/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2004 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" /* Copyright (c) 1988 AT&T */ /* All Rights Reserved */ #include "lint.h" #include "thr_uberdata.h" #include "libc_int.h" #include "atexit.h" #include "stdiom.h" /* * Note that memory is managed by lmalloc()/lfree(). * * Among other reasons, this is occasioned by the insistence of our * brothers sh(1) and csh(1) that they can do malloc, etc., better than * libc can. Those programs define their own malloc routines, and * initialize the underlying mechanism in main(). This means that calls * to malloc occuring before main will crash. The loader calls atexit(3C) * before calling main, so we'd better avoid malloc() when it does. * * Another reason for using lmalloc()/lfree() is that the atexit() * list must transcend all link maps. See the Linker and Libraries * Guide for information on alternate link maps. * * See "thr_uberdata.h" for the definitions of structures used here. */ static int in_range(_exithdlr_func_t, Lc_addr_range_t[], uint_t count); extern caddr_t _getfp(void); /* * exitfns_lock is declared to be a recursive mutex so that we * can hold it while calling out to the registered functions. * If they call back to us, we are self-consistent and everything * works, even the case of calling exit() from functions called * by _exithandle() (recursive exit()). All that is required is * that the registered functions actually return (no longjmp()s). * * Because exitfns_lock is declared to be a recursive mutex, we * cannot use it with lmutex_lock()/lmutex_unlock() and we must use * rmutex_lock()/rmutex_unlock() (which are defined to be simply * mutex_lock()/mutex_unlock()). This means that atexit() and * exit() are not async-signal-safe. We make them fork1-safe * via the atexit_locks()/atexit_unlocks() functions, called from * libc_prepare_atfork()/libc_child_atfork()/libc_parent_atfork() */ /* * atexit_locks() and atexit_unlocks() are called on every link map. * Do not use curthread->ul_uberdata->atexit_root for these. */ void atexit_locks() { (void) rmutex_lock(&__uberdata.atexit_root.exitfns_lock); } void atexit_unlocks() { (void) rmutex_unlock(&__uberdata.atexit_root.exitfns_lock); } /* * atexit() is called before the primordial thread is fully set up. * Be careful about dereferencing self->ul_uberdata->atexit_root. */ #pragma weak atexit = _atexit int _atexit(void (*func)(void)) { ulwp_t *self; atexit_root_t *arp; _exthdlr_t *p; if ((p = lmalloc(sizeof (_exthdlr_t))) == NULL) return (-1); if ((self = __curthread()) == NULL) arp = &__uberdata.atexit_root; else { arp = &self->ul_uberdata->atexit_root; (void) rmutex_lock(&arp->exitfns_lock); } p->hdlr = func; p->next = arp->head; arp->head = p; if (self != NULL) (void) rmutex_unlock(&arp->exitfns_lock); return (0); } void _exithandle(void) { atexit_root_t *arp = &curthread->ul_uberdata->atexit_root; _exthdlr_t *p; (void) rmutex_lock(&arp->exitfns_lock); arp->exit_frame_monitor = _getfp() + STACK_BIAS; p = arp->head; while (p != NULL) { arp->head = p->next; p->hdlr(); lfree(p, sizeof (_exthdlr_t)); p = arp->head; } (void) rmutex_unlock(&arp->exitfns_lock); } /* * _get_exit_frame_monitor is called by the C++ runtimes. */ void * _get_exit_frame_monitor(void) { atexit_root_t *arp = &curthread->ul_uberdata->atexit_root; return (&arp->exit_frame_monitor); } /* * The following is a routine which the loader (ld.so.1) calls when it * processes a dlclose call on an object. It resets all signal handlers * which fall within the union of the ranges specified by the elements * of the array range to SIG_DFL. */ static void _preexec_sig_unload(Lc_addr_range_t range[], uint_t count) { uberdata_t *udp = curthread->ul_uberdata; int sig; mutex_t *mp; struct sigaction *sap; struct sigaction oact; void (*handler)(); for (sig = 1; sig < NSIG; sig++) { sap = (struct sigaction *)&udp->siguaction[sig].sig_uaction; again: handler = sap->sa_handler; if (handler != SIG_DFL && handler != SIG_IGN && in_range(handler, range, count)) { mp = &udp->siguaction[sig].sig_lock; lmutex_lock(mp); if (handler != sap->sa_handler) { lmutex_unlock(mp); goto again; } sap->sa_handler = SIG_DFL; sap->sa_flags = SA_SIGINFO; (void) sigemptyset(&sap->sa_mask); if (__sigaction(sig, NULL, &oact) == 0 && oact.sa_handler != SIG_DFL && oact.sa_handler != SIG_IGN) (void) __sigaction(sig, sap, NULL); lmutex_unlock(mp); } } } /* * The following is a routine which the loader (ld.so.1) calls when it * processes a dlclose call on an object. It cancels all atfork() entries * whose prefork, parent postfork, or child postfork functions fall within * the union of the ranges specified by the elements of the array range. */ static void _preexec_atfork_unload(Lc_addr_range_t range[], uint_t count) { uberdata_t *udp = curthread->ul_uberdata; atfork_t *atfork_q; atfork_t *atfp; atfork_t *next; void (*func)(void); int start_again; int error; error = fork_lock_enter(NULL); if ((atfork_q = udp->atforklist) != NULL) { atfp = atfork_q; do { next = atfp->forw; start_again = 0; if (((func = atfp->prepare) != NULL && in_range(func, range, count)) || ((func = atfp->parent) != NULL && in_range(func, range, count)) || ((func = atfp->child) != NULL && in_range(func, range, count))) { if (error) { /* * dlclose() called from a fork handler. * Deleting the entry would wreak havoc. * Just null out the function pointers * and leave the entry in place. */ atfp->prepare = NULL; atfp->parent = NULL; atfp->child = NULL; continue; } if (atfp == atfork_q) { /* deleting the list head member */ udp->atforklist = atfork_q = next; start_again = 1; } atfp->forw->back = atfp->back; atfp->back->forw = atfp->forw; lfree(atfp, sizeof (atfork_t)); if (atfp == atfork_q) { /* we deleted the whole list */ udp->atforklist = NULL; break; } } } while ((atfp = next) != atfork_q || start_again); } fork_lock_exit(); } /* * The following is a routine which the loader (ld.so.1) calls when it * processes a dlclose call on an object. It sets the destructor * function pointer to NULL for all keys whose destructors fall within * the union of the ranges specified by the elements of the array range. * We don't assign TSD_UNALLOCATED (the equivalent of pthread_key_destroy()) * because the thread may use the key's TSD further on in fini processing. */ static void _preexec_tsd_unload(Lc_addr_range_t range[], uint_t count) { tsd_metadata_t *tsdm = &curthread->ul_uberdata->tsd_metadata; void (*func)(void *); int key; lmutex_lock(&tsdm->tsdm_lock); for (key = 1; key < tsdm->tsdm_nused; key++) { if ((func = tsdm->tsdm_destro[key]) != NULL && func != TSD_UNALLOCATED && in_range((_exithdlr_func_t)func, range, count)) tsdm->tsdm_destro[key] = NULL; } lmutex_unlock(&tsdm->tsdm_lock); } /* * The following is a routine which the loader (ld.so.1) calls when it * processes dlclose calls on objects with atexit registrations. It * executes the exit handlers that fall within the union of the ranges * specified by the elements of the array range in the REVERSE ORDER of * their registration. Do not change this characteristic; it is REQUIRED * BEHAVIOR. */ int _preexec_exit_handlers(Lc_addr_range_t range[], uint_t count) { atexit_root_t *arp = &curthread->ul_uberdata->atexit_root; _exthdlr_t *o; /* previous node */ _exthdlr_t *p; /* this node */ (void) rmutex_lock(&arp->exitfns_lock); o = NULL; p = arp->head; while (p != NULL) { if (in_range(p->hdlr, range, count)) { /* We need to execute this one */ if (o != NULL) o->next = p->next; else arp->head = p->next; p->hdlr(); lfree(p, sizeof (_exthdlr_t)); o = NULL; p = arp->head; } else { o = p; p = p->next; } } (void) rmutex_unlock(&arp->exitfns_lock); _preexec_tsd_unload(range, count); _preexec_atfork_unload(range, count); _preexec_sig_unload(range, count); return (0); } static int in_range(_exithdlr_func_t addr, Lc_addr_range_t ranges[], uint_t count) { uint_t idx; for (idx = 0; idx < count; idx++) { if ((void *)addr >= ranges[idx].lb && (void *)addr < ranges[idx].ub) { return (1); } } return (0); }