/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2011 Nexenta Systems, Inc. All rights reserved. */ /* * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma weak remquo = __remquo /* INDENT OFF */ /* * double remquo(double x, double y, int *quo) return remainder(x,y) and an * integer pointer quo such that *quo = N mod {2**31}, where N is the * exact integral part of x/y rounded to nearest even. * * remquo call internal fmodquo */ /* INDENT ON */ #include "libm.h" #include "libm_synonyms.h" #include "libm_protos.h" #include /* fabs() */ #include #if defined(_BIG_ENDIAN) #define HIWORD 0 #define LOWORD 1 #else #define HIWORD 1 #define LOWORD 0 #endif #define __HI(x) ((int *) &x)[HIWORD] #define __LO(x) ((int *) &x)[LOWORD] static const double one = 1.0, Zero[] = {0.0, -0.0}; static double fmodquo(double x, double y, int *quo) { int n, hx, hy, hz, ix, iy, sx, sq, i, m; unsigned lx, ly, lz; hx = __HI(x); /* high word of x */ lx = __LO(x); /* low word of x */ hy = __HI(y); /* high word of y */ ly = __LO(y); /* low word of y */ sx = hx & 0x80000000; /* sign of x */ sq = (hx ^ hy) & 0x80000000; /* sign of x/y */ hx ^= sx; /* |x| */ hy &= 0x7fffffff; /* |y| */ /* purge off exception values */ *quo = 0; if ((hy | ly) == 0 || hx >= 0x7ff00000 || /* y=0, or x !finite */ (hy | ((ly | -ly) >> 31)) > 0x7ff00000) /* or y is NaN */ return ((x * y) / (x * y)); if (hx <= hy) { if (hx < hy || lx < ly) return (x); /* |x|<|y| return x */ if (lx == ly) { *quo = 1 + (sq >> 30); /* |x|=|y| return x*0 */ return (Zero[(unsigned) sx >> 31]); } } /* determine ix = ilogb(x) */ if (hx < 0x00100000) { /* subnormal x */ if (hx == 0) { for (ix = -1043, i = lx; i > 0; i <<= 1) ix -= 1; } else { for (ix = -1022, i = (hx << 11); i > 0; i <<= 1) ix -= 1; } } else ix = (hx >> 20) - 1023; /* determine iy = ilogb(y) */ if (hy < 0x00100000) { /* subnormal y */ if (hy == 0) { for (iy = -1043, i = ly; i > 0; i <<= 1) iy -= 1; } else { for (iy = -1022, i = (hy << 11); i > 0; i <<= 1) iy -= 1; } } else iy = (hy >> 20) - 1023; /* set up {hx,lx}, {hy,ly} and align y to x */ if (ix >= -1022) hx = 0x00100000 | (0x000fffff & hx); else { /* subnormal x, shift x to normal */ n = -1022 - ix; if (n <= 31) { hx = (hx << n) | (lx >> (32 - n)); lx <<= n; } else { hx = lx << (n - 32); lx = 0; } } if (iy >= -1022) hy = 0x00100000 | (0x000fffff & hy); else { /* subnormal y, shift y to normal */ n = -1022 - iy; if (n <= 31) { hy = (hy << n) | (ly >> (32 - n)); ly <<= n; } else { hy = ly << (n - 32); ly = 0; } } /* fix point fmod */ n = ix - iy; m = 0; while (n--) { hz = hx - hy; lz = lx - ly; if (lx < ly) hz -= 1; if (hz < 0) { hx = hx + hx + (lx >> 31); lx = lx + lx; } else { m += 1; if ((hz | lz) == 0) { /* return sign(x)*0 */ if (n < 31) m <<= 1 + n; else m = 0; m &= 0x7fffffff; *quo = sq >= 0 ? m : -m; return (Zero[(unsigned) sx >> 31]); } hx = hz + hz + (lz >> 31); lx = lz + lz; } m += m; } hz = hx - hy; lz = lx - ly; if (lx < ly) hz -= 1; if (hz >= 0) { hx = hz; lx = lz; m += 1; } m &= 0x7fffffff; *quo = sq >= 0 ? m : -m; /* convert back to floating value and restore the sign */ if ((hx | lx) == 0) { /* return sign(x)*0 */ return (Zero[(unsigned) sx >> 31]); } while (hx < 0x00100000) { /* normalize x */ hx = hx + hx + (lx >> 31); lx = lx + lx; iy -= 1; } if (iy >= -1022) { /* normalize output */ hx = (hx - 0x00100000) | ((iy + 1023) << 20); __HI(x) = hx | sx; __LO(x) = lx; } else { /* subnormal output */ n = -1022 - iy; if (n <= 20) { lx = (lx >> n) | ((unsigned) hx << (32 - n)); hx >>= n; } else if (n <= 31) { lx = (hx << (32 - n)) | (lx >> n); hx = sx; } else { lx = hx >> (n - 32); hx = sx; } __HI(x) = hx | sx; __LO(x) = lx; x *= one; /* create necessary signal */ } return (x); /* exact output */ } #define zero Zero[0] double remquo(double x, double y, int *quo) { int hx, hy, sx, sq; double v; unsigned ly; hx = __HI(x); /* high word of x */ hy = __HI(y); /* high word of y */ ly = __LO(y); /* low word of y */ sx = hx & 0x80000000; /* sign of x */ sq = (hx ^ hy) & 0x80000000; /* sign of x/y */ hx ^= sx; /* |x| */ hy &= 0x7fffffff; /* |y| */ /* purge off exception values */ *quo = 0; if ((hy | ly) == 0 || hx >= 0x7ff00000 || /* y=0, or x !finite */ (hy | ((ly | -ly) >> 31)) > 0x7ff00000) /* or y is NaN */ return ((x * y) / (x * y)); y = fabs(y); x = fabs(x); if (hy <= 0x7fdfffff) { x = fmodquo(x, y + y, quo); *quo = ((*quo) & 0x3fffffff) << 1; } if (hy < 0x00200000) { if (x + x > y) { *quo += 1; if (x == y) x = zero; else x -= y; if (x + x >= y) { x -= y; *quo += 1; } } } else { v = 0.5 * y; if (x > v) { *quo += 1; if (x == y) x = zero; else x -= y; if (x >= v) { x -= y; *quo += 1; } } } if (sq != 0) *quo = -(*quo); return (sx == 0 ? x : -x); }