/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2004 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ /* All Rights Reserved */ /* * Portions of this source code were derived from Berkeley 4.3 BSD * under license from the Regents of the University of California. */ #pragma ident "%Z%%M% %I% %E% SMI" /*LINTLIBRARY*/ /* * 4.3BSD signal compatibility functions * * the implementation interprets signal masks equal to -1 as "all of the * signals in the signal set", thereby allowing signals with numbers * above 32 to be blocked when referenced in code such as: * * for (i = 0; i < NSIG; i++) * mask |= sigmask(i) */ #include #include #include #include #undef BUS_OBJERR /* namespace conflict */ #include #include "libc.h" #pragma weak sigvechandler = _sigvechandler #pragma weak sigsetmask = _sigsetmask #pragma weak sigblock = _sigblock #pragma weak sigpause = usigpause #pragma weak sigvec = _sigvec #pragma weak sigstack = _sigstack #pragma weak signal = usignal #pragma weak siginterrupt = _siginterrupt /* * DO NOT remove the _ from these 3 functions or the subsequent * calls to them below. The non _ versions of these functions * are the wrong functions to call. This is BCP. Extra * care should be taken when modifying this code. */ extern int _sigfillset(sigset_t *); extern int _sigemptyset(sigset_t *); extern int _sigprocmask(int, const sigset_t *, sigset_t *); #define set2mask(setp) ((setp)->__sigbits[0]) #define mask2set(mask, setp) \ ((mask) == -1 ? _sigfillset(setp) : \ ((void) _sigemptyset(setp), (((setp)->__sigbits[0]) = (int)(mask)))) void (*_siguhandler[NSIG])() = { 0 }; /* * forward declarations */ int ucbsiginterrupt(int, int); int ucbsigvec(int, struct sigvec *, struct sigvec *); int ucbsigpause(int); int ucbsigblock(int); int ucbsigsetmask(int); static void ucbsigvechandler(int, siginfo_t *, ucontext_t *); /* * sigvechandler is the real signal handler installed for all * signals handled in the 4.3BSD compatibility interface - it translates * SVR4 signal hander arguments into 4.3BSD signal handler arguments * and then calls the real handler */ int _sigvechandler(int sig, siginfo_t *sip, ucontext_t *ucp) { ucbsigvechandler(sig, sip, ucp); return (0); /* keep the same as the original prototype */ } static void ucbsigvechandler(int sig, siginfo_t *sip, ucontext_t *ucp) { struct sigcontext sc; int code; char *addr; #ifdef NEVER int gwinswitch = 0; #endif sc.sc_onstack = ((ucp->uc_stack.ss_flags & SS_ONSTACK) != 0); sc.sc_mask = set2mask(&ucp->uc_sigmask); #if defined(__sparc) if (sig == SIGFPE && sip != NULL && SI_FROMKERNEL(sip) && (sip->si_code == FPE_INTDIV || sip->si_code == FPE_INTOVF)) { /* * Hack to emulate the 4.x kernel behavior of incrementing * the PC on integer divide by zero and integer overflow * on sparc machines. (5.x does not increment the PC.) */ ucp->uc_mcontext.gregs[REG_PC] = ucp->uc_mcontext.gregs[REG_nPC]; ucp->uc_mcontext.gregs[REG_nPC] += 4; } sc.sc_sp = ucp->uc_mcontext.gregs[REG_SP]; sc.sc_pc = ucp->uc_mcontext.gregs[REG_PC]; sc.sc_npc = ucp->uc_mcontext.gregs[REG_nPC]; /* XX64 There is no REG_PSR for sparcv9, we map in REG_CCR for now */ #if defined(__sparcv9) sc.sc_psr = ucp->uc_mcontext.gregs[REG_CCR]; #else sc.sc_psr = ucp->uc_mcontext.gregs[REG_PSR]; #endif sc.sc_g1 = ucp->uc_mcontext.gregs[REG_G1]; sc.sc_o0 = ucp->uc_mcontext.gregs[REG_O0]; /* * XXX - What a kludge! * Store a pointer to the original ucontext_t in the sigcontext * so that it's available to the sigcleanup call that needs to * return from the signal handler. Otherwise, vital information * (e.g., the "out" registers) that's only saved in the * ucontext_t isn't available to sigcleanup. */ sc.sc_wbcnt = (int)(sizeof (*ucp)); sc.sc_spbuf[0] = (char *)sig; sc.sc_spbuf[1] = (char *)ucp; #ifdef NEVER /* * XXX - Sorry, we can never pass the saved register windows * on in the sigcontext because we use that space to save the * ucontext_t. */ if (ucp->uc_mcontext.gwins != (gwindows_t *)0) { int i, j; gwinswitch = 1; sc.sc_wbcnt = ucp->uc_mcontext.gwins->wbcnt; /* XXX - should use bcopy to move this in bulk */ for (i = 0; i < ucp->uc_mcontext.gwins; i++) { sc.sc_spbuf[i] = ucp->uc_mcontext.gwins->spbuf[i]; for (j = 0; j < 8; j++) sc.sc_wbuf[i][j] = ucp->uc_mcontext.gwins->wbuf[i].rw_local[j]; for (j = 0; j < 8; j++) sc.sc_wbuf[i][j+8] = ucp->uc_mcontext.gwins->wbuf[i].rw_in[j]; } } #endif #endif /* * Translate signal codes from new to old. * /usr/include/sys/siginfo.h contains new codes. * /usr/ucbinclude/sys/signal.h contains old codes. */ code = 0; addr = SIG_NOADDR; if (sip != NULL && SI_FROMKERNEL(sip)) { addr = sip->si_addr; switch (sig) { case SIGILL: switch (sip->si_code) { case ILL_PRVOPC: code = ILL_PRIVINSTR_FAULT; break; case ILL_BADSTK: code = ILL_STACK; break; case ILL_ILLTRP: code = ILL_TRAP_FAULT(sip->si_trapno); break; default: code = ILL_ILLINSTR_FAULT; break; } break; case SIGEMT: code = EMT_TAG; break; case SIGFPE: switch (sip->si_code) { case FPE_INTDIV: code = FPE_INTDIV_TRAP; break; case FPE_INTOVF: code = FPE_INTOVF_TRAP; break; case FPE_FLTDIV: code = FPE_FLTDIV_TRAP; break; case FPE_FLTOVF: code = FPE_FLTOVF_TRAP; break; case FPE_FLTUND: code = FPE_FLTUND_TRAP; break; case FPE_FLTRES: code = FPE_FLTINEX_TRAP; break; default: code = FPE_FLTOPERR_TRAP; break; } break; case SIGBUS: switch (sip->si_code) { case BUS_ADRALN: code = BUS_ALIGN; break; case BUS_ADRERR: code = BUS_HWERR; break; default: /* BUS_OBJERR */ code = FC_MAKE_ERR(sip->si_errno); break; } break; case SIGSEGV: switch (sip->si_code) { case SEGV_MAPERR: code = SEGV_NOMAP; break; case SEGV_ACCERR: code = SEGV_PROT; break; default: code = FC_MAKE_ERR(sip->si_errno); break; } break; default: addr = SIG_NOADDR; break; } } (*_siguhandler[sig])(sig, code, &sc, addr); if (sc.sc_onstack) ucp->uc_stack.ss_flags |= SS_ONSTACK; else ucp->uc_stack.ss_flags &= ~SS_ONSTACK; mask2set(sc.sc_mask, &ucp->uc_sigmask); #if defined(__sparc) ucp->uc_mcontext.gregs[REG_SP] = sc.sc_sp; ucp->uc_mcontext.gregs[REG_PC] = sc.sc_pc; ucp->uc_mcontext.gregs[REG_nPC] = sc.sc_npc; #if defined(__sparcv9) ucp->uc_mcontext.gregs[REG_CCR] = sc.sc_psr; #else ucp->uc_mcontext.gregs[REG_PSR] = sc.sc_psr; #endif ucp->uc_mcontext.gregs[REG_G1] = sc.sc_g1; ucp->uc_mcontext.gregs[REG_O0] = sc.sc_o0; #ifdef NEVER if (gwinswitch == 1) { int i, j; ucp->uc_mcontext.gwins->wbcnt = sc.sc_wbcnt; /* XXX - should use bcopy to move this in bulk */ for (i = 0; i < sc.sc_wbcnt; i++) { ucp->uc_mcontext.gwins->spbuf[i] = sc.sc_spbuf[i]; for (j = 0; j < 8; j++) ucp->uc_mcontext.gwins->wbuf[i].rw_local[j] = sc.sc_wbuf[i][j]; for (j = 0; j < 8; j++) ucp->uc_mcontext.gwins->wbuf[i].rw_in[j] = sc.sc_wbuf[i][j+8]; } } #endif if (sig == SIGFPE) { if (ucp->uc_mcontext.fpregs.fpu_qcnt > 0) { ucp->uc_mcontext.fpregs.fpu_qcnt--; ucp->uc_mcontext.fpregs.fpu_q++; } } #endif (void) setcontext(ucp); } #if defined(__sparc) /* * Emulate the special sigcleanup trap. * This is only used by statically linked 4.x applications * and thus is only called by the static BCP support. * It lives here because of its close relationship with * the ucbsigvechandler code above. * * It's used by 4.x applications to: * 1. return from a signal handler (in __sigtramp) * 2. [sig]longjmp * 3. context switch, in the old 4.x liblwp */ void __sigcleanup(struct sigcontext *scp) { ucontext_t uc, *ucp; int sig; /* * If there's a pointer to a ucontext_t hiding in the sigcontext, * we *must* use that to return, since it contains important data * such as the original "out" registers when the signal occurred. */ if (scp->sc_wbcnt == sizeof (*ucp)) { sig = (int)scp->sc_spbuf[0]; ucp = (ucontext_t *)scp->sc_spbuf[1]; } else { /* * Otherwise, use a local ucontext_t and * initialize it with getcontext. */ sig = 0; ucp = &uc; (void) getcontext(ucp); } if (scp->sc_onstack) { ucp->uc_stack.ss_flags |= SS_ONSTACK; } else ucp->uc_stack.ss_flags &= ~SS_ONSTACK; mask2set(scp->sc_mask, &ucp->uc_sigmask); ucp->uc_mcontext.gregs[REG_SP] = scp->sc_sp; ucp->uc_mcontext.gregs[REG_PC] = scp->sc_pc; ucp->uc_mcontext.gregs[REG_nPC] = scp->sc_npc; #if defined(__sparcv9) ucp->uc_mcontext.gregs[REG_CCR] = scp->sc_psr; #else ucp->uc_mcontext.gregs[REG_PSR] = scp->sc_psr; #endif ucp->uc_mcontext.gregs[REG_G1] = scp->sc_g1; ucp->uc_mcontext.gregs[REG_O0] = scp->sc_o0; if (sig == SIGFPE) { if (ucp->uc_mcontext.fpregs.fpu_qcnt > 0) { ucp->uc_mcontext.fpregs.fpu_qcnt--; ucp->uc_mcontext.fpregs.fpu_q++; } } (void) setcontext(ucp); /* NOTREACHED */ } #endif int _sigsetmask(int mask) { return (ucbsigsetmask(mask)); } int ucbsigsetmask(int mask) { sigset_t oset; sigset_t nset; (void) _sigprocmask(0, (sigset_t *)0, &nset); mask2set(mask, &nset); (void) _sigprocmask(SIG_SETMASK, &nset, &oset); return (set2mask(&oset)); } int _sigblock(int mask) { return (ucbsigblock(mask)); } int ucbsigblock(int mask) { sigset_t oset; sigset_t nset; (void) _sigprocmask(0, (sigset_t *)0, &nset); mask2set(mask, &nset); (void) _sigprocmask(SIG_BLOCK, &nset, &oset); return (set2mask(&oset)); } int usigpause(int mask) { return (ucbsigpause(mask)); } int ucbsigpause(int mask) { sigset_t set, oset; int ret; (void) _sigprocmask(0, (sigset_t *)0, &set); oset = set; mask2set(mask, &set); ret = sigsuspend(&set); (void) _sigprocmask(SIG_SETMASK, &oset, (sigset_t *)0); return (ret); } int _sigvec(int sig, struct sigvec *nvec, struct sigvec *ovec) { return (ucbsigvec(sig, nvec, ovec)); } int ucbsigvec(int sig, struct sigvec *nvec, struct sigvec *ovec) { struct sigaction nact; struct sigaction oact; struct sigaction *nactp; void (*ohandler)(int, int, struct sigcontext *, char *); void (*nhandler)(int, int, struct sigcontext *, char *); if (sig <= 0 || sig >= NSIG) { errno = EINVAL; return (-1); } if ((long)ovec == -1L || (long)nvec == -1L) { errno = EFAULT; return (-1); } ohandler = _siguhandler[sig]; if (nvec) { (void) _sigaction(sig, (struct sigaction *)0, &nact); nhandler = nvec->sv_handler; /* * To be compatible with the behavior of SunOS 4.x: * If the new signal handler is SIG_IGN or SIG_DFL, * do not change the signal's entry in the handler array. * This allows a child of vfork(2) to set signal handlers * to SIG_IGN or SIG_DFL without affecting the parent. */ if ((void (*)(int))nhandler != SIG_DFL && (void (*)(int))nhandler != SIG_IGN) { _siguhandler[sig] = nhandler; nact.sa_handler = (void (*)(int))ucbsigvechandler; } else { nact.sa_handler = (void (*)(int))nhandler; } mask2set(nvec->sv_mask, &nact.sa_mask); if (sig == SIGKILL || sig == SIGSTOP) nact.sa_handler = SIG_DFL; nact.sa_flags = SA_SIGINFO; if (!(nvec->sv_flags & SV_INTERRUPT)) nact.sa_flags |= SA_RESTART; if (nvec->sv_flags & SV_RESETHAND) nact.sa_flags |= SA_RESETHAND; if (nvec->sv_flags & SV_ONSTACK) nact.sa_flags |= SA_ONSTACK; nactp = &nact; } else nactp = (struct sigaction *)0; if (_sigaction(sig, nactp, &oact) < 0) { _siguhandler[sig] = ohandler; return (-1); } if (ovec) { if (oact.sa_handler == SIG_DFL || oact.sa_handler == SIG_IGN) ovec->sv_handler = (void (*) (int, int, struct sigcontext *, char *)) oact.sa_handler; else ovec->sv_handler = ohandler; ovec->sv_mask = set2mask(&oact.sa_mask); ovec->sv_flags = 0; if (oact.sa_flags & SA_ONSTACK) ovec->sv_flags |= SV_ONSTACK; if (oact.sa_flags & SA_RESETHAND) ovec->sv_flags |= SV_RESETHAND; if (!(oact.sa_flags & SA_RESTART)) ovec->sv_flags |= SV_INTERRUPT; } return (0); } int _sigstack(struct sigstack *nss, struct sigstack *oss) { struct sigaltstack nalt; struct sigaltstack oalt; struct sigaltstack *naltp; if (nss) { /* * XXX: assumes stack growth is down (like sparc) */ nalt.ss_sp = nss->ss_sp - SIGSTKSZ; nalt.ss_size = SIGSTKSZ; nalt.ss_flags = 0; naltp = &nalt; } else naltp = (struct sigaltstack *)0; if (sigaltstack(naltp, &oalt) < 0) return (-1); if (oss) { /* * XXX: assumes stack growth is down (like sparc) */ oss->ss_sp = oalt.ss_sp + oalt.ss_size; oss->ss_onstack = ((oalt.ss_flags & SS_ONSTACK) != 0); } return (0); } void (* ucbsignal(int s, void (*a)(int)))(int) { struct sigvec osv; struct sigvec nsv; static int mask[NSIG]; static int flags[NSIG]; nsv.sv_handler = (void (*) (int, int, struct sigcontext *, char *)) a; nsv.sv_mask = mask[s]; nsv.sv_flags = flags[s]; if (ucbsigvec(s, &nsv, &osv) < 0) return (SIG_ERR); if (nsv.sv_mask != osv.sv_mask || nsv.sv_flags != osv.sv_flags) { mask[s] = nsv.sv_mask = osv.sv_mask; flags[s] = nsv.sv_flags = osv.sv_flags & ~(SV_RESETHAND|SV_INTERRUPT); if (ucbsigvec(s, &nsv, (struct sigvec *)0) < 0) return (SIG_ERR); } return ((void (*) (int)) osv.sv_handler); } void (* usignal(int s, void (*a) (int)))(int) { return (ucbsignal(s, a)); } /* * Set signal state to prevent restart of system calls * after an instance of the indicated signal. */ int _siginterrupt(int sig, int flag) { return (ucbsiginterrupt(sig, flag)); } int ucbsiginterrupt(int sig, int flag) { struct sigvec sv; int ret; if ((ret = ucbsigvec(sig, 0, &sv)) < 0) return (ret); if (flag) sv.sv_flags |= SV_INTERRUPT; else sv.sv_flags &= ~SV_INTERRUPT; return (ucbsigvec(sig, &sv, 0)); }