/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2008 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #include "lint.h" #include "thr_uberdata.h" #include #include #include #include #include #include #include #include #include /* * atfork_lock protects the pthread_atfork() data structures. * * fork_lock does double-duty. Not only does it (and atfork_lock) * serialize calls to fork() and forkall(), but it also serializes calls * to thr_suspend() and thr_continue() (because fork() and forkall() also * suspend and continue other threads and they want no competition). * * Functions called in dlopen()ed L10N objects can do anything, including * call malloc() and free(). Such calls are not fork-safe when protected * by an ordinary mutex that is acquired in libc's prefork processing * because, with an interposed malloc library present, there would be a * lock ordering violation due to the pthread_atfork() prefork function * in the interposition library acquiring its malloc lock(s) before the * ordinary mutex in libc being acquired by libc's prefork functions. * * Within libc, calls to malloc() and free() are fork-safe if the calls * are made while holding no other libc locks. This covers almost all * of libc's malloc() and free() calls. For those libc code paths, such * as the above-mentioned L10N calls, that require serialization and that * may call malloc() or free(), libc uses callout_lock_enter() to perform * the serialization. This works because callout_lock is not acquired as * part of running the pthread_atfork() prefork handlers (to avoid the * lock ordering violation described above). Rather, it is simply * reinitialized in postfork1_child() to cover the case that some * now-defunct thread might have been suspended while holding it. */ void fork_lock_enter(void) { ASSERT(curthread->ul_critical == 0); (void) _private_mutex_lock(&curthread->ul_uberdata->fork_lock); } void fork_lock_exit(void) { ASSERT(curthread->ul_critical == 0); (void) _private_mutex_unlock(&curthread->ul_uberdata->fork_lock); } /* * Use cancel_safe_mutex_lock() to protect against being cancelled while * holding callout_lock and calling outside of libc (via L10N plugins). * We will honor a pending cancellation request when callout_lock_exit() * is called, by calling cancel_safe_mutex_unlock(). */ void callout_lock_enter(void) { ASSERT(curthread->ul_critical == 0); cancel_safe_mutex_lock(&curthread->ul_uberdata->callout_lock); } void callout_lock_exit(void) { ASSERT(curthread->ul_critical == 0); cancel_safe_mutex_unlock(&curthread->ul_uberdata->callout_lock); } #pragma weak forkx = _private_forkx #pragma weak _forkx = _private_forkx pid_t _private_forkx(int flags) { ulwp_t *self = curthread; uberdata_t *udp = self->ul_uberdata; pid_t pid; if (self->ul_vfork) { /* * We are a child of vfork(); omit all of the fork * logic and go straight to the system call trap. * A vfork() child of a multithreaded parent * must never call fork(). */ if (udp->uberflags.uf_mt) { errno = ENOTSUP; return (-1); } pid = __forkx(flags); if (pid == 0) { /* child */ udp->pid = _private_getpid(); self->ul_vfork = 0; } return (pid); } sigoff(self); if (self->ul_fork) { /* * Cannot call fork() from a fork handler. */ sigon(self); errno = EDEADLK; return (-1); } self->ul_fork = 1; /* * The functions registered by pthread_atfork() are defined by * the application and its libraries and we must not hold any * internal lmutex_lock()-acquired locks while invoking them. * We hold only udp->atfork_lock to protect the atfork linkages. * If one of these pthread_atfork() functions attempts to fork * or to call pthread_atfork(), libc will detect the error and * fail the call with EDEADLK. Otherwise, the pthread_atfork() * functions are free to do anything they please (except they * will not receive any signals). */ (void) _private_mutex_lock(&udp->atfork_lock); _prefork_handler(); /* * Block every other thread attempting thr_suspend() or thr_continue(). */ (void) _private_mutex_lock(&udp->fork_lock); /* * Block all signals. * Just deferring them via sigoff() is not enough. * We have to avoid taking a deferred signal in the child * that was actually sent to the parent before __forkx(). */ block_all_signals(self); /* * This suspends all threads but this one, leaving them * suspended outside of any critical regions in the library. * Thus, we are assured that no lmutex_lock()-acquired library * locks are held while we invoke fork() from the current thread. */ suspend_fork(); pid = __forkx(flags); if (pid == 0) { /* child */ /* * Clear our schedctl pointer. * Discard any deferred signal that was sent to the parent. * Because we blocked all signals before __forkx(), a * deferred signal cannot have been taken by the child. */ self->ul_schedctl_called = NULL; self->ul_schedctl = NULL; self->ul_cursig = 0; self->ul_siginfo.si_signo = 0; udp->pid = _private_getpid(); /* reset the library's data structures to reflect one thread */ unregister_locks(); postfork1_child(); restore_signals(self); (void) _private_mutex_unlock(&udp->fork_lock); _postfork_child_handler(); } else { /* restart all threads that were suspended for fork() */ continue_fork(0); restore_signals(self); (void) _private_mutex_unlock(&udp->fork_lock); _postfork_parent_handler(); } (void) _private_mutex_unlock(&udp->atfork_lock); self->ul_fork = 0; sigon(self); return (pid); } /* * fork() is fork1() for both Posix threads and Solaris threads. * The forkall() interface exists for applications that require * the semantics of replicating all threads. */ #pragma weak fork1 = _fork #pragma weak _fork1 = _fork #pragma weak fork = _fork pid_t _fork(void) { return (_private_forkx(0)); } /* * Much of the logic here is the same as in forkx(). * See the comments in forkx(), above. */ #pragma weak forkallx = _private_forkallx #pragma weak _forkallx = _private_forkallx pid_t _private_forkallx(int flags) { ulwp_t *self = curthread; uberdata_t *udp = self->ul_uberdata; pid_t pid; if (self->ul_vfork) { if (udp->uberflags.uf_mt) { errno = ENOTSUP; return (-1); } pid = __forkallx(flags); if (pid == 0) { /* child */ udp->pid = _private_getpid(); self->ul_vfork = 0; } return (pid); } sigoff(self); if (self->ul_fork) { sigon(self); errno = EDEADLK; return (-1); } self->ul_fork = 1; (void) _private_mutex_lock(&udp->atfork_lock); (void) _private_mutex_lock(&udp->fork_lock); block_all_signals(self); suspend_fork(); pid = __forkallx(flags); if (pid == 0) { self->ul_schedctl_called = NULL; self->ul_schedctl = NULL; self->ul_cursig = 0; self->ul_siginfo.si_signo = 0; udp->pid = _private_getpid(); unregister_locks(); continue_fork(1); } else { continue_fork(0); } restore_signals(self); (void) _private_mutex_unlock(&udp->fork_lock); (void) _private_mutex_unlock(&udp->atfork_lock); self->ul_fork = 0; sigon(self); return (pid); } #pragma weak forkall = _forkall pid_t _forkall(void) { return (_private_forkallx(0)); } /* * For the implementation of cancellation at cancellation points. */ #define PROLOGUE \ { \ ulwp_t *self = curthread; \ int nocancel = \ (self->ul_vfork | self->ul_nocancel | self->ul_libc_locks | \ self->ul_critical | self->ul_sigdefer); \ int abort = 0; \ if (nocancel == 0) { \ self->ul_save_async = self->ul_cancel_async; \ if (!self->ul_cancel_disabled) { \ self->ul_cancel_async = 1; \ if (self->ul_cancel_pending) \ _pthread_exit(PTHREAD_CANCELED); \ } \ self->ul_sp = stkptr(); \ } else if (self->ul_cancel_pending && \ !self->ul_cancel_disabled) { \ set_cancel_eintr_flag(self); \ abort = 1; \ } #define EPILOGUE \ if (nocancel == 0) { \ self->ul_sp = 0; \ self->ul_cancel_async = self->ul_save_async; \ } \ } /* * Perform the body of the action required by most of the cancelable * function calls. The return(function_call) part is to allow the * compiler to make the call be executed with tail recursion, which * saves a register window on sparc and slightly (not much) improves * the code for x86/x64 compilations. */ #define PERFORM(function_call) \ PROLOGUE \ if (abort) { \ *self->ul_errnop = EINTR; \ return (-1); \ } \ if (nocancel) \ return (function_call); \ rv = function_call; \ EPILOGUE \ return (rv); /* * Specialized prologue for sigsuspend() and pollsys(). * These system calls pass a signal mask to the kernel. * The kernel replaces the thread's signal mask with the * temporary mask before the thread goes to sleep. If * a signal is received, the signal handler will execute * with the temporary mask, as modified by the sigaction * for the particular signal. * * We block all signals until we reach the kernel with the * temporary mask. This eliminates race conditions with * setting the signal mask while signals are being posted. */ #define PROLOGUE_MASK(sigmask) \ { \ ulwp_t *self = curthread; \ int nocancel = \ (self->ul_vfork | self->ul_nocancel | self->ul_libc_locks | \ self->ul_critical | self->ul_sigdefer); \ if (!self->ul_vfork) { \ if (sigmask) { \ block_all_signals(self); \ self->ul_tmpmask.__sigbits[0] = sigmask->__sigbits[0]; \ self->ul_tmpmask.__sigbits[1] = sigmask->__sigbits[1]; \ delete_reserved_signals(&self->ul_tmpmask); \ self->ul_sigsuspend = 1; \ } \ if (nocancel == 0) { \ self->ul_save_async = self->ul_cancel_async; \ if (!self->ul_cancel_disabled) { \ self->ul_cancel_async = 1; \ if (self->ul_cancel_pending) { \ if (self->ul_sigsuspend) { \ self->ul_sigsuspend = 0;\ restore_signals(self); \ } \ _pthread_exit(PTHREAD_CANCELED);\ } \ } \ self->ul_sp = stkptr(); \ } \ } /* * If a signal is taken, we return from the system call wrapper with * our original signal mask restored (see code in call_user_handler()). * If not (self->ul_sigsuspend is still non-zero), we must restore our * original signal mask ourself. */ #define EPILOGUE_MASK \ if (nocancel == 0) { \ self->ul_sp = 0; \ self->ul_cancel_async = self->ul_save_async; \ } \ if (self->ul_sigsuspend) { \ self->ul_sigsuspend = 0; \ restore_signals(self); \ } \ } /* * Cancellation prologue and epilogue functions, * for cancellation points too complex to include here. */ void _cancel_prologue(void) { ulwp_t *self = curthread; self->ul_cancel_prologue = (self->ul_vfork | self->ul_nocancel | self->ul_libc_locks | self->ul_critical | self->ul_sigdefer) != 0; if (self->ul_cancel_prologue == 0) { self->ul_save_async = self->ul_cancel_async; if (!self->ul_cancel_disabled) { self->ul_cancel_async = 1; if (self->ul_cancel_pending) _pthread_exit(PTHREAD_CANCELED); } self->ul_sp = stkptr(); } else if (self->ul_cancel_pending && !self->ul_cancel_disabled) { set_cancel_eintr_flag(self); } } void _cancel_epilogue(void) { ulwp_t *self = curthread; if (self->ul_cancel_prologue == 0) { self->ul_sp = 0; self->ul_cancel_async = self->ul_save_async; } } /* * Called from _thrp_join() (thr_join() is a cancellation point) */ int lwp_wait(thread_t tid, thread_t *found) { int error; PROLOGUE if (abort) return (EINTR); while ((error = __lwp_wait(tid, found)) == EINTR && !cancel_active()) continue; EPILOGUE return (error); } #pragma weak read = _read ssize_t _read(int fd, void *buf, size_t size) { extern ssize_t __read(int, void *, size_t); ssize_t rv; PERFORM(__read(fd, buf, size)) } #pragma weak write = _write ssize_t _write(int fd, const void *buf, size_t size) { extern ssize_t __write(int, const void *, size_t); ssize_t rv; PERFORM(__write(fd, buf, size)) } #pragma weak getmsg = _getmsg int _getmsg(int fd, struct strbuf *ctlptr, struct strbuf *dataptr, int *flagsp) { extern int __getmsg(int, struct strbuf *, struct strbuf *, int *); int rv; PERFORM(__getmsg(fd, ctlptr, dataptr, flagsp)) } #pragma weak getpmsg = _getpmsg int _getpmsg(int fd, struct strbuf *ctlptr, struct strbuf *dataptr, int *bandp, int *flagsp) { extern int __getpmsg(int, struct strbuf *, struct strbuf *, int *, int *); int rv; PERFORM(__getpmsg(fd, ctlptr, dataptr, bandp, flagsp)) } #pragma weak putmsg = _putmsg int _putmsg(int fd, const struct strbuf *ctlptr, const struct strbuf *dataptr, int flags) { extern int __putmsg(int, const struct strbuf *, const struct strbuf *, int); int rv; PERFORM(__putmsg(fd, ctlptr, dataptr, flags)) } int __xpg4_putmsg(int fd, const struct strbuf *ctlptr, const struct strbuf *dataptr, int flags) { extern int __putmsg(int, const struct strbuf *, const struct strbuf *, int); int rv; PERFORM(__putmsg(fd, ctlptr, dataptr, flags|MSG_XPG4)) } #pragma weak putpmsg = _putpmsg int _putpmsg(int fd, const struct strbuf *ctlptr, const struct strbuf *dataptr, int band, int flags) { extern int __putpmsg(int, const struct strbuf *, const struct strbuf *, int, int); int rv; PERFORM(__putpmsg(fd, ctlptr, dataptr, band, flags)) } int __xpg4_putpmsg(int fd, const struct strbuf *ctlptr, const struct strbuf *dataptr, int band, int flags) { extern int __putpmsg(int, const struct strbuf *, const struct strbuf *, int, int); int rv; PERFORM(__putpmsg(fd, ctlptr, dataptr, band, flags|MSG_XPG4)) } #pragma weak nanosleep = _nanosleep int _nanosleep(const timespec_t *rqtp, timespec_t *rmtp) { int error; PROLOGUE error = abort? EINTR : __nanosleep(rqtp, rmtp); EPILOGUE if (error) { errno = error; return (-1); } return (0); } #pragma weak clock_nanosleep = _clock_nanosleep int _clock_nanosleep(clockid_t clock_id, int flags, const timespec_t *rqtp, timespec_t *rmtp) { timespec_t reltime; hrtime_t start; hrtime_t rqlapse; hrtime_t lapse; int error; switch (clock_id) { case CLOCK_VIRTUAL: case CLOCK_PROCESS_CPUTIME_ID: case CLOCK_THREAD_CPUTIME_ID: return (ENOTSUP); case CLOCK_REALTIME: case CLOCK_HIGHRES: break; default: return (EINVAL); } if (flags & TIMER_ABSTIME) { abstime_to_reltime(clock_id, rqtp, &reltime); rmtp = NULL; } else { reltime = *rqtp; if (clock_id == CLOCK_HIGHRES) start = gethrtime(); } restart: PROLOGUE error = abort? EINTR : __nanosleep(&reltime, rmtp); EPILOGUE if (error == 0 && clock_id == CLOCK_HIGHRES) { /* * Don't return yet if we didn't really get a timeout. * This can happen if we return because someone resets * the system clock. */ if (flags & TIMER_ABSTIME) { if ((hrtime_t)(uint32_t)rqtp->tv_sec * NANOSEC + rqtp->tv_nsec > gethrtime()) { abstime_to_reltime(clock_id, rqtp, &reltime); goto restart; } } else { rqlapse = (hrtime_t)(uint32_t)rqtp->tv_sec * NANOSEC + rqtp->tv_nsec; lapse = gethrtime() - start; if (rqlapse > lapse) { hrt2ts(rqlapse - lapse, &reltime); goto restart; } } } if (error == 0 && clock_id == CLOCK_REALTIME && (flags & TIMER_ABSTIME)) { /* * Don't return yet just because someone reset the * system clock. Recompute the new relative time * and reissue the nanosleep() call if necessary. * * Resetting the system clock causes all sorts of * problems and the SUSV3 standards body should * have made the behavior of clock_nanosleep() be * implementation-defined in such a case rather than * being specific about honoring the new system time. * Standards bodies are filled with fools and idiots. */ abstime_to_reltime(clock_id, rqtp, &reltime); if (reltime.tv_sec != 0 || reltime.tv_nsec != 0) goto restart; } return (error); } #pragma weak sleep = _sleep unsigned int _sleep(unsigned int sec) { unsigned int rem = 0; timespec_t ts; timespec_t tsr; ts.tv_sec = (time_t)sec; ts.tv_nsec = 0; if (_nanosleep(&ts, &tsr) == -1 && errno == EINTR) { rem = (unsigned int)tsr.tv_sec; if (tsr.tv_nsec >= NANOSEC / 2) rem++; } return (rem); } #pragma weak usleep = _usleep int _usleep(useconds_t usec) { timespec_t ts; ts.tv_sec = usec / MICROSEC; ts.tv_nsec = (long)(usec % MICROSEC) * 1000; (void) _nanosleep(&ts, NULL); return (0); } #pragma weak close = _close int _close(int fildes) { extern void _aio_close(int); extern int __close(int); int rv; _aio_close(fildes); PERFORM(__close(fildes)) } #pragma weak creat = _creat int _creat(const char *path, mode_t mode) { extern int __creat(const char *, mode_t); int rv; PERFORM(__creat(path, mode)) } #if !defined(_LP64) #pragma weak creat64 = _creat64 int _creat64(const char *path, mode_t mode) { extern int __creat64(const char *, mode_t); int rv; PERFORM(__creat64(path, mode)) } #endif /* !_LP64 */ #pragma weak door_call = _door_call int _door_call(int d, door_arg_t *params) { extern int __door_call(int, door_arg_t *); int rv; PERFORM(__door_call(d, params)) } #pragma weak fcntl = _fcntl int _fcntl(int fildes, int cmd, ...) { extern int __fcntl(int, int, ...); intptr_t arg; int rv; va_list ap; va_start(ap, cmd); arg = va_arg(ap, intptr_t); va_end(ap); if (cmd != F_SETLKW) return (__fcntl(fildes, cmd, arg)); PERFORM(__fcntl(fildes, cmd, arg)) } #pragma weak fdatasync = _fdatasync int _fdatasync(int fildes) { extern int __fdsync(int, int); int rv; PERFORM(__fdsync(fildes, FDSYNC)) } #pragma weak fsync = _fsync int _fsync(int fildes) { extern int __fdsync(int, int); int rv; PERFORM(__fdsync(fildes, FSYNC)) } #pragma weak lockf = _lockf int _lockf(int fildes, int function, off_t size) { extern int __lockf(int, int, off_t); int rv; PERFORM(__lockf(fildes, function, size)) } #if !defined(_LP64) #pragma weak lockf64 = _lockf64 int _lockf64(int fildes, int function, off64_t size) { extern int __lockf64(int, int, off64_t); int rv; PERFORM(__lockf64(fildes, function, size)) } #endif /* !_LP64 */ #pragma weak msgrcv = _msgrcv ssize_t _msgrcv(int msqid, void *msgp, size_t msgsz, long msgtyp, int msgflg) { extern ssize_t __msgrcv(int, void *, size_t, long, int); ssize_t rv; PERFORM(__msgrcv(msqid, msgp, msgsz, msgtyp, msgflg)) } #pragma weak msgsnd = _msgsnd int _msgsnd(int msqid, const void *msgp, size_t msgsz, int msgflg) { extern int __msgsnd(int, const void *, size_t, int); int rv; PERFORM(__msgsnd(msqid, msgp, msgsz, msgflg)) } #pragma weak msync = _msync int _msync(caddr_t addr, size_t len, int flags) { extern int __msync(caddr_t, size_t, int); int rv; PERFORM(__msync(addr, len, flags)) } #pragma weak open = _open int _open(const char *path, int oflag, ...) { extern int __open(const char *, int, ...); mode_t mode; int rv; va_list ap; va_start(ap, oflag); mode = va_arg(ap, mode_t); va_end(ap); PERFORM(__open(path, oflag, mode)) } #pragma weak openat = _openat int _openat(int fd, const char *path, int oflag, ...) { extern int __openat(int, const char *, int, ...); mode_t mode; int rv; va_list ap; va_start(ap, oflag); mode = va_arg(ap, mode_t); va_end(ap); PERFORM(__openat(fd, path, oflag, mode)) } #if !defined(_LP64) #pragma weak open64 = _open64 int _open64(const char *path, int oflag, ...) { extern int __open64(const char *, int, ...); mode_t mode; int rv; va_list ap; va_start(ap, oflag); mode = va_arg(ap, mode_t); va_end(ap); PERFORM(__open64(path, oflag, mode)) } #pragma weak openat64 = _openat64 int _openat64(int fd, const char *path, int oflag, ...) { extern int __openat64(int, const char *, int, ...); mode_t mode; int rv; va_list ap; va_start(ap, oflag); mode = va_arg(ap, mode_t); va_end(ap); PERFORM(__openat64(fd, path, oflag, mode)) } #endif /* !_LP64 */ #pragma weak pause = _pause int _pause(void) { extern int __pause(void); int rv; PERFORM(__pause()) } #pragma weak pread = _pread ssize_t _pread(int fildes, void *buf, size_t nbyte, off_t offset) { extern ssize_t __pread(int, void *, size_t, off_t); ssize_t rv; PERFORM(__pread(fildes, buf, nbyte, offset)) } #if !defined(_LP64) #pragma weak pread64 = _pread64 ssize_t _pread64(int fildes, void *buf, size_t nbyte, off64_t offset) { extern ssize_t __pread64(int, void *, size_t, off64_t); ssize_t rv; PERFORM(__pread64(fildes, buf, nbyte, offset)) } #endif /* !_LP64 */ #pragma weak pwrite = _pwrite ssize_t _pwrite(int fildes, const void *buf, size_t nbyte, off_t offset) { extern ssize_t __pwrite(int, const void *, size_t, off_t); ssize_t rv; PERFORM(__pwrite(fildes, buf, nbyte, offset)) } #if !defined(_LP64) #pragma weak pwrite64 = _pwrite64 ssize_t _pwrite64(int fildes, const void *buf, size_t nbyte, off64_t offset) { extern ssize_t __pwrite64(int, const void *, size_t, off64_t); ssize_t rv; PERFORM(__pwrite64(fildes, buf, nbyte, offset)) } #endif /* !_LP64 */ #pragma weak readv = _readv ssize_t _readv(int fildes, const struct iovec *iov, int iovcnt) { extern ssize_t __readv(int, const struct iovec *, int); ssize_t rv; PERFORM(__readv(fildes, iov, iovcnt)) } #pragma weak sigpause = _sigpause int _sigpause(int sig) { extern int __sigpause(int); int rv; PERFORM(__sigpause(sig)) } #pragma weak sigsuspend = _sigsuspend int _sigsuspend(const sigset_t *set) { extern int __sigsuspend(const sigset_t *); int rv; PROLOGUE_MASK(set) rv = __sigsuspend(set); EPILOGUE_MASK return (rv); } int _pollsys(struct pollfd *fds, nfds_t nfd, const timespec_t *timeout, const sigset_t *sigmask) { extern int __pollsys(struct pollfd *, nfds_t, const timespec_t *, const sigset_t *); int rv; PROLOGUE_MASK(sigmask) rv = __pollsys(fds, nfd, timeout, sigmask); EPILOGUE_MASK return (rv); } #pragma weak sigtimedwait = _sigtimedwait int _sigtimedwait(const sigset_t *set, siginfo_t *infop, const timespec_t *timeout) { extern int __sigtimedwait(const sigset_t *, siginfo_t *, const timespec_t *); siginfo_t info; int sig; PROLOGUE if (abort) { *self->ul_errnop = EINTR; sig = -1; } else { sig = __sigtimedwait(set, &info, timeout); if (sig == SIGCANCEL && (SI_FROMKERNEL(&info) || info.si_code == SI_LWP)) { do_sigcancel(); *self->ul_errnop = EINTR; sig = -1; } } EPILOGUE if (sig != -1 && infop) (void) _private_memcpy(infop, &info, sizeof (*infop)); return (sig); } #pragma weak sigwait = _sigwait int _sigwait(sigset_t *set) { return (_sigtimedwait(set, NULL, NULL)); } #pragma weak sigwaitinfo = _sigwaitinfo int _sigwaitinfo(const sigset_t *set, siginfo_t *info) { return (_sigtimedwait(set, info, NULL)); } #pragma weak sigqueue = _sigqueue int _sigqueue(pid_t pid, int signo, const union sigval value) { extern int __sigqueue(pid_t pid, int signo, /* const union sigval */ void *value, int si_code, int block); return (__sigqueue(pid, signo, value.sival_ptr, SI_QUEUE, 0)); } int _so_accept(int sock, struct sockaddr *addr, uint_t *addrlen, int version) { extern int __so_accept(int, struct sockaddr *, uint_t *, int); int rv; PERFORM(__so_accept(sock, addr, addrlen, version)) } int _so_connect(int sock, struct sockaddr *addr, uint_t addrlen, int version) { extern int __so_connect(int, struct sockaddr *, uint_t, int); int rv; PERFORM(__so_connect(sock, addr, addrlen, version)) } int _so_recv(int sock, void *buf, size_t len, int flags) { extern int __so_recv(int, void *, size_t, int); int rv; PERFORM(__so_recv(sock, buf, len, flags)) } int _so_recvfrom(int sock, void *buf, size_t len, int flags, struct sockaddr *addr, int *addrlen) { extern int __so_recvfrom(int, void *, size_t, int, struct sockaddr *, int *); int rv; PERFORM(__so_recvfrom(sock, buf, len, flags, addr, addrlen)) } int _so_recvmsg(int sock, struct msghdr *msg, int flags) { extern int __so_recvmsg(int, struct msghdr *, int); int rv; PERFORM(__so_recvmsg(sock, msg, flags)) } int _so_send(int sock, const void *buf, size_t len, int flags) { extern int __so_send(int, const void *, size_t, int); int rv; PERFORM(__so_send(sock, buf, len, flags)) } int _so_sendmsg(int sock, const struct msghdr *msg, int flags) { extern int __so_sendmsg(int, const struct msghdr *, int); int rv; PERFORM(__so_sendmsg(sock, msg, flags)) } int _so_sendto(int sock, const void *buf, size_t len, int flags, const struct sockaddr *addr, int *addrlen) { extern int __so_sendto(int, const void *, size_t, int, const struct sockaddr *, int *); int rv; PERFORM(__so_sendto(sock, buf, len, flags, addr, addrlen)) } #pragma weak tcdrain = _tcdrain int _tcdrain(int fildes) { extern int __tcdrain(int); int rv; PERFORM(__tcdrain(fildes)) } #pragma weak waitid = _waitid int _waitid(idtype_t idtype, id_t id, siginfo_t *infop, int options) { extern int __waitid(idtype_t, id_t, siginfo_t *, int); int rv; if (options & WNOHANG) return (__waitid(idtype, id, infop, options)); PERFORM(__waitid(idtype, id, infop, options)) } #pragma weak writev = _writev ssize_t _writev(int fildes, const struct iovec *iov, int iovcnt) { extern ssize_t __writev(int, const struct iovec *, int); ssize_t rv; PERFORM(__writev(fildes, iov, iovcnt)) }