/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2013, Joyent Inc. All rights reserved. * Copyright (c) 2012, 2016 by Delphix. All rights reserved. */ /* * DTrace D Language Parser * * The D Parser is a lex/yacc parser consisting of the lexer dt_lex.l, the * parsing grammar dt_grammar.y, and this file, dt_parser.c, which handles * the construction of the parse tree nodes and their syntactic validation. * The parse tree is constructed of dt_node_t structures (see ) * that are built in two passes: (1) the "create" pass, where the parse tree * nodes are allocated by calls from the grammar to dt_node_*() subroutines, * and (2) the "cook" pass, where nodes are coalesced, assigned D types, and * validated according to the syntactic rules of the language. * * All node allocations are performed using dt_node_alloc(). All node frees * during the parsing phase are performed by dt_node_free(), which frees node- * internal state but does not actually free the nodes. All final node frees * are done as part of the end of dt_compile() or as part of destroying * persistent identifiers or translators which have embedded nodes. * * The dt_node_* routines that implement pass (1) may allocate new nodes. The * dt_cook_* routines that implement pass (2) may *not* allocate new nodes. * They may free existing nodes using dt_node_free(), but they may not actually * deallocate any dt_node_t's. Currently dt_cook_op2() is an exception to this * rule: see the comments therein for how this issue is resolved. * * The dt_cook_* routines are responsible for (at minimum) setting the final * node type (dn_ctfp/dn_type) and attributes (dn_attr). If dn_ctfp/dn_type * are set manually (i.e. not by one of the type assignment functions), then * the DT_NF_COOKED flag must be set manually on the node. * * The cooking pass can be applied to the same parse tree more than once (used * in the case of a comma-separated list of probe descriptions). As such, the * cook routines must not perform any parse tree transformations which would * be invalid if the tree were subsequently cooked using a different context. * * The dn_ctfp and dn_type fields form the type of the node. This tuple can * take on the following set of values, which form our type invariants: * * 1. dn_ctfp = NULL, dn_type = CTF_ERR * * In this state, the node has unknown type and is not yet cooked. The * DT_NF_COOKED flag is not yet set on the node. * * 2. dn_ctfp = DT_DYN_CTFP(dtp), dn_type = DT_DYN_TYPE(dtp) * * In this state, the node is a dynamic D type. This means that generic * operations are not valid on this node and only code that knows how to * examine the inner details of the node can operate on it. A node * must have dn_ident set to point to an identifier describing the object * and its type. The DT_NF_REF flag is set for all nodes of type . * At present, the D compiler uses the type for: * * - associative arrays that do not yet have a value type defined * - translated data (i.e. the result of the xlate operator) * - aggregations * * 3. dn_ctfp = DT_STR_CTFP(dtp), dn_type = DT_STR_TYPE(dtp) * * In this state, the node is of type D string. The string type is really * a char[0] typedef, but requires special handling throughout the compiler. * * 4. dn_ctfp != NULL, dn_type = any other type ID * * In this state, the node is of some known D/CTF type. The normal libctf * APIs can be used to learn more about the type name or structure. When * the type is assigned, the DT_NF_SIGNED, DT_NF_REF, and DT_NF_BITFIELD * flags cache the corresponding attributes of the underlying CTF type. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include dt_pcb_t *yypcb; /* current control block for parser */ dt_node_t *yypragma; /* lex token list for control lines */ char yyintprefix; /* int token macro prefix (+/-) */ char yyintsuffix[4]; /* int token suffix string [uU][lL] */ int yyintdecimal; /* int token format flag (1=decimal, 0=octal/hex) */ static const char * opstr(int op) { switch (op) { case DT_TOK_COMMA: return (","); case DT_TOK_ELLIPSIS: return ("..."); case DT_TOK_ASGN: return ("="); case DT_TOK_ADD_EQ: return ("+="); case DT_TOK_SUB_EQ: return ("-="); case DT_TOK_MUL_EQ: return ("*="); case DT_TOK_DIV_EQ: return ("/="); case DT_TOK_MOD_EQ: return ("%="); case DT_TOK_AND_EQ: return ("&="); case DT_TOK_XOR_EQ: return ("^="); case DT_TOK_OR_EQ: return ("|="); case DT_TOK_LSH_EQ: return ("<<="); case DT_TOK_RSH_EQ: return (">>="); case DT_TOK_QUESTION: return ("?"); case DT_TOK_COLON: return (":"); case DT_TOK_LOR: return ("||"); case DT_TOK_LXOR: return ("^^"); case DT_TOK_LAND: return ("&&"); case DT_TOK_BOR: return ("|"); case DT_TOK_XOR: return ("^"); case DT_TOK_BAND: return ("&"); case DT_TOK_EQU: return ("=="); case DT_TOK_NEQ: return ("!="); case DT_TOK_LT: return ("<"); case DT_TOK_LE: return ("<="); case DT_TOK_GT: return (">"); case DT_TOK_GE: return (">="); case DT_TOK_LSH: return ("<<"); case DT_TOK_RSH: return (">>"); case DT_TOK_ADD: return ("+"); case DT_TOK_SUB: return ("-"); case DT_TOK_MUL: return ("*"); case DT_TOK_DIV: return ("/"); case DT_TOK_MOD: return ("%"); case DT_TOK_LNEG: return ("!"); case DT_TOK_BNEG: return ("~"); case DT_TOK_ADDADD: return ("++"); case DT_TOK_PREINC: return ("++"); case DT_TOK_POSTINC: return ("++"); case DT_TOK_SUBSUB: return ("--"); case DT_TOK_PREDEC: return ("--"); case DT_TOK_POSTDEC: return ("--"); case DT_TOK_IPOS: return ("+"); case DT_TOK_INEG: return ("-"); case DT_TOK_DEREF: return ("*"); case DT_TOK_ADDROF: return ("&"); case DT_TOK_OFFSETOF: return ("offsetof"); case DT_TOK_SIZEOF: return ("sizeof"); case DT_TOK_STRINGOF: return ("stringof"); case DT_TOK_XLATE: return ("xlate"); case DT_TOK_LPAR: return ("("); case DT_TOK_RPAR: return (")"); case DT_TOK_LBRAC: return ("["); case DT_TOK_RBRAC: return ("]"); case DT_TOK_PTR: return ("->"); case DT_TOK_DOT: return ("."); case DT_TOK_STRING: return (""); case DT_TOK_IDENT: return (""); case DT_TOK_TNAME: return (""); case DT_TOK_INT: return (""); default: return (""); } } int dt_type_lookup(const char *s, dtrace_typeinfo_t *tip) { static const char delimiters[] = " \t\n\r\v\f*`"; dtrace_hdl_t *dtp = yypcb->pcb_hdl; const char *p, *q, *r, *end, *obj; for (p = s, end = s + strlen(s); *p != '\0'; p = q) { while (isspace(*p)) p++; /* skip leading whitespace prior to token */ if (p == end || (q = strpbrk(p + 1, delimiters)) == NULL) break; /* empty string or single token remaining */ if (*q == '`') { char *object = alloca((size_t)(q - p) + 1); char *type = alloca((size_t)(end - s) + 1); /* * Copy from the start of the token (p) to the location * backquote (q) to extract the nul-terminated object. */ bcopy(p, object, (size_t)(q - p)); object[(size_t)(q - p)] = '\0'; /* * Copy the original string up to the start of this * token (p) into type, and then concatenate everything * after q. This is the type name without the object. */ bcopy(s, type, (size_t)(p - s)); bcopy(q + 1, type + (size_t)(p - s), strlen(q + 1) + 1); /* * There may be at most three delimeters. The second * delimeter is usually used to distinguish the type * within a given module, however, there could be a link * map id on the scene in which case that delimeter * would be the third. We determine presence of the lmid * if it rouglhly meets the from LM[0-9] */ if ((r = strchr(q + 1, '`')) != NULL && ((r = strchr(r + 1, '`')) != NULL)) { if (strchr(r + 1, '`') != NULL) return (dt_set_errno(dtp, EDT_BADSCOPE)); if (q[1] != 'L' || q[2] != 'M') return (dt_set_errno(dtp, EDT_BADSCOPE)); } return (dtrace_lookup_by_type(dtp, object, type, tip)); } } if (yypcb->pcb_idepth != 0) obj = DTRACE_OBJ_CDEFS; else obj = DTRACE_OBJ_EVERY; return (dtrace_lookup_by_type(dtp, obj, s, tip)); } /* * When we parse type expressions or parse an expression with unary "&", we * need to find a type that is a pointer to a previously known type. * Unfortunately CTF is limited to a per-container view, so ctf_type_pointer() * alone does not suffice for our needs. We provide a more intelligent wrapper * for the compiler that attempts to compute a pointer to either the given type * or its base (that is, we try both "foo_t *" and "struct foo *"), and also * to potentially construct the required type on-the-fly. */ int dt_type_pointer(dtrace_typeinfo_t *tip) { dtrace_hdl_t *dtp = yypcb->pcb_hdl; ctf_file_t *ctfp = tip->dtt_ctfp; ctf_id_t type = tip->dtt_type; ctf_id_t base = ctf_type_resolve(ctfp, type); uint_t bflags = tip->dtt_flags; dt_module_t *dmp; ctf_id_t ptr; if ((ptr = ctf_type_pointer(ctfp, type)) != CTF_ERR || (ptr = ctf_type_pointer(ctfp, base)) != CTF_ERR) { tip->dtt_type = ptr; return (0); } if (yypcb->pcb_idepth != 0) dmp = dtp->dt_cdefs; else dmp = dtp->dt_ddefs; if (ctfp != dmp->dm_ctfp && ctfp != ctf_parent_file(dmp->dm_ctfp) && (type = ctf_add_type(dmp->dm_ctfp, ctfp, type)) == CTF_ERR) { dtp->dt_ctferr = ctf_errno(dmp->dm_ctfp); return (dt_set_errno(dtp, EDT_CTF)); } ptr = ctf_add_pointer(dmp->dm_ctfp, CTF_ADD_ROOT, type); if (ptr == CTF_ERR || ctf_update(dmp->dm_ctfp) == CTF_ERR) { dtp->dt_ctferr = ctf_errno(dmp->dm_ctfp); return (dt_set_errno(dtp, EDT_CTF)); } tip->dtt_object = dmp->dm_name; tip->dtt_ctfp = dmp->dm_ctfp; tip->dtt_type = ptr; tip->dtt_flags = bflags; return (0); } const char * dt_type_name(ctf_file_t *ctfp, ctf_id_t type, char *buf, size_t len) { dtrace_hdl_t *dtp = yypcb->pcb_hdl; if (ctfp == DT_FPTR_CTFP(dtp) && type == DT_FPTR_TYPE(dtp)) (void) snprintf(buf, len, "function pointer"); else if (ctfp == DT_FUNC_CTFP(dtp) && type == DT_FUNC_TYPE(dtp)) (void) snprintf(buf, len, "function"); else if (ctfp == DT_DYN_CTFP(dtp) && type == DT_DYN_TYPE(dtp)) (void) snprintf(buf, len, "dynamic variable"); else if (ctfp == NULL) (void) snprintf(buf, len, ""); else if (ctf_type_name(ctfp, type, buf, len) == NULL) (void) snprintf(buf, len, "unknown"); return (buf); } /* * Perform the "usual arithmetic conversions" to determine which of the two * input operand types should be promoted and used as a result type. The * rules for this are described in ISOC[6.3.1.8] and K&R[A6.5]. */ static void dt_type_promote(dt_node_t *lp, dt_node_t *rp, ctf_file_t **ofp, ctf_id_t *otype) { ctf_file_t *lfp = lp->dn_ctfp; ctf_id_t ltype = lp->dn_type; ctf_file_t *rfp = rp->dn_ctfp; ctf_id_t rtype = rp->dn_type; ctf_id_t lbase = ctf_type_resolve(lfp, ltype); uint_t lkind = ctf_type_kind(lfp, lbase); ctf_id_t rbase = ctf_type_resolve(rfp, rtype); uint_t rkind = ctf_type_kind(rfp, rbase); dtrace_hdl_t *dtp = yypcb->pcb_hdl; ctf_encoding_t le, re; uint_t lrank, rrank; assert(lkind == CTF_K_INTEGER || lkind == CTF_K_ENUM); assert(rkind == CTF_K_INTEGER || rkind == CTF_K_ENUM); if (lkind == CTF_K_ENUM) { lfp = DT_INT_CTFP(dtp); ltype = lbase = DT_INT_TYPE(dtp); } if (rkind == CTF_K_ENUM) { rfp = DT_INT_CTFP(dtp); rtype = rbase = DT_INT_TYPE(dtp); } if (ctf_type_encoding(lfp, lbase, &le) == CTF_ERR) { yypcb->pcb_hdl->dt_ctferr = ctf_errno(lfp); longjmp(yypcb->pcb_jmpbuf, EDT_CTF); } if (ctf_type_encoding(rfp, rbase, &re) == CTF_ERR) { yypcb->pcb_hdl->dt_ctferr = ctf_errno(rfp); longjmp(yypcb->pcb_jmpbuf, EDT_CTF); } /* * Compute an integer rank based on the size and unsigned status. * If rank is identical, pick the "larger" of the equivalent types * which we define as having a larger base ctf_id_t. If rank is * different, pick the type with the greater rank. */ lrank = le.cte_bits + ((le.cte_format & CTF_INT_SIGNED) == 0); rrank = re.cte_bits + ((re.cte_format & CTF_INT_SIGNED) == 0); if (lrank == rrank) { if (lbase - rbase < 0) goto return_rtype; else goto return_ltype; } else if (lrank > rrank) { goto return_ltype; } else goto return_rtype; return_ltype: *ofp = lfp; *otype = ltype; return; return_rtype: *ofp = rfp; *otype = rtype; } void dt_node_promote(dt_node_t *lp, dt_node_t *rp, dt_node_t *dnp) { dt_type_promote(lp, rp, &dnp->dn_ctfp, &dnp->dn_type); dt_node_type_assign(dnp, dnp->dn_ctfp, dnp->dn_type, B_FALSE); dt_node_attr_assign(dnp, dt_attr_min(lp->dn_attr, rp->dn_attr)); } const char * dt_node_name(const dt_node_t *dnp, char *buf, size_t len) { char n1[DT_TYPE_NAMELEN]; char n2[DT_TYPE_NAMELEN]; const char *prefix = "", *suffix = ""; const dtrace_syminfo_t *dts; char *s; switch (dnp->dn_kind) { case DT_NODE_INT: (void) snprintf(buf, len, "integer constant 0x%llx", (u_longlong_t)dnp->dn_value); break; case DT_NODE_STRING: s = strchr2esc(dnp->dn_string, strlen(dnp->dn_string)); (void) snprintf(buf, len, "string constant \"%s\"", s != NULL ? s : dnp->dn_string); free(s); break; case DT_NODE_IDENT: (void) snprintf(buf, len, "identifier %s", dnp->dn_string); break; case DT_NODE_VAR: case DT_NODE_FUNC: case DT_NODE_AGG: case DT_NODE_INLINE: switch (dnp->dn_ident->di_kind) { case DT_IDENT_FUNC: case DT_IDENT_AGGFUNC: case DT_IDENT_ACTFUNC: suffix = "( )"; break; case DT_IDENT_AGG: prefix = "@"; break; } (void) snprintf(buf, len, "%s %s%s%s", dt_idkind_name(dnp->dn_ident->di_kind), prefix, dnp->dn_ident->di_name, suffix); break; case DT_NODE_SYM: dts = dnp->dn_ident->di_data; (void) snprintf(buf, len, "symbol %s`%s", dts->dts_object, dts->dts_name); break; case DT_NODE_TYPE: (void) snprintf(buf, len, "type %s", dt_node_type_name(dnp, n1, sizeof (n1))); break; case DT_NODE_OP1: case DT_NODE_OP2: case DT_NODE_OP3: (void) snprintf(buf, len, "operator %s", opstr(dnp->dn_op)); break; case DT_NODE_DEXPR: case DT_NODE_DFUNC: if (dnp->dn_expr) return (dt_node_name(dnp->dn_expr, buf, len)); (void) snprintf(buf, len, "%s", "statement"); break; case DT_NODE_PDESC: if (dnp->dn_desc->dtpd_id == 0) { (void) snprintf(buf, len, "probe description %s:%s:%s:%s", dnp->dn_desc->dtpd_provider, dnp->dn_desc->dtpd_mod, dnp->dn_desc->dtpd_func, dnp->dn_desc->dtpd_name); } else { (void) snprintf(buf, len, "probe description %u", dnp->dn_desc->dtpd_id); } break; case DT_NODE_CLAUSE: (void) snprintf(buf, len, "%s", "clause"); break; case DT_NODE_MEMBER: (void) snprintf(buf, len, "member %s", dnp->dn_membname); break; case DT_NODE_XLATOR: (void) snprintf(buf, len, "translator <%s> (%s)", dt_type_name(dnp->dn_xlator->dx_dst_ctfp, dnp->dn_xlator->dx_dst_type, n1, sizeof (n1)), dt_type_name(dnp->dn_xlator->dx_src_ctfp, dnp->dn_xlator->dx_src_type, n2, sizeof (n2))); break; case DT_NODE_PROG: (void) snprintf(buf, len, "%s", "program"); break; default: (void) snprintf(buf, len, "node <%u>", dnp->dn_kind); break; } return (buf); } /* * dt_node_xalloc() can be used to create new parse nodes from any libdtrace * caller. The caller is responsible for assigning dn_link appropriately. */ dt_node_t * dt_node_xalloc(dtrace_hdl_t *dtp, int kind) { dt_node_t *dnp = dt_alloc(dtp, sizeof (dt_node_t)); if (dnp == NULL) return (NULL); dnp->dn_ctfp = NULL; dnp->dn_type = CTF_ERR; dnp->dn_kind = (uchar_t)kind; dnp->dn_flags = 0; dnp->dn_op = 0; dnp->dn_line = -1; dnp->dn_reg = -1; dnp->dn_attr = _dtrace_defattr; dnp->dn_list = NULL; dnp->dn_link = NULL; bzero(&dnp->dn_u, sizeof (dnp->dn_u)); return (dnp); } /* * dt_node_alloc() is used to create new parse nodes from the parser. It * assigns the node location based on the current lexer line number and places * the new node on the default allocation list. If allocation fails, we * automatically longjmp the caller back to the enclosing compilation call. */ static dt_node_t * dt_node_alloc(int kind) { dt_node_t *dnp = dt_node_xalloc(yypcb->pcb_hdl, kind); if (dnp == NULL) longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); dnp->dn_line = yylineno; dnp->dn_link = yypcb->pcb_list; yypcb->pcb_list = dnp; return (dnp); } void dt_node_free(dt_node_t *dnp) { uchar_t kind = dnp->dn_kind; dnp->dn_kind = DT_NODE_FREE; switch (kind) { case DT_NODE_STRING: case DT_NODE_IDENT: case DT_NODE_TYPE: free(dnp->dn_string); dnp->dn_string = NULL; break; case DT_NODE_VAR: case DT_NODE_FUNC: case DT_NODE_PROBE: if (dnp->dn_ident != NULL) { if (dnp->dn_ident->di_flags & DT_IDFLG_ORPHAN) dt_ident_destroy(dnp->dn_ident); dnp->dn_ident = NULL; } dt_node_list_free(&dnp->dn_args); break; case DT_NODE_OP1: if (dnp->dn_child != NULL) { dt_node_free(dnp->dn_child); dnp->dn_child = NULL; } break; case DT_NODE_OP3: if (dnp->dn_expr != NULL) { dt_node_free(dnp->dn_expr); dnp->dn_expr = NULL; } /*FALLTHRU*/ case DT_NODE_OP2: if (dnp->dn_left != NULL) { dt_node_free(dnp->dn_left); dnp->dn_left = NULL; } if (dnp->dn_right != NULL) { dt_node_free(dnp->dn_right); dnp->dn_right = NULL; } break; case DT_NODE_DEXPR: case DT_NODE_DFUNC: if (dnp->dn_expr != NULL) { dt_node_free(dnp->dn_expr); dnp->dn_expr = NULL; } break; case DT_NODE_AGG: if (dnp->dn_aggfun != NULL) { dt_node_free(dnp->dn_aggfun); dnp->dn_aggfun = NULL; } dt_node_list_free(&dnp->dn_aggtup); break; case DT_NODE_PDESC: free(dnp->dn_spec); dnp->dn_spec = NULL; free(dnp->dn_desc); dnp->dn_desc = NULL; break; case DT_NODE_CLAUSE: if (dnp->dn_pred != NULL) dt_node_free(dnp->dn_pred); if (dnp->dn_locals != NULL) dt_idhash_destroy(dnp->dn_locals); dt_node_list_free(&dnp->dn_pdescs); dt_node_list_free(&dnp->dn_acts); break; case DT_NODE_MEMBER: free(dnp->dn_membname); dnp->dn_membname = NULL; if (dnp->dn_membexpr != NULL) { dt_node_free(dnp->dn_membexpr); dnp->dn_membexpr = NULL; } break; case DT_NODE_PROVIDER: dt_node_list_free(&dnp->dn_probes); free(dnp->dn_provname); dnp->dn_provname = NULL; break; case DT_NODE_PROG: dt_node_list_free(&dnp->dn_list); break; } } void dt_node_attr_assign(dt_node_t *dnp, dtrace_attribute_t attr) { if ((yypcb->pcb_cflags & DTRACE_C_EATTR) && (dt_attr_cmp(attr, yypcb->pcb_amin) < 0)) { char a[DTRACE_ATTR2STR_MAX]; char s[BUFSIZ]; dnerror(dnp, D_ATTR_MIN, "attributes for %s (%s) are less than " "predefined minimum\n", dt_node_name(dnp, s, sizeof (s)), dtrace_attr2str(attr, a, sizeof (a))); } dnp->dn_attr = attr; } void dt_node_type_assign(dt_node_t *dnp, ctf_file_t *fp, ctf_id_t type, boolean_t user) { ctf_id_t base = ctf_type_resolve(fp, type); uint_t kind = ctf_type_kind(fp, base); ctf_encoding_t e; dnp->dn_flags &= ~(DT_NF_SIGNED | DT_NF_REF | DT_NF_BITFIELD | DT_NF_USERLAND); if (kind == CTF_K_INTEGER && ctf_type_encoding(fp, base, &e) == 0) { size_t size = e.cte_bits / NBBY; if (size > 8 || (e.cte_bits % NBBY) != 0 || (size & (size - 1))) dnp->dn_flags |= DT_NF_BITFIELD; if (e.cte_format & CTF_INT_SIGNED) dnp->dn_flags |= DT_NF_SIGNED; } if (kind == CTF_K_FLOAT && ctf_type_encoding(fp, base, &e) == 0) { if (e.cte_bits / NBBY > sizeof (uint64_t)) dnp->dn_flags |= DT_NF_REF; } if (kind == CTF_K_STRUCT || kind == CTF_K_UNION || kind == CTF_K_FORWARD || kind == CTF_K_ARRAY || kind == CTF_K_FUNCTION) dnp->dn_flags |= DT_NF_REF; else if (yypcb != NULL && fp == DT_DYN_CTFP(yypcb->pcb_hdl) && type == DT_DYN_TYPE(yypcb->pcb_hdl)) dnp->dn_flags |= DT_NF_REF; if (user) dnp->dn_flags |= DT_NF_USERLAND; dnp->dn_flags |= DT_NF_COOKED; dnp->dn_ctfp = fp; dnp->dn_type = type; } void dt_node_type_propagate(const dt_node_t *src, dt_node_t *dst) { assert(src->dn_flags & DT_NF_COOKED); dst->dn_flags = src->dn_flags & ~DT_NF_LVALUE; dst->dn_ctfp = src->dn_ctfp; dst->dn_type = src->dn_type; } const char * dt_node_type_name(const dt_node_t *dnp, char *buf, size_t len) { if (dt_node_is_dynamic(dnp) && dnp->dn_ident != NULL) { (void) snprintf(buf, len, "%s", dt_idkind_name(dt_ident_resolve(dnp->dn_ident)->di_kind)); return (buf); } if (dnp->dn_flags & DT_NF_USERLAND) { size_t n = snprintf(buf, len, "userland "); len = len > n ? len - n : 0; (void) dt_type_name(dnp->dn_ctfp, dnp->dn_type, buf + n, len); return (buf); } return (dt_type_name(dnp->dn_ctfp, dnp->dn_type, buf, len)); } size_t dt_node_type_size(const dt_node_t *dnp) { ctf_id_t base; dtrace_hdl_t *dtp = yypcb->pcb_hdl; if (dnp->dn_kind == DT_NODE_STRING) return (strlen(dnp->dn_string) + 1); if (dt_node_is_dynamic(dnp) && dnp->dn_ident != NULL) return (dt_ident_size(dnp->dn_ident)); base = ctf_type_resolve(dnp->dn_ctfp, dnp->dn_type); if (ctf_type_kind(dnp->dn_ctfp, base) == CTF_K_FORWARD) return (0); /* * Here we have a 32-bit user pointer that is being used with a 64-bit * kernel. When we're using it and its tagged as a userland reference -- * then we need to keep it as a 32-bit pointer. However, if we are * referring to it as a kernel address, eg. being used after a copyin() * then we need to make sure that we actually return the kernel's size * of a pointer, 8 bytes. */ if (ctf_type_kind(dnp->dn_ctfp, base) == CTF_K_POINTER && ctf_getmodel(dnp->dn_ctfp) == CTF_MODEL_ILP32 && !(dnp->dn_flags & DT_NF_USERLAND) && dtp->dt_conf.dtc_ctfmodel == CTF_MODEL_LP64) return (8); return (ctf_type_size(dnp->dn_ctfp, dnp->dn_type)); } /* * Determine if the specified parse tree node references an identifier of the * specified kind, and if so return a pointer to it; otherwise return NULL. * This function resolves the identifier itself, following through any inlines. */ dt_ident_t * dt_node_resolve(const dt_node_t *dnp, uint_t idkind) { dt_ident_t *idp; switch (dnp->dn_kind) { case DT_NODE_VAR: case DT_NODE_SYM: case DT_NODE_FUNC: case DT_NODE_AGG: case DT_NODE_INLINE: case DT_NODE_PROBE: idp = dt_ident_resolve(dnp->dn_ident); return (idp->di_kind == idkind ? idp : NULL); } if (dt_node_is_dynamic(dnp)) { idp = dt_ident_resolve(dnp->dn_ident); return (idp->di_kind == idkind ? idp : NULL); } return (NULL); } size_t dt_node_sizeof(const dt_node_t *dnp) { dtrace_syminfo_t *sip; GElf_Sym sym; dtrace_hdl_t *dtp = yypcb->pcb_hdl; /* * The size of the node as used for the sizeof() operator depends on * the kind of the node. If the node is a SYM, the size is obtained * from the symbol table; if it is not a SYM, the size is determined * from the node's type. This is slightly different from C's sizeof() * operator in that (for example) when applied to a function, sizeof() * will evaluate to the length of the function rather than the size of * the function type. */ if (dnp->dn_kind != DT_NODE_SYM) return (dt_node_type_size(dnp)); sip = dnp->dn_ident->di_data; if (dtrace_lookup_by_name(dtp, sip->dts_object, sip->dts_name, &sym, NULL) == -1) return (0); return (sym.st_size); } int dt_node_is_integer(const dt_node_t *dnp) { ctf_file_t *fp = dnp->dn_ctfp; ctf_encoding_t e; ctf_id_t type; uint_t kind; assert(dnp->dn_flags & DT_NF_COOKED); type = ctf_type_resolve(fp, dnp->dn_type); kind = ctf_type_kind(fp, type); if (kind == CTF_K_INTEGER && ctf_type_encoding(fp, type, &e) == 0 && IS_VOID(e)) return (0); /* void integer */ return (kind == CTF_K_INTEGER || kind == CTF_K_ENUM); } int dt_node_is_float(const dt_node_t *dnp) { ctf_file_t *fp = dnp->dn_ctfp; ctf_encoding_t e; ctf_id_t type; uint_t kind; assert(dnp->dn_flags & DT_NF_COOKED); type = ctf_type_resolve(fp, dnp->dn_type); kind = ctf_type_kind(fp, type); return (kind == CTF_K_FLOAT && ctf_type_encoding(dnp->dn_ctfp, type, &e) == 0 && ( e.cte_format == CTF_FP_SINGLE || e.cte_format == CTF_FP_DOUBLE || e.cte_format == CTF_FP_LDOUBLE)); } int dt_node_is_scalar(const dt_node_t *dnp) { ctf_file_t *fp = dnp->dn_ctfp; ctf_encoding_t e; ctf_id_t type; uint_t kind; assert(dnp->dn_flags & DT_NF_COOKED); type = ctf_type_resolve(fp, dnp->dn_type); kind = ctf_type_kind(fp, type); if (kind == CTF_K_INTEGER && ctf_type_encoding(fp, type, &e) == 0 && IS_VOID(e)) return (0); /* void cannot be used as a scalar */ return (kind == CTF_K_INTEGER || kind == CTF_K_ENUM || kind == CTF_K_POINTER); } int dt_node_is_arith(const dt_node_t *dnp) { ctf_file_t *fp = dnp->dn_ctfp; ctf_encoding_t e; ctf_id_t type; uint_t kind; assert(dnp->dn_flags & DT_NF_COOKED); type = ctf_type_resolve(fp, dnp->dn_type); kind = ctf_type_kind(fp, type); if (kind == CTF_K_INTEGER) return (ctf_type_encoding(fp, type, &e) == 0 && !IS_VOID(e)); else return (kind == CTF_K_ENUM); } int dt_node_is_vfptr(const dt_node_t *dnp) { ctf_file_t *fp = dnp->dn_ctfp; ctf_encoding_t e; ctf_id_t type; uint_t kind; assert(dnp->dn_flags & DT_NF_COOKED); type = ctf_type_resolve(fp, dnp->dn_type); if (ctf_type_kind(fp, type) != CTF_K_POINTER) return (0); /* type is not a pointer */ type = ctf_type_resolve(fp, ctf_type_reference(fp, type)); kind = ctf_type_kind(fp, type); return (kind == CTF_K_FUNCTION || (kind == CTF_K_INTEGER && ctf_type_encoding(fp, type, &e) == 0 && IS_VOID(e))); } int dt_node_is_dynamic(const dt_node_t *dnp) { if (dnp->dn_kind == DT_NODE_VAR && (dnp->dn_ident->di_flags & DT_IDFLG_INLINE)) { const dt_idnode_t *inp = dnp->dn_ident->di_iarg; return (inp->din_root ? dt_node_is_dynamic(inp->din_root) : 0); } return (dnp->dn_ctfp == DT_DYN_CTFP(yypcb->pcb_hdl) && dnp->dn_type == DT_DYN_TYPE(yypcb->pcb_hdl)); } int dt_node_is_string(const dt_node_t *dnp) { return (dnp->dn_ctfp == DT_STR_CTFP(yypcb->pcb_hdl) && dnp->dn_type == DT_STR_TYPE(yypcb->pcb_hdl)); } int dt_node_is_stack(const dt_node_t *dnp) { return (dnp->dn_ctfp == DT_STACK_CTFP(yypcb->pcb_hdl) && dnp->dn_type == DT_STACK_TYPE(yypcb->pcb_hdl)); } int dt_node_is_symaddr(const dt_node_t *dnp) { return (dnp->dn_ctfp == DT_SYMADDR_CTFP(yypcb->pcb_hdl) && dnp->dn_type == DT_SYMADDR_TYPE(yypcb->pcb_hdl)); } int dt_node_is_usymaddr(const dt_node_t *dnp) { return (dnp->dn_ctfp == DT_USYMADDR_CTFP(yypcb->pcb_hdl) && dnp->dn_type == DT_USYMADDR_TYPE(yypcb->pcb_hdl)); } int dt_node_is_strcompat(const dt_node_t *dnp) { ctf_file_t *fp = dnp->dn_ctfp; ctf_encoding_t e; ctf_arinfo_t r; ctf_id_t base; uint_t kind; assert(dnp->dn_flags & DT_NF_COOKED); base = ctf_type_resolve(fp, dnp->dn_type); kind = ctf_type_kind(fp, base); if (kind == CTF_K_POINTER && (base = ctf_type_reference(fp, base)) != CTF_ERR && (base = ctf_type_resolve(fp, base)) != CTF_ERR && ctf_type_encoding(fp, base, &e) == 0 && IS_CHAR(e)) return (1); /* promote char pointer to string */ if (kind == CTF_K_ARRAY && ctf_array_info(fp, base, &r) == 0 && (base = ctf_type_resolve(fp, r.ctr_contents)) != CTF_ERR && ctf_type_encoding(fp, base, &e) == 0 && IS_CHAR(e)) return (1); /* promote char array to string */ return (0); } int dt_node_is_pointer(const dt_node_t *dnp) { ctf_file_t *fp = dnp->dn_ctfp; uint_t kind; assert(dnp->dn_flags & DT_NF_COOKED); if (dt_node_is_string(dnp)) return (0); /* string are pass-by-ref but act like structs */ kind = ctf_type_kind(fp, ctf_type_resolve(fp, dnp->dn_type)); return (kind == CTF_K_POINTER || kind == CTF_K_ARRAY); } int dt_node_is_void(const dt_node_t *dnp) { ctf_file_t *fp = dnp->dn_ctfp; ctf_encoding_t e; ctf_id_t type; if (dt_node_is_dynamic(dnp)) return (0); /* is an alias for void but not the same */ if (dt_node_is_stack(dnp)) return (0); if (dt_node_is_symaddr(dnp) || dt_node_is_usymaddr(dnp)) return (0); type = ctf_type_resolve(fp, dnp->dn_type); return (ctf_type_kind(fp, type) == CTF_K_INTEGER && ctf_type_encoding(fp, type, &e) == 0 && IS_VOID(e)); } int dt_node_is_ptrcompat(const dt_node_t *lp, const dt_node_t *rp, ctf_file_t **fpp, ctf_id_t *tp) { ctf_file_t *lfp = lp->dn_ctfp; ctf_file_t *rfp = rp->dn_ctfp; ctf_id_t lbase = CTF_ERR, rbase = CTF_ERR; ctf_id_t lref = CTF_ERR, rref = CTF_ERR; int lp_is_void, rp_is_void, lp_is_int, rp_is_int, compat; uint_t lkind, rkind; ctf_encoding_t e; ctf_arinfo_t r; assert(lp->dn_flags & DT_NF_COOKED); assert(rp->dn_flags & DT_NF_COOKED); if (dt_node_is_dynamic(lp) || dt_node_is_dynamic(rp)) return (0); /* fail if either node is a dynamic variable */ lp_is_int = dt_node_is_integer(lp); rp_is_int = dt_node_is_integer(rp); if (lp_is_int && rp_is_int) return (0); /* fail if both nodes are integers */ if (lp_is_int && (lp->dn_kind != DT_NODE_INT || lp->dn_value != 0)) return (0); /* fail if lp is an integer that isn't 0 constant */ if (rp_is_int && (rp->dn_kind != DT_NODE_INT || rp->dn_value != 0)) return (0); /* fail if rp is an integer that isn't 0 constant */ if ((lp_is_int == 0 && rp_is_int == 0) && ( (lp->dn_flags & DT_NF_USERLAND) ^ (rp->dn_flags & DT_NF_USERLAND))) return (0); /* fail if only one pointer is a userland address */ /* * Resolve the left-hand and right-hand types to their base type, and * then resolve the referenced type as well (assuming the base type * is CTF_K_POINTER or CTF_K_ARRAY). Otherwise [lr]ref = CTF_ERR. */ if (!lp_is_int) { lbase = ctf_type_resolve(lfp, lp->dn_type); lkind = ctf_type_kind(lfp, lbase); if (lkind == CTF_K_POINTER) { lref = ctf_type_resolve(lfp, ctf_type_reference(lfp, lbase)); } else if (lkind == CTF_K_ARRAY && ctf_array_info(lfp, lbase, &r) == 0) { lref = ctf_type_resolve(lfp, r.ctr_contents); } } if (!rp_is_int) { rbase = ctf_type_resolve(rfp, rp->dn_type); rkind = ctf_type_kind(rfp, rbase); if (rkind == CTF_K_POINTER) { rref = ctf_type_resolve(rfp, ctf_type_reference(rfp, rbase)); } else if (rkind == CTF_K_ARRAY && ctf_array_info(rfp, rbase, &r) == 0) { rref = ctf_type_resolve(rfp, r.ctr_contents); } } /* * We know that one or the other type may still be a zero-valued * integer constant. To simplify the code below, set the integer * type variables equal to the non-integer types and proceed. */ if (lp_is_int) { lbase = rbase; lkind = rkind; lref = rref; lfp = rfp; } else if (rp_is_int) { rbase = lbase; rkind = lkind; rref = lref; rfp = lfp; } lp_is_void = ctf_type_encoding(lfp, lref, &e) == 0 && IS_VOID(e); rp_is_void = ctf_type_encoding(rfp, rref, &e) == 0 && IS_VOID(e); /* * The types are compatible if both are pointers to the same type, or * if either pointer is a void pointer. If they are compatible, set * tp to point to the more specific pointer type and return it. */ compat = (lkind == CTF_K_POINTER || lkind == CTF_K_ARRAY) && (rkind == CTF_K_POINTER || rkind == CTF_K_ARRAY) && (lp_is_void || rp_is_void || ctf_type_compat(lfp, lref, rfp, rref)); if (compat) { if (fpp != NULL) *fpp = rp_is_void ? lfp : rfp; if (tp != NULL) *tp = rp_is_void ? lbase : rbase; } return (compat); } /* * The rules for checking argument types against parameter types are described * in the ANSI-C spec (see K&R[A7.3.2] and K&R[A7.17]). We use the same rule * set to determine whether associative array arguments match the prototype. */ int dt_node_is_argcompat(const dt_node_t *lp, const dt_node_t *rp) { ctf_file_t *lfp = lp->dn_ctfp; ctf_file_t *rfp = rp->dn_ctfp; assert(lp->dn_flags & DT_NF_COOKED); assert(rp->dn_flags & DT_NF_COOKED); if (dt_node_is_integer(lp) && dt_node_is_integer(rp)) return (1); /* integer types are compatible */ if (dt_node_is_strcompat(lp) && dt_node_is_strcompat(rp)) return (1); /* string types are compatible */ if (dt_node_is_stack(lp) && dt_node_is_stack(rp)) return (1); /* stack types are compatible */ if (dt_node_is_symaddr(lp) && dt_node_is_symaddr(rp)) return (1); /* symaddr types are compatible */ if (dt_node_is_usymaddr(lp) && dt_node_is_usymaddr(rp)) return (1); /* usymaddr types are compatible */ switch (ctf_type_kind(lfp, ctf_type_resolve(lfp, lp->dn_type))) { case CTF_K_FUNCTION: case CTF_K_STRUCT: case CTF_K_UNION: return (ctf_type_compat(lfp, lp->dn_type, rfp, rp->dn_type)); default: return (dt_node_is_ptrcompat(lp, rp, NULL, NULL)); } } /* * We provide dt_node_is_posconst() as a convenience routine for callers who * wish to verify that an argument is a positive non-zero integer constant. */ int dt_node_is_posconst(const dt_node_t *dnp) { return (dnp->dn_kind == DT_NODE_INT && dnp->dn_value != 0 && ( (dnp->dn_flags & DT_NF_SIGNED) == 0 || (int64_t)dnp->dn_value > 0)); } int dt_node_is_actfunc(const dt_node_t *dnp) { return (dnp->dn_kind == DT_NODE_FUNC && dnp->dn_ident->di_kind == DT_IDENT_ACTFUNC); } /* * The original rules for integer constant typing are described in K&R[A2.5.1]. * However, since we support long long, we instead use the rules from ISO C99 * clause 6.4.4.1 since that is where long longs are formally described. The * rules require us to know whether the constant was specified in decimal or * in octal or hex, which we do by looking at our lexer's 'yyintdecimal' flag. * The type of an integer constant is the first of the corresponding list in * which its value can be represented: * * unsuffixed decimal: int, long, long long * unsuffixed oct/hex: int, unsigned int, long, unsigned long, * long long, unsigned long long * suffix [uU]: unsigned int, unsigned long, unsigned long long * suffix [lL] decimal: long, long long * suffix [lL] oct/hex: long, unsigned long, long long, unsigned long long * suffix [uU][Ll]: unsigned long, unsigned long long * suffix ll/LL decimal: long long * suffix ll/LL oct/hex: long long, unsigned long long * suffix [uU][ll/LL]: unsigned long long * * Given that our lexer has already validated the suffixes by regexp matching, * there is an obvious way to concisely encode these rules: construct an array * of the types in the order int, unsigned int, long, unsigned long, long long, * unsigned long long. Compute an integer array starting index based on the * suffix (e.g. none = 0, u = 1, ull = 5), and compute an increment based on * the specifier (dec/oct/hex) and suffix (u). Then iterate from the starting * index to the end, advancing using the increment, and searching until we * find a limit that matches or we run out of choices (overflow). To make it * even faster, we precompute the table of type information in dtrace_open(). */ dt_node_t * dt_node_int(uintmax_t value) { dt_node_t *dnp = dt_node_alloc(DT_NODE_INT); dtrace_hdl_t *dtp = yypcb->pcb_hdl; int n = (yyintdecimal | (yyintsuffix[0] == 'u')) + 1; int i = 0; const char *p; char c; dnp->dn_op = DT_TOK_INT; dnp->dn_value = value; for (p = yyintsuffix; (c = *p) != '\0'; p++) { if (c == 'U' || c == 'u') i += 1; else if (c == 'L' || c == 'l') i += 2; } for (; i < sizeof (dtp->dt_ints) / sizeof (dtp->dt_ints[0]); i += n) { if (value <= dtp->dt_ints[i].did_limit) { dt_node_type_assign(dnp, dtp->dt_ints[i].did_ctfp, dtp->dt_ints[i].did_type, B_FALSE); /* * If a prefix character is present in macro text, add * in the corresponding operator node (see dt_lex.l). */ switch (yyintprefix) { case '+': return (dt_node_op1(DT_TOK_IPOS, dnp)); case '-': return (dt_node_op1(DT_TOK_INEG, dnp)); default: return (dnp); } } } xyerror(D_INT_OFLOW, "integer constant 0x%llx cannot be represented " "in any built-in integral type\n", (u_longlong_t)value); /*NOTREACHED*/ return (NULL); /* keep gcc happy */ } dt_node_t * dt_node_string(char *string) { dtrace_hdl_t *dtp = yypcb->pcb_hdl; dt_node_t *dnp; if (string == NULL) longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); dnp = dt_node_alloc(DT_NODE_STRING); dnp->dn_op = DT_TOK_STRING; dnp->dn_string = string; dt_node_type_assign(dnp, DT_STR_CTFP(dtp), DT_STR_TYPE(dtp), B_FALSE); return (dnp); } dt_node_t * dt_node_ident(char *name) { dt_ident_t *idp; dt_node_t *dnp; if (name == NULL) longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); /* * If the identifier is an inlined integer constant, then create an INT * node that is a clone of the inline parse tree node and return that * immediately, allowing this inline to be used in parsing contexts * that require constant expressions (e.g. scalar array sizes). */ if ((idp = dt_idstack_lookup(&yypcb->pcb_globals, name)) != NULL && (idp->di_flags & DT_IDFLG_INLINE)) { dt_idnode_t *inp = idp->di_iarg; if (inp->din_root != NULL && inp->din_root->dn_kind == DT_NODE_INT) { free(name); dnp = dt_node_alloc(DT_NODE_INT); dnp->dn_op = DT_TOK_INT; dnp->dn_value = inp->din_root->dn_value; dt_node_type_propagate(inp->din_root, dnp); return (dnp); } } dnp = dt_node_alloc(DT_NODE_IDENT); dnp->dn_op = name[0] == '@' ? DT_TOK_AGG : DT_TOK_IDENT; dnp->dn_string = name; return (dnp); } /* * Create an empty node of type corresponding to the given declaration. * Explicit references to user types (C or D) are assigned the default * stability; references to other types are _dtrace_typattr (Private). */ dt_node_t * dt_node_type(dt_decl_t *ddp) { dtrace_hdl_t *dtp = yypcb->pcb_hdl; dtrace_typeinfo_t dtt; dt_node_t *dnp; char *name = NULL; int err; /* * If 'ddp' is NULL, we get a decl by popping the decl stack. This * form of dt_node_type() is used by parameter rules in dt_grammar.y. */ if (ddp == NULL) ddp = dt_decl_pop_param(&name); err = dt_decl_type(ddp, &dtt); dt_decl_free(ddp); if (err != 0) { free(name); longjmp(yypcb->pcb_jmpbuf, EDT_COMPILER); } dnp = dt_node_alloc(DT_NODE_TYPE); dnp->dn_op = DT_TOK_IDENT; dnp->dn_string = name; dt_node_type_assign(dnp, dtt.dtt_ctfp, dtt.dtt_type, dtt.dtt_flags); if (dtt.dtt_ctfp == dtp->dt_cdefs->dm_ctfp || dtt.dtt_ctfp == dtp->dt_ddefs->dm_ctfp) dt_node_attr_assign(dnp, _dtrace_defattr); else dt_node_attr_assign(dnp, _dtrace_typattr); return (dnp); } /* * Create a type node corresponding to a varargs (...) parameter by just * assigning it type CTF_ERR. The decl processing code will handle this. */ dt_node_t * dt_node_vatype(void) { dt_node_t *dnp = dt_node_alloc(DT_NODE_TYPE); dnp->dn_op = DT_TOK_IDENT; dnp->dn_ctfp = yypcb->pcb_hdl->dt_cdefs->dm_ctfp; dnp->dn_type = CTF_ERR; dnp->dn_attr = _dtrace_defattr; return (dnp); } /* * Instantiate a decl using the contents of the current declaration stack. As * we do not currently permit decls to be initialized, this function currently * returns NULL and no parse node is created. When this function is called, * the topmost scope's ds_ident pointer will be set to NULL (indicating no * init_declarator rule was matched) or will point to the identifier to use. */ dt_node_t * dt_node_decl(void) { dtrace_hdl_t *dtp = yypcb->pcb_hdl; dt_scope_t *dsp = &yypcb->pcb_dstack; dt_dclass_t class = dsp->ds_class; dt_decl_t *ddp = dt_decl_top(); dt_module_t *dmp; dtrace_typeinfo_t dtt; ctf_id_t type; char n1[DT_TYPE_NAMELEN]; char n2[DT_TYPE_NAMELEN]; if (dt_decl_type(ddp, &dtt) != 0) longjmp(yypcb->pcb_jmpbuf, EDT_COMPILER); /* * If we have no declaration identifier, then this is either a spurious * declaration of an intrinsic type (e.g. "extern int;") or declaration * or redeclaration of a struct, union, or enum type or tag. */ if (dsp->ds_ident == NULL) { if (ddp->dd_kind != CTF_K_STRUCT && ddp->dd_kind != CTF_K_UNION && ddp->dd_kind != CTF_K_ENUM) xyerror(D_DECL_USELESS, "useless declaration\n"); dt_dprintf("type %s added as id %ld\n", dt_type_name( ddp->dd_ctfp, ddp->dd_type, n1, sizeof (n1)), ddp->dd_type); return (NULL); } if (strchr(dsp->ds_ident, '`') != NULL) { xyerror(D_DECL_SCOPE, "D scoping operator may not be used in " "a declaration name (%s)\n", dsp->ds_ident); } /* * If we are nested inside of a C include file, add the declaration to * the C definition module; otherwise use the D definition module. */ if (yypcb->pcb_idepth != 0) dmp = dtp->dt_cdefs; else dmp = dtp->dt_ddefs; /* * If we see a global or static declaration of a function prototype, * treat this as equivalent to a D extern declaration. */ if (ctf_type_kind(dtt.dtt_ctfp, dtt.dtt_type) == CTF_K_FUNCTION && (class == DT_DC_DEFAULT || class == DT_DC_STATIC)) class = DT_DC_EXTERN; switch (class) { case DT_DC_AUTO: case DT_DC_REGISTER: case DT_DC_STATIC: xyerror(D_DECL_BADCLASS, "specified storage class not " "appropriate in D\n"); /*NOTREACHED*/ case DT_DC_EXTERN: { dtrace_typeinfo_t ott; dtrace_syminfo_t dts; GElf_Sym sym; int exists = dtrace_lookup_by_name(dtp, dmp->dm_name, dsp->ds_ident, &sym, &dts) == 0; if (exists && (dtrace_symbol_type(dtp, &sym, &dts, &ott) != 0 || ctf_type_cmp(dtt.dtt_ctfp, dtt.dtt_type, ott.dtt_ctfp, ott.dtt_type) != 0)) { xyerror(D_DECL_IDRED, "identifier redeclared: %s`%s\n" "\t current: %s\n\tprevious: %s\n", dmp->dm_name, dsp->ds_ident, dt_type_name(dtt.dtt_ctfp, dtt.dtt_type, n1, sizeof (n1)), dt_type_name(ott.dtt_ctfp, ott.dtt_type, n2, sizeof (n2))); } else if (!exists && dt_module_extern(dtp, dmp, dsp->ds_ident, &dtt) == NULL) { xyerror(D_UNKNOWN, "failed to extern %s: %s\n", dsp->ds_ident, dtrace_errmsg(dtp, dtrace_errno(dtp))); } else { dt_dprintf("extern %s`%s type=<%s>\n", dmp->dm_name, dsp->ds_ident, dt_type_name(dtt.dtt_ctfp, dtt.dtt_type, n1, sizeof (n1))); } break; } case DT_DC_TYPEDEF: if (dt_idstack_lookup(&yypcb->pcb_globals, dsp->ds_ident)) { xyerror(D_DECL_IDRED, "global variable identifier " "redeclared: %s\n", dsp->ds_ident); } if (ctf_lookup_by_name(dmp->dm_ctfp, dsp->ds_ident) != CTF_ERR) { xyerror(D_DECL_IDRED, "typedef redeclared: %s\n", dsp->ds_ident); } /* * If the source type for the typedef is not defined in the * target container or its parent, copy the type to the target * container and reset dtt_ctfp and dtt_type to the copy. */ if (dtt.dtt_ctfp != dmp->dm_ctfp && dtt.dtt_ctfp != ctf_parent_file(dmp->dm_ctfp)) { dtt.dtt_type = ctf_add_type(dmp->dm_ctfp, dtt.dtt_ctfp, dtt.dtt_type); dtt.dtt_ctfp = dmp->dm_ctfp; if (dtt.dtt_type == CTF_ERR || ctf_update(dtt.dtt_ctfp) == CTF_ERR) { xyerror(D_UNKNOWN, "failed to copy typedef %s " "source type: %s\n", dsp->ds_ident, ctf_errmsg(ctf_errno(dtt.dtt_ctfp))); } } type = ctf_add_typedef(dmp->dm_ctfp, CTF_ADD_ROOT, dsp->ds_ident, dtt.dtt_type); if (type == CTF_ERR || ctf_update(dmp->dm_ctfp) == CTF_ERR) { xyerror(D_UNKNOWN, "failed to typedef %s: %s\n", dsp->ds_ident, ctf_errmsg(ctf_errno(dmp->dm_ctfp))); } dt_dprintf("typedef %s added as id %ld\n", dsp->ds_ident, type); break; default: { ctf_encoding_t cte; dt_idhash_t *dhp; dt_ident_t *idp; dt_node_t idn; int assc, idkind; uint_t id, kind; ushort_t idflags; switch (class) { case DT_DC_THIS: dhp = yypcb->pcb_locals; idflags = DT_IDFLG_LOCAL; idp = dt_idhash_lookup(dhp, dsp->ds_ident); break; case DT_DC_SELF: dhp = dtp->dt_tls; idflags = DT_IDFLG_TLS; idp = dt_idhash_lookup(dhp, dsp->ds_ident); break; default: dhp = dtp->dt_globals; idflags = 0; idp = dt_idstack_lookup( &yypcb->pcb_globals, dsp->ds_ident); break; } if (ddp->dd_kind == CTF_K_ARRAY && ddp->dd_node == NULL) { xyerror(D_DECL_ARRNULL, "array declaration requires array dimension or " "tuple signature: %s\n", dsp->ds_ident); } if (idp != NULL && idp->di_gen == 0) { xyerror(D_DECL_IDRED, "built-in identifier " "redeclared: %s\n", idp->di_name); } if (dtrace_lookup_by_type(dtp, DTRACE_OBJ_CDEFS, dsp->ds_ident, NULL) == 0 || dtrace_lookup_by_type(dtp, DTRACE_OBJ_DDEFS, dsp->ds_ident, NULL) == 0) { xyerror(D_DECL_IDRED, "typedef identifier " "redeclared: %s\n", dsp->ds_ident); } /* * Cache some attributes of the decl to make the rest of this * code simpler: if the decl is an array which is subscripted * by a type rather than an integer, then it's an associative * array (assc). We then expect to match either DT_IDENT_ARRAY * for associative arrays or DT_IDENT_SCALAR for anything else. */ assc = ddp->dd_kind == CTF_K_ARRAY && ddp->dd_node->dn_kind == DT_NODE_TYPE; idkind = assc ? DT_IDENT_ARRAY : DT_IDENT_SCALAR; /* * Create a fake dt_node_t on the stack so we can determine the * type of any matching identifier by assigning to this node. * If the pre-existing ident has its di_type set, propagate * the type by hand so as not to trigger a prototype check for * arrays (yet); otherwise we use dt_ident_cook() on the ident * to ensure it is fully initialized before looking at it. */ bzero(&idn, sizeof (dt_node_t)); if (idp != NULL && idp->di_type != CTF_ERR) dt_node_type_assign(&idn, idp->di_ctfp, idp->di_type, B_FALSE); else if (idp != NULL) (void) dt_ident_cook(&idn, idp, NULL); if (assc) { if (class == DT_DC_THIS) { xyerror(D_DECL_LOCASSC, "associative arrays " "may not be declared as local variables:" " %s\n", dsp->ds_ident); } if (dt_decl_type(ddp->dd_next, &dtt) != 0) longjmp(yypcb->pcb_jmpbuf, EDT_COMPILER); } if (idp != NULL && (idp->di_kind != idkind || ctf_type_cmp(dtt.dtt_ctfp, dtt.dtt_type, idn.dn_ctfp, idn.dn_type) != 0)) { xyerror(D_DECL_IDRED, "identifier redeclared: %s\n" "\t current: %s %s\n\tprevious: %s %s\n", dsp->ds_ident, dt_idkind_name(idkind), dt_type_name(dtt.dtt_ctfp, dtt.dtt_type, n1, sizeof (n1)), dt_idkind_name(idp->di_kind), dt_node_type_name(&idn, n2, sizeof (n2))); } else if (idp != NULL && assc) { const dt_idsig_t *isp = idp->di_data; dt_node_t *dnp = ddp->dd_node; int argc = 0; for (; dnp != NULL; dnp = dnp->dn_list, argc++) { const dt_node_t *pnp = &isp->dis_args[argc]; if (argc >= isp->dis_argc) continue; /* tuple length mismatch */ if (ctf_type_cmp(dnp->dn_ctfp, dnp->dn_type, pnp->dn_ctfp, pnp->dn_type) == 0) continue; xyerror(D_DECL_IDRED, "identifier redeclared: %s\n" "\t current: %s, key #%d of type %s\n" "\tprevious: %s, key #%d of type %s\n", dsp->ds_ident, dt_idkind_name(idkind), argc + 1, dt_node_type_name(dnp, n1, sizeof (n1)), dt_idkind_name(idp->di_kind), argc + 1, dt_node_type_name(pnp, n2, sizeof (n2))); } if (isp->dis_argc != argc) { xyerror(D_DECL_IDRED, "identifier redeclared: %s\n" "\t current: %s of %s, tuple length %d\n" "\tprevious: %s of %s, tuple length %d\n", dsp->ds_ident, dt_idkind_name(idkind), dt_type_name(dtt.dtt_ctfp, dtt.dtt_type, n1, sizeof (n1)), argc, dt_idkind_name(idp->di_kind), dt_node_type_name(&idn, n2, sizeof (n2)), isp->dis_argc); } } else if (idp == NULL) { type = ctf_type_resolve(dtt.dtt_ctfp, dtt.dtt_type); kind = ctf_type_kind(dtt.dtt_ctfp, type); switch (kind) { case CTF_K_INTEGER: if (ctf_type_encoding(dtt.dtt_ctfp, type, &cte) == 0 && IS_VOID(cte)) { xyerror(D_DECL_VOIDOBJ, "cannot have " "void object: %s\n", dsp->ds_ident); } break; case CTF_K_STRUCT: case CTF_K_UNION: if (ctf_type_size(dtt.dtt_ctfp, type) != 0) break; /* proceed to declaring */ /*FALLTHRU*/ case CTF_K_FORWARD: xyerror(D_DECL_INCOMPLETE, "incomplete struct/union/enum %s: %s\n", dt_type_name(dtt.dtt_ctfp, dtt.dtt_type, n1, sizeof (n1)), dsp->ds_ident); /*NOTREACHED*/ } if (dt_idhash_nextid(dhp, &id) == -1) { xyerror(D_ID_OFLOW, "cannot create %s: limit " "on number of %s variables exceeded\n", dsp->ds_ident, dt_idhash_name(dhp)); } dt_dprintf("declare %s %s variable %s, id=%u\n", dt_idhash_name(dhp), dt_idkind_name(idkind), dsp->ds_ident, id); idp = dt_idhash_insert(dhp, dsp->ds_ident, idkind, idflags | DT_IDFLG_WRITE | DT_IDFLG_DECL, id, _dtrace_defattr, 0, assc ? &dt_idops_assc : &dt_idops_thaw, NULL, dtp->dt_gen); if (idp == NULL) longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); dt_ident_type_assign(idp, dtt.dtt_ctfp, dtt.dtt_type); /* * If we are declaring an associative array, use our * fake parse node to cook the new assoc identifier. * This will force the ident code to instantiate the * array type signature corresponding to the list of * types pointed to by ddp->dd_node. We also reset * the identifier's attributes based upon the result. */ if (assc) { idp->di_attr = dt_ident_cook(&idn, idp, &ddp->dd_node); } } } } /* end of switch */ free(dsp->ds_ident); dsp->ds_ident = NULL; return (NULL); } dt_node_t * dt_node_func(dt_node_t *dnp, dt_node_t *args) { dt_ident_t *idp; if (dnp->dn_kind != DT_NODE_IDENT) { xyerror(D_FUNC_IDENT, "function designator is not of function type\n"); } idp = dt_idstack_lookup(&yypcb->pcb_globals, dnp->dn_string); if (idp == NULL) { xyerror(D_FUNC_UNDEF, "undefined function name: %s\n", dnp->dn_string); } if (idp->di_kind != DT_IDENT_FUNC && idp->di_kind != DT_IDENT_AGGFUNC && idp->di_kind != DT_IDENT_ACTFUNC) { xyerror(D_FUNC_IDKIND, "%s '%s' may not be referenced as a " "function\n", dt_idkind_name(idp->di_kind), idp->di_name); } free(dnp->dn_string); dnp->dn_string = NULL; dnp->dn_kind = DT_NODE_FUNC; dnp->dn_flags &= ~DT_NF_COOKED; dnp->dn_ident = idp; dnp->dn_args = args; dnp->dn_list = NULL; return (dnp); } /* * The offsetof() function is special because it takes a type name as an * argument. It does not actually construct its own node; after looking up the * structure or union offset, we just return an integer node with the offset. */ dt_node_t * dt_node_offsetof(dt_decl_t *ddp, char *s) { dtrace_typeinfo_t dtt; dt_node_t dn; char *name; int err; ctf_membinfo_t ctm; ctf_id_t type; uint_t kind; name = strdupa(s); free(s); err = dt_decl_type(ddp, &dtt); dt_decl_free(ddp); if (err != 0) longjmp(yypcb->pcb_jmpbuf, EDT_COMPILER); type = ctf_type_resolve(dtt.dtt_ctfp, dtt.dtt_type); kind = ctf_type_kind(dtt.dtt_ctfp, type); if (kind != CTF_K_STRUCT && kind != CTF_K_UNION) { xyerror(D_OFFSETOF_TYPE, "offsetof operand must be a struct or union type\n"); } if (ctf_member_info(dtt.dtt_ctfp, type, name, &ctm) == CTF_ERR) { xyerror(D_UNKNOWN, "failed to determine offset of %s: %s\n", name, ctf_errmsg(ctf_errno(dtt.dtt_ctfp))); } bzero(&dn, sizeof (dn)); dt_node_type_assign(&dn, dtt.dtt_ctfp, ctm.ctm_type, B_FALSE); if (dn.dn_flags & DT_NF_BITFIELD) { xyerror(D_OFFSETOF_BITFIELD, "cannot take offset of a bit-field: %s\n", name); } return (dt_node_int(ctm.ctm_offset / NBBY)); } dt_node_t * dt_node_op1(int op, dt_node_t *cp) { dt_node_t *dnp; if (cp->dn_kind == DT_NODE_INT) { switch (op) { case DT_TOK_INEG: /* * If we're negating an unsigned integer, zero out any * extra top bits to truncate the value to the size of * the effective type determined by dt_node_int(). */ cp->dn_value = -cp->dn_value; if (!(cp->dn_flags & DT_NF_SIGNED)) { cp->dn_value &= ~0ULL >> (64 - dt_node_type_size(cp) * NBBY); } /*FALLTHRU*/ case DT_TOK_IPOS: return (cp); case DT_TOK_BNEG: cp->dn_value = ~cp->dn_value; return (cp); case DT_TOK_LNEG: cp->dn_value = !cp->dn_value; return (cp); } } /* * If sizeof is applied to a type_name or string constant, we can * transform 'cp' into an integer constant in the node construction * pass so that it can then be used for arithmetic in this pass. */ if (op == DT_TOK_SIZEOF && (cp->dn_kind == DT_NODE_STRING || cp->dn_kind == DT_NODE_TYPE)) { dtrace_hdl_t *dtp = yypcb->pcb_hdl; size_t size = dt_node_type_size(cp); if (size == 0) { xyerror(D_SIZEOF_TYPE, "cannot apply sizeof to an " "operand of unknown size\n"); } dt_node_type_assign(cp, dtp->dt_ddefs->dm_ctfp, ctf_lookup_by_name(dtp->dt_ddefs->dm_ctfp, "size_t"), B_FALSE); cp->dn_kind = DT_NODE_INT; cp->dn_op = DT_TOK_INT; cp->dn_value = size; return (cp); } dnp = dt_node_alloc(DT_NODE_OP1); assert(op <= USHRT_MAX); dnp->dn_op = (ushort_t)op; dnp->dn_child = cp; return (dnp); } /* * If an integer constant is being cast to another integer type, we can * perform the cast as part of integer constant folding in this pass. We must * take action when the integer is being cast to a smaller type or if it is * changing signed-ness. If so, we first shift rp's bits bits high (losing * excess bits if narrowing) and then shift them down with either a logical * shift (unsigned) or arithmetic shift (signed). */ static void dt_cast(dt_node_t *lp, dt_node_t *rp) { size_t srcsize = dt_node_type_size(rp); size_t dstsize = dt_node_type_size(lp); if (dstsize < srcsize) { int n = (sizeof (uint64_t) - dstsize) * NBBY; rp->dn_value <<= n; rp->dn_value >>= n; } else if (dstsize > srcsize) { int n = (sizeof (uint64_t) - srcsize) * NBBY; int s = (dstsize - srcsize) * NBBY; rp->dn_value <<= n; if (rp->dn_flags & DT_NF_SIGNED) { rp->dn_value = (intmax_t)rp->dn_value >> s; rp->dn_value >>= n - s; } else { rp->dn_value >>= n; } } } dt_node_t * dt_node_op2(int op, dt_node_t *lp, dt_node_t *rp) { dtrace_hdl_t *dtp = yypcb->pcb_hdl; dt_node_t *dnp; /* * First we check for operations that are illegal -- namely those that * might result in integer division by zero, and abort if one is found. */ if (rp->dn_kind == DT_NODE_INT && rp->dn_value == 0 && (op == DT_TOK_MOD || op == DT_TOK_DIV || op == DT_TOK_MOD_EQ || op == DT_TOK_DIV_EQ)) xyerror(D_DIV_ZERO, "expression contains division by zero\n"); /* * If both children are immediate values, we can just perform inline * calculation and return a new immediate node with the result. */ if (lp->dn_kind == DT_NODE_INT && rp->dn_kind == DT_NODE_INT) { uintmax_t l = lp->dn_value; uintmax_t r = rp->dn_value; dnp = dt_node_int(0); /* allocate new integer node for result */ switch (op) { case DT_TOK_LOR: dnp->dn_value = l || r; dt_node_type_assign(dnp, DT_INT_CTFP(dtp), DT_INT_TYPE(dtp), B_FALSE); break; case DT_TOK_LXOR: dnp->dn_value = (l != 0) ^ (r != 0); dt_node_type_assign(dnp, DT_INT_CTFP(dtp), DT_INT_TYPE(dtp), B_FALSE); break; case DT_TOK_LAND: dnp->dn_value = l && r; dt_node_type_assign(dnp, DT_INT_CTFP(dtp), DT_INT_TYPE(dtp), B_FALSE); break; case DT_TOK_BOR: dnp->dn_value = l | r; dt_node_promote(lp, rp, dnp); break; case DT_TOK_XOR: dnp->dn_value = l ^ r; dt_node_promote(lp, rp, dnp); break; case DT_TOK_BAND: dnp->dn_value = l & r; dt_node_promote(lp, rp, dnp); break; case DT_TOK_EQU: dnp->dn_value = l == r; dt_node_type_assign(dnp, DT_INT_CTFP(dtp), DT_INT_TYPE(dtp), B_FALSE); break; case DT_TOK_NEQ: dnp->dn_value = l != r; dt_node_type_assign(dnp, DT_INT_CTFP(dtp), DT_INT_TYPE(dtp), B_FALSE); break; case DT_TOK_LT: dt_node_promote(lp, rp, dnp); if (dnp->dn_flags & DT_NF_SIGNED) dnp->dn_value = (intmax_t)l < (intmax_t)r; else dnp->dn_value = l < r; dt_node_type_assign(dnp, DT_INT_CTFP(dtp), DT_INT_TYPE(dtp), B_FALSE); break; case DT_TOK_LE: dt_node_promote(lp, rp, dnp); if (dnp->dn_flags & DT_NF_SIGNED) dnp->dn_value = (intmax_t)l <= (intmax_t)r; else dnp->dn_value = l <= r; dt_node_type_assign(dnp, DT_INT_CTFP(dtp), DT_INT_TYPE(dtp), B_FALSE); break; case DT_TOK_GT: dt_node_promote(lp, rp, dnp); if (dnp->dn_flags & DT_NF_SIGNED) dnp->dn_value = (intmax_t)l > (intmax_t)r; else dnp->dn_value = l > r; dt_node_type_assign(dnp, DT_INT_CTFP(dtp), DT_INT_TYPE(dtp), B_FALSE); break; case DT_TOK_GE: dt_node_promote(lp, rp, dnp); if (dnp->dn_flags & DT_NF_SIGNED) dnp->dn_value = (intmax_t)l >= (intmax_t)r; else dnp->dn_value = l >= r; dt_node_type_assign(dnp, DT_INT_CTFP(dtp), DT_INT_TYPE(dtp), B_FALSE); break; case DT_TOK_LSH: dnp->dn_value = l << r; dt_node_type_propagate(lp, dnp); dt_node_attr_assign(rp, dt_attr_min(lp->dn_attr, rp->dn_attr)); break; case DT_TOK_RSH: dnp->dn_value = l >> r; dt_node_type_propagate(lp, dnp); dt_node_attr_assign(rp, dt_attr_min(lp->dn_attr, rp->dn_attr)); break; case DT_TOK_ADD: dnp->dn_value = l + r; dt_node_promote(lp, rp, dnp); break; case DT_TOK_SUB: dnp->dn_value = l - r; dt_node_promote(lp, rp, dnp); break; case DT_TOK_MUL: dnp->dn_value = l * r; dt_node_promote(lp, rp, dnp); break; case DT_TOK_DIV: dt_node_promote(lp, rp, dnp); if (dnp->dn_flags & DT_NF_SIGNED) dnp->dn_value = (intmax_t)l / (intmax_t)r; else dnp->dn_value = l / r; break; case DT_TOK_MOD: dt_node_promote(lp, rp, dnp); if (dnp->dn_flags & DT_NF_SIGNED) dnp->dn_value = (intmax_t)l % (intmax_t)r; else dnp->dn_value = l % r; break; default: dt_node_free(dnp); dnp = NULL; } if (dnp != NULL) { dt_node_free(lp); dt_node_free(rp); return (dnp); } } if (op == DT_TOK_LPAR && rp->dn_kind == DT_NODE_INT && dt_node_is_integer(lp)) { dt_cast(lp, rp); dt_node_type_propagate(lp, rp); dt_node_attr_assign(rp, dt_attr_min(lp->dn_attr, rp->dn_attr)); dt_node_free(lp); return (rp); } /* * If no immediate optimizations are available, create an new OP2 node * and glue the left and right children into place and return. */ dnp = dt_node_alloc(DT_NODE_OP2); assert(op <= USHRT_MAX); dnp->dn_op = (ushort_t)op; dnp->dn_left = lp; dnp->dn_right = rp; return (dnp); } dt_node_t * dt_node_op3(dt_node_t *expr, dt_node_t *lp, dt_node_t *rp) { dt_node_t *dnp; if (expr->dn_kind == DT_NODE_INT) return (expr->dn_value != 0 ? lp : rp); dnp = dt_node_alloc(DT_NODE_OP3); dnp->dn_op = DT_TOK_QUESTION; dnp->dn_expr = expr; dnp->dn_left = lp; dnp->dn_right = rp; return (dnp); } dt_node_t * dt_node_statement(dt_node_t *expr) { dt_node_t *dnp; if (expr->dn_kind == DT_NODE_AGG) return (expr); if (expr->dn_kind == DT_NODE_FUNC && expr->dn_ident->di_kind == DT_IDENT_ACTFUNC) dnp = dt_node_alloc(DT_NODE_DFUNC); else dnp = dt_node_alloc(DT_NODE_DEXPR); dnp->dn_expr = expr; return (dnp); } dt_node_t * dt_node_if(dt_node_t *pred, dt_node_t *acts, dt_node_t *else_acts) { dt_node_t *dnp = dt_node_alloc(DT_NODE_IF); dnp->dn_conditional = pred; dnp->dn_body = acts; dnp->dn_alternate_body = else_acts; return (dnp); } dt_node_t * dt_node_pdesc_by_name(char *spec) { dtrace_hdl_t *dtp = yypcb->pcb_hdl; dt_node_t *dnp; if (spec == NULL) longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); dnp = dt_node_alloc(DT_NODE_PDESC); dnp->dn_spec = spec; dnp->dn_desc = malloc(sizeof (dtrace_probedesc_t)); if (dnp->dn_desc == NULL) longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); if (dtrace_xstr2desc(dtp, yypcb->pcb_pspec, dnp->dn_spec, yypcb->pcb_sargc, yypcb->pcb_sargv, dnp->dn_desc) != 0) { xyerror(D_PDESC_INVAL, "invalid probe description \"%s\": %s\n", dnp->dn_spec, dtrace_errmsg(dtp, dtrace_errno(dtp))); } free(dnp->dn_spec); dnp->dn_spec = NULL; return (dnp); } dt_node_t * dt_node_pdesc_by_id(uintmax_t id) { static const char *const names[] = { "providers", "modules", "functions" }; dtrace_hdl_t *dtp = yypcb->pcb_hdl; dt_node_t *dnp = dt_node_alloc(DT_NODE_PDESC); if ((dnp->dn_desc = malloc(sizeof (dtrace_probedesc_t))) == NULL) longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); if (id > UINT_MAX) { xyerror(D_PDESC_INVAL, "identifier %llu exceeds maximum " "probe id\n", (u_longlong_t)id); } if (yypcb->pcb_pspec != DTRACE_PROBESPEC_NAME) { xyerror(D_PDESC_INVAL, "probe identifier %llu not permitted " "when specifying %s\n", (u_longlong_t)id, names[yypcb->pcb_pspec]); } if (dtrace_id2desc(dtp, (dtrace_id_t)id, dnp->dn_desc) != 0) { xyerror(D_PDESC_INVAL, "invalid probe identifier %llu: %s\n", (u_longlong_t)id, dtrace_errmsg(dtp, dtrace_errno(dtp))); } return (dnp); } dt_node_t * dt_node_clause(dt_node_t *pdescs, dt_node_t *pred, dt_node_t *acts) { dt_node_t *dnp = dt_node_alloc(DT_NODE_CLAUSE); dnp->dn_pdescs = pdescs; dnp->dn_pred = pred; dnp->dn_acts = acts; return (dnp); } dt_node_t * dt_node_inline(dt_node_t *expr) { dtrace_hdl_t *dtp = yypcb->pcb_hdl; dt_scope_t *dsp = &yypcb->pcb_dstack; dt_decl_t *ddp = dt_decl_top(); char n[DT_TYPE_NAMELEN]; dtrace_typeinfo_t dtt; dt_ident_t *idp, *rdp; dt_idnode_t *inp; dt_node_t *dnp; if (dt_decl_type(ddp, &dtt) != 0) longjmp(yypcb->pcb_jmpbuf, EDT_COMPILER); if (dsp->ds_class != DT_DC_DEFAULT) { xyerror(D_DECL_BADCLASS, "specified storage class not " "appropriate for inline declaration\n"); } if (dsp->ds_ident == NULL) xyerror(D_DECL_USELESS, "inline declaration requires a name\n"); if ((idp = dt_idstack_lookup( &yypcb->pcb_globals, dsp->ds_ident)) != NULL) { xyerror(D_DECL_IDRED, "identifier redefined: %s\n\t current: " "inline definition\n\tprevious: %s %s\n", idp->di_name, dt_idkind_name(idp->di_kind), (idp->di_flags & DT_IDFLG_INLINE) ? "inline" : ""); } /* * If we are declaring an inlined array, verify that we have a tuple * signature, and then recompute 'dtt' as the array's value type. */ if (ddp->dd_kind == CTF_K_ARRAY) { if (ddp->dd_node == NULL) { xyerror(D_DECL_ARRNULL, "inline declaration requires " "array tuple signature: %s\n", dsp->ds_ident); } if (ddp->dd_node->dn_kind != DT_NODE_TYPE) { xyerror(D_DECL_ARRNULL, "inline declaration cannot be " "of scalar array type: %s\n", dsp->ds_ident); } if (dt_decl_type(ddp->dd_next, &dtt) != 0) longjmp(yypcb->pcb_jmpbuf, EDT_COMPILER); } /* * If the inline identifier is not defined, then create it with the * orphan flag set. We do not insert the identifier into dt_globals * until we have successfully cooked the right-hand expression, below. */ dnp = dt_node_alloc(DT_NODE_INLINE); dt_node_type_assign(dnp, dtt.dtt_ctfp, dtt.dtt_type, B_FALSE); dt_node_attr_assign(dnp, _dtrace_defattr); if (dt_node_is_void(dnp)) { xyerror(D_DECL_VOIDOBJ, "cannot declare void inline: %s\n", dsp->ds_ident); } if (ctf_type_kind(dnp->dn_ctfp, ctf_type_resolve( dnp->dn_ctfp, dnp->dn_type)) == CTF_K_FORWARD) { xyerror(D_DECL_INCOMPLETE, "incomplete struct/union/enum %s: %s\n", dt_node_type_name(dnp, n, sizeof (n)), dsp->ds_ident); } if ((inp = malloc(sizeof (dt_idnode_t))) == NULL) longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); bzero(inp, sizeof (dt_idnode_t)); idp = dnp->dn_ident = dt_ident_create(dsp->ds_ident, ddp->dd_kind == CTF_K_ARRAY ? DT_IDENT_ARRAY : DT_IDENT_SCALAR, DT_IDFLG_INLINE | DT_IDFLG_REF | DT_IDFLG_DECL | DT_IDFLG_ORPHAN, 0, _dtrace_defattr, 0, &dt_idops_inline, inp, dtp->dt_gen); if (idp == NULL) { free(inp); longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); } /* * If we're inlining an associative array, create a private identifier * hash containing the named parameters and store it in inp->din_hash. * We then push this hash on to the top of the pcb_globals stack. */ if (ddp->dd_kind == CTF_K_ARRAY) { dt_idnode_t *pinp; dt_ident_t *pidp; dt_node_t *pnp; uint_t i = 0; for (pnp = ddp->dd_node; pnp != NULL; pnp = pnp->dn_list) i++; /* count up parameters for din_argv[] */ inp->din_hash = dt_idhash_create("inline args", NULL, 0, 0); inp->din_argv = calloc(i, sizeof (dt_ident_t *)); if (inp->din_hash == NULL || inp->din_argv == NULL) longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); /* * Create an identifier for each parameter as a scalar inline, * and store it in din_hash and in position in din_argv[]. The * parameter identifiers also use dt_idops_inline, but we leave * the dt_idnode_t argument 'pinp' zeroed. This will be filled * in by the code generation pass with references to the args. */ for (i = 0, pnp = ddp->dd_node; pnp != NULL; pnp = pnp->dn_list, i++) { if (pnp->dn_string == NULL) continue; /* ignore anonymous parameters */ if ((pinp = malloc(sizeof (dt_idnode_t))) == NULL) longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); pidp = dt_idhash_insert(inp->din_hash, pnp->dn_string, DT_IDENT_SCALAR, DT_IDFLG_DECL | DT_IDFLG_INLINE, 0, _dtrace_defattr, 0, &dt_idops_inline, pinp, dtp->dt_gen); if (pidp == NULL) { free(pinp); longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); } inp->din_argv[i] = pidp; bzero(pinp, sizeof (dt_idnode_t)); dt_ident_type_assign(pidp, pnp->dn_ctfp, pnp->dn_type); } dt_idstack_push(&yypcb->pcb_globals, inp->din_hash); } /* * Unlike most constructors, we need to explicitly cook the right-hand * side of the inline definition immediately to prevent recursion. If * the right-hand side uses the inline itself, the cook will fail. */ expr = dt_node_cook(expr, DT_IDFLG_REF); if (ddp->dd_kind == CTF_K_ARRAY) dt_idstack_pop(&yypcb->pcb_globals, inp->din_hash); /* * Set the type, attributes, and flags for the inline. If the right- * hand expression has an identifier, propagate its flags. Then cook * the identifier to fully initialize it: if we're declaring an inline * associative array this will construct a type signature from 'ddp'. */ if (dt_node_is_dynamic(expr)) rdp = dt_ident_resolve(expr->dn_ident); else if (expr->dn_kind == DT_NODE_VAR || expr->dn_kind == DT_NODE_SYM) rdp = expr->dn_ident; else rdp = NULL; if (rdp != NULL) { idp->di_flags |= (rdp->di_flags & (DT_IDFLG_WRITE | DT_IDFLG_USER | DT_IDFLG_PRIM)); } idp->di_attr = dt_attr_min(_dtrace_defattr, expr->dn_attr); dt_ident_type_assign(idp, dtt.dtt_ctfp, dtt.dtt_type); (void) dt_ident_cook(dnp, idp, &ddp->dd_node); /* * Store the parse tree nodes for 'expr' inside of idp->di_data ('inp') * so that they will be preserved with this identifier. Then pop the * inline declaration from the declaration stack and restore the lexer. */ inp->din_list = yypcb->pcb_list; inp->din_root = expr; dt_decl_free(dt_decl_pop()); yybegin(YYS_CLAUSE); /* * Finally, insert the inline identifier into dt_globals to make it * visible, and then cook 'dnp' to check its type against 'expr'. */ dt_idhash_xinsert(dtp->dt_globals, idp); return (dt_node_cook(dnp, DT_IDFLG_REF)); } dt_node_t * dt_node_member(dt_decl_t *ddp, char *name, dt_node_t *expr) { dtrace_typeinfo_t dtt; dt_node_t *dnp; int err; if (ddp != NULL) { err = dt_decl_type(ddp, &dtt); dt_decl_free(ddp); if (err != 0) longjmp(yypcb->pcb_jmpbuf, EDT_COMPILER); } dnp = dt_node_alloc(DT_NODE_MEMBER); dnp->dn_membname = name; dnp->dn_membexpr = expr; if (ddp != NULL) dt_node_type_assign(dnp, dtt.dtt_ctfp, dtt.dtt_type, dtt.dtt_flags); return (dnp); } dt_node_t * dt_node_xlator(dt_decl_t *ddp, dt_decl_t *sdp, char *name, dt_node_t *members) { dtrace_hdl_t *dtp = yypcb->pcb_hdl; dtrace_typeinfo_t src, dst; dt_node_t sn, dn; dt_xlator_t *dxp; dt_node_t *dnp; int edst, esrc; uint_t kind; char n1[DT_TYPE_NAMELEN]; char n2[DT_TYPE_NAMELEN]; edst = dt_decl_type(ddp, &dst); dt_decl_free(ddp); esrc = dt_decl_type(sdp, &src); dt_decl_free(sdp); if (edst != 0 || esrc != 0) { free(name); longjmp(yypcb->pcb_jmpbuf, EDT_COMPILER); } bzero(&sn, sizeof (sn)); dt_node_type_assign(&sn, src.dtt_ctfp, src.dtt_type, B_FALSE); bzero(&dn, sizeof (dn)); dt_node_type_assign(&dn, dst.dtt_ctfp, dst.dtt_type, B_FALSE); if (dt_xlator_lookup(dtp, &sn, &dn, DT_XLATE_EXACT) != NULL) { xyerror(D_XLATE_REDECL, "translator from %s to %s has already been declared\n", dt_node_type_name(&sn, n1, sizeof (n1)), dt_node_type_name(&dn, n2, sizeof (n2))); } kind = ctf_type_kind(dst.dtt_ctfp, ctf_type_resolve(dst.dtt_ctfp, dst.dtt_type)); if (kind == CTF_K_FORWARD) { xyerror(D_XLATE_SOU, "incomplete struct/union/enum %s\n", dt_type_name(dst.dtt_ctfp, dst.dtt_type, n1, sizeof (n1))); } if (kind != CTF_K_STRUCT && kind != CTF_K_UNION) { xyerror(D_XLATE_SOU, "translator output type must be a struct or union\n"); } dxp = dt_xlator_create(dtp, &src, &dst, name, members, yypcb->pcb_list); yybegin(YYS_CLAUSE); free(name); if (dxp == NULL) longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); dnp = dt_node_alloc(DT_NODE_XLATOR); dnp->dn_xlator = dxp; dnp->dn_members = members; return (dt_node_cook(dnp, DT_IDFLG_REF)); } dt_node_t * dt_node_probe(char *s, int protoc, dt_node_t *nargs, dt_node_t *xargs) { dtrace_hdl_t *dtp = yypcb->pcb_hdl; int nargc, xargc; dt_node_t *dnp; size_t len = strlen(s) + 3; /* +3 for :: and \0 */ char *name = alloca(len); (void) snprintf(name, len, "::%s", s); (void) strhyphenate(name); free(s); if (strchr(name, '`') != NULL) { xyerror(D_PROV_BADNAME, "probe name may not " "contain scoping operator: %s\n", name); } if (strlen(name) - 2 >= DTRACE_NAMELEN) { xyerror(D_PROV_BADNAME, "probe name may not exceed %d " "characters: %s\n", DTRACE_NAMELEN - 1, name); } dnp = dt_node_alloc(DT_NODE_PROBE); dnp->dn_ident = dt_ident_create(name, DT_IDENT_PROBE, DT_IDFLG_ORPHAN, DTRACE_IDNONE, _dtrace_defattr, 0, &dt_idops_probe, NULL, dtp->dt_gen); nargc = dt_decl_prototype(nargs, nargs, "probe input", DT_DP_VOID | DT_DP_ANON); xargc = dt_decl_prototype(xargs, nargs, "probe output", DT_DP_VOID); if (nargc > UINT8_MAX) { xyerror(D_PROV_PRARGLEN, "probe %s input prototype exceeds %u " "parameters: %d params used\n", name, UINT8_MAX, nargc); } if (xargc > UINT8_MAX) { xyerror(D_PROV_PRARGLEN, "probe %s output prototype exceeds %u " "parameters: %d params used\n", name, UINT8_MAX, xargc); } if (dnp->dn_ident == NULL || dt_probe_create(dtp, dnp->dn_ident, protoc, nargs, nargc, xargs, xargc) == NULL) longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); return (dnp); } dt_node_t * dt_node_provider(char *name, dt_node_t *probes) { dtrace_hdl_t *dtp = yypcb->pcb_hdl; dt_node_t *dnp = dt_node_alloc(DT_NODE_PROVIDER); dt_node_t *lnp; size_t len; dnp->dn_provname = name; dnp->dn_probes = probes; if (strchr(name, '`') != NULL) { dnerror(dnp, D_PROV_BADNAME, "provider name may not " "contain scoping operator: %s\n", name); } if ((len = strlen(name)) >= DTRACE_PROVNAMELEN) { dnerror(dnp, D_PROV_BADNAME, "provider name may not exceed %d " "characters: %s\n", DTRACE_PROVNAMELEN - 1, name); } if (isdigit(name[len - 1])) { dnerror(dnp, D_PROV_BADNAME, "provider name may not " "end with a digit: %s\n", name); } /* * Check to see if the provider is already defined or visible through * dtrace(7D). If so, set dn_provred to treat it as a re-declaration. * If not, create a new provider and set its interface-only flag. This * flag may be cleared later by calls made to dt_probe_declare(). */ if ((dnp->dn_provider = dt_provider_lookup(dtp, name)) != NULL) dnp->dn_provred = B_TRUE; else if ((dnp->dn_provider = dt_provider_create(dtp, name)) == NULL) longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); else dnp->dn_provider->pv_flags |= DT_PROVIDER_INTF; /* * Store all parse nodes created since we consumed the DT_KEY_PROVIDER * token with the provider and then restore our lexing state to CLAUSE. * Note that if dnp->dn_provred is true, we may end up storing dups of * a provider's interface and implementation: we eat this space because * the implementation will likely need to redeclare probe members, and * therefore may result in those member nodes becoming persistent. */ for (lnp = yypcb->pcb_list; lnp->dn_link != NULL; lnp = lnp->dn_link) continue; /* skip to end of allocation list */ lnp->dn_link = dnp->dn_provider->pv_nodes; dnp->dn_provider->pv_nodes = yypcb->pcb_list; yybegin(YYS_CLAUSE); return (dnp); } dt_node_t * dt_node_program(dt_node_t *lnp) { dt_node_t *dnp = dt_node_alloc(DT_NODE_PROG); dnp->dn_list = lnp; return (dnp); } /* * This function provides the underlying implementation of cooking an * identifier given its node, a hash of dynamic identifiers, an identifier * kind, and a boolean flag indicating whether we are allowed to instantiate * a new identifier if the string is not found. This function is either * called from dt_cook_ident(), below, or directly by the various cooking * routines that are allowed to instantiate identifiers (e.g. op2 TOK_ASGN). */ static void dt_xcook_ident(dt_node_t *dnp, dt_idhash_t *dhp, uint_t idkind, int create) { dtrace_hdl_t *dtp = yypcb->pcb_hdl; const char *sname = dt_idhash_name(dhp); int uref = 0; dtrace_attribute_t attr = _dtrace_defattr; dt_ident_t *idp; dtrace_syminfo_t dts; GElf_Sym sym; const char *scope, *mark; uchar_t dnkind; char *name; /* * Look for scoping marks in the identifier. If one is found, set our * scope to either DTRACE_OBJ_KMODS or UMODS or to the first part of * the string that specifies the scope using an explicit module name. * If two marks in a row are found, set 'uref' (user symbol reference). * Otherwise we set scope to DTRACE_OBJ_EXEC, indicating that normal * scope is desired and we should search the specified idhash. */ if ((name = strrchr(dnp->dn_string, '`')) != NULL) { if (name > dnp->dn_string && name[-1] == '`') { uref++; name[-1] = '\0'; } if (name == dnp->dn_string + uref) scope = uref ? DTRACE_OBJ_UMODS : DTRACE_OBJ_KMODS; else scope = dnp->dn_string; *name++ = '\0'; /* leave name pointing after scoping mark */ dnkind = DT_NODE_VAR; } else if (idkind == DT_IDENT_AGG) { scope = DTRACE_OBJ_EXEC; name = dnp->dn_string + 1; dnkind = DT_NODE_AGG; } else { scope = DTRACE_OBJ_EXEC; name = dnp->dn_string; dnkind = DT_NODE_VAR; } /* * If create is set to false, and we fail our idhash lookup, preset * the errno code to EDT_NOVAR for our final error message below. * If we end up calling dtrace_lookup_by_name(), it will reset the * errno appropriately and that error will be reported instead. */ (void) dt_set_errno(dtp, EDT_NOVAR); mark = uref ? "``" : "`"; if (scope == DTRACE_OBJ_EXEC && ( (dhp != dtp->dt_globals && (idp = dt_idhash_lookup(dhp, name)) != NULL) || (dhp == dtp->dt_globals && (idp = dt_idstack_lookup(&yypcb->pcb_globals, name)) != NULL))) { /* * Check that we are referencing the ident in the manner that * matches its type if this is a global lookup. In the TLS or * local case, we don't know how the ident will be used until * the time operator -> is seen; more parsing is needed. */ if (idp->di_kind != idkind && dhp == dtp->dt_globals) { xyerror(D_IDENT_BADREF, "%s '%s' may not be referenced " "as %s\n", dt_idkind_name(idp->di_kind), idp->di_name, dt_idkind_name(idkind)); } /* * Arrays and aggregations are not cooked individually. They * have dynamic types and must be referenced using operator []. * This is handled explicitly by the code for DT_TOK_LBRAC. */ if (idp->di_kind != DT_IDENT_ARRAY && idp->di_kind != DT_IDENT_AGG) attr = dt_ident_cook(dnp, idp, NULL); else { dt_node_type_assign(dnp, DT_DYN_CTFP(dtp), DT_DYN_TYPE(dtp), B_FALSE); attr = idp->di_attr; } free(dnp->dn_string); dnp->dn_string = NULL; dnp->dn_kind = dnkind; dnp->dn_ident = idp; dnp->dn_flags |= DT_NF_LVALUE; if (idp->di_flags & DT_IDFLG_WRITE) dnp->dn_flags |= DT_NF_WRITABLE; dt_node_attr_assign(dnp, attr); } else if (dhp == dtp->dt_globals && scope != DTRACE_OBJ_EXEC && dtrace_lookup_by_name(dtp, scope, name, &sym, &dts) == 0) { dt_module_t *mp = dt_module_lookup_by_name(dtp, dts.dts_object); int umod = (mp->dm_flags & DT_DM_KERNEL) == 0; static const char *const kunames[] = { "kernel", "user" }; dtrace_typeinfo_t dtt; dtrace_syminfo_t *sip; if (uref ^ umod) { xyerror(D_SYM_BADREF, "%s module '%s' symbol '%s' may " "not be referenced as a %s symbol\n", kunames[umod], dts.dts_object, dts.dts_name, kunames[uref]); } if (dtrace_symbol_type(dtp, &sym, &dts, &dtt) != 0) { /* * For now, we special-case EDT_DATAMODEL to clarify * that mixed data models are not currently supported. */ if (dtp->dt_errno == EDT_DATAMODEL) { xyerror(D_SYM_MODEL, "cannot use %s symbol " "%s%s%s in a %s D program\n", dt_module_modelname(mp), dts.dts_object, mark, dts.dts_name, dt_module_modelname(dtp->dt_ddefs)); } xyerror(D_SYM_NOTYPES, "no symbolic type information is available for " "%s%s%s: %s\n", dts.dts_object, mark, dts.dts_name, dtrace_errmsg(dtp, dtrace_errno(dtp))); } idp = dt_ident_create(name, DT_IDENT_SYMBOL, 0, 0, _dtrace_symattr, 0, &dt_idops_thaw, NULL, dtp->dt_gen); if (idp == NULL) longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); if (mp->dm_flags & DT_DM_PRIMARY) idp->di_flags |= DT_IDFLG_PRIM; idp->di_next = dtp->dt_externs; dtp->dt_externs = idp; if ((sip = malloc(sizeof (dtrace_syminfo_t))) == NULL) longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); bcopy(&dts, sip, sizeof (dtrace_syminfo_t)); idp->di_data = sip; idp->di_ctfp = dtt.dtt_ctfp; idp->di_type = dtt.dtt_type; free(dnp->dn_string); dnp->dn_string = NULL; dnp->dn_kind = DT_NODE_SYM; dnp->dn_ident = idp; dnp->dn_flags |= DT_NF_LVALUE; dt_node_type_assign(dnp, dtt.dtt_ctfp, dtt.dtt_type, dtt.dtt_flags); dt_node_attr_assign(dnp, _dtrace_symattr); if (uref) { idp->di_flags |= DT_IDFLG_USER; dnp->dn_flags |= DT_NF_USERLAND; } } else if (scope == DTRACE_OBJ_EXEC && create == B_TRUE) { uint_t flags = DT_IDFLG_WRITE; uint_t id; if (dt_idhash_nextid(dhp, &id) == -1) { xyerror(D_ID_OFLOW, "cannot create %s: limit on number " "of %s variables exceeded\n", name, sname); } if (dhp == yypcb->pcb_locals) flags |= DT_IDFLG_LOCAL; else if (dhp == dtp->dt_tls) flags |= DT_IDFLG_TLS; dt_dprintf("create %s %s variable %s, id=%u\n", sname, dt_idkind_name(idkind), name, id); if (idkind == DT_IDENT_ARRAY || idkind == DT_IDENT_AGG) { idp = dt_idhash_insert(dhp, name, idkind, flags, id, _dtrace_defattr, 0, &dt_idops_assc, NULL, dtp->dt_gen); } else { idp = dt_idhash_insert(dhp, name, idkind, flags, id, _dtrace_defattr, 0, &dt_idops_thaw, NULL, dtp->dt_gen); } if (idp == NULL) longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); /* * Arrays and aggregations are not cooked individually. They * have dynamic types and must be referenced using operator []. * This is handled explicitly by the code for DT_TOK_LBRAC. */ if (idp->di_kind != DT_IDENT_ARRAY && idp->di_kind != DT_IDENT_AGG) attr = dt_ident_cook(dnp, idp, NULL); else { dt_node_type_assign(dnp, DT_DYN_CTFP(dtp), DT_DYN_TYPE(dtp), B_FALSE); attr = idp->di_attr; } free(dnp->dn_string); dnp->dn_string = NULL; dnp->dn_kind = dnkind; dnp->dn_ident = idp; dnp->dn_flags |= DT_NF_LVALUE | DT_NF_WRITABLE; dt_node_attr_assign(dnp, attr); } else if (scope != DTRACE_OBJ_EXEC) { xyerror(D_IDENT_UNDEF, "failed to resolve %s%s%s: %s\n", dnp->dn_string, mark, name, dtrace_errmsg(dtp, dtrace_errno(dtp))); } else { xyerror(D_IDENT_UNDEF, "failed to resolve %s: %s\n", dnp->dn_string, dtrace_errmsg(dtp, dtrace_errno(dtp))); } } static dt_node_t * dt_cook_ident(dt_node_t *dnp, uint_t idflags) { dtrace_hdl_t *dtp = yypcb->pcb_hdl; if (dnp->dn_op == DT_TOK_AGG) dt_xcook_ident(dnp, dtp->dt_aggs, DT_IDENT_AGG, B_FALSE); else dt_xcook_ident(dnp, dtp->dt_globals, DT_IDENT_SCALAR, B_FALSE); return (dt_node_cook(dnp, idflags)); } /* * Since operators [ and -> can instantiate new variables before we know * whether the reference is for a read or a write, we need to check read * references to determine if the identifier is currently dt_ident_unref(). * If so, we report that this first access was to an undefined variable. */ static dt_node_t * dt_cook_var(dt_node_t *dnp, uint_t idflags) { dt_ident_t *idp = dnp->dn_ident; if ((idflags & DT_IDFLG_REF) && dt_ident_unref(idp)) { dnerror(dnp, D_VAR_UNDEF, "%s%s has not yet been declared or assigned\n", (idp->di_flags & DT_IDFLG_LOCAL) ? "this->" : (idp->di_flags & DT_IDFLG_TLS) ? "self->" : "", idp->di_name); } dt_node_attr_assign(dnp, dt_ident_cook(dnp, idp, &dnp->dn_args)); return (dnp); } /*ARGSUSED*/ static dt_node_t * dt_cook_func(dt_node_t *dnp, uint_t idflags) { dt_node_attr_assign(dnp, dt_ident_cook(dnp, dnp->dn_ident, &dnp->dn_args)); return (dnp); } static dt_node_t * dt_cook_op1(dt_node_t *dnp, uint_t idflags) { dtrace_hdl_t *dtp = yypcb->pcb_hdl; dt_node_t *cp = dnp->dn_child; char n[DT_TYPE_NAMELEN]; dtrace_typeinfo_t dtt; dt_ident_t *idp; ctf_encoding_t e; ctf_arinfo_t r; ctf_id_t type, base; uint_t kind; if (dnp->dn_op == DT_TOK_PREINC || dnp->dn_op == DT_TOK_POSTINC || dnp->dn_op == DT_TOK_PREDEC || dnp->dn_op == DT_TOK_POSTDEC) idflags = DT_IDFLG_REF | DT_IDFLG_MOD; else idflags = DT_IDFLG_REF; /* * We allow the unary ++ and -- operators to instantiate new scalar * variables if applied to an identifier; otherwise just cook as usual. */ if (cp->dn_kind == DT_NODE_IDENT && (idflags & DT_IDFLG_MOD)) dt_xcook_ident(cp, dtp->dt_globals, DT_IDENT_SCALAR, B_TRUE); cp = dnp->dn_child = dt_node_cook(cp, 0); /* don't set idflags yet */ if (cp->dn_kind == DT_NODE_VAR && dt_ident_unref(cp->dn_ident)) { if (dt_type_lookup("int64_t", &dtt) != 0) xyerror(D_TYPE_ERR, "failed to lookup int64_t\n"); dt_ident_type_assign(cp->dn_ident, dtt.dtt_ctfp, dtt.dtt_type); dt_node_type_assign(cp, dtt.dtt_ctfp, dtt.dtt_type, dtt.dtt_flags); } if (cp->dn_kind == DT_NODE_VAR) cp->dn_ident->di_flags |= idflags; switch (dnp->dn_op) { case DT_TOK_DEREF: /* * If the deref operator is applied to a translated pointer, * we set our output type to the output of the translation. */ if ((idp = dt_node_resolve(cp, DT_IDENT_XLPTR)) != NULL) { dt_xlator_t *dxp = idp->di_data; dnp->dn_ident = &dxp->dx_souid; dt_node_type_assign(dnp, dnp->dn_ident->di_ctfp, dnp->dn_ident->di_type, cp->dn_flags & DT_NF_USERLAND); break; } type = ctf_type_resolve(cp->dn_ctfp, cp->dn_type); kind = ctf_type_kind(cp->dn_ctfp, type); if (kind == CTF_K_ARRAY) { if (ctf_array_info(cp->dn_ctfp, type, &r) != 0) { dtp->dt_ctferr = ctf_errno(cp->dn_ctfp); longjmp(yypcb->pcb_jmpbuf, EDT_CTF); } else type = r.ctr_contents; } else if (kind == CTF_K_POINTER) { type = ctf_type_reference(cp->dn_ctfp, type); } else { xyerror(D_DEREF_NONPTR, "cannot dereference non-pointer type\n"); } dt_node_type_assign(dnp, cp->dn_ctfp, type, cp->dn_flags & DT_NF_USERLAND); base = ctf_type_resolve(cp->dn_ctfp, type); kind = ctf_type_kind(cp->dn_ctfp, base); if (kind == CTF_K_INTEGER && ctf_type_encoding(cp->dn_ctfp, base, &e) == 0 && IS_VOID(e)) { xyerror(D_DEREF_VOID, "cannot dereference pointer to void\n"); } if (kind == CTF_K_FUNCTION) { xyerror(D_DEREF_FUNC, "cannot dereference pointer to function\n"); } if (kind != CTF_K_ARRAY || dt_node_is_string(dnp)) dnp->dn_flags |= DT_NF_LVALUE; /* see K&R[A7.4.3] */ /* * If we propagated the l-value bit and the child operand was * a writable D variable or a binary operation of the form * a + b where a is writable, then propagate the writable bit. * This is necessary to permit assignments to scalar arrays, * which are converted to expressions of the form *(a + i). */ if ((cp->dn_flags & DT_NF_WRITABLE) || (cp->dn_kind == DT_NODE_OP2 && cp->dn_op == DT_TOK_ADD && (cp->dn_left->dn_flags & DT_NF_WRITABLE))) dnp->dn_flags |= DT_NF_WRITABLE; if ((cp->dn_flags & DT_NF_USERLAND) && (kind == CTF_K_POINTER || (dnp->dn_flags & DT_NF_REF))) dnp->dn_flags |= DT_NF_USERLAND; break; case DT_TOK_IPOS: case DT_TOK_INEG: if (!dt_node_is_arith(cp)) { xyerror(D_OP_ARITH, "operator %s requires an operand " "of arithmetic type\n", opstr(dnp->dn_op)); } dt_node_type_propagate(cp, dnp); /* see K&R[A7.4.4-6] */ break; case DT_TOK_BNEG: if (!dt_node_is_integer(cp)) { xyerror(D_OP_INT, "operator %s requires an operand of " "integral type\n", opstr(dnp->dn_op)); } dt_node_type_propagate(cp, dnp); /* see K&R[A7.4.4-6] */ break; case DT_TOK_LNEG: if (!dt_node_is_scalar(cp)) { xyerror(D_OP_SCALAR, "operator %s requires an operand " "of scalar type\n", opstr(dnp->dn_op)); } dt_node_type_assign(dnp, DT_INT_CTFP(dtp), DT_INT_TYPE(dtp), B_FALSE); break; case DT_TOK_ADDROF: if (cp->dn_kind == DT_NODE_VAR || cp->dn_kind == DT_NODE_AGG) { xyerror(D_ADDROF_VAR, "cannot take address of dynamic variable\n"); } if (dt_node_is_dynamic(cp)) { xyerror(D_ADDROF_VAR, "cannot take address of dynamic object\n"); } if (!(cp->dn_flags & DT_NF_LVALUE)) { xyerror(D_ADDROF_LVAL, /* see K&R[A7.4.2] */ "unacceptable operand for unary & operator\n"); } if (cp->dn_flags & DT_NF_BITFIELD) { xyerror(D_ADDROF_BITFIELD, "cannot take address of bit-field\n"); } dtt.dtt_object = NULL; dtt.dtt_ctfp = cp->dn_ctfp; dtt.dtt_type = cp->dn_type; if (dt_type_pointer(&dtt) == -1) { xyerror(D_TYPE_ERR, "cannot find type for \"&\": %s*\n", dt_node_type_name(cp, n, sizeof (n))); } dt_node_type_assign(dnp, dtt.dtt_ctfp, dtt.dtt_type, cp->dn_flags & DT_NF_USERLAND); break; case DT_TOK_SIZEOF: if (cp->dn_flags & DT_NF_BITFIELD) { xyerror(D_SIZEOF_BITFIELD, "cannot apply sizeof to a bit-field\n"); } if (dt_node_sizeof(cp) == 0) { xyerror(D_SIZEOF_TYPE, "cannot apply sizeof to an " "operand of unknown size\n"); } dt_node_type_assign(dnp, dtp->dt_ddefs->dm_ctfp, ctf_lookup_by_name(dtp->dt_ddefs->dm_ctfp, "size_t"), B_FALSE); break; case DT_TOK_STRINGOF: if (!dt_node_is_scalar(cp) && !dt_node_is_pointer(cp) && !dt_node_is_strcompat(cp)) { xyerror(D_STRINGOF_TYPE, "cannot apply stringof to a value of type %s\n", dt_node_type_name(cp, n, sizeof (n))); } dt_node_type_assign(dnp, DT_STR_CTFP(dtp), DT_STR_TYPE(dtp), cp->dn_flags & DT_NF_USERLAND); break; case DT_TOK_PREINC: case DT_TOK_POSTINC: case DT_TOK_PREDEC: case DT_TOK_POSTDEC: if (dt_node_is_scalar(cp) == 0) { xyerror(D_OP_SCALAR, "operator %s requires operand of " "scalar type\n", opstr(dnp->dn_op)); } if (dt_node_is_vfptr(cp)) { xyerror(D_OP_VFPTR, "operator %s requires an operand " "of known size\n", opstr(dnp->dn_op)); } if (!(cp->dn_flags & DT_NF_LVALUE)) { xyerror(D_OP_LVAL, "operator %s requires modifiable " "lvalue as an operand\n", opstr(dnp->dn_op)); } if (!(cp->dn_flags & DT_NF_WRITABLE)) { xyerror(D_OP_WRITE, "operator %s can only be applied " "to a writable variable\n", opstr(dnp->dn_op)); } dt_node_type_propagate(cp, dnp); /* see K&R[A7.4.1] */ break; default: xyerror(D_UNKNOWN, "invalid unary op %s\n", opstr(dnp->dn_op)); } dt_node_attr_assign(dnp, cp->dn_attr); return (dnp); } static void dt_assign_common(dt_node_t *dnp) { dt_node_t *lp = dnp->dn_left; dt_node_t *rp = dnp->dn_right; int op = dnp->dn_op; if (rp->dn_kind == DT_NODE_INT) dt_cast(lp, rp); if (!(lp->dn_flags & DT_NF_LVALUE)) { xyerror(D_OP_LVAL, "operator %s requires modifiable " "lvalue as an operand\n", opstr(op)); /* see K&R[A7.17] */ } if (!(lp->dn_flags & DT_NF_WRITABLE)) { xyerror(D_OP_WRITE, "operator %s can only be applied " "to a writable variable\n", opstr(op)); } dt_node_type_propagate(lp, dnp); /* see K&R[A7.17] */ dt_node_attr_assign(dnp, dt_attr_min(lp->dn_attr, rp->dn_attr)); } static dt_node_t * dt_cook_op2(dt_node_t *dnp, uint_t idflags) { dtrace_hdl_t *dtp = yypcb->pcb_hdl; dt_node_t *lp = dnp->dn_left; dt_node_t *rp = dnp->dn_right; int op = dnp->dn_op; ctf_membinfo_t m; ctf_file_t *ctfp; ctf_id_t type; int kind, val, uref; dt_ident_t *idp; char n1[DT_TYPE_NAMELEN]; char n2[DT_TYPE_NAMELEN]; /* * The expression E1[E2] is identical by definition to *((E1)+(E2)) so * we convert "[" to "+" and glue on "*" at the end (see K&R[A7.3.1]) * unless the left-hand side is an untyped D scalar, associative array, * or aggregation. In these cases, we proceed to case DT_TOK_LBRAC and * handle associative array and aggregation references there. */ if (op == DT_TOK_LBRAC) { if (lp->dn_kind == DT_NODE_IDENT) { dt_idhash_t *dhp; uint_t idkind; if (lp->dn_op == DT_TOK_AGG) { dhp = dtp->dt_aggs; idp = dt_idhash_lookup(dhp, lp->dn_string + 1); idkind = DT_IDENT_AGG; } else { dhp = dtp->dt_globals; idp = dt_idstack_lookup( &yypcb->pcb_globals, lp->dn_string); idkind = DT_IDENT_ARRAY; } if (idp == NULL || dt_ident_unref(idp)) dt_xcook_ident(lp, dhp, idkind, B_TRUE); else dt_xcook_ident(lp, dhp, idp->di_kind, B_FALSE); } else { lp = dnp->dn_left = dt_node_cook(lp, 0); } /* * Switch op to '+' for *(E1 + E2) array mode in these cases: * (a) lp is a DT_IDENT_ARRAY variable that has already been * referenced using [] notation (dn_args != NULL). * (b) lp is a non-ARRAY variable that has already been given * a type by assignment or declaration (!dt_ident_unref()) * (c) lp is neither a variable nor an aggregation */ if (lp->dn_kind == DT_NODE_VAR) { if (lp->dn_ident->di_kind == DT_IDENT_ARRAY) { if (lp->dn_args != NULL) op = DT_TOK_ADD; } else if (!dt_ident_unref(lp->dn_ident)) { op = DT_TOK_ADD; } } else if (lp->dn_kind != DT_NODE_AGG) { op = DT_TOK_ADD; } } switch (op) { case DT_TOK_BAND: case DT_TOK_XOR: case DT_TOK_BOR: lp = dnp->dn_left = dt_node_cook(lp, DT_IDFLG_REF); rp = dnp->dn_right = dt_node_cook(rp, DT_IDFLG_REF); if (!dt_node_is_integer(lp) || !dt_node_is_integer(rp)) { xyerror(D_OP_INT, "operator %s requires operands of " "integral type\n", opstr(op)); } dt_node_promote(lp, rp, dnp); /* see K&R[A7.11-13] */ break; case DT_TOK_LSH: case DT_TOK_RSH: lp = dnp->dn_left = dt_node_cook(lp, DT_IDFLG_REF); rp = dnp->dn_right = dt_node_cook(rp, DT_IDFLG_REF); if (!dt_node_is_integer(lp) || !dt_node_is_integer(rp)) { xyerror(D_OP_INT, "operator %s requires operands of " "integral type\n", opstr(op)); } dt_node_type_propagate(lp, dnp); /* see K&R[A7.8] */ dt_node_attr_assign(dnp, dt_attr_min(lp->dn_attr, rp->dn_attr)); break; case DT_TOK_MOD: lp = dnp->dn_left = dt_node_cook(lp, DT_IDFLG_REF); rp = dnp->dn_right = dt_node_cook(rp, DT_IDFLG_REF); if (!dt_node_is_integer(lp) || !dt_node_is_integer(rp)) { xyerror(D_OP_INT, "operator %s requires operands of " "integral type\n", opstr(op)); } dt_node_promote(lp, rp, dnp); /* see K&R[A7.6] */ break; case DT_TOK_MUL: case DT_TOK_DIV: lp = dnp->dn_left = dt_node_cook(lp, DT_IDFLG_REF); rp = dnp->dn_right = dt_node_cook(rp, DT_IDFLG_REF); if (!dt_node_is_arith(lp) || !dt_node_is_arith(rp)) { xyerror(D_OP_ARITH, "operator %s requires operands of " "arithmetic type\n", opstr(op)); } dt_node_promote(lp, rp, dnp); /* see K&R[A7.6] */ break; case DT_TOK_LAND: case DT_TOK_LXOR: case DT_TOK_LOR: lp = dnp->dn_left = dt_node_cook(lp, DT_IDFLG_REF); rp = dnp->dn_right = dt_node_cook(rp, DT_IDFLG_REF); if (!dt_node_is_scalar(lp) || !dt_node_is_scalar(rp)) { xyerror(D_OP_SCALAR, "operator %s requires operands " "of scalar type\n", opstr(op)); } dt_node_type_assign(dnp, DT_INT_CTFP(dtp), DT_INT_TYPE(dtp), B_FALSE); dt_node_attr_assign(dnp, dt_attr_min(lp->dn_attr, rp->dn_attr)); break; case DT_TOK_LT: case DT_TOK_LE: case DT_TOK_GT: case DT_TOK_GE: case DT_TOK_EQU: case DT_TOK_NEQ: /* * The D comparison operators provide the ability to transform * a right-hand identifier into a corresponding enum tag value * if the left-hand side is an enum type. To do this, we cook * the left-hand side, and then see if the right-hand side is * an unscoped identifier defined in the enum. If so, we * convert into an integer constant node with the tag's value. */ lp = dnp->dn_left = dt_node_cook(lp, DT_IDFLG_REF); kind = ctf_type_kind(lp->dn_ctfp, ctf_type_resolve(lp->dn_ctfp, lp->dn_type)); if (kind == CTF_K_ENUM && rp->dn_kind == DT_NODE_IDENT && strchr(rp->dn_string, '`') == NULL && ctf_enum_value( lp->dn_ctfp, lp->dn_type, rp->dn_string, &val) == 0) { if ((idp = dt_idstack_lookup(&yypcb->pcb_globals, rp->dn_string)) != NULL) { xyerror(D_IDENT_AMBIG, "ambiguous use of operator %s: %s is " "both a %s enum tag and a global %s\n", opstr(op), rp->dn_string, dt_node_type_name(lp, n1, sizeof (n1)), dt_idkind_name(idp->di_kind)); } free(rp->dn_string); rp->dn_string = NULL; rp->dn_kind = DT_NODE_INT; rp->dn_flags |= DT_NF_COOKED; rp->dn_op = DT_TOK_INT; rp->dn_value = (intmax_t)val; dt_node_type_assign(rp, lp->dn_ctfp, lp->dn_type, B_FALSE); dt_node_attr_assign(rp, _dtrace_symattr); } rp = dnp->dn_right = dt_node_cook(rp, DT_IDFLG_REF); /* * The rules for type checking for the relational operators are * described in the ANSI-C spec (see K&R[A7.9-10]). We perform * the various tests in order from least to most expensive. We * also allow derived strings to be compared as a first-class * type (resulting in a strcmp(3C)-style comparison), and we * slightly relax the A7.9 rules to permit void pointer * comparisons as in A7.10. Our users won't be confused by * this since they understand pointers are just numbers, and * relaxing this constraint simplifies the implementation. */ if (ctf_type_compat(lp->dn_ctfp, lp->dn_type, rp->dn_ctfp, rp->dn_type)) /*EMPTY*/; else if (dt_node_is_integer(lp) && dt_node_is_integer(rp)) /*EMPTY*/; else if (dt_node_is_strcompat(lp) && dt_node_is_strcompat(rp) && (dt_node_is_string(lp) || dt_node_is_string(rp))) /*EMPTY*/; else if (dt_node_is_ptrcompat(lp, rp, NULL, NULL) == 0) { xyerror(D_OP_INCOMPAT, "operands have " "incompatible types: \"%s\" %s \"%s\"\n", dt_node_type_name(lp, n1, sizeof (n1)), opstr(op), dt_node_type_name(rp, n2, sizeof (n2))); } dt_node_type_assign(dnp, DT_INT_CTFP(dtp), DT_INT_TYPE(dtp), B_FALSE); dt_node_attr_assign(dnp, dt_attr_min(lp->dn_attr, rp->dn_attr)); break; case DT_TOK_ADD: case DT_TOK_SUB: { /* * The rules for type checking for the additive operators are * described in the ANSI-C spec (see K&R[A7.7]). Pointers and * integers may be manipulated according to specific rules. In * these cases D permits strings to be treated as pointers. */ int lp_is_ptr, lp_is_int, rp_is_ptr, rp_is_int; lp = dnp->dn_left = dt_node_cook(lp, DT_IDFLG_REF); rp = dnp->dn_right = dt_node_cook(rp, DT_IDFLG_REF); lp_is_ptr = dt_node_is_string(lp) || (dt_node_is_pointer(lp) && !dt_node_is_vfptr(lp)); lp_is_int = dt_node_is_integer(lp); rp_is_ptr = dt_node_is_string(rp) || (dt_node_is_pointer(rp) && !dt_node_is_vfptr(rp)); rp_is_int = dt_node_is_integer(rp); if (lp_is_int && rp_is_int) { dt_type_promote(lp, rp, &ctfp, &type); uref = 0; } else if (lp_is_ptr && rp_is_int) { ctfp = lp->dn_ctfp; type = lp->dn_type; uref = lp->dn_flags & DT_NF_USERLAND; } else if (lp_is_int && rp_is_ptr && op == DT_TOK_ADD) { ctfp = rp->dn_ctfp; type = rp->dn_type; uref = rp->dn_flags & DT_NF_USERLAND; } else if (lp_is_ptr && rp_is_ptr && op == DT_TOK_SUB && dt_node_is_ptrcompat(lp, rp, NULL, NULL)) { ctfp = dtp->dt_ddefs->dm_ctfp; type = ctf_lookup_by_name(ctfp, "ptrdiff_t"); uref = 0; } else { xyerror(D_OP_INCOMPAT, "operands have incompatible " "types: \"%s\" %s \"%s\"\n", dt_node_type_name(lp, n1, sizeof (n1)), opstr(op), dt_node_type_name(rp, n2, sizeof (n2))); } dt_node_type_assign(dnp, ctfp, type, B_FALSE); dt_node_attr_assign(dnp, dt_attr_min(lp->dn_attr, rp->dn_attr)); if (uref) dnp->dn_flags |= DT_NF_USERLAND; break; } case DT_TOK_OR_EQ: case DT_TOK_XOR_EQ: case DT_TOK_AND_EQ: case DT_TOK_LSH_EQ: case DT_TOK_RSH_EQ: case DT_TOK_MOD_EQ: if (lp->dn_kind == DT_NODE_IDENT) { dt_xcook_ident(lp, dtp->dt_globals, DT_IDENT_SCALAR, B_TRUE); } lp = dnp->dn_left = dt_node_cook(lp, DT_IDFLG_REF | DT_IDFLG_MOD); rp = dnp->dn_right = dt_node_cook(rp, DT_IDFLG_REF | DT_IDFLG_MOD); if (!dt_node_is_integer(lp) || !dt_node_is_integer(rp)) { xyerror(D_OP_INT, "operator %s requires operands of " "integral type\n", opstr(op)); } goto asgn_common; case DT_TOK_MUL_EQ: case DT_TOK_DIV_EQ: if (lp->dn_kind == DT_NODE_IDENT) { dt_xcook_ident(lp, dtp->dt_globals, DT_IDENT_SCALAR, B_TRUE); } lp = dnp->dn_left = dt_node_cook(lp, DT_IDFLG_REF | DT_IDFLG_MOD); rp = dnp->dn_right = dt_node_cook(rp, DT_IDFLG_REF | DT_IDFLG_MOD); if (!dt_node_is_arith(lp) || !dt_node_is_arith(rp)) { xyerror(D_OP_ARITH, "operator %s requires operands of " "arithmetic type\n", opstr(op)); } goto asgn_common; case DT_TOK_ASGN: /* * If the left-hand side is an identifier, attempt to resolve * it as either an aggregation or scalar variable. We pass * B_TRUE to dt_xcook_ident to indicate that a new variable can * be created if no matching variable exists in the namespace. */ if (lp->dn_kind == DT_NODE_IDENT) { if (lp->dn_op == DT_TOK_AGG) { dt_xcook_ident(lp, dtp->dt_aggs, DT_IDENT_AGG, B_TRUE); } else { dt_xcook_ident(lp, dtp->dt_globals, DT_IDENT_SCALAR, B_TRUE); } } lp = dnp->dn_left = dt_node_cook(lp, 0); /* don't set mod yet */ rp = dnp->dn_right = dt_node_cook(rp, DT_IDFLG_REF); /* * If the left-hand side is an aggregation, verify that we are * assigning it the result of an aggregating function. Once * we've done so, hide the func node in the aggregation and * return the aggregation itself up to the parse tree parent. * This transformation is legal since the assigned function * cannot change identity across disjoint cooking passes and * the argument list subtree is retained for later cooking. */ if (lp->dn_kind == DT_NODE_AGG) { const char *aname = lp->dn_ident->di_name; dt_ident_t *oid = lp->dn_ident->di_iarg; if (rp->dn_kind != DT_NODE_FUNC || rp->dn_ident->di_kind != DT_IDENT_AGGFUNC) { xyerror(D_AGG_FUNC, "@%s must be assigned the result of " "an aggregating function\n", aname); } if (oid != NULL && oid != rp->dn_ident) { xyerror(D_AGG_REDEF, "aggregation redefined: @%s\n\t " "current: @%s = %s( )\n\tprevious: @%s = " "%s( ) : line %d\n", aname, aname, rp->dn_ident->di_name, aname, oid->di_name, lp->dn_ident->di_lineno); } else if (oid == NULL) lp->dn_ident->di_iarg = rp->dn_ident; /* * Do not allow multiple aggregation assignments in a * single statement, e.g. (@a = count()) = count(); * We produce a message as if the result of aggregating * function does not propagate DT_NF_LVALUE. */ if (lp->dn_aggfun != NULL) { xyerror(D_OP_LVAL, "operator = requires " "modifiable lvalue as an operand\n"); } lp->dn_aggfun = rp; lp = dt_node_cook(lp, DT_IDFLG_MOD); dnp->dn_left = dnp->dn_right = NULL; dt_node_free(dnp); return (lp); } /* * If the right-hand side is a dynamic variable that is the * output of a translator, our result is the translated type. */ if ((idp = dt_node_resolve(rp, DT_IDENT_XLSOU)) != NULL) { ctfp = idp->di_ctfp; type = idp->di_type; uref = idp->di_flags & DT_IDFLG_USER; } else { ctfp = rp->dn_ctfp; type = rp->dn_type; uref = rp->dn_flags & DT_NF_USERLAND; } /* * If the left-hand side of an assignment statement is a virgin * variable created by this compilation pass, reset the type of * this variable to the type of the right-hand side. */ if (lp->dn_kind == DT_NODE_VAR && dt_ident_unref(lp->dn_ident)) { dt_node_type_assign(lp, ctfp, type, B_FALSE); dt_ident_type_assign(lp->dn_ident, ctfp, type); if (uref) { lp->dn_flags |= DT_NF_USERLAND; lp->dn_ident->di_flags |= DT_IDFLG_USER; } } if (lp->dn_kind == DT_NODE_VAR) lp->dn_ident->di_flags |= DT_IDFLG_MOD; /* * The rules for type checking for the assignment operators are * described in the ANSI-C spec (see K&R[A7.17]). We share * most of this code with the argument list checking code. */ if (!dt_node_is_string(lp)) { kind = ctf_type_kind(lp->dn_ctfp, ctf_type_resolve(lp->dn_ctfp, lp->dn_type)); if (kind == CTF_K_ARRAY || kind == CTF_K_FUNCTION) { xyerror(D_OP_ARRFUN, "operator %s may not be " "applied to operand of type \"%s\"\n", opstr(op), dt_node_type_name(lp, n1, sizeof (n1))); } } if (idp != NULL && idp->di_kind == DT_IDENT_XLSOU && ctf_type_compat(lp->dn_ctfp, lp->dn_type, ctfp, type)) goto asgn_common; if (dt_node_is_argcompat(lp, rp)) goto asgn_common; xyerror(D_OP_INCOMPAT, "operands have incompatible types: \"%s\" %s \"%s\"\n", dt_node_type_name(lp, n1, sizeof (n1)), opstr(op), dt_node_type_name(rp, n2, sizeof (n2))); /*NOTREACHED*/ case DT_TOK_ADD_EQ: case DT_TOK_SUB_EQ: if (lp->dn_kind == DT_NODE_IDENT) { dt_xcook_ident(lp, dtp->dt_globals, DT_IDENT_SCALAR, B_TRUE); } lp = dnp->dn_left = dt_node_cook(lp, DT_IDFLG_REF | DT_IDFLG_MOD); rp = dnp->dn_right = dt_node_cook(rp, DT_IDFLG_REF | DT_IDFLG_MOD); if (dt_node_is_string(lp) || dt_node_is_string(rp)) { xyerror(D_OP_INCOMPAT, "operands have " "incompatible types: \"%s\" %s \"%s\"\n", dt_node_type_name(lp, n1, sizeof (n1)), opstr(op), dt_node_type_name(rp, n2, sizeof (n2))); } /* * The rules for type checking for the assignment operators are * described in the ANSI-C spec (see K&R[A7.17]). To these * rules we add that only writable D nodes can be modified. */ if (dt_node_is_integer(lp) == 0 || dt_node_is_integer(rp) == 0) { if (!dt_node_is_pointer(lp) || dt_node_is_vfptr(lp)) { xyerror(D_OP_VFPTR, "operator %s requires left-hand scalar " "operand of known size\n", opstr(op)); } else if (dt_node_is_integer(rp) == 0 && dt_node_is_ptrcompat(lp, rp, NULL, NULL) == 0) { xyerror(D_OP_INCOMPAT, "operands have " "incompatible types: \"%s\" %s \"%s\"\n", dt_node_type_name(lp, n1, sizeof (n1)), opstr(op), dt_node_type_name(rp, n2, sizeof (n2))); } } asgn_common: dt_assign_common(dnp); break; case DT_TOK_PTR: /* * If the left-hand side of operator -> is one of the scoping * keywords, permit a local or thread variable to be created or * referenced. */ if (lp->dn_kind == DT_NODE_IDENT) { dt_idhash_t *dhp = NULL; if (strcmp(lp->dn_string, "self") == 0) { dhp = dtp->dt_tls; } else if (strcmp(lp->dn_string, "this") == 0) { dhp = yypcb->pcb_locals; } if (dhp != NULL) { if (rp->dn_kind != DT_NODE_VAR) { dt_xcook_ident(rp, dhp, DT_IDENT_SCALAR, B_TRUE); } if (idflags != 0) rp = dt_node_cook(rp, idflags); /* avoid freeing rp */ dnp->dn_right = dnp->dn_left; dt_node_free(dnp); return (rp); } } /*FALLTHRU*/ case DT_TOK_DOT: lp = dnp->dn_left = dt_node_cook(lp, DT_IDFLG_REF); if (rp->dn_kind != DT_NODE_IDENT) { xyerror(D_OP_IDENT, "operator %s must be followed by " "an identifier\n", opstr(op)); } if ((idp = dt_node_resolve(lp, DT_IDENT_XLSOU)) != NULL || (idp = dt_node_resolve(lp, DT_IDENT_XLPTR)) != NULL) { /* * If the left-hand side is a translated struct or ptr, * the type of the left is the translation output type. */ dt_xlator_t *dxp = idp->di_data; if (dt_xlator_member(dxp, rp->dn_string) == NULL) { xyerror(D_XLATE_NOCONV, "translator does not define conversion " "for member: %s\n", rp->dn_string); } ctfp = idp->di_ctfp; type = ctf_type_resolve(ctfp, idp->di_type); uref = idp->di_flags & DT_IDFLG_USER; } else { ctfp = lp->dn_ctfp; type = ctf_type_resolve(ctfp, lp->dn_type); uref = lp->dn_flags & DT_NF_USERLAND; } kind = ctf_type_kind(ctfp, type); if (op == DT_TOK_PTR) { if (kind != CTF_K_POINTER) { xyerror(D_OP_PTR, "operator %s must be " "applied to a pointer\n", opstr(op)); } type = ctf_type_reference(ctfp, type); type = ctf_type_resolve(ctfp, type); kind = ctf_type_kind(ctfp, type); } /* * If we follow a reference to a forward declaration tag, * search the entire type space for the actual definition. */ while (kind == CTF_K_FORWARD) { char *tag = ctf_type_name(ctfp, type, n1, sizeof (n1)); dtrace_typeinfo_t dtt; if (tag != NULL && dt_type_lookup(tag, &dtt) == 0 && (dtt.dtt_ctfp != ctfp || dtt.dtt_type != type)) { ctfp = dtt.dtt_ctfp; type = ctf_type_resolve(ctfp, dtt.dtt_type); kind = ctf_type_kind(ctfp, type); } else { xyerror(D_OP_INCOMPLETE, "operator %s cannot be applied to a " "forward declaration: no %s definition " "is available\n", opstr(op), tag); } } if (kind != CTF_K_STRUCT && kind != CTF_K_UNION) { if (op == DT_TOK_PTR) { xyerror(D_OP_SOU, "operator -> cannot be " "applied to pointer to type \"%s\"; must " "be applied to a struct or union pointer\n", ctf_type_name(ctfp, type, n1, sizeof (n1))); } else { xyerror(D_OP_SOU, "operator %s cannot be " "applied to type \"%s\"; must be applied " "to a struct or union\n", opstr(op), ctf_type_name(ctfp, type, n1, sizeof (n1))); } } if (ctf_member_info(ctfp, type, rp->dn_string, &m) == CTF_ERR) { xyerror(D_TYPE_MEMBER, "%s is not a member of %s\n", rp->dn_string, ctf_type_name(ctfp, type, n1, sizeof (n1))); } type = ctf_type_resolve(ctfp, m.ctm_type); kind = ctf_type_kind(ctfp, type); dt_node_type_assign(dnp, ctfp, m.ctm_type, B_FALSE); dt_node_attr_assign(dnp, lp->dn_attr); if (op == DT_TOK_PTR && (kind != CTF_K_ARRAY || dt_node_is_string(dnp))) dnp->dn_flags |= DT_NF_LVALUE; /* see K&R[A7.3.3] */ if (op == DT_TOK_DOT && (lp->dn_flags & DT_NF_LVALUE) && (kind != CTF_K_ARRAY || dt_node_is_string(dnp))) dnp->dn_flags |= DT_NF_LVALUE; /* see K&R[A7.3.3] */ if (lp->dn_flags & DT_NF_WRITABLE) dnp->dn_flags |= DT_NF_WRITABLE; if (uref && (kind == CTF_K_POINTER || (dnp->dn_flags & DT_NF_REF))) dnp->dn_flags |= DT_NF_USERLAND; break; case DT_TOK_LBRAC: { /* * If op is DT_TOK_LBRAC, we know from the special-case code at * the top that lp is either a D variable or an aggregation. */ dt_node_t *lnp; /* * If the left-hand side is an aggregation, just set dn_aggtup * to the right-hand side and return the cooked aggregation. * This transformation is legal since we are just collapsing * nodes to simplify later processing, and the entire aggtup * parse subtree is retained for subsequent cooking passes. */ if (lp->dn_kind == DT_NODE_AGG) { if (lp->dn_aggtup != NULL) { xyerror(D_AGG_MDIM, "improper attempt to " "reference @%s as a multi-dimensional " "array\n", lp->dn_ident->di_name); } lp->dn_aggtup = rp; lp = dt_node_cook(lp, 0); dnp->dn_left = dnp->dn_right = NULL; dt_node_free(dnp); return (lp); } assert(lp->dn_kind == DT_NODE_VAR); idp = lp->dn_ident; /* * If the left-hand side is a non-global scalar that hasn't yet * been referenced or modified, it was just created by self-> * or this-> and we can convert it from scalar to assoc array. */ if (idp->di_kind == DT_IDENT_SCALAR && dt_ident_unref(idp) && (idp->di_flags & (DT_IDFLG_LOCAL | DT_IDFLG_TLS)) != 0) { if (idp->di_flags & DT_IDFLG_LOCAL) { xyerror(D_ARR_LOCAL, "local variables may not be used as " "associative arrays: %s\n", idp->di_name); } dt_dprintf("morph variable %s (id %u) from scalar to " "array\n", idp->di_name, idp->di_id); dt_ident_morph(idp, DT_IDENT_ARRAY, &dt_idops_assc, NULL); } if (idp->di_kind != DT_IDENT_ARRAY) { xyerror(D_IDENT_BADREF, "%s '%s' may not be referenced " "as %s\n", dt_idkind_name(idp->di_kind), idp->di_name, dt_idkind_name(DT_IDENT_ARRAY)); } /* * Now that we've confirmed our left-hand side is a DT_NODE_VAR * of idkind DT_IDENT_ARRAY, we need to splice the [ node from * the parse tree and leave a cooked DT_NODE_VAR in its place * where dn_args for the VAR node is the right-hand 'rp' tree, * as shown in the parse tree diagram below: * * / / * [ OP2 "[" ]=dnp [ VAR ]=dnp * / \ => | * / \ +- dn_args -> [ ??? ]=rp * [ VAR ]=lp [ ??? ]=rp * * Since the final dt_node_cook(dnp) can fail using longjmp we * must perform the transformations as a group first by over- * writing 'dnp' to become the VAR node, so that the parse tree * is guaranteed to be in a consistent state if the cook fails. */ assert(lp->dn_kind == DT_NODE_VAR); assert(lp->dn_args == NULL); lnp = dnp->dn_link; bcopy(lp, dnp, sizeof (dt_node_t)); dnp->dn_link = lnp; dnp->dn_args = rp; dnp->dn_list = NULL; dt_node_free(lp); return (dt_node_cook(dnp, idflags)); } case DT_TOK_XLATE: { dt_xlator_t *dxp; assert(lp->dn_kind == DT_NODE_TYPE); rp = dnp->dn_right = dt_node_cook(rp, DT_IDFLG_REF); dxp = dt_xlator_lookup(dtp, rp, lp, DT_XLATE_FUZZY); if (dxp == NULL) { xyerror(D_XLATE_NONE, "cannot translate from \"%s\" to \"%s\"\n", dt_node_type_name(rp, n1, sizeof (n1)), dt_node_type_name(lp, n2, sizeof (n2))); } dnp->dn_ident = dt_xlator_ident(dxp, lp->dn_ctfp, lp->dn_type); dt_node_type_assign(dnp, DT_DYN_CTFP(dtp), DT_DYN_TYPE(dtp), B_FALSE); dt_node_attr_assign(dnp, dt_attr_min(rp->dn_attr, dnp->dn_ident->di_attr)); break; } case DT_TOK_LPAR: { ctf_id_t ltype, rtype; uint_t lkind, rkind; assert(lp->dn_kind == DT_NODE_TYPE); rp = dnp->dn_right = dt_node_cook(rp, DT_IDFLG_REF); ltype = ctf_type_resolve(lp->dn_ctfp, lp->dn_type); lkind = ctf_type_kind(lp->dn_ctfp, ltype); rtype = ctf_type_resolve(rp->dn_ctfp, rp->dn_type); rkind = ctf_type_kind(rp->dn_ctfp, rtype); /* * The rules for casting are loosely explained in K&R[A7.5] * and K&R[A6]. Basically, we can cast to the same type or * same base type, between any kind of scalar values, from * arrays to pointers, and we can cast anything to void. * To these rules D adds casts from scalars to strings. */ if (ctf_type_compat(lp->dn_ctfp, lp->dn_type, rp->dn_ctfp, rp->dn_type)) /*EMPTY*/; else if (dt_node_is_scalar(lp) && (dt_node_is_scalar(rp) || rkind == CTF_K_FUNCTION)) /*EMPTY*/; else if (dt_node_is_void(lp)) /*EMPTY*/; else if (lkind == CTF_K_POINTER && dt_node_is_pointer(rp)) /*EMPTY*/; else if (dt_node_is_string(lp) && (dt_node_is_scalar(rp) || dt_node_is_pointer(rp) || dt_node_is_strcompat(rp))) /*EMPTY*/; else { xyerror(D_CAST_INVAL, "invalid cast expression: \"%s\" to \"%s\"\n", dt_node_type_name(rp, n1, sizeof (n1)), dt_node_type_name(lp, n2, sizeof (n2))); } dt_node_type_propagate(lp, dnp); /* see K&R[A7.5] */ dt_node_attr_assign(dnp, dt_attr_min(lp->dn_attr, rp->dn_attr)); /* * If it's a pointer then should be able to (attempt to) * assign to it. */ if (lkind == CTF_K_POINTER) dnp->dn_flags |= DT_NF_WRITABLE; break; } case DT_TOK_COMMA: lp = dnp->dn_left = dt_node_cook(lp, DT_IDFLG_REF); rp = dnp->dn_right = dt_node_cook(rp, DT_IDFLG_REF); if (dt_node_is_dynamic(lp) || dt_node_is_dynamic(rp)) { xyerror(D_OP_DYN, "operator %s operands " "cannot be of dynamic type\n", opstr(op)); } if (dt_node_is_actfunc(lp) || dt_node_is_actfunc(rp)) { xyerror(D_OP_ACT, "operator %s operands " "cannot be actions\n", opstr(op)); } dt_node_type_propagate(rp, dnp); /* see K&R[A7.18] */ dt_node_attr_assign(dnp, dt_attr_min(lp->dn_attr, rp->dn_attr)); break; default: xyerror(D_UNKNOWN, "invalid binary op %s\n", opstr(op)); } /* * Complete the conversion of E1[E2] to *((E1)+(E2)) that we started * at the top of our switch() above (see K&R[A7.3.1]). Since E2 is * parsed as an argument_expression_list by dt_grammar.y, we can * end up with a comma-separated list inside of a non-associative * array reference. We check for this and report an appropriate error. */ if (dnp->dn_op == DT_TOK_LBRAC && op == DT_TOK_ADD) { dt_node_t *pnp; if (rp->dn_list != NULL) { xyerror(D_ARR_BADREF, "cannot access %s as an associative array\n", dt_node_name(lp, n1, sizeof (n1))); } dnp->dn_op = DT_TOK_ADD; pnp = dt_node_op1(DT_TOK_DEREF, dnp); /* * Cook callbacks are not typically permitted to allocate nodes. * When we do, we must insert them in the middle of an existing * allocation list rather than having them appended to the pcb * list because the sub-expression may be part of a definition. */ assert(yypcb->pcb_list == pnp); yypcb->pcb_list = pnp->dn_link; pnp->dn_link = dnp->dn_link; dnp->dn_link = pnp; return (dt_node_cook(pnp, DT_IDFLG_REF)); } return (dnp); } /*ARGSUSED*/ static dt_node_t * dt_cook_op3(dt_node_t *dnp, uint_t idflags) { dt_node_t *lp, *rp; ctf_file_t *ctfp; ctf_id_t type; dnp->dn_expr = dt_node_cook(dnp->dn_expr, DT_IDFLG_REF); lp = dnp->dn_left = dt_node_cook(dnp->dn_left, DT_IDFLG_REF); rp = dnp->dn_right = dt_node_cook(dnp->dn_right, DT_IDFLG_REF); if (!dt_node_is_scalar(dnp->dn_expr)) { xyerror(D_OP_SCALAR, "operator ?: expression must be of scalar type\n"); } if (dt_node_is_dynamic(lp) || dt_node_is_dynamic(rp)) { xyerror(D_OP_DYN, "operator ?: operands cannot be of dynamic type\n"); } /* * The rules for type checking for the ternary operator are complex and * are described in the ANSI-C spec (see K&R[A7.16]). We implement * the various tests in order from least to most expensive. */ if (ctf_type_compat(lp->dn_ctfp, lp->dn_type, rp->dn_ctfp, rp->dn_type)) { ctfp = lp->dn_ctfp; type = lp->dn_type; } else if (dt_node_is_integer(lp) && dt_node_is_integer(rp)) { dt_type_promote(lp, rp, &ctfp, &type); } else if (dt_node_is_strcompat(lp) && dt_node_is_strcompat(rp) && (dt_node_is_string(lp) || dt_node_is_string(rp))) { ctfp = DT_STR_CTFP(yypcb->pcb_hdl); type = DT_STR_TYPE(yypcb->pcb_hdl); } else if (dt_node_is_ptrcompat(lp, rp, &ctfp, &type) == 0) { xyerror(D_OP_INCOMPAT, "operator ?: operands must have compatible types\n"); } if (dt_node_is_actfunc(lp) || dt_node_is_actfunc(rp)) { xyerror(D_OP_ACT, "action cannot be " "used in a conditional context\n"); } dt_node_type_assign(dnp, ctfp, type, B_FALSE); dt_node_attr_assign(dnp, dt_attr_min(dnp->dn_expr->dn_attr, dt_attr_min(lp->dn_attr, rp->dn_attr))); return (dnp); } static dt_node_t * dt_cook_statement(dt_node_t *dnp, uint_t idflags) { dnp->dn_expr = dt_node_cook(dnp->dn_expr, idflags); dt_node_attr_assign(dnp, dnp->dn_expr->dn_attr); return (dnp); } /* * If dn_aggfun is set, this node is a collapsed aggregation assignment (see * the special case code for DT_TOK_ASGN in dt_cook_op2() above), in which * case we cook both the tuple and the function call. If dn_aggfun is NULL, * this node is just a reference to the aggregation's type and attributes. */ /*ARGSUSED*/ static dt_node_t * dt_cook_aggregation(dt_node_t *dnp, uint_t idflags) { dtrace_hdl_t *dtp = yypcb->pcb_hdl; if (dnp->dn_aggfun != NULL) { dnp->dn_aggfun = dt_node_cook(dnp->dn_aggfun, DT_IDFLG_REF); dt_node_attr_assign(dnp, dt_ident_cook(dnp, dnp->dn_ident, &dnp->dn_aggtup)); } else { dt_node_type_assign(dnp, DT_DYN_CTFP(dtp), DT_DYN_TYPE(dtp), B_FALSE); dt_node_attr_assign(dnp, dnp->dn_ident->di_attr); } return (dnp); } /* * Since D permits new variable identifiers to be instantiated in any program * expression, we may need to cook a clause's predicate either before or after * the action list depending on the program code in question. Consider: * * probe-description-list probe-description-list * /x++/ /x == 0/ * { { * trace(x); trace(x++); * } } * * In the left-hand example, the predicate uses operator ++ to instantiate 'x' * as a variable of type int64_t. The predicate must be cooked first because * otherwise the statement trace(x) refers to an unknown identifier. In the * right-hand example, the action list uses ++ to instantiate 'x'; the action * list must be cooked first because otherwise the predicate x == 0 refers to * an unknown identifier. In order to simplify programming, we support both. * * When cooking a clause, we cook the action statements before the predicate by * default, since it seems more common to create or modify identifiers in the * action list. If cooking fails due to an unknown identifier, we attempt to * cook the predicate (i.e. do it first) and then go back and cook the actions. * If this, too, fails (or if we get an error other than D_IDENT_UNDEF) we give * up and report failure back to the user. There are five possible paths: * * cook actions = OK, cook predicate = OK -> OK * cook actions = OK, cook predicate = ERR -> ERR * cook actions = ERR, cook predicate = ERR -> ERR * cook actions = ERR, cook predicate = OK, cook actions = OK -> OK * cook actions = ERR, cook predicate = OK, cook actions = ERR -> ERR * * The programmer can still defeat our scheme by creating circular definition * dependencies between predicates and actions, as in this example clause: * * probe-description-list * /x++ && y == 0/ * { * trace(x + y++); * } * * but it doesn't seem worth the complexity to handle such rare cases. The * user can simply use the D variable declaration syntax to work around them. */ static dt_node_t * dt_cook_clause(dt_node_t *dnp, uint_t idflags) { volatile int err, tries; jmp_buf ojb; /* * Before assigning dn_ctxattr, temporarily assign the probe attribute * to 'dnp' itself to force an attribute check and minimum violation. */ dt_node_attr_assign(dnp, yypcb->pcb_pinfo.dtp_attr); dnp->dn_ctxattr = yypcb->pcb_pinfo.dtp_attr; bcopy(yypcb->pcb_jmpbuf, ojb, sizeof (jmp_buf)); tries = 0; if (dnp->dn_pred != NULL && (err = setjmp(yypcb->pcb_jmpbuf)) != 0) { bcopy(ojb, yypcb->pcb_jmpbuf, sizeof (jmp_buf)); if (tries++ != 0 || err != EDT_COMPILER || ( yypcb->pcb_hdl->dt_errtag != dt_errtag(D_IDENT_UNDEF) && yypcb->pcb_hdl->dt_errtag != dt_errtag(D_VAR_UNDEF))) longjmp(yypcb->pcb_jmpbuf, err); } if (tries == 0) { yylabel("action list"); dt_node_attr_assign(dnp, dt_node_list_cook(&dnp->dn_acts, idflags)); bcopy(ojb, yypcb->pcb_jmpbuf, sizeof (jmp_buf)); yylabel(NULL); } if (dnp->dn_pred != NULL) { yylabel("predicate"); dnp->dn_pred = dt_node_cook(dnp->dn_pred, idflags); dt_node_attr_assign(dnp, dt_attr_min(dnp->dn_attr, dnp->dn_pred->dn_attr)); if (!dt_node_is_scalar(dnp->dn_pred)) { xyerror(D_PRED_SCALAR, "predicate result must be of scalar type\n"); } yylabel(NULL); } if (tries != 0) { yylabel("action list"); dt_node_attr_assign(dnp, dt_node_list_cook(&dnp->dn_acts, idflags)); yylabel(NULL); } return (dnp); } /*ARGSUSED*/ static dt_node_t * dt_cook_inline(dt_node_t *dnp, uint_t idflags) { dt_idnode_t *inp = dnp->dn_ident->di_iarg; dt_ident_t *rdp; char n1[DT_TYPE_NAMELEN]; char n2[DT_TYPE_NAMELEN]; assert(dnp->dn_ident->di_flags & DT_IDFLG_INLINE); assert(inp->din_root->dn_flags & DT_NF_COOKED); /* * If we are inlining a translation, verify that the inline declaration * type exactly matches the type that is returned by the translation. * Otherwise just use dt_node_is_argcompat() to check the types. */ if ((rdp = dt_node_resolve(inp->din_root, DT_IDENT_XLSOU)) != NULL || (rdp = dt_node_resolve(inp->din_root, DT_IDENT_XLPTR)) != NULL) { ctf_file_t *lctfp = dnp->dn_ctfp; ctf_id_t ltype = ctf_type_resolve(lctfp, dnp->dn_type); dt_xlator_t *dxp = rdp->di_data; ctf_file_t *rctfp = dxp->dx_dst_ctfp; ctf_id_t rtype = dxp->dx_dst_base; if (ctf_type_kind(lctfp, ltype) == CTF_K_POINTER) { ltype = ctf_type_reference(lctfp, ltype); ltype = ctf_type_resolve(lctfp, ltype); } if (ctf_type_compat(lctfp, ltype, rctfp, rtype) == 0) { dnerror(dnp, D_OP_INCOMPAT, "inline %s definition uses incompatible types: " "\"%s\" = \"%s\"\n", dnp->dn_ident->di_name, dt_type_name(lctfp, ltype, n1, sizeof (n1)), dt_type_name(rctfp, rtype, n2, sizeof (n2))); } } else if (dt_node_is_argcompat(dnp, inp->din_root) == 0) { dnerror(dnp, D_OP_INCOMPAT, "inline %s definition uses incompatible types: " "\"%s\" = \"%s\"\n", dnp->dn_ident->di_name, dt_node_type_name(dnp, n1, sizeof (n1)), dt_node_type_name(inp->din_root, n2, sizeof (n2))); } return (dnp); } static dt_node_t * dt_cook_member(dt_node_t *dnp, uint_t idflags) { dnp->dn_membexpr = dt_node_cook(dnp->dn_membexpr, idflags); dt_node_attr_assign(dnp, dnp->dn_membexpr->dn_attr); return (dnp); } /*ARGSUSED*/ static dt_node_t * dt_cook_xlator(dt_node_t *dnp, uint_t idflags) { dtrace_hdl_t *dtp = yypcb->pcb_hdl; dt_xlator_t *dxp = dnp->dn_xlator; dt_node_t *mnp; char n1[DT_TYPE_NAMELEN]; char n2[DT_TYPE_NAMELEN]; dtrace_attribute_t attr = _dtrace_maxattr; ctf_membinfo_t ctm; /* * Before cooking each translator member, we push a reference to the * hash containing translator-local identifiers on to pcb_globals to * temporarily interpose these identifiers in front of other globals. */ dt_idstack_push(&yypcb->pcb_globals, dxp->dx_locals); for (mnp = dnp->dn_members; mnp != NULL; mnp = mnp->dn_list) { if (ctf_member_info(dxp->dx_dst_ctfp, dxp->dx_dst_type, mnp->dn_membname, &ctm) == CTF_ERR) { xyerror(D_XLATE_MEMB, "translator member %s is not a member of %s\n", mnp->dn_membname, ctf_type_name(dxp->dx_dst_ctfp, dxp->dx_dst_type, n1, sizeof (n1))); } (void) dt_node_cook(mnp, DT_IDFLG_REF); dt_node_type_assign(mnp, dxp->dx_dst_ctfp, ctm.ctm_type, B_FALSE); attr = dt_attr_min(attr, mnp->dn_attr); if (dt_node_is_argcompat(mnp, mnp->dn_membexpr) == 0) { xyerror(D_XLATE_INCOMPAT, "translator member %s definition uses " "incompatible types: \"%s\" = \"%s\"\n", mnp->dn_membname, dt_node_type_name(mnp, n1, sizeof (n1)), dt_node_type_name(mnp->dn_membexpr, n2, sizeof (n2))); } } dt_idstack_pop(&yypcb->pcb_globals, dxp->dx_locals); dxp->dx_souid.di_attr = attr; dxp->dx_ptrid.di_attr = attr; dt_node_type_assign(dnp, DT_DYN_CTFP(dtp), DT_DYN_TYPE(dtp), B_FALSE); dt_node_attr_assign(dnp, _dtrace_defattr); return (dnp); } static void dt_node_provider_cmp_argv(dt_provider_t *pvp, dt_node_t *pnp, const char *kind, uint_t old_argc, dt_node_t *old_argv, uint_t new_argc, dt_node_t *new_argv) { dt_probe_t *prp = pnp->dn_ident->di_data; uint_t i; char n1[DT_TYPE_NAMELEN]; char n2[DT_TYPE_NAMELEN]; if (old_argc != new_argc) { dnerror(pnp, D_PROV_INCOMPAT, "probe %s:%s %s prototype mismatch:\n" "\t current: %u arg%s\n\tprevious: %u arg%s\n", pvp->pv_desc.dtvd_name, prp->pr_ident->di_name, kind, new_argc, new_argc != 1 ? "s" : "", old_argc, old_argc != 1 ? "s" : ""); } for (i = 0; i < old_argc; i++, old_argv = old_argv->dn_list, new_argv = new_argv->dn_list) { if (ctf_type_cmp(old_argv->dn_ctfp, old_argv->dn_type, new_argv->dn_ctfp, new_argv->dn_type) == 0) continue; dnerror(pnp, D_PROV_INCOMPAT, "probe %s:%s %s prototype argument #%u mismatch:\n" "\t current: %s\n\tprevious: %s\n", pvp->pv_desc.dtvd_name, prp->pr_ident->di_name, kind, i + 1, dt_node_type_name(new_argv, n1, sizeof (n1)), dt_node_type_name(old_argv, n2, sizeof (n2))); } } /* * Compare a new probe declaration with an existing probe definition (either * from a previous declaration or cached from the kernel). If the existing * definition and declaration both have an input and output parameter list, * compare both lists. Otherwise compare only the output parameter lists. */ static void dt_node_provider_cmp(dt_provider_t *pvp, dt_node_t *pnp, dt_probe_t *old, dt_probe_t *new) { dt_node_provider_cmp_argv(pvp, pnp, "output", old->pr_xargc, old->pr_xargs, new->pr_xargc, new->pr_xargs); if (old->pr_nargs != old->pr_xargs && new->pr_nargs != new->pr_xargs) { dt_node_provider_cmp_argv(pvp, pnp, "input", old->pr_nargc, old->pr_nargs, new->pr_nargc, new->pr_nargs); } if (old->pr_nargs == old->pr_xargs && new->pr_nargs != new->pr_xargs) { if (pvp->pv_flags & DT_PROVIDER_IMPL) { dnerror(pnp, D_PROV_INCOMPAT, "provider interface mismatch: %s\n" "\t current: probe %s:%s has an output prototype\n" "\tprevious: probe %s:%s has no output prototype\n", pvp->pv_desc.dtvd_name, pvp->pv_desc.dtvd_name, new->pr_ident->di_name, pvp->pv_desc.dtvd_name, old->pr_ident->di_name); } if (old->pr_ident->di_gen == yypcb->pcb_hdl->dt_gen) old->pr_ident->di_flags |= DT_IDFLG_ORPHAN; dt_idhash_delete(pvp->pv_probes, old->pr_ident); dt_probe_declare(pvp, new); } } static void dt_cook_probe(dt_node_t *dnp, dt_provider_t *pvp) { dtrace_hdl_t *dtp = yypcb->pcb_hdl; dt_probe_t *prp = dnp->dn_ident->di_data; dt_xlator_t *dxp; uint_t i; char n1[DT_TYPE_NAMELEN]; char n2[DT_TYPE_NAMELEN]; if (prp->pr_nargs == prp->pr_xargs) return; for (i = 0; i < prp->pr_xargc; i++) { dt_node_t *xnp = prp->pr_xargv[i]; dt_node_t *nnp = prp->pr_nargv[prp->pr_mapping[i]]; if ((dxp = dt_xlator_lookup(dtp, nnp, xnp, DT_XLATE_FUZZY)) != NULL) { if (dt_provider_xref(dtp, pvp, dxp->dx_id) != 0) longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); continue; } if (dt_node_is_argcompat(nnp, xnp)) continue; /* no translator defined and none required */ dnerror(dnp, D_PROV_PRXLATOR, "translator for %s:%s output " "argument #%u from %s to %s is not defined\n", pvp->pv_desc.dtvd_name, dnp->dn_ident->di_name, i + 1, dt_node_type_name(nnp, n1, sizeof (n1)), dt_node_type_name(xnp, n2, sizeof (n2))); } } /*ARGSUSED*/ static dt_node_t * dt_cook_provider(dt_node_t *dnp, uint_t idflags) { dt_provider_t *pvp = dnp->dn_provider; dt_node_t *pnp; /* * If we're declaring a provider for the first time and it is unknown * to dtrace(7D), insert the probe definitions into the provider's hash. * If we're redeclaring a known provider, verify the interface matches. */ for (pnp = dnp->dn_probes; pnp != NULL; pnp = pnp->dn_list) { const char *probename = pnp->dn_ident->di_name; dt_probe_t *prp = dt_probe_lookup(pvp, probename); assert(pnp->dn_kind == DT_NODE_PROBE); if (prp != NULL && dnp->dn_provred) { dt_node_provider_cmp(pvp, pnp, prp, pnp->dn_ident->di_data); } else if (prp == NULL && dnp->dn_provred) { dnerror(pnp, D_PROV_INCOMPAT, "provider interface mismatch: %s\n" "\t current: probe %s:%s defined\n" "\tprevious: probe %s:%s not defined\n", dnp->dn_provname, dnp->dn_provname, probename, dnp->dn_provname, probename); } else if (prp != NULL) { dnerror(pnp, D_PROV_PRDUP, "probe redeclared: %s:%s\n", dnp->dn_provname, probename); } else dt_probe_declare(pvp, pnp->dn_ident->di_data); dt_cook_probe(pnp, pvp); } return (dnp); } /*ARGSUSED*/ static dt_node_t * dt_cook_none(dt_node_t *dnp, uint_t idflags) { return (dnp); } static dt_node_t *(*dt_cook_funcs[])(dt_node_t *, uint_t) = { dt_cook_none, /* DT_NODE_FREE */ dt_cook_none, /* DT_NODE_INT */ dt_cook_none, /* DT_NODE_STRING */ dt_cook_ident, /* DT_NODE_IDENT */ dt_cook_var, /* DT_NODE_VAR */ dt_cook_none, /* DT_NODE_SYM */ dt_cook_none, /* DT_NODE_TYPE */ dt_cook_func, /* DT_NODE_FUNC */ dt_cook_op1, /* DT_NODE_OP1 */ dt_cook_op2, /* DT_NODE_OP2 */ dt_cook_op3, /* DT_NODE_OP3 */ dt_cook_statement, /* DT_NODE_DEXPR */ dt_cook_statement, /* DT_NODE_DFUNC */ dt_cook_aggregation, /* DT_NODE_AGG */ dt_cook_none, /* DT_NODE_PDESC */ dt_cook_clause, /* DT_NODE_CLAUSE */ dt_cook_inline, /* DT_NODE_INLINE */ dt_cook_member, /* DT_NODE_MEMBER */ dt_cook_xlator, /* DT_NODE_XLATOR */ dt_cook_none, /* DT_NODE_PROBE */ dt_cook_provider, /* DT_NODE_PROVIDER */ dt_cook_none, /* DT_NODE_PROG */ dt_cook_none, /* DT_NODE_IF */ }; /* * Recursively cook the parse tree starting at the specified node. The idflags * parameter is used to indicate the type of reference (r/w) and is applied to * the resulting identifier if it is a D variable or D aggregation. */ dt_node_t * dt_node_cook(dt_node_t *dnp, uint_t idflags) { int oldlineno = yylineno; yylineno = dnp->dn_line; assert(dnp->dn_kind < sizeof (dt_cook_funcs) / sizeof (dt_cook_funcs[0])); dnp = dt_cook_funcs[dnp->dn_kind](dnp, idflags); dnp->dn_flags |= DT_NF_COOKED; if (dnp->dn_kind == DT_NODE_VAR || dnp->dn_kind == DT_NODE_AGG) dnp->dn_ident->di_flags |= idflags; yylineno = oldlineno; return (dnp); } dtrace_attribute_t dt_node_list_cook(dt_node_t **pnp, uint_t idflags) { dtrace_attribute_t attr = _dtrace_defattr; dt_node_t *dnp, *nnp; for (dnp = (pnp != NULL ? *pnp : NULL); dnp != NULL; dnp = nnp) { nnp = dnp->dn_list; dnp = *pnp = dt_node_cook(dnp, idflags); attr = dt_attr_min(attr, dnp->dn_attr); dnp->dn_list = nnp; pnp = &dnp->dn_list; } return (attr); } void dt_node_list_free(dt_node_t **pnp) { dt_node_t *dnp, *nnp; for (dnp = (pnp != NULL ? *pnp : NULL); dnp != NULL; dnp = nnp) { nnp = dnp->dn_list; dt_node_free(dnp); } if (pnp != NULL) *pnp = NULL; } void dt_node_link_free(dt_node_t **pnp) { dt_node_t *dnp, *nnp; for (dnp = (pnp != NULL ? *pnp : NULL); dnp != NULL; dnp = nnp) { nnp = dnp->dn_link; dt_node_free(dnp); } for (dnp = (pnp != NULL ? *pnp : NULL); dnp != NULL; dnp = nnp) { nnp = dnp->dn_link; free(dnp); } if (pnp != NULL) *pnp = NULL; } dt_node_t * dt_node_link(dt_node_t *lp, dt_node_t *rp) { dt_node_t *dnp; if (lp == NULL) return (rp); else if (rp == NULL) return (lp); for (dnp = lp; dnp->dn_list != NULL; dnp = dnp->dn_list) continue; dnp->dn_list = rp; return (lp); } /* * Compute the DOF dtrace_diftype_t representation of a node's type. This is * called from a variety of places in the library so it cannot assume yypcb * is valid: any references to handle-specific data must be made through 'dtp'. */ void dt_node_diftype(dtrace_hdl_t *dtp, const dt_node_t *dnp, dtrace_diftype_t *tp) { if (dnp->dn_ctfp == DT_STR_CTFP(dtp) && dnp->dn_type == DT_STR_TYPE(dtp)) { tp->dtdt_kind = DIF_TYPE_STRING; tp->dtdt_ckind = CTF_K_UNKNOWN; } else { tp->dtdt_kind = DIF_TYPE_CTF; tp->dtdt_ckind = ctf_type_kind(dnp->dn_ctfp, ctf_type_resolve(dnp->dn_ctfp, dnp->dn_type)); } tp->dtdt_flags = (dnp->dn_flags & DT_NF_REF) ? (dnp->dn_flags & DT_NF_USERLAND) ? DIF_TF_BYUREF : DIF_TF_BYREF : 0; tp->dtdt_pad = 0; tp->dtdt_size = ctf_type_size(dnp->dn_ctfp, dnp->dn_type); } /* * Output the parse tree as D. The "-xtree=8" argument will call this * function to print out the program after any syntactic sugar * transformations have been applied (e.g. to implement "if"). The * resulting output can be used to understand the transformations * applied by these features, or to run such a script on a system that * does not support these features * * Note that the output does not express precisely the same program as * the input. In particular: * - Only the clauses are output. #pragma options, variable * declarations, etc. are excluded. * - Command argument substitution has already been done, so the output * will not contain e.g. $$1, but rather the substituted string. */ void dt_printd(dt_node_t *dnp, FILE *fp, int depth) { dt_node_t *arg; switch (dnp->dn_kind) { case DT_NODE_INT: (void) fprintf(fp, "0x%llx", (u_longlong_t)dnp->dn_value); if (!(dnp->dn_flags & DT_NF_SIGNED)) (void) fprintf(fp, "u"); break; case DT_NODE_STRING: { char *escd = strchr2esc(dnp->dn_string, strlen(dnp->dn_string)); (void) fprintf(fp, "\"%s\"", escd); free(escd); break; } case DT_NODE_IDENT: (void) fprintf(fp, "%s", dnp->dn_string); break; case DT_NODE_VAR: (void) fprintf(fp, "%s%s", (dnp->dn_ident->di_flags & DT_IDFLG_LOCAL) ? "this->" : (dnp->dn_ident->di_flags & DT_IDFLG_TLS) ? "self->" : "", dnp->dn_ident->di_name); if (dnp->dn_args != NULL) { (void) fprintf(fp, "["); for (arg = dnp->dn_args; arg != NULL; arg = arg->dn_list) { dt_printd(arg, fp, 0); if (arg->dn_list != NULL) (void) fprintf(fp, ", "); } (void) fprintf(fp, "]"); } break; case DT_NODE_SYM: { const dtrace_syminfo_t *dts = dnp->dn_ident->di_data; (void) fprintf(fp, "%s`%s", dts->dts_object, dts->dts_name); break; } case DT_NODE_FUNC: (void) fprintf(fp, "%s(", dnp->dn_ident->di_name); for (arg = dnp->dn_args; arg != NULL; arg = arg->dn_list) { dt_printd(arg, fp, 0); if (arg->dn_list != NULL) (void) fprintf(fp, ", "); } (void) fprintf(fp, ")"); break; case DT_NODE_OP1: (void) fprintf(fp, "%s(", opstr(dnp->dn_op)); dt_printd(dnp->dn_child, fp, 0); (void) fprintf(fp, ")"); break; case DT_NODE_OP2: (void) fprintf(fp, "("); dt_printd(dnp->dn_left, fp, 0); if (dnp->dn_op == DT_TOK_LPAR) { (void) fprintf(fp, ")"); dt_printd(dnp->dn_right, fp, 0); break; } if (dnp->dn_op == DT_TOK_PTR || dnp->dn_op == DT_TOK_DOT || dnp->dn_op == DT_TOK_LBRAC) (void) fprintf(fp, "%s", opstr(dnp->dn_op)); else (void) fprintf(fp, " %s ", opstr(dnp->dn_op)); dt_printd(dnp->dn_right, fp, 0); if (dnp->dn_op == DT_TOK_LBRAC) { dt_node_t *ln = dnp->dn_right; while (ln->dn_list != NULL) { (void) fprintf(fp, ", "); dt_printd(ln->dn_list, fp, depth); ln = ln->dn_list; } (void) fprintf(fp, "]"); } (void) fprintf(fp, ")"); break; case DT_NODE_OP3: (void) fprintf(fp, "("); dt_printd(dnp->dn_expr, fp, 0); (void) fprintf(fp, " ? "); dt_printd(dnp->dn_left, fp, 0); (void) fprintf(fp, " : "); dt_printd(dnp->dn_right, fp, 0); (void) fprintf(fp, ")"); break; case DT_NODE_DEXPR: case DT_NODE_DFUNC: (void) fprintf(fp, "%*s", depth * 8, ""); dt_printd(dnp->dn_expr, fp, depth + 1); (void) fprintf(fp, ";\n"); break; case DT_NODE_PDESC: (void) fprintf(fp, "%s:%s:%s:%s", dnp->dn_desc->dtpd_provider, dnp->dn_desc->dtpd_mod, dnp->dn_desc->dtpd_func, dnp->dn_desc->dtpd_name); break; case DT_NODE_CLAUSE: for (arg = dnp->dn_pdescs; arg != NULL; arg = arg->dn_list) { dt_printd(arg, fp, 0); if (arg->dn_list != NULL) (void) fprintf(fp, ","); (void) fprintf(fp, "\n"); } if (dnp->dn_pred != NULL) { (void) fprintf(fp, "/"); dt_printd(dnp->dn_pred, fp, 0); (void) fprintf(fp, "/\n"); } (void) fprintf(fp, "{\n"); for (arg = dnp->dn_acts; arg != NULL; arg = arg->dn_list) dt_printd(arg, fp, depth + 1); (void) fprintf(fp, "}\n"); (void) fprintf(fp, "\n"); break; case DT_NODE_IF: (void) fprintf(fp, "%*sif (", depth * 8, ""); dt_printd(dnp->dn_conditional, fp, 0); (void) fprintf(fp, ") {\n"); for (arg = dnp->dn_body; arg != NULL; arg = arg->dn_list) dt_printd(arg, fp, depth + 1); if (dnp->dn_alternate_body == NULL) { (void) fprintf(fp, "%*s}\n", depth * 8, ""); } else { (void) fprintf(fp, "%*s} else {\n", depth * 8, ""); for (arg = dnp->dn_alternate_body; arg != NULL; arg = arg->dn_list) dt_printd(arg, fp, depth + 1); (void) fprintf(fp, "%*s}\n", depth * 8, ""); } break; default: (void) fprintf(fp, "/* bad node %p, kind %d */\n", (void *)dnp, dnp->dn_kind); } } void dt_node_printr(dt_node_t *dnp, FILE *fp, int depth) { char n[DT_TYPE_NAMELEN], buf[BUFSIZ], a[8]; const dtrace_syminfo_t *dts; const dt_idnode_t *inp; dt_node_t *arg; (void) fprintf(fp, "%*s", depth * 2, ""); (void) dt_attr_str(dnp->dn_attr, a, sizeof (a)); if (dnp->dn_ctfp != NULL && dnp->dn_type != CTF_ERR && ctf_type_name(dnp->dn_ctfp, dnp->dn_type, n, sizeof (n)) != NULL) { (void) snprintf(buf, BUFSIZ, "type=<%s> attr=%s flags=", n, a); } else { (void) snprintf(buf, BUFSIZ, "type=<%ld> attr=%s flags=", dnp->dn_type, a); } if (dnp->dn_flags != 0) { n[0] = '\0'; if (dnp->dn_flags & DT_NF_SIGNED) (void) strcat(n, ",SIGN"); if (dnp->dn_flags & DT_NF_COOKED) (void) strcat(n, ",COOK"); if (dnp->dn_flags & DT_NF_REF) (void) strcat(n, ",REF"); if (dnp->dn_flags & DT_NF_LVALUE) (void) strcat(n, ",LVAL"); if (dnp->dn_flags & DT_NF_WRITABLE) (void) strcat(n, ",WRITE"); if (dnp->dn_flags & DT_NF_BITFIELD) (void) strcat(n, ",BITF"); if (dnp->dn_flags & DT_NF_USERLAND) (void) strcat(n, ",USER"); (void) strcat(buf, n + 1); } else (void) strcat(buf, "0"); switch (dnp->dn_kind) { case DT_NODE_FREE: (void) fprintf(fp, "FREE \n", (void *)dnp); break; case DT_NODE_INT: (void) fprintf(fp, "INT 0x%llx (%s)\n", (u_longlong_t)dnp->dn_value, buf); break; case DT_NODE_STRING: (void) fprintf(fp, "STRING \"%s\" (%s)\n", dnp->dn_string, buf); break; case DT_NODE_IDENT: (void) fprintf(fp, "IDENT %s (%s)\n", dnp->dn_string, buf); break; case DT_NODE_VAR: (void) fprintf(fp, "VARIABLE %s%s (%s)\n", (dnp->dn_ident->di_flags & DT_IDFLG_LOCAL) ? "this->" : (dnp->dn_ident->di_flags & DT_IDFLG_TLS) ? "self->" : "", dnp->dn_ident->di_name, buf); if (dnp->dn_args != NULL) (void) fprintf(fp, "%*s[\n", depth * 2, ""); for (arg = dnp->dn_args; arg != NULL; arg = arg->dn_list) { dt_node_printr(arg, fp, depth + 1); if (arg->dn_list != NULL) (void) fprintf(fp, "%*s,\n", depth * 2, ""); } if (dnp->dn_args != NULL) (void) fprintf(fp, "%*s]\n", depth * 2, ""); break; case DT_NODE_SYM: dts = dnp->dn_ident->di_data; (void) fprintf(fp, "SYMBOL %s`%s (%s)\n", dts->dts_object, dts->dts_name, buf); break; case DT_NODE_TYPE: if (dnp->dn_string != NULL) { (void) fprintf(fp, "TYPE (%s) %s\n", buf, dnp->dn_string); } else (void) fprintf(fp, "TYPE (%s)\n", buf); break; case DT_NODE_FUNC: (void) fprintf(fp, "FUNC %s (%s)\n", dnp->dn_ident->di_name, buf); for (arg = dnp->dn_args; arg != NULL; arg = arg->dn_list) { dt_node_printr(arg, fp, depth + 1); if (arg->dn_list != NULL) (void) fprintf(fp, "%*s,\n", depth * 2, ""); } break; case DT_NODE_OP1: (void) fprintf(fp, "OP1 %s (%s)\n", opstr(dnp->dn_op), buf); dt_node_printr(dnp->dn_child, fp, depth + 1); break; case DT_NODE_OP2: (void) fprintf(fp, "OP2 %s (%s)\n", opstr(dnp->dn_op), buf); dt_node_printr(dnp->dn_left, fp, depth + 1); dt_node_printr(dnp->dn_right, fp, depth + 1); if (dnp->dn_op == DT_TOK_LBRAC) { dt_node_t *ln = dnp->dn_right; while (ln->dn_list != NULL) { dt_node_printr(ln->dn_list, fp, depth + 1); ln = ln->dn_list; } } break; case DT_NODE_OP3: (void) fprintf(fp, "OP3 (%s)\n", buf); dt_node_printr(dnp->dn_expr, fp, depth + 1); (void) fprintf(fp, "%*s?\n", depth * 2, ""); dt_node_printr(dnp->dn_left, fp, depth + 1); (void) fprintf(fp, "%*s:\n", depth * 2, ""); dt_node_printr(dnp->dn_right, fp, depth + 1); break; case DT_NODE_DEXPR: case DT_NODE_DFUNC: (void) fprintf(fp, "D EXPRESSION attr=%s\n", a); dt_node_printr(dnp->dn_expr, fp, depth + 1); break; case DT_NODE_AGG: (void) fprintf(fp, "AGGREGATE @%s attr=%s [\n", dnp->dn_ident->di_name, a); for (arg = dnp->dn_aggtup; arg != NULL; arg = arg->dn_list) { dt_node_printr(arg, fp, depth + 1); if (arg->dn_list != NULL) (void) fprintf(fp, "%*s,\n", depth * 2, ""); } if (dnp->dn_aggfun) { (void) fprintf(fp, "%*s] = ", depth * 2, ""); dt_node_printr(dnp->dn_aggfun, fp, depth + 1); } else (void) fprintf(fp, "%*s]\n", depth * 2, ""); if (dnp->dn_aggfun) (void) fprintf(fp, "%*s)\n", depth * 2, ""); break; case DT_NODE_PDESC: (void) fprintf(fp, "PDESC %s:%s:%s:%s [%u]\n", dnp->dn_desc->dtpd_provider, dnp->dn_desc->dtpd_mod, dnp->dn_desc->dtpd_func, dnp->dn_desc->dtpd_name, dnp->dn_desc->dtpd_id); break; case DT_NODE_CLAUSE: (void) fprintf(fp, "CLAUSE attr=%s\n", a); for (arg = dnp->dn_pdescs; arg != NULL; arg = arg->dn_list) dt_node_printr(arg, fp, depth + 1); (void) fprintf(fp, "%*sCTXATTR %s\n", depth * 2, "", dt_attr_str(dnp->dn_ctxattr, a, sizeof (a))); if (dnp->dn_pred != NULL) { (void) fprintf(fp, "%*sPREDICATE /\n", depth * 2, ""); dt_node_printr(dnp->dn_pred, fp, depth + 1); (void) fprintf(fp, "%*s/\n", depth * 2, ""); } for (arg = dnp->dn_acts; arg != NULL; arg = arg->dn_list) dt_node_printr(arg, fp, depth + 1); (void) fprintf(fp, "\n"); break; case DT_NODE_INLINE: inp = dnp->dn_ident->di_iarg; (void) fprintf(fp, "INLINE %s (%s)\n", dnp->dn_ident->di_name, buf); dt_node_printr(inp->din_root, fp, depth + 1); break; case DT_NODE_MEMBER: (void) fprintf(fp, "MEMBER %s (%s)\n", dnp->dn_membname, buf); if (dnp->dn_membexpr) dt_node_printr(dnp->dn_membexpr, fp, depth + 1); break; case DT_NODE_XLATOR: (void) fprintf(fp, "XLATOR (%s)", buf); if (ctf_type_name(dnp->dn_xlator->dx_src_ctfp, dnp->dn_xlator->dx_src_type, n, sizeof (n)) != NULL) (void) fprintf(fp, " from <%s>", n); if (ctf_type_name(dnp->dn_xlator->dx_dst_ctfp, dnp->dn_xlator->dx_dst_type, n, sizeof (n)) != NULL) (void) fprintf(fp, " to <%s>", n); (void) fprintf(fp, "\n"); for (arg = dnp->dn_members; arg != NULL; arg = arg->dn_list) dt_node_printr(arg, fp, depth + 1); break; case DT_NODE_PROBE: (void) fprintf(fp, "PROBE %s\n", dnp->dn_ident->di_name); break; case DT_NODE_PROVIDER: (void) fprintf(fp, "PROVIDER %s (%s)\n", dnp->dn_provname, dnp->dn_provred ? "redecl" : "decl"); for (arg = dnp->dn_probes; arg != NULL; arg = arg->dn_list) dt_node_printr(arg, fp, depth + 1); break; case DT_NODE_PROG: (void) fprintf(fp, "PROGRAM attr=%s\n", a); for (arg = dnp->dn_list; arg != NULL; arg = arg->dn_list) dt_node_printr(arg, fp, depth + 1); break; case DT_NODE_IF: (void) fprintf(fp, "IF attr=%s CONDITION:\n", a); dt_node_printr(dnp->dn_conditional, fp, depth + 1); (void) fprintf(fp, "%*sIF BODY: \n", depth * 2, ""); for (arg = dnp->dn_body; arg != NULL; arg = arg->dn_list) dt_node_printr(arg, fp, depth + 1); if (dnp->dn_alternate_body != NULL) { (void) fprintf(fp, "%*sIF ELSE: \n", depth * 2, ""); for (arg = dnp->dn_alternate_body; arg != NULL; arg = arg->dn_list) dt_node_printr(arg, fp, depth + 1); } break; default: (void) fprintf(fp, "\n", (void *)dnp, dnp->dn_kind); } } int dt_node_root(dt_node_t *dnp) { yypcb->pcb_root = dnp; return (0); } /*PRINTFLIKE3*/ void dnerror(const dt_node_t *dnp, dt_errtag_t tag, const char *format, ...) { int oldlineno = yylineno; va_list ap; yylineno = dnp->dn_line; va_start(ap, format); xyvwarn(tag, format, ap); va_end(ap); yylineno = oldlineno; longjmp(yypcb->pcb_jmpbuf, EDT_COMPILER); } /*PRINTFLIKE3*/ void dnwarn(const dt_node_t *dnp, dt_errtag_t tag, const char *format, ...) { int oldlineno = yylineno; va_list ap; yylineno = dnp->dn_line; va_start(ap, format); xyvwarn(tag, format, ap); va_end(ap); yylineno = oldlineno; } /*PRINTFLIKE2*/ void xyerror(dt_errtag_t tag, const char *format, ...) { va_list ap; va_start(ap, format); xyvwarn(tag, format, ap); va_end(ap); longjmp(yypcb->pcb_jmpbuf, EDT_COMPILER); } /*PRINTFLIKE2*/ void xywarn(dt_errtag_t tag, const char *format, ...) { va_list ap; va_start(ap, format); xyvwarn(tag, format, ap); va_end(ap); } void xyvwarn(dt_errtag_t tag, const char *format, va_list ap) { if (yypcb == NULL) return; /* compiler is not currently active: act as a no-op */ dt_set_errmsg(yypcb->pcb_hdl, dt_errtag(tag), yypcb->pcb_region, yypcb->pcb_filetag, yypcb->pcb_fileptr ? yylineno : 0, format, ap); } /*PRINTFLIKE1*/ void yyerror(const char *format, ...) { va_list ap; va_start(ap, format); yyvwarn(format, ap); va_end(ap); longjmp(yypcb->pcb_jmpbuf, EDT_COMPILER); } /*PRINTFLIKE1*/ void yywarn(const char *format, ...) { va_list ap; va_start(ap, format); yyvwarn(format, ap); va_end(ap); } void yyvwarn(const char *format, va_list ap) { if (yypcb == NULL) return; /* compiler is not currently active: act as a no-op */ dt_set_errmsg(yypcb->pcb_hdl, dt_errtag(D_SYNTAX), yypcb->pcb_region, yypcb->pcb_filetag, yypcb->pcb_fileptr ? yylineno : 0, format, ap); if (strchr(format, '\n') == NULL) { dtrace_hdl_t *dtp = yypcb->pcb_hdl; size_t len = strlen(dtp->dt_errmsg); char *p, *s = dtp->dt_errmsg + len; size_t n = sizeof (dtp->dt_errmsg) - len; if (yytext[0] == '\0') (void) snprintf(s, n, " near end of input"); else if (yytext[0] == '\n') (void) snprintf(s, n, " near end of line"); else { if ((p = strchr(yytext, '\n')) != NULL) *p = '\0'; /* crop at newline */ (void) snprintf(s, n, " near \"%s\"", yytext); } } } void yylabel(const char *label) { dt_dprintf("set label to <%s>\n", label ? label : "NULL"); yypcb->pcb_region = label; } int yywrap(void) { return (1); /* indicate that lex should return a zero token for EOF */ }