/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2011 Nexenta Systems, Inc. All rights reserved. */ /* * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma weak sinhl = __sinhl #include "libm.h" #include "longdouble.h" /* * sinhl(X) * RETURN THE HYPERBOLIC SINE OF X * * Method : * 1. reduce x to non-negative by sinhl(-x) = - sinhl(x). * 2. * * expm1l(x) + expm1l(x)/(expm1l(x)+1) * 0 <= x <= lnovft : sinhl(x) := -------------------------------- * 2 * * lnovft <= x < INF : sinhl(x) := expl(x-MEP1*ln2)*2**ME * * here * lnovft: logrithm of the overflow threshold * = MEP1*ln2 chopped to machine precision. * ME maximum exponent * MEP1 maximum exponent plus 1 * * Special cases: * sinhl(x) is x if x is +INF, -INF, or NaN. * only sinhl(0)=0 is exact for finite argument. * */ #define ME 16383 #define MEP1 16384 #define LNOVFT 1.135652340629414394949193107797076342845e+4L /* last 32 bits of LN2HI is zero */ #define LN2HI 6.931471805599453094172319547495844850203e-0001L #define LN2LO 1.667085920830552208890449330400379754169e-0025L static const long double half = 0.5L, one = 1.0L, ln2hi = LN2HI, ln2lo = LN2LO, lnovftL = LNOVFT; long double sinhl(long double x) { long double r, t; if (!finitel(x)) return (x + x); /* sinh of NaN or +-INF is itself */ r = fabsl(x); if (r < lnovftL) { t = expm1l(r); r = copysignl((t + t / (one + t)) * half, x); } else { r = copysignl(expl((r - MEP1 * ln2hi) - MEP1 * ln2lo), x); r = scalbnl(r, ME); } return (r); }