_dev)); mutex_exit(&nfs_minor_lock); vfsp->vfs_dev = nfs_dev; vfs_make_fsid(&vfsp->vfs_fsid, nfs_dev, nfs4fstyp); vfsp->vfs_data = (caddr_t)mi; vfsp->vfs_fstype = nfsfstyp; vfsp->vfs_bsize = nfs4_bsize; /* * Initialize fields used to support async putpage operations. */ for (i = 0; i < NFS4_ASYNC_TYPES; i++) mi->mi_async_clusters[i] = nfs4_async_clusters; mi->mi_async_init_clusters = nfs4_async_clusters; mi->mi_async_curr = &mi->mi_async_reqs[0]; mi->mi_max_threads = nfs4_max_threads; mutex_init(&mi->mi_async_lock, NULL, MUTEX_DEFAULT, NULL); cv_init(&mi->mi_async_reqs_cv, NULL, CV_DEFAULT, NULL); cv_init(&mi->mi_async_work_cv, NULL, CV_DEFAULT, NULL); cv_init(&mi->mi_async_cv, NULL, CV_DEFAULT, NULL); cv_init(&mi->mi_inact_req_cv, NULL, CV_DEFAULT, NULL); mi->mi_vfsp = vfsp; zone_hold(mi->mi_zone = zone); nfs4_mi_zonelist_add(mi); /* * Initialize the hash table. */ for (i = 0; i < NFS4_NUM_OO_BUCKETS; i++) { bucketp = &(mi->mi_oo_list[i]); mutex_init(&bucketp->b_lock, NULL, MUTEX_DEFAULT, NULL); list_create(&bucketp->b_oo_hash_list, sizeof (nfs4_open_owner_t), offsetof(nfs4_open_owner_t, oo_hash_node)); } /* * Initialize the freed open owner list. */ mi->mi_foo_num = 0; mi->mi_foo_max = NFS4_NUM_FREED_OPEN_OWNERS; list_create(&mi->mi_foo_list, sizeof (nfs4_open_owner_t), offsetof(nfs4_open_owner_t, oo_foo_node)); list_create(&mi->mi_lost_state, sizeof (nfs4_lost_rqst_t), offsetof(nfs4_lost_rqst_t, lr_node)); list_create(&mi->mi_bseqid_list, sizeof (nfs4_bseqid_entry_t), offsetof(nfs4_bseqid_entry_t, bs_node)); /* * Initialize the msg buffer. */ list_create(&mi->mi_msg_list, sizeof (nfs4_debug_msg_t), offsetof(nfs4_debug_msg_t, msg_node)); mi->mi_msg_count = 0; mutex_init(&mi->mi_msg_list_lock, NULL, MUTEX_DEFAULT, NULL); /* * Initialize kstats */ nfs4_mnt_kstat_init(vfsp); /* * Initialize the shared filehandle pool. */ sfh4_createtab(&mi->mi_filehandles); /* * Save server path we're attempting to mount. */ (void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0); origsvp = copy_svp(svp); nfs_rw_exit(&svp->sv_lock); /* * Make the GETFH call to get root fh for each replica. */ if (svp_head->sv_next) droptext = ", dropping replica"; /* * If the uid is set then set the creds for secure mounts * by proxy processes such as automountd. */ (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); if (svp->sv_secdata->uid != 0 && svp->sv_secdata->rpcflavor == RPCSEC_GSS) { lcr = crdup(cr); (void) crsetugid(lcr, svp->sv_secdata->uid, crgetgid(cr)); tcr = lcr; } nfs_rw_exit(&svp->sv_lock); for (svp = svp_head; svp; svp = svp->sv_next) { if (nfs4_chkdup_servinfo4(svp_head, svp)) { nfs_cmn_err(error, CE_WARN, VERS_MSG "Host %s is a duplicate%s", svp->sv_hostname, droptext); (void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0); svp->sv_flags |= SV4_NOTINUSE; nfs_rw_exit(&svp->sv_lock); continue; } mi->mi_curr_serv = svp; /* * Just in case server path being mounted contains * symlinks and fails w/STALE, save the initial sv_path * so we can redrive the initial mount compound with the * initial sv_path -- not a symlink-expanded version. * * This could only happen if a symlink was expanded * and the expanded mount compound failed stale. Because * it could be the case that the symlink was removed at * the server (and replaced with another symlink/dir, * we need to use the initial sv_path when attempting * to re-lookup everything and recover. * * Other mount errors should evenutally be handled here also * (NFS4ERR_DELAY, NFS4ERR_RESOURCE). For now, all mount * failures will result in mount being redriven a few times. */ num_retry = nfs4_max_mount_retry; do { nfs4getfh_otw(mi, svp, &tmp_vtype, ((flags & NFSMNT_PUBLIC) ? NFS4_GETFH_PUBLIC : 0) | NFS4_GETFH_NEEDSOP, tcr, &e); if (e.error == 0 && e.stat == NFS4_OK) break; /* * For some reason, the mount compound failed. Before * retrying, we need to restore original conditions. */ svp = restore_svp(mi, svp, origsvp); svp_head = svp; } while (num_retry-- > 0); error = e.error ? e.error : geterrno4(e.stat); if (error) { nfs_cmn_err(error, CE_WARN, VERS_MSG "initial call to %s failed%s: %m", svp->sv_hostname, droptext); (void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0); svp->sv_flags |= SV4_NOTINUSE; nfs_rw_exit(&svp->sv_lock); mi->mi_flags &= ~MI4_RECOV_FAIL; mi->mi_error = 0; continue; } if (tmp_vtype == VBAD) { zcmn_err(mi->mi_zone->zone_id, CE_WARN, VERS_MSG "%s returned a bad file type for " "root%s", svp->sv_hostname, droptext); (void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0); svp->sv_flags |= SV4_NOTINUSE; nfs_rw_exit(&svp->sv_lock); continue; } if (vtype == VNON) { vtype = tmp_vtype; } else if (vtype != tmp_vtype) { zcmn_err(mi->mi_zone->zone_id, CE_WARN, VERS_MSG "%s returned a different file type " "for root%s", svp->sv_hostname, droptext); (void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0); svp->sv_flags |= SV4_NOTINUSE; nfs_rw_exit(&svp->sv_lock); continue; } if (firstsvp == NULL) firstsvp = svp; } if (firstsvp == NULL) { if (error == 0) error = ENOENT; goto bad; } mi->mi_curr_serv = svp = firstsvp; (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); ASSERT((mi->mi_curr_serv->sv_flags & SV4_NOTINUSE) == 0); fh.nfs_fh4_len = svp->sv_fhandle.fh_len; fh.nfs_fh4_val = svp->sv_fhandle.fh_buf; mi->mi_rootfh = sfh4_get(&fh, mi); fh.nfs_fh4_len = svp->sv_pfhandle.fh_len; fh.nfs_fh4_val = svp->sv_pfhandle.fh_buf; mi->mi_srvparentfh = sfh4_get(&fh, mi); nfs_rw_exit(&svp->sv_lock); /* * Get the fname for filesystem root. */ mi->mi_fname = fn_get(NULL, ".", mi->mi_rootfh); mfname = mi->mi_fname; fn_hold(mfname); /* * Make the root vnode without attributes. */ rtvp = makenfs4node_by_fh(mi->mi_rootfh, NULL, &mfname, NULL, mi, cr, gethrtime()); rtvp->v_type = vtype; mi->mi_curread = mi->mi_tsize; mi->mi_curwrite = mi->mi_stsize; /* * Start the manager thread responsible for handling async worker * threads. */ MI4_HOLD(mi); VFS_HOLD(vfsp); /* add reference for thread */ mi->mi_manager_thread = zthread_create(NULL, 0, nfs4_async_manager, vfsp, 0, minclsyspri); ASSERT(mi->mi_manager_thread != NULL); /* * Create the thread that handles over-the-wire calls for * VOP_INACTIVE. * This needs to happen after the manager thread is created. */ MI4_HOLD(mi); mi->mi_inactive_thread = zthread_create(NULL, 0, nfs4_inactive_thread, mi, 0, minclsyspri); ASSERT(mi->mi_inactive_thread != NULL); /* If we didn't get a type, get one now */ if (rtvp->v_type == VNON) { va.va_mask = AT_TYPE; error = nfs4getattr(rtvp, &va, tcr); if (error) goto bad; rtvp->v_type = va.va_type; } mi->mi_type = rtvp->v_type; mutex_enter(&mi->mi_lock); mi->mi_flags &= ~MI4_MOUNTING; mutex_exit(&mi->mi_lock); /* Update VFS with new server and path info */ if ((strcmp(svp->sv_hostname, origsvp->sv_hostname) != 0) || (strcmp(svp->sv_path, origsvp->sv_path) != 0)) { len = svp->sv_hostnamelen + svp->sv_pathlen; resource = kmem_zalloc(len, KM_SLEEP); (void) strcat(resource, svp->sv_hostname); (void) strcat(resource, ":"); (void) strcat(resource, svp->sv_path); vfs_setresource(vfsp, resource); kmem_free(resource, len); } sv4_free(origsvp); *rtvpp = rtvp; if (lcr != NULL) crfree(lcr); return (0); bad: /* * An error occurred somewhere, need to clean up... */ if (lcr != NULL) crfree(lcr); if (rtvp != NULL) { /* * We need to release our reference to the root vnode and * destroy the mntinfo4 struct that we just created. */ rp = VTOR4(rtvp); if (rp->r_flags & R4HASHED) rp4_rmhash(rp); VN_RELE(rtvp); } nfs4_async_stop(vfsp); nfs4_async_manager_stop(vfsp); removed = nfs4_mi_zonelist_remove(mi); if (removed) zone_rele(mi->mi_zone); /* * This releases the initial "hold" of the mi since it will never * be referenced by the vfsp. Also, when mount returns to vfs.c * with an error, the vfsp will be destroyed, not rele'd. */ MI4_RELE(mi); if (origsvp != NULL) sv4_free(origsvp); *rtvpp = NULL; return (error); } /* * vfs operations */ static int nfs4_unmount(vfs_t *vfsp, int flag, cred_t *cr) { mntinfo4_t *mi; ushort_t omax; int removed; bool_t must_unlock; nfs4_ephemeral_tree_t *eph_tree; if (secpolicy_fs_unmount(cr, vfsp) != 0) return (EPERM); mi = VFTOMI4(vfsp); if (flag & MS_FORCE) { vfsp->vfs_flag |= VFS_UNMOUNTED; if (nfs_zone() != mi->mi_zone) { /* * If the request is coming from the wrong zone, * we don't want to create any new threads, and * performance is not a concern. Do everything * inline. */ NFS4_DEBUG(nfs4_client_zone_debug, (CE_NOTE, "nfs4_unmount x-zone forced unmount of vfs %p\n", (void *)vfsp)); nfs4_free_mount(vfsp, flag, cr); } else { /* * Free data structures asynchronously, to avoid * blocking the current thread (for performance * reasons only). */ async_free_mount(vfsp, flag, cr); } return (0); } /* * Wait until all asynchronous putpage operations on * this file system are complete before flushing rnodes * from the cache. */ omax = mi->mi_max_threads; if (nfs4_async_stop_sig(vfsp)) return (EINTR); r4flush(vfsp, cr); /* * About the only reason that this would fail would be * that the harvester is already busy tearing down this * node. So we fail back to the caller and let them try * again when needed. */ if (nfs4_ephemeral_umount(mi, flag, cr, &must_unlock, &eph_tree)) { ASSERT(must_unlock == FALSE); mutex_enter(&mi->mi_async_lock); mi->mi_max_threads = omax; mutex_exit(&mi->mi_async_lock); return (EBUSY); } /* * If there are any active vnodes on this file system, * then the file system is busy and can't be unmounted. */ if (check_rtable4(vfsp)) { nfs4_ephemeral_umount_unlock(&must_unlock, &eph_tree); mutex_enter(&mi->mi_async_lock); mi->mi_max_threads = omax; mutex_exit(&mi->mi_async_lock); return (EBUSY); } /* * The unmount can't fail from now on, so record any * ephemeral changes. */ nfs4_ephemeral_umount_activate(mi, &must_unlock, &eph_tree); /* * There are no active files that could require over-the-wire * calls to the server, so stop the async manager and the * inactive thread. */ nfs4_async_manager_stop(vfsp); /* * Destroy all rnodes belonging to this file system from the * rnode hash queues and purge any resources allocated to * them. */ destroy_rtable4(vfsp, cr); vfsp->vfs_flag |= VFS_UNMOUNTED; nfs4_remove_mi_from_server(mi, NULL); removed = nfs4_mi_zonelist_remove(mi); if (removed) zone_rele(mi->mi_zone); return (0); } /* * find root of nfs */ static int nfs4_root(vfs_t *vfsp, vnode_t **vpp) { mntinfo4_t *mi; vnode_t *vp; nfs4_fname_t *mfname; servinfo4_t *svp; mi = VFTOMI4(vfsp); if (nfs_zone() != mi->mi_zone) return (EPERM); svp = mi->mi_curr_serv; if (svp) { (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); if (svp->sv_flags & SV4_ROOT_STALE) { nfs_rw_exit(&svp->sv_lock); (void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0); if (svp->sv_flags & SV4_ROOT_STALE) { svp->sv_flags &= ~SV4_ROOT_STALE; nfs_rw_exit(&svp->sv_lock); return (ENOENT); } nfs_rw_exit(&svp->sv_lock); } else nfs_rw_exit(&svp->sv_lock); } mfname = mi->mi_fname; fn_hold(mfname); vp = makenfs4node_by_fh(mi->mi_rootfh, NULL, &mfname, NULL, VFTOMI4(vfsp), CRED(), gethrtime()); if (VTOR4(vp)->r_flags & R4STALE) { VN_RELE(vp); return (ENOENT); } ASSERT(vp->v_type == VNON || vp->v_type == mi->mi_type); vp->v_type = mi->mi_type; *vpp = vp; return (0); } static int nfs4_statfs_otw(vnode_t *vp, struct statvfs64 *sbp, cred_t *cr) { int error; nfs4_ga_res_t gar; nfs4_ga_ext_res_t ger; gar.n4g_ext_res = &ger; if (error = nfs4_attr_otw(vp, TAG_FSINFO, &gar, NFS4_STATFS_ATTR_MASK, cr)) return (error); *sbp = gar.n4g_ext_res->n4g_sb; return (0); } /* * Get file system statistics. */ static int nfs4_statvfs(vfs_t *vfsp, struct statvfs64 *sbp) { int error; vnode_t *vp; cred_t *cr; error = nfs4_root(vfsp, &vp); if (error) return (error); cr = CRED(); error = nfs4_statfs_otw(vp, sbp, cr); if (!error) { (void) strncpy(sbp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name, FSTYPSZ); sbp->f_flag = vf_to_stf(vfsp->vfs_flag); } else { nfs4_purge_stale_fh(error, vp, cr); } VN_RELE(vp); return (error); } static kmutex_t nfs4_syncbusy; /* * Flush dirty nfs files for file system vfsp. * If vfsp == NULL, all nfs files are flushed. * * SYNC_CLOSE in flag is passed to us to * indicate that we are shutting down and or * rebooting. */ static int nfs4_sync(vfs_t *vfsp, short flag, cred_t *cr) { /* * Cross-zone calls are OK here, since this translates to a * VOP_PUTPAGE(B_ASYNC), which gets picked up by the right zone. */ if (!(flag & SYNC_ATTR) && mutex_tryenter(&nfs4_syncbusy) != 0) { r4flush(vfsp, cr); mutex_exit(&nfs4_syncbusy); } /* * if SYNC_CLOSE is set then we know that * the system is rebooting, mark the mntinfo * for later examination. */ if (vfsp && (flag & SYNC_CLOSE)) { mntinfo4_t *mi; mi = VFTOMI4(vfsp); if (!(mi->mi_flags & MI4_SHUTDOWN)) { mutex_enter(&mi->mi_lock); mi->mi_flags |= MI4_SHUTDOWN; mutex_exit(&mi->mi_lock); } } return (0); } /* * vget is difficult, if not impossible, to support in v4 because we don't * know the parent directory or name, which makes it impossible to create a * useful shadow vnode. And we need the shadow vnode for things like * OPEN. */ /* ARGSUSED */ /* * XXX Check nfs4_vget_pseudo() for dependency. */ static int nfs4_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) { return (EREMOTE); } /* * nfs4_mountroot get called in the case where we are diskless booting. All * we need from here is the ability to get the server info and from there we * can simply call nfs4_rootvp. */ /* ARGSUSED */ static int nfs4_mountroot(vfs_t *vfsp, whymountroot_t why) { vnode_t *rtvp; char root_hostname[SYS_NMLN+1]; struct servinfo4 *svp; int error; int vfsflags; size_t size; char *root_path; struct pathname pn; char *name; cred_t *cr; mntinfo4_t *mi; struct nfs_args args; /* nfs mount arguments */ static char token[10]; nfs4_error_t n4e; bzero(&args, sizeof (args)); /* do this BEFORE getfile which causes xid stamps to be initialized */ clkset(-1L); /* hack for now - until we get time svc? */ if (why == ROOT_REMOUNT) { /* * Shouldn't happen. */ panic("nfs4_mountroot: why == ROOT_REMOUNT"); } if (why == ROOT_UNMOUNT) { /* * Nothing to do for NFS. */ return (0); } /* * why == ROOT_INIT */ name = token; *name = 0; (void) getfsname("root", name, sizeof (token)); pn_alloc(&pn); root_path = pn.pn_path; svp = kmem_zalloc(sizeof (*svp), KM_SLEEP); nfs_rw_init(&svp->sv_lock, NULL, RW_DEFAULT, NULL); svp->sv_knconf = kmem_zalloc(sizeof (*svp->sv_knconf), KM_SLEEP); svp->sv_knconf->knc_protofmly = kmem_alloc(KNC_STRSIZE, KM_SLEEP); svp->sv_knconf->knc_proto = kmem_alloc(KNC_STRSIZE, KM_SLEEP); /* * Get server address * Get the root path * Get server's transport * Get server's hostname * Get options */ args.addr = &svp->sv_addr; (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); args.fh = (char *)&svp->sv_fhandle; args.knconf = svp->sv_knconf; args.hostname = root_hostname; vfsflags = 0; if (error = mount_root(*name ? name : "root", root_path, NFS_V4, &args, &vfsflags)) { if (error == EPROTONOSUPPORT) nfs_cmn_err(error, CE_WARN, "nfs4_mountroot: " "mount_root failed: server doesn't support NFS V4"); else nfs_cmn_err(error, CE_WARN, "nfs4_mountroot: mount_root failed: %m"); nfs_rw_exit(&svp->sv_lock); sv4_free(svp); pn_free(&pn); return (error); } nfs_rw_exit(&svp->sv_lock); svp->sv_hostnamelen = (int)(strlen(root_hostname) + 1); svp->sv_hostname = kmem_alloc(svp->sv_hostnamelen, KM_SLEEP); (void) strcpy(svp->sv_hostname, root_hostname); svp->sv_pathlen = (int)(strlen(root_path) + 1); svp->sv_path = kmem_alloc(svp->sv_pathlen, KM_SLEEP); (void) strcpy(svp->sv_path, root_path); /* * Force root partition to always be mounted with AUTH_UNIX for now */ svp->sv_secdata = kmem_alloc(sizeof (*svp->sv_secdata), KM_SLEEP); svp->sv_secdata->secmod = AUTH_UNIX; svp->sv_secdata->rpcflavor = AUTH_UNIX; svp->sv_secdata->data = NULL; cr = crgetcred(); rtvp = NULL; error = nfs4rootvp(&rtvp, vfsp, svp, args.flags, cr, global_zone); if (error) { crfree(cr); pn_free(&pn); sv4_free(svp); return (error); } mi = VTOMI4(rtvp); /* * Send client id to the server, if necessary */ nfs4_error_zinit(&n4e); nfs4setclientid(mi, cr, FALSE, &n4e); error = n4e.error; crfree(cr); if (error) { pn_free(&pn); goto errout; } error = nfs4_setopts(rtvp, DATAMODEL_NATIVE, &args); if (error) { nfs_cmn_err(error, CE_WARN, "nfs4_mountroot: invalid root mount options"); pn_free(&pn); goto errout; } (void) vfs_lock_wait(vfsp); vfs_add(NULL, vfsp, vfsflags); vfs_unlock(vfsp); size = strlen(svp->sv_hostname); (void) strcpy(rootfs.bo_name, svp->sv_hostname); rootfs.bo_name[size] = ':'; (void) strcpy(&rootfs.bo_name[size + 1], root_path); pn_free(&pn); errout: if (error) { sv4_free(svp); nfs4_async_stop(vfsp); nfs4_async_manager_stop(vfsp); } if (rtvp != NULL) VN_RELE(rtvp); return (error); } /* * Initialization routine for VFS routines. Should only be called once */ int nfs4_vfsinit(void) { mutex_init(&nfs4_syncbusy, NULL, MUTEX_DEFAULT, NULL); nfs4setclientid_init(); nfs4_ephemeral_init(); return (0); } void nfs4_vfsfini(void) { nfs4_ephemeral_fini(); nfs4setclientid_fini(); mutex_destroy(&nfs4_syncbusy); } void nfs4_freevfs(vfs_t *vfsp) { mntinfo4_t *mi; /* need to release the initial hold */ mi = VFTOMI4(vfsp); MI4_RELE(mi); } /* * Client side SETCLIENTID and SETCLIENTID_CONFIRM */ struct nfs4_server nfs4_server_lst = { &nfs4_server_lst, &nfs4_server_lst }; kmutex_t nfs4_server_lst_lock; static void nfs4setclientid_init(void) { mutex_init(&nfs4_server_lst_lock, NULL, MUTEX_DEFAULT, NULL); } static void nfs4setclientid_fini(void) { mutex_destroy(&nfs4_server_lst_lock); } int nfs4_retry_sclid_delay = NFS4_RETRY_SCLID_DELAY; int nfs4_num_sclid_retries = NFS4_NUM_SCLID_RETRIES; /* * Set the clientid for the server for "mi". No-op if the clientid is * already set. * * The recovery boolean should be set to TRUE if this function was called * by the recovery code, and FALSE otherwise. This is used to determine * if we need to call nfs4_start/end_op as well as grab the mi_recovlock * for adding a mntinfo4_t to a nfs4_server_t. * * Error is returned via 'n4ep'. If there was a 'n4ep->stat' error, then * 'n4ep->error' is set to geterrno4(n4ep->stat). */ void nfs4setclientid(mntinfo4_t *mi, cred_t *cr, bool_t recovery, nfs4_error_t *n4ep) { struct nfs4_server *np; struct servinfo4 *svp = mi->mi_curr_serv; nfs4_recov_state_t recov_state; int num_retries = 0; bool_t retry; cred_t *lcr = NULL; int retry_inuse = 1; /* only retry once on NFS4ERR_CLID_INUSE */ time_t lease_time = 0; recov_state.rs_flags = 0; recov_state.rs_num_retry_despite_err = 0; ASSERT(n4ep != NULL); recov_retry: retry = FALSE; nfs4_error_zinit(n4ep); if (!recovery) (void) nfs_rw_enter_sig(&mi->mi_recovlock, RW_READER, 0); mutex_enter(&nfs4_server_lst_lock); np = servinfo4_to_nfs4_server(svp); /* This locks np if it is found */ mutex_exit(&nfs4_server_lst_lock); if (!np) { struct nfs4_server *tnp; np = new_nfs4_server(svp, cr); mutex_enter(&np->s_lock); mutex_enter(&nfs4_server_lst_lock); tnp = servinfo4_to_nfs4_server(svp); if (tnp) { /* * another thread snuck in and put server on list. * since we aren't adding it to the nfs4_server_list * we need to set the ref count to 0 and destroy it. */ np->s_refcnt = 0; destroy_nfs4_server(np); np = tnp; } else { /* * do not give list a reference until everything * succeeds */ insque(np, &nfs4_server_lst); } mutex_exit(&nfs4_server_lst_lock); } ASSERT(MUTEX_HELD(&np->s_lock)); /* * If we find the server already has N4S_CLIENTID_SET, then * just return, we've already done SETCLIENTID to that server */ if (np->s_flags & N4S_CLIENTID_SET) { /* add mi to np's mntinfo4_list */ nfs4_add_mi_to_server(np, mi); if (!recovery) nfs_rw_exit(&mi->mi_recovlock); mutex_exit(&np->s_lock); nfs4_server_rele(np); return; } mutex_exit(&np->s_lock); /* * Drop the mi_recovlock since nfs4_start_op will * acquire it again for us. */ if (!recovery) { nfs_rw_exit(&mi->mi_recovlock); n4ep->error = nfs4_start_op(mi, NULL, NULL, &recov_state); if (n4ep->error) { nfs4_server_rele(np); return; } } mutex_enter(&np->s_lock); while (np->s_flags & N4S_CLIENTID_PEND) { if (!cv_wait_sig(&np->s_clientid_pend, &np->s_lock)) { mutex_exit(&np->s_lock); nfs4_server_rele(np); if (!recovery) nfs4_end_op(mi, NULL, NULL, &recov_state, recovery); n4ep->error = EINTR; return; } } if (np->s_flags & N4S_CLIENTID_SET) { /* XXX copied/pasted from above */ /* add mi to np's mntinfo4_list */ nfs4_add_mi_to_server(np, mi); mutex_exit(&np->s_lock); nfs4_server_rele(np); if (!recovery) nfs4_end_op(mi, NULL, NULL, &recov_state, recovery); return; } /* * Reset the N4S_CB_PINGED flag. This is used to * indicate if we have received a CB_NULL from the * server. Also we reset the waiter flag. */ np->s_flags &= ~(N4S_CB_PINGED | N4S_CB_WAITER); /* any failure must now clear this flag */ np->s_flags |= N4S_CLIENTID_PEND; mutex_exit(&np->s_lock); nfs4setclientid_otw(mi, svp, cr, np, n4ep, &retry_inuse); if (n4ep->error == EACCES) { /* * If the uid is set then set the creds for secure mounts * by proxy processes such as automountd. */ (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0); if (svp->sv_secdata->uid != 0) { lcr = crdup(cr); (void) crsetugid(lcr, svp->sv_secdata->uid, crgetgid(cr)); } nfs_rw_exit(&svp->sv_lock); if (lcr != NULL) { mutex_enter(&np->s_lock); crfree(np->s_cred); np->s_cred = lcr; mutex_exit(&np->s_lock); nfs4setclientid_otw(mi, svp, lcr, np, n4ep, &retry_inuse); } } mutex_enter(&np->s_lock); lease_time = np->s_lease_time; np->s_flags &= ~N4S_CLIENTID_PEND; mutex_exit(&np->s_lock); if (n4ep->error != 0 || n4ep->stat != NFS4_OK) { /* * Start recovery if failover is a possibility. If * invoked by the recovery thread itself, then just * return and let it handle the failover first. NB: * recovery is not allowed if the mount is in progress * since the infrastructure is not sufficiently setup * to allow it. Just return the error (after suitable * retries). */ if (FAILOVER_MOUNT4(mi) && nfs4_try_failover(n4ep)) { (void) nfs4_start_recovery(n4ep, mi, NULL, NULL, NULL, NULL, OP_SETCLIENTID, NULL, NULL, NULL); /* * Don't retry here, just return and let * recovery take over. */ if (recovery) retry = FALSE; } else if (nfs4_rpc_retry_error(n4ep->error) || n4ep->stat == NFS4ERR_RESOURCE || n4ep->stat == NFS4ERR_STALE_CLIENTID) { retry = TRUE; /* * Always retry if in recovery or once had * contact with the server (but now it's * overloaded). */ if (recovery == TRUE || n4ep->error == ETIMEDOUT || n4ep->error == ECONNRESET) num_retries = 0; } else if (retry_inuse && n4ep->error == 0 && n4ep->stat == NFS4ERR_CLID_INUSE) { retry = TRUE; num_retries = 0; } } else { /* * Since everything succeeded give the list a reference count if * it hasn't been given one by add_new_nfs4_server() or if this * is not a recovery situation in which case it is already on * the list. */ mutex_enter(&np->s_lock); if ((np->s_flags & N4S_INSERTED) == 0) { np->s_refcnt++; np->s_flags |= N4S_INSERTED; } mutex_exit(&np->s_lock); } if (!recovery) nfs4_end_op(mi, NULL, NULL, &recov_state, recovery); if (retry && num_retries++ < nfs4_num_sclid_retries) { if (retry_inuse) { delay(SEC_TO_TICK(lease_time + nfs4_retry_sclid_delay)); retry_inuse = 0; } else delay(SEC_TO_TICK(nfs4_retry_sclid_delay)); nfs4_server_rele(np); goto recov_retry; } if (n4ep->error == 0) n4ep->error = geterrno4(n4ep->stat); /* broadcast before release in case no other threads are waiting */ cv_broadcast(&np->s_clientid_pend); nfs4_server_rele(np); } int nfs4setclientid_otw_debug = 0; /* * This function handles the recovery of STALE_CLIENTID for SETCLIENTID_CONFRIM, * but nothing else; the calling function must be designed to handle those * other errors. */ static void nfs4setclientid_otw(mntinfo4_t *mi, struct servinfo4 *svp, cred_t *cr, struct nfs4_server *np, nfs4_error_t *ep, int *retry_inusep) { COMPOUND4args_clnt args; COMPOUND4res_clnt res; nfs_argop4 argop[3]; SETCLIENTID4args *s_args; SETCLIENTID4resok *s_resok; int doqueue = 1; nfs4_ga_res_t *garp = NULL; timespec_t prop_time, after_time; verifier4 verf; clientid4 tmp_clientid; ASSERT(!MUTEX_HELD(&np->s_lock)); args.ctag = TAG_SETCLIENTID; args.array = argop; args.array_len = 3; /* PUTROOTFH */ argop[0].argop = OP_PUTROOTFH; /* GETATTR */ argop[1].argop = OP_GETATTR; argop[1].nfs_argop4_u.opgetattr.attr_request = FATTR4_LEASE_TIME_MASK; argop[1].nfs_argop4_u.opgetattr.mi = mi; /* SETCLIENTID */ argop[2].argop = OP_SETCLIENTID; s_args = &argop[2].nfs_argop4_u.opsetclientid; mutex_enter(&np->s_lock); s_args->client.verifier = np->clidtosend.verifier; s_args->client.id_len = np->clidtosend.id_len; ASSERT(s_args->client.id_len <= NFS4_OPAQUE_LIMIT); s_args->client.id_val = np->clidtosend.id_val; /* * Callback needs to happen on non-RDMA transport * Check if we have saved the original knetconfig * if so, use that instead. */ if (svp->sv_origknconf != NULL) nfs4_cb_args(np, svp->sv_origknconf, s_args); else nfs4_cb_args(np, svp->sv_knconf, s_args); mutex_exit(&np->s_lock); rfs4call(mi, &args, &res, cr, &doqueue, 0, ep); if (ep->error) return; /* getattr lease_time res */ if ((res.array_len >= 2) && (res.array[1].nfs_resop4_u.opgetattr.status == NFS4_OK)) { garp = &res.array[1].nfs_resop4_u.opgetattr.ga_res; #ifndef _LP64 /* * The 32 bit client cannot handle a lease time greater than * (INT32_MAX/1000000). This is due to the use of the * lease_time in calls to drv_usectohz() in * nfs4_renew_lease_thread(). The problem is that * drv_usectohz() takes a time_t (which is just a long = 4 * bytes) as its parameter. The lease_time is multiplied by * 1000000 to convert seconds to usecs for the parameter. If * a number bigger than (INT32_MAX/1000000) is used then we * overflow on the 32bit client. */ if (garp->n4g_ext_res->n4g_leasetime > (INT32_MAX/1000000)) { garp->n4g_ext_res->n4g_leasetime = INT32_MAX/1000000; } #endif mutex_enter(&np->s_lock); np->s_lease_time = garp->n4g_ext_res->n4g_leasetime; /* * Keep track of the lease period for the mi's * mi_msg_list. We need an appropiate time * bound to associate past facts with a current * event. The lease period is perfect for this. */ mutex_enter(&mi->mi_msg_list_lock); mi->mi_lease_period = np->s_lease_time; mutex_exit(&mi->mi_msg_list_lock); mutex_exit(&np->s_lock); } if (res.status == NFS4ERR_CLID_INUSE) { clientaddr4 *clid_inuse; if (!(*retry_inusep)) { clid_inuse = &res.array->nfs_resop4_u. opsetclientid.SETCLIENTID4res_u.client_using; zcmn_err(mi->mi_zone->zone_id, CE_NOTE, "NFS4 mount (SETCLIENTID failed)." " nfs4_client_id.id is in" "use already by: r_netid<%s> r_addr<%s>", clid_inuse->r_netid, clid_inuse->r_addr); } /* * XXX - The client should be more robust in its * handling of clientid in use errors (regen another * clientid and try again?) */ (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); return; } if (res.status) { (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); return; } s_resok = &res.array[2].nfs_resop4_u. opsetclientid.SETCLIENTID4res_u.resok4; tmp_clientid = s_resok->clientid; verf = s_resok->setclientid_confirm; #ifdef DEBUG if (nfs4setclientid_otw_debug) { union { clientid4 clientid; int foo[2]; } cid; cid.clientid = s_resok->clientid; zcmn_err(mi->mi_zone->zone_id, CE_NOTE, "nfs4setclientid_otw: OK, clientid = %x,%x, " "verifier = %" PRIx64 "\n", cid.foo[0], cid.foo[1], verf); } #endif (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); /* Confirm the client id and get the lease_time attribute */ args.ctag = TAG_SETCLIENTID_CF; args.array = argop; args.array_len = 1; argop[0].argop = OP_SETCLIENTID_CONFIRM; argop[0].nfs_argop4_u.opsetclientid_confirm.clientid = tmp_clientid; argop[0].nfs_argop4_u.opsetclientid_confirm.setclientid_confirm = verf; /* used to figure out RTT for np */ gethrestime(&prop_time); NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "nfs4setlientid_otw: " "start time: %ld sec %ld nsec", prop_time.tv_sec, prop_time.tv_nsec)); rfs4call(mi, &args, &res, cr, &doqueue, 0, ep); gethrestime(&after_time); mutex_enter(&np->s_lock); np->propagation_delay.tv_sec = MAX(1, after_time.tv_sec - prop_time.tv_sec); mutex_exit(&np->s_lock); NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "nfs4setlcientid_otw: " "finish time: %ld sec ", after_time.tv_sec)); NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "nfs4setclientid_otw: " "propagation delay set to %ld sec", np->propagation_delay.tv_sec)); if (ep->error) return; if (res.status == NFS4ERR_CLID_INUSE) { clientaddr4 *clid_inuse; if (!(*retry_inusep)) { clid_inuse = &res.array->nfs_resop4_u. opsetclientid.SETCLIENTID4res_u.client_using; zcmn_err(mi->mi_zone->zone_id, CE_NOTE, "SETCLIENTID_CONFIRM failed. " "nfs4_client_id.id is in use already by: " "r_netid<%s> r_addr<%s>", clid_inuse->r_netid, clid_inuse->r_addr); } (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); return; } if (res.status) { (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); return; } mutex_enter(&np->s_lock); np->clientid = tmp_clientid; np->s_flags |= N4S_CLIENTID_SET; /* Add mi to np's mntinfo4 list */ nfs4_add_mi_to_server(np, mi); if (np->lease_valid == NFS4_LEASE_NOT_STARTED) { /* * Start lease management thread. * Keep trying until we succeed. */ np->s_refcnt++; /* pass reference to thread */ (void) zthread_create(NULL, 0, nfs4_renew_lease_thread, np, 0, minclsyspri); } mutex_exit(&np->s_lock); (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res); } /* * Add mi to sp's mntinfo4_list if it isn't already in the list. Makes * mi's clientid the same as sp's. * Assumes sp is locked down. */ void nfs4_add_mi_to_server(nfs4_server_t *sp, mntinfo4_t *mi) { mntinfo4_t *tmi; int in_list = 0; ASSERT(nfs_rw_lock_held(&mi->mi_recovlock, RW_READER) || nfs_rw_lock_held(&mi->mi_recovlock, RW_WRITER)); ASSERT(sp != &nfs4_server_lst); ASSERT(MUTEX_HELD(&sp->s_lock)); NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "nfs4_add_mi_to_server: add mi %p to sp %p", (void*)mi, (void*)sp)); for (tmi = sp->mntinfo4_list; tmi != NULL; tmi = tmi->mi_clientid_next) { if (tmi == mi) { NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "nfs4_add_mi_to_server: mi in list")); in_list = 1; } } /* * First put a hold on the mntinfo4's vfsp so that references via * mntinfo4_list will be valid. */ if (!in_list) VFS_HOLD(mi->mi_vfsp); NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "nfs4_add_mi_to_server: " "hold vfs %p for mi: %p", (void*)mi->mi_vfsp, (void*)mi)); if (!in_list) { if (sp->mntinfo4_list) sp->mntinfo4_list->mi_clientid_prev = mi; mi->mi_clientid_next = sp->mntinfo4_list; mi->mi_srv = sp; sp->mntinfo4_list = mi; mi->mi_srvsettime = gethrestime_sec(); mi->mi_srvset_cnt++; } /* set mi's clientid to that of sp's for later matching */ mi->mi_clientid = sp->clientid; /* * Update the clientid for any other mi's belonging to sp. This * must be done here while we hold sp->s_lock, so that * find_nfs4_server() continues to work. */ for (tmi = sp->mntinfo4_list; tmi != NULL; tmi = tmi->mi_clientid_next) { if (tmi != mi) { tmi->mi_clientid = sp->clientid; } } } /* * Remove the mi from sp's mntinfo4_list and release its reference. * Exception: if mi still has open files, flag it for later removal (when * all the files are closed). * * If this is the last mntinfo4 in sp's list then tell the lease renewal * thread to exit. */ static void nfs4_remove_mi_from_server_nolock(mntinfo4_t *mi, nfs4_server_t *sp) { NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "nfs4_remove_mi_from_server_nolock: remove mi %p from sp %p", (void*)mi, (void*)sp)); ASSERT(sp != NULL); ASSERT(MUTEX_HELD(&sp->s_lock)); ASSERT(mi->mi_open_files >= 0); /* * First make sure this mntinfo4 can be taken off of the list, * ie: it doesn't have any open files remaining. */ if (mi->mi_open_files > 0) { NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "nfs4_remove_mi_from_server_nolock: don't " "remove mi since it still has files open")); mutex_enter(&mi->mi_lock); mi->mi_flags |= MI4_REMOVE_ON_LAST_CLOSE; mutex_exit(&mi->mi_lock); return; } VFS_HOLD(mi->mi_vfsp); remove_mi(sp, mi); VFS_RELE(mi->mi_vfsp); if (sp->mntinfo4_list == NULL) { /* last fs unmounted, kill the thread */ NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "remove_mi_from_nfs4_server_nolock: kill the thread")); nfs4_mark_srv_dead(sp); } } /* * Remove mi from sp's mntinfo4_list and release the vfs reference. */ static void remove_mi(nfs4_server_t *sp, mntinfo4_t *mi) { ASSERT(MUTEX_HELD(&sp->s_lock)); /* * We release a reference, and the caller must still have a * reference. */ ASSERT(mi->mi_vfsp->vfs_count >= 2); if (mi->mi_clientid_prev) { mi->mi_clientid_prev->mi_clientid_next = mi->mi_clientid_next; } else { /* This is the first mi in sp's mntinfo4_list */ /* * Make sure the first mntinfo4 in the list is the actual * mntinfo4 passed in. */ ASSERT(sp->mntinfo4_list == mi); sp->mntinfo4_list = mi->mi_clientid_next; } if (mi->mi_clientid_next) mi->mi_clientid_next->mi_clientid_prev = mi->mi_clientid_prev; /* Now mark the mntinfo4's links as being removed */ mi->mi_clientid_prev = mi->mi_clientid_next = NULL; mi->mi_srv = NULL; mi->mi_srvset_cnt++; VFS_RELE(mi->mi_vfsp); } /* * Free all the entries in sp's mntinfo4_list. */ static void remove_all_mi(nfs4_server_t *sp) { mntinfo4_t *mi; ASSERT(MUTEX_HELD(&sp->s_lock)); while (sp->mntinfo4_list != NULL) { mi = sp->mntinfo4_list; /* * Grab a reference in case there is only one left (which * remove_mi() frees). */ VFS_HOLD(mi->mi_vfsp); remove_mi(sp, mi); VFS_RELE(mi->mi_vfsp); } } /* * Remove the mi from sp's mntinfo4_list as above, and rele the vfs. * * This version can be called with a null nfs4_server_t arg, * and will either find the right one and handle locking, or * do nothing because the mi wasn't added to an sp's mntinfo4_list. */ void nfs4_remove_mi_from_server(mntinfo4_t *mi, nfs4_server_t *esp) { nfs4_server_t *sp; if (esp) { nfs4_remove_mi_from_server_nolock(mi, esp); return; } (void) nfs_rw_enter_sig(&mi->mi_recovlock, RW_READER, 0); if (sp = find_nfs4_server_all(mi, 1)) { nfs4_remove_mi_from_server_nolock(mi, sp); mutex_exit(&sp->s_lock); nfs4_server_rele(sp); } nfs_rw_exit(&mi->mi_recovlock); } /* * Return TRUE if the given server has any non-unmounted filesystems. */ bool_t nfs4_fs_active(nfs4_server_t *sp) { mntinfo4_t *mi; ASSERT(MUTEX_HELD(&sp->s_lock)); for (mi = sp->mntinfo4_list; mi != NULL; mi = mi->mi_clientid_next) { if (!(mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED)) return (TRUE); } return (FALSE); } /* * Mark sp as finished and notify any waiters. */ void nfs4_mark_srv_dead(nfs4_server_t *sp) { ASSERT(MUTEX_HELD(&sp->s_lock)); sp->s_thread_exit = NFS4_THREAD_EXIT; cv_broadcast(&sp->cv_thread_exit); } /* * Create a new nfs4_server_t structure. * Returns new node unlocked and not in list, but with a reference count of * 1. */ struct nfs4_server * new_nfs4_server(struct servinfo4 *svp, cred_t *cr) { struct nfs4_server *np; timespec_t tt; union { struct { uint32_t sec; uint32_t subsec; } un_curtime; verifier4 un_verifier; } nfs4clientid_verifier; /* * We change this ID string carefully and with the Solaris * NFS server behaviour in mind. "+referrals" indicates * a client that can handle an NFSv4 referral. */ char id_val[] = "Solaris: %s, NFSv4 kernel client +referrals"; int len; np = kmem_zalloc(sizeof (struct nfs4_server), KM_SLEEP); np->saddr.len = svp->sv_addr.len; np->saddr.maxlen = svp->sv_addr.maxlen; np->saddr.buf = kmem_alloc(svp->sv_addr.maxlen, KM_SLEEP); bcopy(svp->sv_addr.buf, np->saddr.buf, svp->sv_addr.len); np->s_refcnt = 1; /* * Build the nfs_client_id4 for this server mount. Ensure * the verifier is useful and that the identification is * somehow based on the server's address for the case of * multi-homed servers. */ nfs4clientid_verifier.un_verifier = 0; gethrestime(&tt); nfs4clientid_verifier.un_curtime.sec = (uint32_t)tt.tv_sec; nfs4clientid_verifier.un_curtime.subsec = (uint32_t)tt.tv_nsec; np->clidtosend.verifier = nfs4clientid_verifier.un_verifier; /* * calculate the length of the opaque identifier. Subtract 2 * for the "%s" and add the traditional +1 for null * termination. */ len = strlen(id_val) - 2 + strlen(uts_nodename()) + 1; np->clidtosend.id_len = len + np->saddr.maxlen; np->clidtosend.id_val = kmem_alloc(np->clidtosend.id_len, KM_SLEEP); (void) sprintf(np->clidtosend.id_val, id_val, uts_nodename()); bcopy(np->saddr.buf, &np->clidtosend.id_val[len], np->saddr.len); np->s_flags = 0; np->mntinfo4_list = NULL; /* save cred for issuing rfs4calls inside the renew thread */ crhold(cr); np->s_cred = cr; cv_init(&np->cv_thread_exit, NULL, CV_DEFAULT, NULL); mutex_init(&np->s_lock, NULL, MUTEX_DEFAULT, NULL); nfs_rw_init(&np->s_recovlock, NULL, RW_DEFAULT, NULL); list_create(&np->s_deleg_list, sizeof (rnode4_t), offsetof(rnode4_t, r_deleg_link)); np->s_thread_exit = 0; np->state_ref_count = 0; np->lease_valid = NFS4_LEASE_NOT_STARTED; cv_init(&np->s_cv_otw_count, NULL, CV_DEFAULT, NULL); cv_init(&np->s_clientid_pend, NULL, CV_DEFAULT, NULL); np->s_otw_call_count = 0; cv_init(&np->wait_cb_null, NULL, CV_DEFAULT, NULL); np->zoneid = getzoneid(); np->zone_globals = nfs4_get_callback_globals(); ASSERT(np->zone_globals != NULL); return (np); } /* * Create a new nfs4_server_t structure and add it to the list. * Returns new node locked; reference must eventually be freed. */ static struct nfs4_server * add_new_nfs4_server(struct servinfo4 *svp, cred_t *cr) { nfs4_server_t *sp; ASSERT(MUTEX_HELD(&nfs4_server_lst_lock)); sp = new_nfs4_server(svp, cr); mutex_enter(&sp->s_lock); insque(sp, &nfs4_server_lst); sp->s_refcnt++; /* list gets a reference */ sp->s_flags |= N4S_INSERTED; sp->clientid = 0; return (sp); } int nfs4_server_t_debug = 0; #ifdef lint extern void dumpnfs4slist(char *, mntinfo4_t *, clientid4, servinfo4_t *); #endif #ifndef lint #ifdef DEBUG void dumpnfs4slist(char *txt, mntinfo4_t *mi, clientid4 clientid, servinfo4_t *srv_p) { int hash16(void *p, int len); nfs4_server_t *np; NFS4_DEBUG(nfs4_server_t_debug, (CE_NOTE, "dumping nfs4_server_t list in %s", txt)); NFS4_DEBUG(nfs4_server_t_debug, (CE_CONT, "mi 0x%p, want clientid %llx, addr %d/%04X", mi, (longlong_t)clientid, srv_p->sv_addr.len, hash16((void *)srv_p->sv_addr.buf, srv_p->sv_addr.len))); for (np = nfs4_server_lst.forw; np != &nfs4_server_lst; np = np->forw) { NFS4_DEBUG(nfs4_server_t_debug, (CE_CONT, "node 0x%p, clientid %llx, addr %d/%04X, cnt %d", np, (longlong_t)np->clientid, np->saddr.len, hash16((void *)np->saddr.buf, np->saddr.len), np->state_ref_count)); if (np->saddr.len == srv_p->sv_addr.len && bcmp(np->saddr.buf, srv_p->sv_addr.buf, np->saddr.len) == 0) NFS4_DEBUG(nfs4_server_t_debug, (CE_CONT, " - address matches")); if (np->clientid == clientid || np->clientid == 0) NFS4_DEBUG(nfs4_server_t_debug, (CE_CONT, " - clientid matches")); if (np->s_thread_exit != NFS4_THREAD_EXIT) NFS4_DEBUG(nfs4_server_t_debug, (CE_CONT, " - thread not exiting")); } delay(hz); } #endif #endif /* * Move a mntinfo4_t from one server list to another. * Locking of the two nfs4_server_t nodes will be done in list order. * * Returns NULL if the current nfs4_server_t for the filesystem could not * be found (e.g., due to forced unmount). Otherwise returns a reference * to the new nfs4_server_t, which must eventually be freed. */ nfs4_server_t * nfs4_move_mi(mntinfo4_t *mi, servinfo4_t *old, servinfo4_t *new) { nfs4_server_t *p, *op = NULL, *np = NULL; int num_open; zoneid_t zoneid = nfs_zoneid(); ASSERT(nfs_zone() == mi->mi_zone); mutex_enter(&nfs4_server_lst_lock); #ifdef DEBUG if (nfs4_server_t_debug) dumpnfs4slist("nfs4_move_mi", mi, (clientid4)0, new); #endif for (p = nfs4_server_lst.forw; p != &nfs4_server_lst; p = p->forw) { if (p->zoneid != zoneid) continue; if (p->saddr.len == old->sv_addr.len && bcmp(p->saddr.buf, old->sv_addr.buf, p->saddr.len) == 0 && p->s_thread_exit != NFS4_THREAD_EXIT) { op = p; mutex_enter(&op->s_lock); op->s_refcnt++; } if (p->saddr.len == new->sv_addr.len && bcmp(p->saddr.buf, new->sv_addr.buf, p->saddr.len) == 0 && p->s_thread_exit != NFS4_THREAD_EXIT) { np = p; mutex_enter(&np->s_lock); } if (op != NULL && np != NULL) break; } if (op == NULL) { /* * Filesystem has been forcibly unmounted. Bail out. */ if (np != NULL) mutex_exit(&np->s_lock); mutex_exit(&nfs4_server_lst_lock); return (NULL); } if (np != NULL) { np->s_refcnt++; } else { #ifdef DEBUG NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE, "nfs4_move_mi: no target nfs4_server, will create.")); #endif np = add_new_nfs4_server(new, kcred); } mutex_exit(&nfs4_server_lst_lock); NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE, "nfs4_move_mi: for mi 0x%p, " "old servinfo4 0x%p, new servinfo4 0x%p, " "old nfs4_server 0x%p, new nfs4_server 0x%p, ", (void*)mi, (void*)old, (void*)new, (void*)op, (void*)np)); ASSERT(op != NULL && np != NULL); /* discard any delegations */ nfs4_deleg_discard(mi, op); num_open = mi->mi_open_files; mi->mi_open_files = 0; op->state_ref_count -= num_open; ASSERT(op->state_ref_count >= 0); np->state_ref_count += num_open; nfs4_remove_mi_from_server_nolock(mi, op); mi->mi_open_files = num_open; NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE, "nfs4_move_mi: mi_open_files %d, op->cnt %d, np->cnt %d", mi->mi_open_files, op->state_ref_count, np->state_ref_count)); nfs4_add_mi_to_server(np, mi); mutex_exit(&op->s_lock); mutex_exit(&np->s_lock); nfs4_server_rele(op); return (np); } /* * Need to have the nfs4_server_lst_lock. * Search the nfs4_server list to find a match on this servinfo4 * based on its address. * * Returns NULL if no match is found. Otherwise returns a reference (which * must eventually be freed) to a locked nfs4_server. */ nfs4_server_t * servinfo4_to_nfs4_server(servinfo4_t *srv_p) { nfs4_server_t *np; zoneid_t zoneid = nfs_zoneid(); ASSERT(MUTEX_HELD(&nfs4_server_lst_lock)); for (np = nfs4_server_lst.forw; np != &nfs4_server_lst; np = np->forw) { if (np->zoneid == zoneid && np->saddr.len == srv_p->sv_addr.len && bcmp(np->saddr.buf, srv_p->sv_addr.buf, np->saddr.len) == 0 && np->s_thread_exit != NFS4_THREAD_EXIT) { mutex_enter(&np->s_lock); np->s_refcnt++; return (np); } } return (NULL); } /* * Locks the nfs4_server down if it is found and returns a reference that * must eventually be freed. */ static nfs4_server_t * lookup_nfs4_server(nfs4_server_t *sp, int any_state) { nfs4_server_t *np; mutex_enter(&nfs4_server_lst_lock); for (np = nfs4_server_lst.forw; np != &nfs4_server_lst; np = np->forw) { mutex_enter(&np->s_lock); if (np == sp && np->s_refcnt > 0 && (np->s_thread_exit != NFS4_THREAD_EXIT || any_state)) { mutex_exit(&nfs4_server_lst_lock); np->s_refcnt++; return (np); } mutex_exit(&np->s_lock); } mutex_exit(&nfs4_server_lst_lock); return (NULL); } /* * The caller should be holding mi->mi_recovlock, and it should continue to * hold the lock until done with the returned nfs4_server_t. Once * mi->mi_recovlock is released, there is no guarantee that the returned * mi->nfs4_server_t will continue to correspond to mi. */ nfs4_server_t * find_nfs4_server(mntinfo4_t *mi) { ASSERT(nfs_rw_lock_held(&mi->mi_recovlock, RW_READER) || nfs_rw_lock_held(&mi->mi_recovlock, RW_WRITER)); return (lookup_nfs4_server(mi->mi_srv, 0)); } /* * Same as above, but takes an "any_state" parameter which can be * set to 1 if the caller wishes to find nfs4_server_t's which * have been marked for termination by the exit of the renew * thread. This should only be used by operations which are * cleaning up and will not cause an OTW op. */ nfs4_server_t * find_nfs4_server_all(mntinfo4_t *mi, int any_state) { ASSERT(nfs_rw_lock_held(&mi->mi_recovlock, RW_READER) || nfs_rw_lock_held(&mi->mi_recovlock, RW_WRITER)); return (lookup_nfs4_server(mi->mi_srv, any_state)); } /* * Lock sp, but only if it's still active (in the list and hasn't been * flagged as exiting) or 'any_state' is non-zero. * Returns TRUE if sp got locked and adds a reference to sp. */ bool_t nfs4_server_vlock(nfs4_server_t *sp, int any_state) { return (lookup_nfs4_server(sp, any_state) != NULL); } /* * Release the reference to sp and destroy it if that's the last one. */ void nfs4_server_rele(nfs4_server_t *sp) { mutex_enter(&sp->s_lock); ASSERT(sp->s_refcnt > 0); sp->s_refcnt--; if (sp->s_refcnt > 0) { mutex_exit(&sp->s_lock); return; } mutex_exit(&sp->s_lock); mutex_enter(&nfs4_server_lst_lock); mutex_enter(&sp->s_lock); if (sp->s_refcnt > 0) { mutex_exit(&sp->s_lock); mutex_exit(&nfs4_server_lst_lock); return; } remque(sp); sp->forw = sp->back = NULL; mutex_exit(&nfs4_server_lst_lock); destroy_nfs4_server(sp); } static void destroy_nfs4_server(nfs4_server_t *sp) { ASSERT(MUTEX_HELD(&sp->s_lock)); ASSERT(sp->s_refcnt == 0); ASSERT(sp->s_otw_call_count == 0); remove_all_mi(sp); crfree(sp->s_cred); kmem_free(sp->saddr.buf, sp->saddr.maxlen); kmem_free(sp->clidtosend.id_val, sp->clidtosend.id_len); mutex_exit(&sp->s_lock); /* destroy the nfs4_server */ nfs4callback_destroy(sp); list_destroy(&sp->s_deleg_list); mutex_destroy(&sp->s_lock); cv_destroy(&sp->cv_thread_exit); cv_destroy(&sp->s_cv_otw_count); cv_destroy(&sp->s_clientid_pend); cv_destroy(&sp->wait_cb_null); nfs_rw_destroy(&sp->s_recovlock); kmem_free(sp, sizeof (*sp)); } /* * Fork off a thread to free the data structures for a mount. */ static void async_free_mount(vfs_t *vfsp, int flag, cred_t *cr) { freemountargs_t *args; args = kmem_alloc(sizeof (freemountargs_t), KM_SLEEP); args->fm_vfsp = vfsp; VFS_HOLD(vfsp); MI4_HOLD(VFTOMI4(vfsp)); args->fm_flag = flag; args->fm_cr = cr; crhold(cr); (void) zthread_create(NULL, 0, nfs4_free_mount_thread, args, 0, minclsyspri); } static void nfs4_free_mount_thread(freemountargs_t *args) { mntinfo4_t *mi; nfs4_free_mount(args->fm_vfsp, args->fm_flag, args->fm_cr); mi = VFTOMI4(args->fm_vfsp); crfree(args->fm_cr); VFS_RELE(args->fm_vfsp); MI4_RELE(mi); kmem_free(args, sizeof (freemountargs_t)); zthread_exit(); /* NOTREACHED */ } /* * Thread to free the data structures for a given filesystem. */ static void nfs4_free_mount(vfs_t *vfsp, int flag, cred_t *cr) { mntinfo4_t *mi = VFTOMI4(vfsp); nfs4_server_t *sp; callb_cpr_t cpr_info; kmutex_t cpr_lock; boolean_t async_thread; int removed; bool_t must_unlock; nfs4_ephemeral_tree_t *eph_tree; /* * We need to participate in the CPR framework if this is a kernel * thread. */ async_thread = (curproc == nfs_zone()->zone_zsched); if (async_thread) { mutex_init(&cpr_lock, NULL, MUTEX_DEFAULT, NULL); CALLB_CPR_INIT(&cpr_info, &cpr_lock, callb_generic_cpr, "nfsv4AsyncUnmount"); } /* * We need to wait for all outstanding OTW calls * and recovery to finish before we remove the mi * from the nfs4_server_t, as current pending * calls might still need this linkage (in order * to find a nfs4_server_t from a mntinfo4_t). */ (void) nfs_rw_enter_sig(&mi->mi_recovlock, RW_READER, FALSE); sp = find_nfs4_server(mi); nfs_rw_exit(&mi->mi_recovlock); if (sp) { while (sp->s_otw_call_count != 0) { if (async_thread) { mutex_enter(&cpr_lock); CALLB_CPR_SAFE_BEGIN(&cpr_info); mutex_exit(&cpr_lock); } cv_wait(&sp->s_cv_otw_count, &sp->s_lock); if (async_thread) { mutex_enter(&cpr_lock); CALLB_CPR_SAFE_END(&cpr_info, &cpr_lock); mutex_exit(&cpr_lock); } } mutex_exit(&sp->s_lock); nfs4_server_rele(sp); sp = NULL; } mutex_enter(&mi->mi_lock); while (mi->mi_in_recovery != 0) { if (async_thread) { mutex_enter(&cpr_lock); CALLB_CPR_SAFE_BEGIN(&cpr_info); mutex_exit(&cpr_lock); } cv_wait(&mi->mi_cv_in_recov, &mi->mi_lock); if (async_thread) { mutex_enter(&cpr_lock); CALLB_CPR_SAFE_END(&cpr_info, &cpr_lock); mutex_exit(&cpr_lock); } } mutex_exit(&mi->mi_lock); /* * If we got an error, then do not nuke the * tree. Either the harvester is busy reclaiming * this node or we ran into some busy condition. * * The harvester will eventually come along and cleanup. * The only problem would be the root mount point. * * Since the busy node can occur for a variety * of reasons and can result in an entry staying * in df output but no longer accessible from the * directory tree, we are okay. */ if (!nfs4_ephemeral_umount(mi, flag, cr, &must_unlock, &eph_tree)) nfs4_ephemeral_umount_activate(mi, &must_unlock, &eph_tree); /* * The original purge of the dnlc via 'dounmount' * doesn't guarantee that another dnlc entry was not * added while we waitied for all outstanding OTW * and recovery calls to finish. So re-purge the * dnlc now. */ (void) dnlc_purge_vfsp(vfsp, 0); /* * We need to explicitly stop the manager thread; the asyc worker * threads can timeout and exit on their own. */ mutex_enter(&mi->mi_async_lock); mi->mi_max_threads = 0; cv_broadcast(&mi->mi_async_work_cv); mutex_exit(&mi->mi_async_lock); if (mi->mi_manager_thread) nfs4_async_manager_stop(vfsp); destroy_rtable4(vfsp, cr); nfs4_remove_mi_from_server(mi, NULL); if (async_thread) { mutex_enter(&cpr_lock); CALLB_CPR_EXIT(&cpr_info); /* drops cpr_lock */ mutex_destroy(&cpr_lock); } removed = nfs4_mi_zonelist_remove(mi); if (removed) zone_rele(mi->mi_zone); } /* Referral related sub-routines */ /* Freeup knetconfig */ static void free_knconf_contents(struct knetconfig *k) { if (k == NULL) return; if (k->knc_protofmly) kmem_free(k->knc_protofmly, KNC_STRSIZE); if (k->knc_proto) kmem_free(k->knc_proto, KNC_STRSIZE); } /* * This updates newpath variable with exact name component from the * path which gave us a NFS4ERR_MOVED error. * If the path is /rp/aaa/bbb and nth value is 1, aaa is returned. */ static char * extract_referral_point(const char *svp, int nth) { int num_slashes = 0; const char *p; char *newpath = NULL; int i = 0; newpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); for (p = svp; *p; p++) { if (*p == '/') num_slashes++; if (num_slashes == nth + 1) { p++; while (*p != '/') { if (*p == '\0') break; newpath[i] = *p; i++; p++; } newpath[i++] = '\0'; break; } } return (newpath); } /* * This sets up a new path in sv_path to do a lookup of the referral point. * If the path is /rp/aaa/bbb and the referral point is aaa, * this updates /rp/aaa. This path will be used to get referral * location. */ static void setup_newsvpath(servinfo4_t *svp, int nth) { int num_slashes = 0, pathlen, i = 0; char *newpath, *p; newpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); for (p = svp->sv_path; *p; p++) { newpath[i] = *p; if (*p == '/') num_slashes++; if (num_slashes == nth + 1) { newpath[i] = '\0'; pathlen = strlen(newpath) + 1; kmem_free(svp->sv_path, svp->sv_pathlen); svp->sv_path = kmem_alloc(pathlen, KM_SLEEP); svp->sv_pathlen = pathlen; bcopy(newpath, svp->sv_path, pathlen); break; } i++; } kmem_free(newpath, MAXPATHLEN); }