/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. */ #include #include #include #include #include #include #include #include #include static dt_decl_t * dt_decl_check(dt_decl_t *ddp) { if (ddp->dd_kind == CTF_K_UNKNOWN) return (ddp); /* nothing to check if the type is not yet set */ if (ddp->dd_name != NULL && strcmp(ddp->dd_name, "char") == 0 && (ddp->dd_attr & (DT_DA_SHORT | DT_DA_LONG | DT_DA_LONGLONG))) { xyerror(D_DECL_CHARATTR, "invalid type declaration: short and " "long may not be used with char type\n"); } if (ddp->dd_name != NULL && strcmp(ddp->dd_name, "void") == 0 && (ddp->dd_attr & (DT_DA_SHORT | DT_DA_LONG | DT_DA_LONGLONG | (DT_DA_SIGNED | DT_DA_UNSIGNED)))) { xyerror(D_DECL_VOIDATTR, "invalid type declaration: attributes " "may not be used with void type\n"); } if (ddp->dd_kind != CTF_K_INTEGER && (ddp->dd_attr & (DT_DA_SIGNED | DT_DA_UNSIGNED))) { xyerror(D_DECL_SIGNINT, "invalid type declaration: signed and " "unsigned may only be used with integer type\n"); } if (ddp->dd_kind != CTF_K_INTEGER && ddp->dd_kind != CTF_K_FLOAT && (ddp->dd_attr & (DT_DA_LONG | DT_DA_LONGLONG))) { xyerror(D_DECL_LONGINT, "invalid type declaration: long and " "long long may only be used with integer or " "floating-point type\n"); } return (ddp); } dt_decl_t * dt_decl_alloc(ushort_t kind, char *name) { dt_decl_t *ddp = malloc(sizeof (dt_decl_t)); if (ddp == NULL) longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); ddp->dd_kind = kind; ddp->dd_attr = 0; ddp->dd_ctfp = NULL; ddp->dd_type = CTF_ERR; ddp->dd_name = name; ddp->dd_node = NULL; ddp->dd_next = NULL; return (ddp); } void dt_decl_free(dt_decl_t *ddp) { dt_decl_t *ndp; for (; ddp != NULL; ddp = ndp) { ndp = ddp->dd_next; free(ddp->dd_name); dt_node_list_free(&ddp->dd_node); free(ddp); } } void dt_decl_reset(void) { dt_scope_t *dsp = &yypcb->pcb_dstack; dt_decl_t *ddp = dsp->ds_decl; while (ddp->dd_next != NULL) { dsp->ds_decl = ddp->dd_next; ddp->dd_next = NULL; dt_decl_free(ddp); ddp = dsp->ds_decl; } } dt_decl_t * dt_decl_push(dt_decl_t *ddp) { dt_scope_t *dsp = &yypcb->pcb_dstack; dt_decl_t *top = dsp->ds_decl; if (top != NULL && top->dd_kind == CTF_K_UNKNOWN && top->dd_name == NULL) { top->dd_kind = CTF_K_INTEGER; (void) dt_decl_check(top); } assert(ddp->dd_next == NULL); ddp->dd_next = top; dsp->ds_decl = ddp; return (ddp); } dt_decl_t * dt_decl_pop(void) { dt_scope_t *dsp = &yypcb->pcb_dstack; dt_decl_t *ddp = dt_decl_top(); dsp->ds_decl = NULL; free(dsp->ds_ident); dsp->ds_ident = NULL; dsp->ds_ctfp = NULL; dsp->ds_type = CTF_ERR; dsp->ds_class = DT_DC_DEFAULT; dsp->ds_enumval = -1; return (ddp); } dt_decl_t * dt_decl_pop_param(char **idp) { dt_scope_t *dsp = &yypcb->pcb_dstack; if (dsp->ds_class != DT_DC_DEFAULT && dsp->ds_class != DT_DC_REGISTER) { xyerror(D_DECL_PARMCLASS, "inappropriate storage class " "for function or associative array parameter\n"); } if (idp != NULL && dt_decl_top() != NULL) { *idp = dsp->ds_ident; dsp->ds_ident = NULL; } return (dt_decl_pop()); } dt_decl_t * dt_decl_top(void) { dt_decl_t *ddp = yypcb->pcb_dstack.ds_decl; if (ddp == NULL) longjmp(yypcb->pcb_jmpbuf, EDT_NODECL); if (ddp->dd_kind == CTF_K_UNKNOWN && ddp->dd_name == NULL) { ddp->dd_kind = CTF_K_INTEGER; (void) dt_decl_check(ddp); } return (ddp); } dt_decl_t * dt_decl_ident(char *name) { dt_scope_t *dsp = &yypcb->pcb_dstack; dt_decl_t *ddp = dsp->ds_decl; if (dsp->ds_ident != NULL) { free(name); xyerror(D_DECL_IDENT, "old-style declaration or " "incorrect type specified\n"); } dsp->ds_ident = name; if (ddp == NULL) ddp = dt_decl_push(dt_decl_alloc(CTF_K_UNKNOWN, NULL)); return (ddp); } void dt_decl_class(dt_dclass_t class) { dt_scope_t *dsp = &yypcb->pcb_dstack; if (dsp->ds_class != DT_DC_DEFAULT) { xyerror(D_DECL_CLASS, "only one storage class allowed " "in a declaration\n"); } dsp->ds_class = class; } /* * Set the kind and name of the current declaration. If none is allocated, * make a new decl and push it on to the top of our stack. If the name or kind * is already set for the current decl, then we need to fail this declaration. * This can occur because too many types were given (e.g. "int int"), etc. */ dt_decl_t * dt_decl_spec(ushort_t kind, char *name) { dt_decl_t *ddp = yypcb->pcb_dstack.ds_decl; if (ddp == NULL) return (dt_decl_push(dt_decl_alloc(kind, name))); /* * If we already have a type name specified and we see another type * name, this is an error if the declaration is a typedef. If the * declaration is not a typedef, then the user may be trying to declare * a variable whose name has been returned by lex as a TNAME token: * call dt_decl_ident() as if the grammar's IDENT rule was matched. */ if (ddp->dd_name != NULL && kind == CTF_K_TYPEDEF) { if (yypcb->pcb_dstack.ds_class != DT_DC_TYPEDEF) return (dt_decl_ident(name)); xyerror(D_DECL_IDRED, "identifier redeclared: %s\n", name); } if (ddp->dd_name != NULL || ddp->dd_kind != CTF_K_UNKNOWN) xyerror(D_DECL_COMBO, "invalid type combination\n"); ddp->dd_kind = kind; ddp->dd_name = name; if (name != NULL && strchr(name, '`') != NULL) { xyerror(D_DECL_SCOPE, "D scoping operator may not be used " "in a type name\n"); } return (dt_decl_check(ddp)); } dt_decl_t * dt_decl_attr(ushort_t attr) { dt_decl_t *ddp = yypcb->pcb_dstack.ds_decl; if (ddp == NULL) { ddp = dt_decl_push(dt_decl_alloc(CTF_K_UNKNOWN, NULL)); ddp->dd_attr = attr; return (ddp); } if (attr == DT_DA_LONG && (ddp->dd_attr & DT_DA_LONG)) { ddp->dd_attr &= ~DT_DA_LONG; attr = DT_DA_LONGLONG; } ddp->dd_attr |= attr; return (dt_decl_check(ddp)); } /* * Examine the list of formal parameters 'flist' and determine if the formal * name fnp->dn_string is defined in this list (B_TRUE) or not (B_FALSE). * If 'fnp' is in 'flist', do not search beyond 'fnp' itself in 'flist'. */ static int dt_decl_protoform(dt_node_t *fnp, dt_node_t *flist) { dt_node_t *dnp; for (dnp = flist; dnp != fnp && dnp != NULL; dnp = dnp->dn_list) { if (dnp->dn_string != NULL && strcmp(dnp->dn_string, fnp->dn_string) == 0) return (B_TRUE); } return (B_FALSE); } /* * Common code for parsing array, function, and probe definition prototypes. * The prototype node list is specified as 'plist'. The formal prototype * against which to compare the prototype is specified as 'flist'. If plist * and flist are the same, we require that named parameters are unique. If * plist and flist are different, we require that named parameters in plist * match a name that is present in flist. */ int dt_decl_prototype(dt_node_t *plist, dt_node_t *flist, const char *kind, uint_t flags) { char n[DT_TYPE_NAMELEN]; int is_void, v = 0, i = 1; int form = plist != flist; dt_node_t *dnp; for (dnp = plist; dnp != NULL; dnp = dnp->dn_list, i++) { if (dnp->dn_type == CTF_ERR && !(flags & DT_DP_VARARGS)) { dnerror(dnp, D_DECL_PROTO_VARARGS, "%s prototype may " "not use a variable-length argument list\n", kind); } if (dt_node_is_dynamic(dnp) && !(flags & DT_DP_DYNAMIC)) { dnerror(dnp, D_DECL_PROTO_TYPE, "%s prototype may not " "use parameter of type %s: %s, parameter #%d\n", kind, dt_node_type_name(dnp, n, sizeof (n)), dnp->dn_string ? dnp->dn_string : "(anonymous)", i); } is_void = dt_node_is_void(dnp); v += is_void; if (is_void && !(flags & DT_DP_VOID)) { dnerror(dnp, D_DECL_PROTO_TYPE, "%s prototype may not " "use parameter of type %s: %s, parameter #%d\n", kind, dt_node_type_name(dnp, n, sizeof (n)), dnp->dn_string ? dnp->dn_string : "(anonymous)", i); } if (is_void && dnp->dn_string != NULL) { dnerror(dnp, D_DECL_PROTO_NAME, "void parameter may " "not have a name: %s\n", dnp->dn_string); } if (dnp->dn_string != NULL && dt_decl_protoform(dnp, flist) != form) { dnerror(dnp, D_DECL_PROTO_FORM, "parameter is " "%s declared in %s prototype: %s, parameter #%d\n", form ? "not" : "already", kind, dnp->dn_string, i); } if (dnp->dn_string == NULL && !is_void && !(flags & DT_DP_ANON)) { dnerror(dnp, D_DECL_PROTO_NAME, "parameter declaration " "requires a name: parameter #%d\n", i); } } if (v != 0 && plist->dn_list != NULL) xyerror(D_DECL_PROTO_VOID, "void must be sole parameter\n"); return (v ? 0 : i - 1); /* return zero if sole parameter is 'void' */ } dt_decl_t * dt_decl_array(dt_node_t *dnp) { dt_decl_t *ddp = dt_decl_push(dt_decl_alloc(CTF_K_ARRAY, NULL)); dt_scope_t *dsp = &yypcb->pcb_dstack; dt_decl_t *ndp = ddp; /* * After pushing the array on to the decl stack, scan ahead for multi- * dimensional array declarations and push the current decl to the * bottom to match the resulting CTF type tree and data layout. Refer * to the comments in dt_decl_type() and ISO C 6.5.2.1 for more info. */ while (ndp->dd_next != NULL && ndp->dd_next->dd_kind == CTF_K_ARRAY) ndp = ndp->dd_next; /* skip to bottom-most array declaration */ if (ndp != ddp) { if (dnp != NULL && dnp->dn_kind == DT_NODE_TYPE) { xyerror(D_DECL_DYNOBJ, "cannot declare array of associative arrays\n"); } dsp->ds_decl = ddp->dd_next; ddp->dd_next = ndp->dd_next; ndp->dd_next = ddp; } if (ddp->dd_next->dd_name != NULL && strcmp(ddp->dd_next->dd_name, "void") == 0) xyerror(D_DECL_VOIDOBJ, "cannot declare array of void\n"); if (dnp != NULL && dnp->dn_kind != DT_NODE_TYPE) { dnp = ddp->dd_node = dt_node_cook(dnp, DT_IDFLG_REF); if (dt_node_is_posconst(dnp) == 0) { xyerror(D_DECL_ARRSUB, "positive integral constant " "expression or tuple signature expected as " "array declaration subscript\n"); } if (dnp->dn_value > UINT_MAX) xyerror(D_DECL_ARRBIG, "array dimension too big\n"); } else if (dnp != NULL) { ddp->dd_node = dnp; (void) dt_decl_prototype(dnp, dnp, "array", DT_DP_ANON); } return (ddp); } /* * When a function is declared, we need to fudge the decl stack a bit if the * declaration uses the function pointer (*)() syntax. In this case, the * dt_decl_func() call occurs *after* the dt_decl_ptr() call, even though the * resulting type is "pointer to function". To make the pointer land on top, * we check to see if 'pdp' is non-NULL and a pointer. If it is, we search * backward for a decl tagged with DT_DA_PAREN, and if one is found, the func * decl is inserted behind this node in the decl list instead of at the top. * In all cases, the func decl's dd_next pointer is set to the decl chain * for the function's return type and the function parameter list is discarded. */ dt_decl_t * dt_decl_func(dt_decl_t *pdp, dt_node_t *dnp) { dt_decl_t *ddp = dt_decl_alloc(CTF_K_FUNCTION, NULL); ddp->dd_node = dnp; (void) dt_decl_prototype(dnp, dnp, "function", DT_DP_VARARGS | DT_DP_VOID | DT_DP_ANON); if (pdp == NULL || pdp->dd_kind != CTF_K_POINTER) return (dt_decl_push(ddp)); while (pdp->dd_next != NULL && !(pdp->dd_next->dd_attr & DT_DA_PAREN)) pdp = pdp->dd_next; if (pdp->dd_next == NULL) return (dt_decl_push(ddp)); ddp->dd_next = pdp->dd_next; pdp->dd_next = ddp; return (pdp); } dt_decl_t * dt_decl_ptr(void) { return (dt_decl_push(dt_decl_alloc(CTF_K_POINTER, NULL))); } dt_decl_t * dt_decl_sou(uint_t kind, char *name) { dt_decl_t *ddp = dt_decl_spec(kind, name); char n[DT_TYPE_NAMELEN]; ctf_file_t *ctfp; ctf_id_t type; uint_t flag; if (yypcb->pcb_idepth != 0) ctfp = yypcb->pcb_hdl->dt_cdefs->dm_ctfp; else ctfp = yypcb->pcb_hdl->dt_ddefs->dm_ctfp; if (yypcb->pcb_dstack.ds_next != NULL) flag = CTF_ADD_NONROOT; else flag = CTF_ADD_ROOT; (void) snprintf(n, sizeof (n), "%s %s", kind == CTF_K_STRUCT ? "struct" : "union", name == NULL ? "(anon)" : name); if (name != NULL && (type = ctf_lookup_by_name(ctfp, n)) != CTF_ERR && ctf_type_kind(ctfp, type) != CTF_K_FORWARD) xyerror(D_DECL_TYPERED, "type redeclared: %s\n", n); if (kind == CTF_K_STRUCT) type = ctf_add_struct(ctfp, flag, name); else type = ctf_add_union(ctfp, flag, name); if (type == CTF_ERR || ctf_update(ctfp) == CTF_ERR) { xyerror(D_UNKNOWN, "failed to define %s: %s\n", n, ctf_errmsg(ctf_errno(ctfp))); } ddp->dd_ctfp = ctfp; ddp->dd_type = type; dt_scope_push(ctfp, type); return (ddp); } void dt_decl_member(dt_node_t *dnp) { dt_scope_t *dsp = yypcb->pcb_dstack.ds_next; dt_decl_t *ddp = yypcb->pcb_dstack.ds_decl; char *ident = yypcb->pcb_dstack.ds_ident; const char *idname = ident ? ident : "(anon)"; char n[DT_TYPE_NAMELEN]; dtrace_typeinfo_t dtt; ctf_encoding_t cte; ctf_id_t base; uint_t kind; ssize_t size; if (dsp == NULL) longjmp(yypcb->pcb_jmpbuf, EDT_NOSCOPE); if (ddp == NULL) longjmp(yypcb->pcb_jmpbuf, EDT_NODECL); if (dnp == NULL && ident == NULL) xyerror(D_DECL_MNAME, "member declaration requires a name\n"); if (ddp->dd_kind == CTF_K_UNKNOWN && ddp->dd_name == NULL) { ddp->dd_kind = CTF_K_INTEGER; (void) dt_decl_check(ddp); } if (dt_decl_type(ddp, &dtt) != 0) longjmp(yypcb->pcb_jmpbuf, EDT_COMPILER); if (ident != NULL && strchr(ident, '`') != NULL) { xyerror(D_DECL_SCOPE, "D scoping operator may not be used " "in a member name (%s)\n", ident); } if (dtt.dtt_ctfp == DT_DYN_CTFP(yypcb->pcb_hdl) && dtt.dtt_type == DT_DYN_TYPE(yypcb->pcb_hdl)) { xyerror(D_DECL_DYNOBJ, "cannot have dynamic member: %s\n", ident); } base = ctf_type_resolve(dtt.dtt_ctfp, dtt.dtt_type); kind = ctf_type_kind(dtt.dtt_ctfp, base); size = ctf_type_size(dtt.dtt_ctfp, base); if (kind == CTF_K_FORWARD || ((kind == CTF_K_STRUCT || kind == CTF_K_UNION) && size == 0)) { xyerror(D_DECL_INCOMPLETE, "incomplete struct/union/enum %s: " "%s\n", dt_type_name(dtt.dtt_ctfp, dtt.dtt_type, n, sizeof (n)), ident); } if (size == 0) xyerror(D_DECL_VOIDOBJ, "cannot have void member: %s\n", ident); /* * If a bit-field qualifier was part of the member declaration, create * a new integer type of the same name and attributes as the base type * and size equal to the specified number of bits. We reset 'dtt' to * refer to this new bit-field type and continue on to add the member. */ if (dnp != NULL) { dnp = dt_node_cook(dnp, DT_IDFLG_REF); /* * A bit-field member with no declarator is permitted to have * size zero and indicates that no more fields are to be packed * into the current storage unit. We ignore these directives * as the underlying ctf code currently does so for all fields. */ if (ident == NULL && dnp->dn_kind == DT_NODE_INT && dnp->dn_value == 0) { dt_node_free(dnp); goto done; } if (dt_node_is_posconst(dnp) == 0) { xyerror(D_DECL_BFCONST, "positive integral constant " "expression expected as bit-field size\n"); } if (ctf_type_kind(dtt.dtt_ctfp, base) != CTF_K_INTEGER || ctf_type_encoding(dtt.dtt_ctfp, base, &cte) == CTF_ERR || IS_VOID(cte)) { xyerror(D_DECL_BFTYPE, "invalid type for " "bit-field: %s\n", idname); } if (dnp->dn_value > cte.cte_bits) { xyerror(D_DECL_BFSIZE, "bit-field too big " "for type: %s\n", idname); } cte.cte_offset = 0; cte.cte_bits = (uint_t)dnp->dn_value; dtt.dtt_type = ctf_add_integer(dsp->ds_ctfp, CTF_ADD_NONROOT, ctf_type_name(dtt.dtt_ctfp, dtt.dtt_type, n, sizeof (n)), &cte); if (dtt.dtt_type == CTF_ERR || ctf_update(dsp->ds_ctfp) == CTF_ERR) { xyerror(D_UNKNOWN, "failed to create type for " "member '%s': %s\n", idname, ctf_errmsg(ctf_errno(dsp->ds_ctfp))); } dtt.dtt_ctfp = dsp->ds_ctfp; dt_node_free(dnp); } /* * If the member type is not defined in the same CTF container as the * one associated with the current scope (i.e. the container for the * struct or union itself) or its parent, copy the member type into * this container and reset dtt to refer to the copied type. */ if (dtt.dtt_ctfp != dsp->ds_ctfp && dtt.dtt_ctfp != ctf_parent_file(dsp->ds_ctfp)) { dtt.dtt_type = ctf_add_type(dsp->ds_ctfp, dtt.dtt_ctfp, dtt.dtt_type); dtt.dtt_ctfp = dsp->ds_ctfp; if (dtt.dtt_type == CTF_ERR || ctf_update(dtt.dtt_ctfp) == CTF_ERR) { xyerror(D_UNKNOWN, "failed to copy type of '%s': %s\n", idname, ctf_errmsg(ctf_errno(dtt.dtt_ctfp))); } } if (ctf_add_member(dsp->ds_ctfp, dsp->ds_type, ident, dtt.dtt_type) == CTF_ERR) { xyerror(D_UNKNOWN, "failed to define member '%s': %s\n", idname, ctf_errmsg(ctf_errno(dsp->ds_ctfp))); } done: free(ident); yypcb->pcb_dstack.ds_ident = NULL; dt_decl_reset(); } /*ARGSUSED*/ static int dt_decl_hasmembers(const char *name, int value, void *private) { return (1); /* abort search and return true if a member exists */ } dt_decl_t * dt_decl_enum(char *name) { dt_decl_t *ddp = dt_decl_spec(CTF_K_ENUM, name); char n[DT_TYPE_NAMELEN]; ctf_file_t *ctfp; ctf_id_t type; uint_t flag; if (yypcb->pcb_idepth != 0) ctfp = yypcb->pcb_hdl->dt_cdefs->dm_ctfp; else ctfp = yypcb->pcb_hdl->dt_ddefs->dm_ctfp; if (yypcb->pcb_dstack.ds_next != NULL) flag = CTF_ADD_NONROOT; else flag = CTF_ADD_ROOT; (void) snprintf(n, sizeof (n), "enum %s", name ? name : "(anon)"); if (name != NULL && (type = ctf_lookup_by_name(ctfp, n)) != CTF_ERR) { if (ctf_enum_iter(ctfp, type, dt_decl_hasmembers, NULL)) xyerror(D_DECL_TYPERED, "type redeclared: %s\n", n); } else if ((type = ctf_add_enum(ctfp, flag, name)) == CTF_ERR) { xyerror(D_UNKNOWN, "failed to define %s: %s\n", n, ctf_errmsg(ctf_errno(ctfp))); } ddp->dd_ctfp = ctfp; ddp->dd_type = type; dt_scope_push(ctfp, type); return (ddp); } void dt_decl_enumerator(char *s, dt_node_t *dnp) { dt_scope_t *dsp = yypcb->pcb_dstack.ds_next; dtrace_hdl_t *dtp = yypcb->pcb_hdl; dt_idnode_t *inp; dt_ident_t *idp; char *name; int value; name = strdupa(s); free(s); if (dsp == NULL) longjmp(yypcb->pcb_jmpbuf, EDT_NOSCOPE); assert(dsp->ds_decl->dd_kind == CTF_K_ENUM); value = dsp->ds_enumval + 1; /* default is previous value plus one */ if (strchr(name, '`') != NULL) { xyerror(D_DECL_SCOPE, "D scoping operator may not be used in " "an enumerator name (%s)\n", name); } /* * If the enumerator is being assigned a value, cook and check the node * and then free it after we get the value. We also permit references * to identifiers which are previously defined enumerators in the type. */ if (dnp != NULL) { if (dnp->dn_kind != DT_NODE_IDENT || ctf_enum_value( dsp->ds_ctfp, dsp->ds_type, dnp->dn_string, &value) != 0) { dnp = dt_node_cook(dnp, DT_IDFLG_REF); if (dnp->dn_kind != DT_NODE_INT) { xyerror(D_DECL_ENCONST, "enumerator '%s' must " "be assigned to an integral constant " "expression\n", name); } if ((intmax_t)dnp->dn_value > INT_MAX || (intmax_t)dnp->dn_value < INT_MIN) { xyerror(D_DECL_ENOFLOW, "enumerator '%s' value " "overflows INT_MAX (%d)\n", name, INT_MAX); } value = (int)dnp->dn_value; } dt_node_free(dnp); } if (ctf_add_enumerator(dsp->ds_ctfp, dsp->ds_type, name, value) == CTF_ERR || ctf_update(dsp->ds_ctfp) == CTF_ERR) { xyerror(D_UNKNOWN, "failed to define enumerator '%s': %s\n", name, ctf_errmsg(ctf_errno(dsp->ds_ctfp))); } dsp->ds_enumval = value; /* save most recent value */ /* * If the enumerator name matches an identifier in the global scope, * flag this as an error. We only do this for "D" enumerators to * prevent "C" header file enumerators from conflicting with the ever- * growing list of D built-in global variables and inlines. If a "C" * enumerator conflicts with a global identifier, we add the enumerator * but do not insert a corresponding inline (i.e. the D variable wins). */ if (dt_idstack_lookup(&yypcb->pcb_globals, name) != NULL) { if (dsp->ds_ctfp == dtp->dt_ddefs->dm_ctfp) { xyerror(D_DECL_IDRED, "identifier redeclared: %s\n", name); } else return; } dt_dprintf("add global enumerator %s = %d\n", name, value); idp = dt_idhash_insert(dtp->dt_globals, name, DT_IDENT_ENUM, DT_IDFLG_INLINE | DT_IDFLG_REF, 0, _dtrace_defattr, 0, &dt_idops_inline, NULL, dtp->dt_gen); if (idp == NULL) longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); yyintprefix = 0; yyintsuffix[0] = '\0'; yyintdecimal = 0; dnp = dt_node_int(value); dt_node_type_assign(dnp, dsp->ds_ctfp, dsp->ds_type); if ((inp = malloc(sizeof (dt_idnode_t))) == NULL) longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); /* * Remove the INT node from the node allocation list and store it in * din_list and din_root so it persists with and is freed by the ident. */ assert(yypcb->pcb_list == dnp); yypcb->pcb_list = dnp->dn_link; dnp->dn_link = NULL; bzero(inp, sizeof (dt_idnode_t)); inp->din_list = dnp; inp->din_root = dnp; idp->di_iarg = inp; idp->di_ctfp = dsp->ds_ctfp; idp->di_type = dsp->ds_type; } /* * Look up the type corresponding to the specified decl stack. The scoping of * the underlying type names is handled by dt_type_lookup(). We build up the * name from the specified string and prefixes and then lookup the type. If * we fail, an errmsg is saved and the caller must abort with EDT_COMPILER. */ int dt_decl_type(dt_decl_t *ddp, dtrace_typeinfo_t *tip) { dtrace_hdl_t *dtp = yypcb->pcb_hdl; dt_module_t *dmp; ctf_arinfo_t r; ctf_id_t type; char n[DT_TYPE_NAMELEN]; uint_t flag; char *name; int rv; /* * Based on our current #include depth and decl stack depth, determine * which dynamic CTF module and scope to use when adding any new types. */ dmp = yypcb->pcb_idepth ? dtp->dt_cdefs : dtp->dt_ddefs; flag = yypcb->pcb_dstack.ds_next ? CTF_ADD_NONROOT : CTF_ADD_ROOT; /* * If we have already cached a CTF type for this decl, then we just * return the type information for the cached type. */ if (ddp->dd_ctfp != NULL && (dmp = dt_module_lookup_by_ctf(dtp, ddp->dd_ctfp)) != NULL) { tip->dtt_object = dmp->dm_name; tip->dtt_ctfp = ddp->dd_ctfp; tip->dtt_type = ddp->dd_type; return (0); } /* * Currently CTF treats all function pointers identically. We cache a * representative ID of kind CTF_K_FUNCTION and just return that type. * If we want to support full function declarations, dd_next refers to * the declaration of the function return type, and the parameter list * should be parsed and hung off a new pointer inside of this decl. */ if (ddp->dd_kind == CTF_K_FUNCTION) { tip->dtt_object = dtp->dt_ddefs->dm_name; tip->dtt_ctfp = DT_FUNC_CTFP(dtp); tip->dtt_type = DT_FUNC_TYPE(dtp); return (0); } /* * If the decl is a pointer, resolve the rest of the stack by calling * dt_decl_type() recursively and then compute a pointer to the result. * Similar to the code above, we return a cached id for function ptrs. */ if (ddp->dd_kind == CTF_K_POINTER) { if (ddp->dd_next->dd_kind == CTF_K_FUNCTION) { tip->dtt_object = dtp->dt_ddefs->dm_name; tip->dtt_ctfp = DT_FPTR_CTFP(dtp); tip->dtt_type = DT_FPTR_TYPE(dtp); return (0); } if ((rv = dt_decl_type(ddp->dd_next, tip)) == 0 && (rv = dt_type_pointer(tip)) != 0) { xywarn(D_UNKNOWN, "cannot find type: %s*: %s\n", dt_type_name(tip->dtt_ctfp, tip->dtt_type, n, sizeof (n)), ctf_errmsg(dtp->dt_ctferr)); } return (rv); } /* * If the decl is an array, we must find the base type and then call * dt_decl_type() recursively and then build an array of the result. * The C and D multi-dimensional array syntax requires that consecutive * array declarations be processed from right-to-left (i.e. top-down * from the perspective of the declaration stack). For example, an * array declaration such as int x[3][5] is stored on the stack as: * * (bottom) NULL <- ( INT "int" ) <- ( ARR [3] ) <- ( ARR [5] ) (top) * * but means that x is declared to be an array of 3 objects each of * which is an array of 5 integers, or in CTF representation: * * type T1:( content=int, nelems=5 ) type T2:( content=T1, nelems=3 ) * * For more details, refer to K&R[5.7] and ISO C 6.5.2.1. Rather than * overcomplicate the implementation of dt_decl_type(), we push array * declarations down into the stack in dt_decl_array(), above, so that * by the time dt_decl_type() is called, the decl stack looks like: * * (bottom) NULL <- ( INT "int" ) <- ( ARR [5] ) <- ( ARR [3] ) (top) * * which permits a straightforward recursive descent of the decl stack * to build the corresponding CTF type tree in the appropriate order. */ if (ddp->dd_kind == CTF_K_ARRAY) { /* * If the array decl has a parameter list associated with it, * this is an associative array declaration: return . */ if (ddp->dd_node != NULL && ddp->dd_node->dn_kind == DT_NODE_TYPE) { tip->dtt_object = dtp->dt_ddefs->dm_name; tip->dtt_ctfp = DT_DYN_CTFP(dtp); tip->dtt_type = DT_DYN_TYPE(dtp); return (0); } if ((rv = dt_decl_type(ddp->dd_next, tip)) != 0) return (rv); /* * If the array base type is not defined in the target * container or its parent, copy the type to the target * container and reset dtt_ctfp and dtt_type to the copy. */ if (tip->dtt_ctfp != dmp->dm_ctfp && tip->dtt_ctfp != ctf_parent_file(dmp->dm_ctfp)) { tip->dtt_type = ctf_add_type(dmp->dm_ctfp, tip->dtt_ctfp, tip->dtt_type); tip->dtt_ctfp = dmp->dm_ctfp; if (tip->dtt_type == CTF_ERR || ctf_update(tip->dtt_ctfp) == CTF_ERR) { xywarn(D_UNKNOWN, "failed to copy type: %s\n", ctf_errmsg(ctf_errno(tip->dtt_ctfp))); return (-1); } } /* * The array index type is irrelevant in C and D: just set it * to "long" for all array types that we create on-the-fly. */ r.ctr_contents = tip->dtt_type; r.ctr_index = ctf_lookup_by_name(tip->dtt_ctfp, "long"); r.ctr_nelems = ddp->dd_node ? (uint_t)ddp->dd_node->dn_value : 0; tip->dtt_object = dmp->dm_name; tip->dtt_ctfp = dmp->dm_ctfp; tip->dtt_type = ctf_add_array(dmp->dm_ctfp, CTF_ADD_ROOT, &r); if (tip->dtt_type == CTF_ERR || ctf_update(tip->dtt_ctfp) == CTF_ERR) { xywarn(D_UNKNOWN, "failed to create array type: %s\n", ctf_errmsg(ctf_errno(tip->dtt_ctfp))); return (-1); } return (0); } /* * Allocate space for the type name and enough space for the maximum * additional text ("unsigned long long \0" requires 20 more bytes). */ name = alloca(ddp->dd_name ? strlen(ddp->dd_name) + 20 : 20); name[0] = '\0'; switch (ddp->dd_kind) { case CTF_K_INTEGER: case CTF_K_FLOAT: if (ddp->dd_attr & DT_DA_SIGNED) (void) strcat(name, "signed "); if (ddp->dd_attr & DT_DA_UNSIGNED) (void) strcat(name, "unsigned "); if (ddp->dd_attr & DT_DA_SHORT) (void) strcat(name, "short "); if (ddp->dd_attr & DT_DA_LONG) (void) strcat(name, "long "); if (ddp->dd_attr & DT_DA_LONGLONG) (void) strcat(name, "long long "); if (ddp->dd_attr == 0 && ddp->dd_name == NULL) (void) strcat(name, "int"); break; case CTF_K_STRUCT: (void) strcpy(name, "struct "); break; case CTF_K_UNION: (void) strcpy(name, "union "); break; case CTF_K_ENUM: (void) strcpy(name, "enum "); break; case CTF_K_TYPEDEF: break; default: xywarn(D_UNKNOWN, "internal error -- " "bad decl kind %u\n", ddp->dd_kind); return (-1); } /* * Add dd_name unless a short, long, or long long is explicitly * suffixed by int. We use the C/CTF canonical names for integers. */ if (ddp->dd_name != NULL && (ddp->dd_kind != CTF_K_INTEGER || (ddp->dd_attr & (DT_DA_SHORT | DT_DA_LONG | DT_DA_LONGLONG)) == 0)) (void) strcat(name, ddp->dd_name); /* * Lookup the type. If we find it, we're done. Otherwise create a * forward tag for the type if it is a struct, union, or enum. If * we can't find it and we can't create a tag, return failure. */ if ((rv = dt_type_lookup(name, tip)) == 0) return (rv); switch (ddp->dd_kind) { case CTF_K_STRUCT: case CTF_K_UNION: case CTF_K_ENUM: type = ctf_add_forward(dmp->dm_ctfp, flag, ddp->dd_name, ddp->dd_kind); break; default: xywarn(D_UNKNOWN, "failed to resolve type %s: %s\n", name, dtrace_errmsg(dtp, dtrace_errno(dtp))); return (rv); } if (type == CTF_ERR || ctf_update(dmp->dm_ctfp) == CTF_ERR) { xywarn(D_UNKNOWN, "failed to add forward tag for %s: %s\n", name, ctf_errmsg(ctf_errno(dmp->dm_ctfp))); return (-1); } ddp->dd_ctfp = dmp->dm_ctfp; ddp->dd_type = type; tip->dtt_object = dmp->dm_name; tip->dtt_ctfp = dmp->dm_ctfp; tip->dtt_type = type; return (0); } void dt_scope_create(dt_scope_t *dsp) { dsp->ds_decl = NULL; dsp->ds_next = NULL; dsp->ds_ident = NULL; dsp->ds_ctfp = NULL; dsp->ds_type = CTF_ERR; dsp->ds_class = DT_DC_DEFAULT; dsp->ds_enumval = -1; } void dt_scope_destroy(dt_scope_t *dsp) { dt_scope_t *nsp; for (; dsp != NULL; dsp = nsp) { dt_decl_free(dsp->ds_decl); free(dsp->ds_ident); nsp = dsp->ds_next; if (dsp != &yypcb->pcb_dstack) free(dsp); } } void dt_scope_push(ctf_file_t *ctfp, ctf_id_t type) { dt_scope_t *rsp = &yypcb->pcb_dstack; dt_scope_t *dsp = malloc(sizeof (dt_scope_t)); if (dsp == NULL) longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); dsp->ds_decl = rsp->ds_decl; dsp->ds_next = rsp->ds_next; dsp->ds_ident = rsp->ds_ident; dsp->ds_ctfp = ctfp; dsp->ds_type = type; dsp->ds_class = rsp->ds_class; dsp->ds_enumval = rsp->ds_enumval; dt_scope_create(rsp); rsp->ds_next = dsp; } dt_decl_t * dt_scope_pop(void) { dt_scope_t *rsp = &yypcb->pcb_dstack; dt_scope_t *dsp = rsp->ds_next; if (dsp == NULL) longjmp(yypcb->pcb_jmpbuf, EDT_NOSCOPE); if (dsp->ds_ctfp != NULL && ctf_update(dsp->ds_ctfp) == CTF_ERR) { xyerror(D_UNKNOWN, "failed to update type definitions: %s\n", ctf_errmsg(ctf_errno(dsp->ds_ctfp))); } dt_decl_free(rsp->ds_decl); free(rsp->ds_ident); rsp->ds_decl = dsp->ds_decl; rsp->ds_next = dsp->ds_next; rsp->ds_ident = dsp->ds_ident; rsp->ds_ctfp = dsp->ds_ctfp; rsp->ds_type = dsp->ds_type; rsp->ds_class = dsp->ds_class; rsp->ds_enumval = dsp->ds_enumval; free(dsp); return (rsp->ds_decl); }