/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2011 Nexenta Systems, Inc. All rights reserved. */ /* * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma weak logl = __logl /* * logl(x) * Table look-up algorithm * By K.C. Ng, March 6, 1989 * * (a). For x in [31/33,33/31], using a special approximation: * f = x - 1; * s = f/(2.0+f); ... here |s| <= 0.03125 * z = s*s; * return f-s*(f-z*(B1+z*(B2+z*(B3+z*(B4+...+z*B9)...)))); * * (b). Otherwise, normalize x = 2^n * 1.f. * Use a 6-bit table look-up: find a 6 bit g that match f to 6.5 bits, * then * log(x) = n*ln2 + log(1.g) + log(1.f/1.g). * Here the leading and trailing values of log(1.g) are obtained from * a size-64 table. * For log(1.f/1.g), let s = (1.f-1.g)/(1.f+1.g), then * log(1.f/1.g) = log((1+s)/(1-s)) = 2s + 2/3 s^3 + 2/5 s^5 +... * Note that |s|<2**-8=0.00390625. We use an odd s-polynomial * approximation to compute log(1.f/1.g): * s*(A1+s^2*(A2+s^2*(A3+s^2*(A4+s^2*(A5+s^2*(A6+s^2*A7)))))) * (Precision is 2**-136.91 bits, absolute error) * * (c). The final result is computed by * (n*ln2_hi+_TBL_logl_hi[j]) + * ( (n*ln2_lo+_TBL_logl_lo[j]) + s*(A1+...) ) * * Note. * For ln2_hi and _TBL_logl_hi[j], we force their last 32 bit to be zero * so that n*ln2_hi + _TBL_logl_hi[j] is exact. Here * _TBL_logl_hi[j] + _TBL_logl_lo[j] match log(1+j*2**-6) to 194 bits * * * Special cases: * log(x) is NaN with signal if x < 0 (including -INF) ; * log(+INF) is +INF; log(0) is -INF with signal; * log(NaN) is that NaN with no signal. * * Constants: * The hexadecimal values are the intended ones for the following constants. * The decimal values may be used, provided that the compiler will convert * from decimal to binary accurately enough to produce the hexadecimal values * shown. */ #include "libm.h" extern const long double _TBL_logl_hi[], _TBL_logl_lo[]; static const long double zero = 0.0L, one = 1.0L, two = 2.0L, two113 = 10384593717069655257060992658440192.0L, ln2hi = 6.931471805599453094172319547495844850203e-0001L, ln2lo = 1.667085920830552208890449330400379754169e-0025L, A1 = 2.000000000000000000000000000000000000024e+0000L, A2 = 6.666666666666666666666666666666091393804e-0001L, A3 = 4.000000000000000000000000407167070220671e-0001L, A4 = 2.857142857142857142730077490612903681164e-0001L, A5 = 2.222222222222242577702836920812882605099e-0001L, A6 = 1.818181816435493395985912667105885828356e-0001L, A7 = 1.538537835211839751112067512805496931725e-0001L, B1 = 6.666666666666666666666666666666961498329e-0001L, B2 = 3.999999999999999999999999990037655042358e-0001L, B3 = 2.857142857142857142857273426428347457918e-0001L, B4 = 2.222222222222222221353229049747910109566e-0001L, B5 = 1.818181818181821503532559306309070138046e-0001L, B6 = 1.538461538453809210486356084587356788556e-0001L, B7 = 1.333333344463358756121456892645178795480e-0001L, B8 = 1.176460904783899064854645174603360383792e-0001L, B9 = 1.057293869956598995326368602518056990746e-0001L; long double logl(long double x) { long double f, s, z, qn, h, t; int *px = (int *) &x; int *pz = (int *) &z; int i, j, ix, i0, i1, n; /* get long double precision word ordering */ if (*(int *) &one == 0) { i0 = 3; i1 = 0; } else { i0 = 0; i1 = 3; } n = 0; ix = px[i0]; if (ix > 0x3ffee0f8) { /* if x > 31/33 */ if (ix < 0x3fff1084) { /* if x < 33/31 */ f = x - one; z = f * f; if (((ix - 0x3fff0000) | px[i1] | px[2] | px[1]) == 0) { return (zero); /* log(1)= +0 */ } s = f / (two + f); /* |s|<2**-8 */ z = s * s; return (f - s * (f - z * (B1 + z * (B2 + z * (B3 + z * (B4 + z * (B5 + z * (B6 + z * (B7 + z * (B8 + z * B9)))))))))); } if (ix >= 0x7fff0000) return (x + x); /* x is +inf or NaN */ goto LARGE_N; } if (ix >= 0x00010000) goto LARGE_N; i = ix & 0x7fffffff; if ((i | px[i1] | px[2] | px[1]) == 0) { px[i0] |= 0x80000000; return (one / x); /* log(0.0) = -inf */ } if (ix < 0) { if ((unsigned) ix >= 0xffff0000) return (x - x); /* x is -inf or NaN */ return (zero / zero); /* log(x<0) is NaN */ } /* subnormal x */ x *= two113; n = -113; ix = px[i0]; LARGE_N: n += ((ix + 0x200) >> 16) - 0x3fff; ix = (ix & 0x0000ffff) | 0x3fff0000; /* scale x to [1,2] */ px[i0] = ix; i = ix + 0x200; pz[i0] = i & 0xfffffc00; pz[i1] = pz[1] = pz[2] = 0; s = (x - z) / (x + z); j = (i >> 10) & 0x3f; z = s * s; qn = (long double) n; t = qn * ln2lo + _TBL_logl_lo[j]; h = qn * ln2hi + _TBL_logl_hi[j]; f = t + s * (A1 + z * (A2 + z * (A3 + z * (A4 + z * (A5 + z * (A6 + z * A7)))))); return (h + f); }