/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2011 Nexenta Systems, Inc. All rights reserved. */ /* * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* INDENT OFF */ /* * __k_sinl( long double x; long double y ) * kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.785398164 * Input x is assumed to be bounded by ~pi/4 in magnitude. * Input y is the tail of x. * * Table look up algorithm * 1. by sin(-x) = -sin(x), need only to consider positive x * 2. if x < 25/128 = [0x3ffc9000,0,0,0] = 0.1953125 , then * if x < 2^-57 (hx < 0x3fc60000,0,0,0), return x (inexact if x != 0) * z = x*x; * if x <= 1/64 = 2**-6 * sin(x) = x + (y+(x*z)*(p1 + z*p2)) * else * sin(x) = x + (y+(x*z)*(p1 + z*(p2 + z*(p3 + z*p4)))) * 3. else * ht = (hx + 0x400)&0x7ffff800 (round x to a break point t) * lt = 0 * i = (hy-0x3ffc4000)>>11; (i<=64) * x' = (x - t)+y (|x'| ~<= 2^-7 * By * sin(t+x') * = sin(t)cos(x')+cos(t)sin(x') * = sin(t)(1+z*(qq1+z*qq2))+[cos(t)]*x*(1+z*(pp1+z*pp2)) * = sin(t) + [sin(t)]*(z*(qq1+z*qq2))+ * [cos(t)]*x*(1+z*(pp1+z*pp2)) * * Thus, * let a= _TBL_sin_hi[i], b = _TBL_sin_lo[i], c= _TBL_cos_hi[i], * x = (x-t)+y * z = x*x; * sin(t+x) = a+(b+ ((c*x)*(1+z*(pp1+z*pp2))+a*(z*(qq1+z*qq2))) */ #include "libm.h" #include extern const long double _TBL_sinl_hi[], _TBL_sinl_lo[], _TBL_cosl_hi[]; static const long double one = 1.0, /* * |sin(x) - (x+pp1*x^3+...+ pp5*x^11)| <= 2^-122.32 for |x|<1/64 */ pp1 = -1.666666666666666666666666666586782940810e-0001L, pp2 = 8.333333333333333333333003723660929317540e-0003L, pp3 = -1.984126984126984076045903483778337804470e-0004L, pp4 = 2.755731922361906641319723106210900949413e-0006L, pp5 = -2.505198398570947019093998469135012057673e-0008L, /* * |(sin(x) - (x+p1*x^3+...+p8*x^17)| * |------------------------------- | <= 2^-116.17 for |x|<0.1953125 * | x | */ p1 = -1.666666666666666666666666666666211262297e-0001L, p2 = 8.333333333333333333333333301497876908541e-0003L, p3 = -1.984126984126984126984041302881180621922e-0004L, p4 = 2.755731922398589064100587351307269621093e-0006L, p5 = -2.505210838544163129378906953765595393873e-0008L, p6 = 1.605904383643244375050998243778534074273e-0010L, p7 = -7.647162722800685516901456114270824622699e-0013L, p8 = 2.810046428661902961725428841068844462603e-0015L, /* * 2 10 -123.84 * |cos(x) - (1+qq1*x +...+ qq5*x )| <= 2 for |x|<=1/128 */ qq1 = -4.999999999999999999999999999999378373641e-0001L, qq2 = 4.166666666666666666666665478399327703130e-0002L, qq3 = -1.388888888888888888058211230618051613494e-0003L, qq4 = 2.480158730156105377771585658905303111866e-0005L, qq5 = -2.755728099762526325736488376695157008736e-0007L; /* INDENT ON */ long double __k_sinl(long double x, long double y) { long double a, t, z, w; int *pt = (int *) &t, *px = (int *) &x; int i, j, hx, ix; t = 1.0L; #if defined(__i386) || defined(__amd64) XTOI(px, hx); #else hx = px[0]; #endif ix = hx & 0x7fffffff; if (ix < 0x3ffc9000) { if (ix < 0x3fc60000) if (((int) x) == 0) return (x); /* generate inexact */ z = x * x; t = z * (p1 + z * (p2 + z * (p3 + z * (p4 + z * (p5 + z * (p6 + z * (p7 + z * p8))))))); t = y + x * t; return (x + t); } j = (ix + 0x400) & 0x7ffff800; i = (j - 0x3ffc4000) >> 11; #if defined(__i386) || defined(__amd64) ITOX(j, pt); #else pt[0] = j; #endif if (hx > 0) x = y - (t - x); else x = (-y) - (t + x); a = _TBL_sinl_hi[i]; z = x * x; t = z * (qq1 + z * (qq2 + z * (qq3 + z * (qq4 + z * qq5)))); w = x * (one + z * (pp1 + z * (pp2 + z * (pp3 + z * (pp4 + z * pp5))))); t = _TBL_cosl_hi[i] * w + a * t; t += _TBL_sinl_lo[i]; if (hx < 0) return (-a - t); else return (a + t); }