/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2011 Nexenta Systems, Inc. All rights reserved. */ /* * Copyright 2005 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma weak cabs = __cabs #include "libm_synonyms.h" #include #include "complex_wrapper.h" /* * If C were the only standard we cared about, cabs could just call * hypot. Unfortunately, various other standards say that hypot must * call matherr and/or set errno to ERANGE when the result overflows. * Since cabs should do neither of these things, we have to either * make hypot a wrapper on another internal function or duplicate * the hypot implementation here. I've chosen to do the latter. */ static const double zero = 0.0, onep1u = 1.00000000000000022204e+00, /* 0x3ff00000 1 = 1+2**-52 */ twom53 = 1.11022302462515654042e-16, /* 0x3ca00000 0 = 2**-53 */ twom768 = 6.441148769597133308e-232, /* 2^-768 */ two768 = 1.552518092300708935e+231; /* 2^768 */ double cabs(dcomplex z) { double x, y, xh, yh, w, ax, ay; int i, j, nx, ny, ix, iy, iscale = 0; unsigned lx, ly; x = D_RE(z); y = D_IM(z); ix = ((int *)&x)[HIWORD] & ~0x80000000; lx = ((int *)&x)[LOWORD]; iy = ((int *)&y)[HIWORD] & ~0x80000000; ly = ((int *)&y)[LOWORD]; /* force ax = |x| ~>~ ay = |y| */ if (iy > ix) { ax = fabs(y); ay = fabs(x); i = ix; ix = iy; iy = i; i = lx; lx = ly; ly = i; } else { ax = fabs(x); ay = fabs(y); } nx = ix >> 20; ny = iy >> 20; j = nx - ny; if (nx >= 0x5f3) { /* x >= 2^500 (x*x or y*y may overflow) */ if (nx == 0x7ff) { /* inf or NaN, signal of sNaN */ if (((ix - 0x7ff00000) | lx) == 0) return ((ax == ay)? ay : ax); else if (((iy - 0x7ff00000) | ly) == 0) return ((ay == ax)? ax : ay); else return (ax * ay); } else if (j > 32) { /* x >> y */ if (j <= 53) ay *= twom53; ax += ay; return (ax); } ax *= twom768; ay *= twom768; iscale = 2; ix -= 768 << 20; iy -= 768 << 20; } else if (ny < 0x23d) { /* y < 2^-450 (x*x or y*y may underflow) */ if ((ix | lx) == 0) return (ay); if ((iy | ly) == 0) return (ax); if (j > 53) /* x >> y */ return (ax + ay); iscale = 1; ax *= two768; ay *= two768; if (nx == 0) { if (ax == zero) /* guard subnormal flush to zero */ return (ax); ix = ((int *)&ax)[HIWORD]; } else { ix += 768 << 20; } if (ny == 0) { if (ay == zero) /* guard subnormal flush to zero */ return (ax * twom768); iy = ((int *)&ay)[HIWORD]; } else { iy += 768 << 20; } j = (ix >> 20) - (iy >> 20); if (j > 32) { /* x >> y */ if (j <= 53) ay *= twom53; return ((ax + ay) * twom768); } } else if (j > 32) { /* x >> y */ if (j <= 53) ay *= twom53; return (ax + ay); } /* * Medium range ax and ay with max{|ax/ay|,|ay/ax|} bounded by 2^32. * First check rounding mode by comparing onep1u*onep1u with onep1u * + twom53. Make sure the computation is done at run-time. */ if (((lx | ly) << 5) == 0) { ay = ay * ay; ax += ay / (ax + sqrt(ax * ax + ay)); } else if (onep1u * onep1u != onep1u + twom53) { /* round-to-zero, positive, negative mode */ /* magic formula with less than an ulp error */ w = sqrt(ax * ax + ay * ay); ax += ay / ((ax + w) / ay); } else { /* round-to-nearest mode */ w = ax - ay; if (w > ay) { ((int *)&xh)[HIWORD] = ix; ((int *)&xh)[LOWORD] = 0; ay = ay * ay + (ax - xh) * (ax + xh); ax = sqrt(xh * xh + ay); } else { ax = ax + ax; ((int *)&xh)[HIWORD] = ix + 0x00100000; ((int *)&xh)[LOWORD] = 0; ((int *)&yh)[HIWORD] = iy; ((int *)&yh)[LOWORD] = 0; ay = w * w + ((ax - xh) * yh + (ay - yh) * ax); ax = sqrt(xh * yh + ay); } } if (iscale > 0) { if (iscale == 1) ax *= twom768; else ax *= two768; /* must generate side effect here */ } return (ax); }