/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2005 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * Cleaned-up and optimized version of MD5, based on the reference * implementation provided in RFC 1321. See RSA Copyright information * below. * * NOTE: All compiler data was gathered with SC4.2, and verified with SC5.x, * as used to build Solaris 2.7. Hopefully the compiler behavior won't * change for the worse in subsequent Solaris builds. */ #pragma ident "%Z%%M% %I% %E% SMI" /* * MD5C.C - RSA Data Security, Inc., MD5 message-digest algorithm */ /* * Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991. All * rights reserved. * * License to copy and use this software is granted provided that it * is identified as the "RSA Data Security, Inc. MD5 Message-Digest * Algorithm" in all material mentioning or referencing this software * or this function. * * License is also granted to make and use derivative works provided * that such works are identified as "derived from the RSA Data * Security, Inc. MD5 Message-Digest Algorithm" in all material * mentioning or referencing the derived work. * * RSA Data Security, Inc. makes no representations concerning either * the merchantability of this software or the suitability of this * software for any particular purpose. It is provided "as is" * without express or implied warranty of any kind. * * These notices must be retained in any copies of any part of this * documentation and/or software. */ #include #include #include /* MD5_CONST() optimization */ #if !defined(_KERNEL) || defined(_BOOT) #include #endif /* !_KERNEL || _BOOT */ #if defined(_KERNEL) && !defined(_BOOT) /* * In kernel module, the md5 module is created with two modlinkages: * - a modlmisc that allows consumers to directly call the entry points * MD5Init, MD5Update, and MD5Final. * - a modlcrypto that allows the module to register with the Kernel * Cryptographic Framework (KCF) as a software provider for the MD5 * mechanisms. */ #include #include #include #include #include #include #include #include #include extern struct mod_ops mod_miscops; extern struct mod_ops mod_cryptoops; /* * Module linkage information for the kernel. */ static struct modlmisc modlmisc = { &mod_miscops, "MD5 Message-Digest Algorithm" }; static struct modlcrypto modlcrypto = { &mod_cryptoops, "MD5 Kernel SW Provider %I%" }; static struct modlinkage modlinkage = { MODREV_1, (void *)&modlmisc, (void *)&modlcrypto, NULL }; /* * CSPI information (entry points, provider info, etc.) */ typedef enum md5_mech_type { MD5_MECH_INFO_TYPE, /* SUN_CKM_MD5 */ MD5_HMAC_MECH_INFO_TYPE, /* SUN_CKM_MD5_HMAC */ MD5_HMAC_GEN_MECH_INFO_TYPE /* SUN_CKM_MD5_HMAC_GENERAL */ } md5_mech_type_t; #define MD5_DIGEST_LENGTH 16 /* MD5 digest length in bytes */ #define MD5_HMAC_BLOCK_SIZE 64 /* MD5 block size */ #define MD5_HMAC_MIN_KEY_LEN 8 /* MD5-HMAC min key length in bits */ #define MD5_HMAC_MAX_KEY_LEN INT_MAX /* MD5-HMAC max key length in bits */ #define MD5_HMAC_INTS_PER_BLOCK (MD5_HMAC_BLOCK_SIZE/sizeof (uint32_t)) /* * Context for MD5 mechanism. */ typedef struct md5_ctx { md5_mech_type_t mc_mech_type; /* type of context */ MD5_CTX mc_md5_ctx; /* MD5 context */ } md5_ctx_t; /* * Context for MD5-HMAC and MD5-HMAC-GENERAL mechanisms. */ typedef struct md5_hmac_ctx { md5_mech_type_t hc_mech_type; /* type of context */ uint32_t hc_digest_len; /* digest len in bytes */ MD5_CTX hc_icontext; /* inner MD5 context */ MD5_CTX hc_ocontext; /* outer MD5 context */ } md5_hmac_ctx_t; /* * Macros to access the MD5 or MD5-HMAC contexts from a context passed * by KCF to one of the entry points. */ #define PROV_MD5_CTX(ctx) ((md5_ctx_t *)(ctx)->cc_provider_private) #define PROV_MD5_HMAC_CTX(ctx) ((md5_hmac_ctx_t *)(ctx)->cc_provider_private) /* to extract the digest length passed as mechanism parameter */ #define PROV_MD5_GET_DIGEST_LEN(m, len) { \ if (IS_P2ALIGNED((m)->cm_param, sizeof (ulong_t))) \ (len) = (uint32_t)*((ulong_t *)mechanism->cm_param); \ else { \ ulong_t tmp_ulong; \ bcopy((m)->cm_param, &tmp_ulong, sizeof (ulong_t)); \ (len) = (uint32_t)tmp_ulong; \ } \ } #define PROV_MD5_DIGEST_KEY(ctx, key, len, digest) { \ MD5Init(ctx); \ MD5Update(ctx, key, len); \ MD5Final(digest, ctx); \ } /* * Mechanism info structure passed to KCF during registration. */ static crypto_mech_info_t md5_mech_info_tab[] = { /* MD5 */ {SUN_CKM_MD5, MD5_MECH_INFO_TYPE, CRYPTO_FG_DIGEST | CRYPTO_FG_DIGEST_ATOMIC, 0, 0, CRYPTO_KEYSIZE_UNIT_IN_BITS}, /* MD5-HMAC */ {SUN_CKM_MD5_HMAC, MD5_HMAC_MECH_INFO_TYPE, CRYPTO_FG_MAC | CRYPTO_FG_MAC_ATOMIC, MD5_HMAC_MIN_KEY_LEN, MD5_HMAC_MAX_KEY_LEN, CRYPTO_KEYSIZE_UNIT_IN_BITS}, /* MD5-HMAC GENERAL */ {SUN_CKM_MD5_HMAC_GENERAL, MD5_HMAC_GEN_MECH_INFO_TYPE, CRYPTO_FG_MAC | CRYPTO_FG_MAC_ATOMIC, MD5_HMAC_MIN_KEY_LEN, MD5_HMAC_MAX_KEY_LEN, CRYPTO_KEYSIZE_UNIT_IN_BITS} }; static void md5_provider_status(crypto_provider_handle_t, uint_t *); static crypto_control_ops_t md5_control_ops = { md5_provider_status }; static int md5_digest_init(crypto_ctx_t *, crypto_mechanism_t *, crypto_req_handle_t); static int md5_digest(crypto_ctx_t *, crypto_data_t *, crypto_data_t *, crypto_req_handle_t); static int md5_digest_update(crypto_ctx_t *, crypto_data_t *, crypto_req_handle_t); static int md5_digest_final(crypto_ctx_t *, crypto_data_t *, crypto_req_handle_t); static int md5_digest_atomic(crypto_provider_handle_t, crypto_session_id_t, crypto_mechanism_t *, crypto_data_t *, crypto_data_t *, crypto_req_handle_t); static crypto_digest_ops_t md5_digest_ops = { md5_digest_init, md5_digest, md5_digest_update, NULL, md5_digest_final, md5_digest_atomic }; static int md5_mac_init(crypto_ctx_t *, crypto_mechanism_t *, crypto_key_t *, crypto_spi_ctx_template_t, crypto_req_handle_t); static int md5_mac_update(crypto_ctx_t *, crypto_data_t *, crypto_req_handle_t); static int md5_mac_final(crypto_ctx_t *, crypto_data_t *, crypto_req_handle_t); static int md5_mac_atomic(crypto_provider_handle_t, crypto_session_id_t, crypto_mechanism_t *, crypto_key_t *, crypto_data_t *, crypto_data_t *, crypto_spi_ctx_template_t, crypto_req_handle_t); static int md5_mac_verify_atomic(crypto_provider_handle_t, crypto_session_id_t, crypto_mechanism_t *, crypto_key_t *, crypto_data_t *, crypto_data_t *, crypto_spi_ctx_template_t, crypto_req_handle_t); static crypto_mac_ops_t md5_mac_ops = { md5_mac_init, NULL, md5_mac_update, md5_mac_final, md5_mac_atomic, md5_mac_verify_atomic }; static int md5_create_ctx_template(crypto_provider_handle_t, crypto_mechanism_t *, crypto_key_t *, crypto_spi_ctx_template_t *, size_t *, crypto_req_handle_t); static int md5_free_context(crypto_ctx_t *); static crypto_ctx_ops_t md5_ctx_ops = { md5_create_ctx_template, md5_free_context }; static crypto_ops_t md5_crypto_ops = { &md5_control_ops, &md5_digest_ops, NULL, &md5_mac_ops, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, &md5_ctx_ops }; static crypto_provider_info_t md5_prov_info = { CRYPTO_SPI_VERSION_1, "MD5 Software Provider", CRYPTO_SW_PROVIDER, {&modlinkage}, NULL, &md5_crypto_ops, sizeof (md5_mech_info_tab)/sizeof (crypto_mech_info_t), md5_mech_info_tab }; static crypto_kcf_provider_handle_t md5_prov_handle = NULL; int _init(void) { int ret; if ((ret = mod_install(&modlinkage)) != 0) return (ret); /* * Register with KCF. If the registration fails, log an * error but do not uninstall the module, since the functionality * provided by misc/md5 should still be available. */ if ((ret = crypto_register_provider(&md5_prov_info, &md5_prov_handle)) != CRYPTO_SUCCESS) cmn_err(CE_WARN, "md5 _init: " "crypto_register_provider() failed (0x%x)", ret); return (0); } int _fini(void) { int ret; /* * Unregister from KCF if previous registration succeeded. */ if (md5_prov_handle != NULL) { if ((ret = crypto_unregister_provider(md5_prov_handle)) != CRYPTO_SUCCESS) { cmn_err(CE_WARN, "md5 _fini: " "crypto_unregister_provider() failed (0x%x)", ret); return (EBUSY); } md5_prov_handle = NULL; } return (mod_remove(&modlinkage)); } int _info(struct modinfo *modinfop) { return (mod_info(&modlinkage, modinfop)); } #endif /* _KERNEL && !_BOOT */ static void Encode(uint8_t *, uint32_t *, size_t); static void MD5Transform(uint32_t, uint32_t, uint32_t, uint32_t, MD5_CTX *, const uint8_t [64]); static uint8_t PADDING[64] = { 0x80, /* all zeros */ }; /* * F, G, H and I are the basic MD5 functions. */ #define F(b, c, d) (((b) & (c)) | ((~b) & (d))) #define G(b, c, d) (((b) & (d)) | ((c) & (~d))) #define H(b, c, d) ((b) ^ (c) ^ (d)) #define I(b, c, d) ((c) ^ ((b) | (~d))) /* * ROTATE_LEFT rotates x left n bits. */ #define ROTATE_LEFT(x, n) \ (((x) << (n)) | ((x) >> ((sizeof (x) << 3) - (n)))) /* * FF, GG, HH, and II transformations for rounds 1, 2, 3, and 4. * Rotation is separate from addition to prevent recomputation. */ #define FF(a, b, c, d, x, s, ac) { \ (a) += F((b), (c), (d)) + (x) + ((unsigned long long)(ac)); \ (a) = ROTATE_LEFT((a), (s)); \ (a) += (b); \ } #define GG(a, b, c, d, x, s, ac) { \ (a) += G((b), (c), (d)) + (x) + ((unsigned long long)(ac)); \ (a) = ROTATE_LEFT((a), (s)); \ (a) += (b); \ } #define HH(a, b, c, d, x, s, ac) { \ (a) += H((b), (c), (d)) + (x) + ((unsigned long long)(ac)); \ (a) = ROTATE_LEFT((a), (s)); \ (a) += (b); \ } #define II(a, b, c, d, x, s, ac) { \ (a) += I((b), (c), (d)) + (x) + ((unsigned long long)(ac)); \ (a) = ROTATE_LEFT((a), (s)); \ (a) += (b); \ } /* * Loading 32-bit constants on a RISC is expensive since it involves both a * `sethi' and an `or'. thus, we instead have the compiler generate `ld's to * load the constants from an array called `md5_consts'. however, on intel * (and other CISC processors), it is cheaper to load the constant * directly. thus, the c code in MD5Transform() uses the macro MD5_CONST() * which either expands to a constant or an array reference, depending on the * architecture the code is being compiled for. * * Right now, i386 and amd64 are the CISC exceptions. * If we get another CISC ISA, we'll have to change the ifdef. */ /* * Using the %asi register to achieve little endian loads - register * is set using a inline template. * * Saves a few arithmetic ops as can now use an immediate offset with the * lduwa instructions. */ extern void set_little(uint32_t); extern uint32_t get_little(); #if defined(__i386) || defined(__amd64) #define MD5_CONST(x) (MD5_CONST_ ## x) #define MD5_CONST_e(x) MD5_CONST(x) #define MD5_CONST_o(x) MD5_CONST(x) #else /* * sparc/RISC optimization: * * while it is somewhat counter-intuitive, on sparc (and presumably other RISC * machines), it is more efficient to place all the constants used in this * function in an array and load the values out of the array than to manually * load the constants. this is because setting a register to a 32-bit value * takes two ops in most cases: a `sethi' and an `or', but loading a 32-bit * value from memory only takes one `ld' (or `lduw' on v9). while this * increases memory usage, the compiler can find enough other things to do * while waiting to keep the pipeline does not stall. additionally, it is * likely that many of these constants are cached so that later accesses do * not even go out to the bus. * * this array is declared `static' to keep the compiler from having to * bcopy() this array onto the stack frame of MD5Transform() each time it is * called -- which is unacceptably expensive. * * the `const' is to ensure that callers are good citizens and do not try to * munge the array. since these routines are going to be called from inside * multithreaded kernelland, this is a good safety check. -- `constants' will * end up in .rodata. * * unfortunately, loading from an array in this manner hurts performance under * intel (and presumably other CISC machines). so, there is a macro, * MD5_CONST(), used in MD5Transform(), that either expands to a reference to * this array, or to the actual constant, depending on what platform this code * is compiled for. */ #ifdef sun4v /* * Going to load these consts in 8B chunks, so need to enforce 8B alignment */ /* CSTYLED */ #pragma align 64 (md5_consts) #endif /* sun4v */ static const uint32_t md5_consts[] = { MD5_CONST_0, MD5_CONST_1, MD5_CONST_2, MD5_CONST_3, MD5_CONST_4, MD5_CONST_5, MD5_CONST_6, MD5_CONST_7, MD5_CONST_8, MD5_CONST_9, MD5_CONST_10, MD5_CONST_11, MD5_CONST_12, MD5_CONST_13, MD5_CONST_14, MD5_CONST_15, MD5_CONST_16, MD5_CONST_17, MD5_CONST_18, MD5_CONST_19, MD5_CONST_20, MD5_CONST_21, MD5_CONST_22, MD5_CONST_23, MD5_CONST_24, MD5_CONST_25, MD5_CONST_26, MD5_CONST_27, MD5_CONST_28, MD5_CONST_29, MD5_CONST_30, MD5_CONST_31, MD5_CONST_32, MD5_CONST_33, MD5_CONST_34, MD5_CONST_35, MD5_CONST_36, MD5_CONST_37, MD5_CONST_38, MD5_CONST_39, MD5_CONST_40, MD5_CONST_41, MD5_CONST_42, MD5_CONST_43, MD5_CONST_44, MD5_CONST_45, MD5_CONST_46, MD5_CONST_47, MD5_CONST_48, MD5_CONST_49, MD5_CONST_50, MD5_CONST_51, MD5_CONST_52, MD5_CONST_53, MD5_CONST_54, MD5_CONST_55, MD5_CONST_56, MD5_CONST_57, MD5_CONST_58, MD5_CONST_59, MD5_CONST_60, MD5_CONST_61, MD5_CONST_62, MD5_CONST_63 }; #ifdef sun4v /* * To reduce the number of loads, load consts in 64-bit * chunks and then split. * * No need to mask upper 32-bits, as just interested in * low 32-bits (saves an & operation and means that this * optimization doesn't increases the icount. */ #define MD5_CONST_e(x) (md5_consts64[x/2] >> 32) #define MD5_CONST_o(x) (md5_consts64[x/2]) #else #define MD5_CONST_e(x) (md5_consts[x]) #define MD5_CONST_o(x) (md5_consts[x]) #endif /* sun4v */ #endif /* * MD5Init() * * purpose: initializes the md5 context and begins and md5 digest operation * input: MD5_CTX * : the context to initialize. * output: void */ void MD5Init(MD5_CTX *ctx) { ctx->count[0] = ctx->count[1] = 0; /* load magic initialization constants */ ctx->state[0] = MD5_INIT_CONST_1; ctx->state[1] = MD5_INIT_CONST_2; ctx->state[2] = MD5_INIT_CONST_3; ctx->state[3] = MD5_INIT_CONST_4; } /* * MD5Update() * * purpose: continues an md5 digest operation, using the message block * to update the context. * input: MD5_CTX * : the context to update * uint8_t * : the message block * uint32_t : the length of the message block in bytes * output: void * * MD5 crunches in 64-byte blocks. All numeric constants here are related to * that property of MD5. */ void MD5Update(MD5_CTX *ctx, const void *inpp, unsigned int input_len) { uint32_t i, buf_index, buf_len; #ifdef sun4v uint32_t old_asi; #endif /* sun4v */ const unsigned char *input = (const unsigned char *)inpp; /* compute (number of bytes computed so far) mod 64 */ buf_index = (ctx->count[0] >> 3) & 0x3F; /* update number of bits hashed into this MD5 computation so far */ if ((ctx->count[0] += (input_len << 3)) < (input_len << 3)) ctx->count[1]++; ctx->count[1] += (input_len >> 29); buf_len = 64 - buf_index; /* transform as many times as possible */ i = 0; if (input_len >= buf_len) { /* * general optimization: * * only do initial bcopy() and MD5Transform() if * buf_index != 0. if buf_index == 0, we're just * wasting our time doing the bcopy() since there * wasn't any data left over from a previous call to * MD5Update(). */ #ifdef sun4v /* * For N1 use %asi register. However, costly to repeatedly set * in MD5Transform. Therefore, set once here. * Should probably restore the old value afterwards... */ old_asi = get_little(); set_little(0x88); #endif /* sun4v */ if (buf_index) { bcopy(input, &ctx->buf_un.buf8[buf_index], buf_len); MD5Transform(ctx->state[0], ctx->state[1], ctx->state[2], ctx->state[3], ctx, ctx->buf_un.buf8); i = buf_len; } for (; i + 63 < input_len; i += 64) MD5Transform(ctx->state[0], ctx->state[1], ctx->state[2], ctx->state[3], ctx, &input[i]); #ifdef sun4v /* * Restore old %ASI value */ set_little(old_asi); #endif /* sun4v */ /* * general optimization: * * if i and input_len are the same, return now instead * of calling bcopy(), since the bcopy() in this * case will be an expensive nop. */ if (input_len == i) return; buf_index = 0; } /* buffer remaining input */ bcopy(&input[i], &ctx->buf_un.buf8[buf_index], input_len - i); } /* * MD5Final() * * purpose: ends an md5 digest operation, finalizing the message digest and * zeroing the context. * input: uint8_t * : a buffer to store the digest in * MD5_CTX * : the context to finalize, save, and zero * output: void */ void MD5Final(unsigned char *digest, MD5_CTX *ctx) { uint8_t bitcount_le[sizeof (ctx->count)]; uint32_t index = (ctx->count[0] >> 3) & 0x3f; /* store bit count, little endian */ Encode(bitcount_le, ctx->count, sizeof (bitcount_le)); /* pad out to 56 mod 64 */ MD5Update(ctx, PADDING, ((index < 56) ? 56 : 120) - index); /* append length (before padding) */ MD5Update(ctx, bitcount_le, sizeof (bitcount_le)); /* store state in digest */ Encode(digest, ctx->state, sizeof (ctx->state)); } #ifndef _KERNEL void md5_calc(unsigned char *output, unsigned char *input, unsigned int inlen) { MD5_CTX context; MD5Init(&context); MD5Update(&context, input, inlen); MD5Final(output, &context); } #endif /* !_KERNEL */ /* * Little-endian optimization: I don't need to do any weirdness. On * some little-endian boxen, I'll have to do alignment checks, but I can do * that below. */ #ifdef _LITTLE_ENDIAN #if !defined(__i386) && !defined(__amd64) /* * i386 and amd64 don't require aligned 4-byte loads. The symbol * _MD5_CHECK_ALIGNMENT indicates below whether the MD5Transform function * requires alignment checking. */ #define _MD5_CHECK_ALIGNMENT #endif /* !__i386 && !__amd64 */ #define LOAD_LITTLE_32(addr) (*(uint32_t *)(addr)) /* * sparc v9/v8plus optimization: * * on the sparc v9/v8plus, we can load data little endian. however, since * the compiler doesn't have direct support for little endian, we * link to an assembly-language routine `load_little_32' to do * the magic. note that special care must be taken to ensure the * address is 32-bit aligned -- in the interest of speed, we don't * check to make sure, since careful programming can guarantee this * for us. */ #elif defined(sun4u) /* Define alignment check because we can 4-byte load as little endian. */ #define _MD5_CHECK_ALIGNMENT extern uint32_t load_little_32(uint32_t *); #define LOAD_LITTLE_32(addr) load_little_32((uint32_t *)(addr)) #ifdef sun4v /* * For N1 want to minimize number of arithmetic operations. This is best * achieved by using the %asi register to specify ASI for the lduwa operations. * Also, have a separate inline template for each word, so can utilize the * immediate offset in lduwa, without relying on the compiler to do the right * thing. * * Moving to 64-bit loads might also be beneficial. */ extern uint32_t load_little_32_0(uint32_t *); extern uint32_t load_little_32_1(uint32_t *); extern uint32_t load_little_32_2(uint32_t *); extern uint32_t load_little_32_3(uint32_t *); extern uint32_t load_little_32_4(uint32_t *); extern uint32_t load_little_32_5(uint32_t *); extern uint32_t load_little_32_6(uint32_t *); extern uint32_t load_little_32_7(uint32_t *); extern uint32_t load_little_32_8(uint32_t *); extern uint32_t load_little_32_9(uint32_t *); extern uint32_t load_little_32_a(uint32_t *); extern uint32_t load_little_32_b(uint32_t *); extern uint32_t load_little_32_c(uint32_t *); extern uint32_t load_little_32_d(uint32_t *); extern uint32_t load_little_32_e(uint32_t *); extern uint32_t load_little_32_f(uint32_t *); #define LOAD_LITTLE_32_0(addr) load_little_32_0((uint32_t *)(addr)) #define LOAD_LITTLE_32_1(addr) load_little_32_1((uint32_t *)(addr)) #define LOAD_LITTLE_32_2(addr) load_little_32_2((uint32_t *)(addr)) #define LOAD_LITTLE_32_3(addr) load_little_32_3((uint32_t *)(addr)) #define LOAD_LITTLE_32_4(addr) load_little_32_4((uint32_t *)(addr)) #define LOAD_LITTLE_32_5(addr) load_little_32_5((uint32_t *)(addr)) #define LOAD_LITTLE_32_6(addr) load_little_32_6((uint32_t *)(addr)) #define LOAD_LITTLE_32_7(addr) load_little_32_7((uint32_t *)(addr)) #define LOAD_LITTLE_32_8(addr) load_little_32_8((uint32_t *)(addr)) #define LOAD_LITTLE_32_9(addr) load_little_32_9((uint32_t *)(addr)) #define LOAD_LITTLE_32_a(addr) load_little_32_a((uint32_t *)(addr)) #define LOAD_LITTLE_32_b(addr) load_little_32_b((uint32_t *)(addr)) #define LOAD_LITTLE_32_c(addr) load_little_32_c((uint32_t *)(addr)) #define LOAD_LITTLE_32_d(addr) load_little_32_d((uint32_t *)(addr)) #define LOAD_LITTLE_32_e(addr) load_little_32_e((uint32_t *)(addr)) #define LOAD_LITTLE_32_f(addr) load_little_32_f((uint32_t *)(addr)) #endif /* sun4v */ /* Placate lint */ #if defined(__lint) uint32_t load_little_32(uint32_t *addr) { return (*addr); } #endif #else /* big endian -- will work on little endian, but slowly */ /* Since we do byte operations, we don't have to check for alignment. */ #define LOAD_LITTLE_32(addr) \ ((addr)[0] | ((addr)[1] << 8) | ((addr)[2] << 16) | ((addr)[3] << 24)) #endif /* * sparc register window optimization: * * `a', `b', `c', and `d' are passed into MD5Transform explicitly * since it increases the number of registers available to the * compiler. under this scheme, these variables can be held in * %i0 - %i3, which leaves more local and out registers available. */ /* * MD5Transform() * * purpose: md5 transformation -- updates the digest based on `block' * input: uint32_t : bytes 1 - 4 of the digest * uint32_t : bytes 5 - 8 of the digest * uint32_t : bytes 9 - 12 of the digest * uint32_t : bytes 12 - 16 of the digest * MD5_CTX * : the context to update * uint8_t [64]: the block to use to update the digest * output: void */ static void MD5Transform(uint32_t a, uint32_t b, uint32_t c, uint32_t d, MD5_CTX *ctx, const uint8_t block[64]) { /* * general optimization: * * use individual integers instead of using an array. this is a * win, although the amount it wins by seems to vary quite a bit. */ register uint32_t x_0, x_1, x_2, x_3, x_4, x_5, x_6, x_7; register uint32_t x_8, x_9, x_10, x_11, x_12, x_13, x_14, x_15; #ifdef sun4v unsigned long long *md5_consts64; md5_consts64 = (unsigned long long *) md5_consts; #endif /* sun4v */ /* * general optimization: * * the compiler (at least SC4.2/5.x) generates better code if * variable use is localized. in this case, swapping the integers in * this order allows `x_0 'to be swapped nearest to its first use in * FF(), and likewise for `x_1' and up. note that the compiler * prefers this to doing each swap right before the FF() that * uses it. */ /* * sparc v9/v8plus optimization: * * if `block' is already aligned on a 4-byte boundary, use the * optimized load_little_32() directly. otherwise, bcopy() * into a buffer that *is* aligned on a 4-byte boundary and * then do the load_little_32() on that buffer. benchmarks * have shown that using the bcopy() is better than loading * the bytes individually and doing the endian-swap by hand. * * even though it's quite tempting to assign to do: * * blk = bcopy(blk, ctx->buf_un.buf32, sizeof (ctx->buf_un.buf32)); * * and only have one set of LOAD_LITTLE_32()'s, the compiler (at least * SC4.2/5.x) *does not* like that, so please resist the urge. */ #ifdef _MD5_CHECK_ALIGNMENT if ((uintptr_t)block & 0x3) { /* not 4-byte aligned? */ bcopy(block, ctx->buf_un.buf32, sizeof (ctx->buf_un.buf32)); #ifdef sun4v x_15 = LOAD_LITTLE_32_f(ctx->buf_un.buf32); x_14 = LOAD_LITTLE_32_e(ctx->buf_un.buf32); x_13 = LOAD_LITTLE_32_d(ctx->buf_un.buf32); x_12 = LOAD_LITTLE_32_c(ctx->buf_un.buf32); x_11 = LOAD_LITTLE_32_b(ctx->buf_un.buf32); x_10 = LOAD_LITTLE_32_a(ctx->buf_un.buf32); x_9 = LOAD_LITTLE_32_9(ctx->buf_un.buf32); x_8 = LOAD_LITTLE_32_8(ctx->buf_un.buf32); x_7 = LOAD_LITTLE_32_7(ctx->buf_un.buf32); x_6 = LOAD_LITTLE_32_6(ctx->buf_un.buf32); x_5 = LOAD_LITTLE_32_5(ctx->buf_un.buf32); x_4 = LOAD_LITTLE_32_4(ctx->buf_un.buf32); x_3 = LOAD_LITTLE_32_3(ctx->buf_un.buf32); x_2 = LOAD_LITTLE_32_2(ctx->buf_un.buf32); x_1 = LOAD_LITTLE_32_1(ctx->buf_un.buf32); x_0 = LOAD_LITTLE_32_0(ctx->buf_un.buf32); #else x_15 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 15); x_14 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 14); x_13 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 13); x_12 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 12); x_11 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 11); x_10 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 10); x_9 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 9); x_8 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 8); x_7 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 7); x_6 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 6); x_5 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 5); x_4 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 4); x_3 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 3); x_2 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 2); x_1 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 1); x_0 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 0); #endif /* sun4v */ } else #endif { #ifdef sun4v x_15 = LOAD_LITTLE_32_f(block); x_14 = LOAD_LITTLE_32_e(block); x_13 = LOAD_LITTLE_32_d(block); x_12 = LOAD_LITTLE_32_c(block); x_11 = LOAD_LITTLE_32_b(block); x_10 = LOAD_LITTLE_32_a(block); x_9 = LOAD_LITTLE_32_9(block); x_8 = LOAD_LITTLE_32_8(block); x_7 = LOAD_LITTLE_32_7(block); x_6 = LOAD_LITTLE_32_6(block); x_5 = LOAD_LITTLE_32_5(block); x_4 = LOAD_LITTLE_32_4(block); x_3 = LOAD_LITTLE_32_3(block); x_2 = LOAD_LITTLE_32_2(block); x_1 = LOAD_LITTLE_32_1(block); x_0 = LOAD_LITTLE_32_0(block); #else x_15 = LOAD_LITTLE_32(block + 60); x_14 = LOAD_LITTLE_32(block + 56); x_13 = LOAD_LITTLE_32(block + 52); x_12 = LOAD_LITTLE_32(block + 48); x_11 = LOAD_LITTLE_32(block + 44); x_10 = LOAD_LITTLE_32(block + 40); x_9 = LOAD_LITTLE_32(block + 36); x_8 = LOAD_LITTLE_32(block + 32); x_7 = LOAD_LITTLE_32(block + 28); x_6 = LOAD_LITTLE_32(block + 24); x_5 = LOAD_LITTLE_32(block + 20); x_4 = LOAD_LITTLE_32(block + 16); x_3 = LOAD_LITTLE_32(block + 12); x_2 = LOAD_LITTLE_32(block + 8); x_1 = LOAD_LITTLE_32(block + 4); x_0 = LOAD_LITTLE_32(block + 0); #endif /* sun4v */ } /* round 1 */ FF(a, b, c, d, x_0, MD5_SHIFT_11, MD5_CONST_e(0)); /* 1 */ FF(d, a, b, c, x_1, MD5_SHIFT_12, MD5_CONST_o(1)); /* 2 */ FF(c, d, a, b, x_2, MD5_SHIFT_13, MD5_CONST_e(2)); /* 3 */ FF(b, c, d, a, x_3, MD5_SHIFT_14, MD5_CONST_o(3)); /* 4 */ FF(a, b, c, d, x_4, MD5_SHIFT_11, MD5_CONST_e(4)); /* 5 */ FF(d, a, b, c, x_5, MD5_SHIFT_12, MD5_CONST_o(5)); /* 6 */ FF(c, d, a, b, x_6, MD5_SHIFT_13, MD5_CONST_e(6)); /* 7 */ FF(b, c, d, a, x_7, MD5_SHIFT_14, MD5_CONST_o(7)); /* 8 */ FF(a, b, c, d, x_8, MD5_SHIFT_11, MD5_CONST_e(8)); /* 9 */ FF(d, a, b, c, x_9, MD5_SHIFT_12, MD5_CONST_o(9)); /* 10 */ FF(c, d, a, b, x_10, MD5_SHIFT_13, MD5_CONST_e(10)); /* 11 */ FF(b, c, d, a, x_11, MD5_SHIFT_14, MD5_CONST_o(11)); /* 12 */ FF(a, b, c, d, x_12, MD5_SHIFT_11, MD5_CONST_e(12)); /* 13 */ FF(d, a, b, c, x_13, MD5_SHIFT_12, MD5_CONST_o(13)); /* 14 */ FF(c, d, a, b, x_14, MD5_SHIFT_13, MD5_CONST_e(14)); /* 15 */ FF(b, c, d, a, x_15, MD5_SHIFT_14, MD5_CONST_o(15)); /* 16 */ /* round 2 */ GG(a, b, c, d, x_1, MD5_SHIFT_21, MD5_CONST_e(16)); /* 17 */ GG(d, a, b, c, x_6, MD5_SHIFT_22, MD5_CONST_o(17)); /* 18 */ GG(c, d, a, b, x_11, MD5_SHIFT_23, MD5_CONST_e(18)); /* 19 */ GG(b, c, d, a, x_0, MD5_SHIFT_24, MD5_CONST_o(19)); /* 20 */ GG(a, b, c, d, x_5, MD5_SHIFT_21, MD5_CONST_e(20)); /* 21 */ GG(d, a, b, c, x_10, MD5_SHIFT_22, MD5_CONST_o(21)); /* 22 */ GG(c, d, a, b, x_15, MD5_SHIFT_23, MD5_CONST_e(22)); /* 23 */ GG(b, c, d, a, x_4, MD5_SHIFT_24, MD5_CONST_o(23)); /* 24 */ GG(a, b, c, d, x_9, MD5_SHIFT_21, MD5_CONST_e(24)); /* 25 */ GG(d, a, b, c, x_14, MD5_SHIFT_22, MD5_CONST_o(25)); /* 26 */ GG(c, d, a, b, x_3, MD5_SHIFT_23, MD5_CONST_e(26)); /* 27 */ GG(b, c, d, a, x_8, MD5_SHIFT_24, MD5_CONST_o(27)); /* 28 */ GG(a, b, c, d, x_13, MD5_SHIFT_21, MD5_CONST_e(28)); /* 29 */ GG(d, a, b, c, x_2, MD5_SHIFT_22, MD5_CONST_o(29)); /* 30 */ GG(c, d, a, b, x_7, MD5_SHIFT_23, MD5_CONST_e(30)); /* 31 */ GG(b, c, d, a, x_12, MD5_SHIFT_24, MD5_CONST_o(31)); /* 32 */ /* round 3 */ HH(a, b, c, d, x_5, MD5_SHIFT_31, MD5_CONST_e(32)); /* 33 */ HH(d, a, b, c, x_8, MD5_SHIFT_32, MD5_CONST_o(33)); /* 34 */ HH(c, d, a, b, x_11, MD5_SHIFT_33, MD5_CONST_e(34)); /* 35 */ HH(b, c, d, a, x_14, MD5_SHIFT_34, MD5_CONST_o(35)); /* 36 */ HH(a, b, c, d, x_1, MD5_SHIFT_31, MD5_CONST_e(36)); /* 37 */ HH(d, a, b, c, x_4, MD5_SHIFT_32, MD5_CONST_o(37)); /* 38 */ HH(c, d, a, b, x_7, MD5_SHIFT_33, MD5_CONST_e(38)); /* 39 */ HH(b, c, d, a, x_10, MD5_SHIFT_34, MD5_CONST_o(39)); /* 40 */ HH(a, b, c, d, x_13, MD5_SHIFT_31, MD5_CONST_e(40)); /* 41 */ HH(d, a, b, c, x_0, MD5_SHIFT_32, MD5_CONST_o(41)); /* 42 */ HH(c, d, a, b, x_3, MD5_SHIFT_33, MD5_CONST_e(42)); /* 43 */ HH(b, c, d, a, x_6, MD5_SHIFT_34, MD5_CONST_o(43)); /* 44 */ HH(a, b, c, d, x_9, MD5_SHIFT_31, MD5_CONST_e(44)); /* 45 */ HH(d, a, b, c, x_12, MD5_SHIFT_32, MD5_CONST_o(45)); /* 46 */ HH(c, d, a, b, x_15, MD5_SHIFT_33, MD5_CONST_e(46)); /* 47 */ HH(b, c, d, a, x_2, MD5_SHIFT_34, MD5_CONST_o(47)); /* 48 */ /* round 4 */ II(a, b, c, d, x_0, MD5_SHIFT_41, MD5_CONST_e(48)); /* 49 */ II(d, a, b, c, x_7, MD5_SHIFT_42, MD5_CONST_o(49)); /* 50 */ II(c, d, a, b, x_14, MD5_SHIFT_43, MD5_CONST_e(50)); /* 51 */ II(b, c, d, a, x_5, MD5_SHIFT_44, MD5_CONST_o(51)); /* 52 */ II(a, b, c, d, x_12, MD5_SHIFT_41, MD5_CONST_e(52)); /* 53 */ II(d, a, b, c, x_3, MD5_SHIFT_42, MD5_CONST_o(53)); /* 54 */ II(c, d, a, b, x_10, MD5_SHIFT_43, MD5_CONST_e(54)); /* 55 */ II(b, c, d, a, x_1, MD5_SHIFT_44, MD5_CONST_o(55)); /* 56 */ II(a, b, c, d, x_8, MD5_SHIFT_41, MD5_CONST_e(56)); /* 57 */ II(d, a, b, c, x_15, MD5_SHIFT_42, MD5_CONST_o(57)); /* 58 */ II(c, d, a, b, x_6, MD5_SHIFT_43, MD5_CONST_e(58)); /* 59 */ II(b, c, d, a, x_13, MD5_SHIFT_44, MD5_CONST_o(59)); /* 60 */ II(a, b, c, d, x_4, MD5_SHIFT_41, MD5_CONST_e(60)); /* 61 */ II(d, a, b, c, x_11, MD5_SHIFT_42, MD5_CONST_o(61)); /* 62 */ II(c, d, a, b, x_2, MD5_SHIFT_43, MD5_CONST_e(62)); /* 63 */ II(b, c, d, a, x_9, MD5_SHIFT_44, MD5_CONST_o(63)); /* 64 */ ctx->state[0] += a; ctx->state[1] += b; ctx->state[2] += c; ctx->state[3] += d; /* * zeroize sensitive information -- compiler will optimize * this out if everything is kept in registers */ x_0 = x_1 = x_2 = x_3 = x_4 = x_5 = x_6 = x_7 = x_8 = 0; x_9 = x_10 = x_11 = x_12 = x_13 = x_14 = x_15 = 0; } /* * devpro compiler optimization: * * the compiler can generate better code if it knows that `input' and * `output' do not point to the same source. there is no portable * way to tell the compiler this, but the devpro compiler recognizes the * `_Restrict' keyword to indicate this condition. use it if possible. */ #if defined(__RESTRICT) && !defined(__GNUC__) #define restrict _Restrict #else #define restrict /* nothing */ #endif /* * Encode() * * purpose: to convert a list of numbers from big endian to little endian * input: uint8_t * : place to store the converted little endian numbers * uint32_t * : place to get numbers to convert from * size_t : the length of the input in bytes * output: void */ static void Encode(uint8_t *restrict output, uint32_t *restrict input, size_t input_len) { size_t i, j; for (i = 0, j = 0; j < input_len; i++, j += sizeof (uint32_t)) { #ifdef _LITTLE_ENDIAN #ifdef _MD5_CHECK_ALIGNMENT if ((uintptr_t)output & 0x3) /* Not 4-byte aligned */ bcopy(input + i, output + j, 4); else *(uint32_t *)(output + j) = input[i]; #else *(uint32_t *)(output + j) = input[i]; #endif /* _MD5_CHECK_ALIGNMENT */ #else /* big endian -- will work on little endian, but slowly */ output[j] = input[i] & 0xff; output[j + 1] = (input[i] >> 8) & 0xff; output[j + 2] = (input[i] >> 16) & 0xff; output[j + 3] = (input[i] >> 24) & 0xff; #endif } } #if defined(_KERNEL) && !defined(_BOOT) /* * KCF software provider control entry points. */ /* ARGSUSED */ static void md5_provider_status(crypto_provider_handle_t provider, uint_t *status) { *status = CRYPTO_PROVIDER_READY; } /* * KCF software provider digest entry points. */ static int md5_digest_init(crypto_ctx_t *ctx, crypto_mechanism_t *mechanism, crypto_req_handle_t req) { if (mechanism->cm_type != MD5_MECH_INFO_TYPE) return (CRYPTO_MECHANISM_INVALID); /* * Allocate and initialize MD5 context. */ ctx->cc_provider_private = kmem_alloc(sizeof (md5_ctx_t), crypto_kmflag(req)); if (ctx->cc_provider_private == NULL) return (CRYPTO_HOST_MEMORY); PROV_MD5_CTX(ctx)->mc_mech_type = MD5_MECH_INFO_TYPE; MD5Init(&PROV_MD5_CTX(ctx)->mc_md5_ctx); return (CRYPTO_SUCCESS); } /* * Helper MD5 digest update function for uio data. */ static int md5_digest_update_uio(MD5_CTX *md5_ctx, crypto_data_t *data) { off_t offset = data->cd_offset; size_t length = data->cd_length; uint_t vec_idx; size_t cur_len; /* we support only kernel buffer */ if (data->cd_uio->uio_segflg != UIO_SYSSPACE) return (CRYPTO_ARGUMENTS_BAD); /* * Jump to the first iovec containing data to be * digested. */ for (vec_idx = 0; vec_idx < data->cd_uio->uio_iovcnt && offset >= data->cd_uio->uio_iov[vec_idx].iov_len; offset -= data->cd_uio->uio_iov[vec_idx++].iov_len); if (vec_idx == data->cd_uio->uio_iovcnt) { /* * The caller specified an offset that is larger than the * total size of the buffers it provided. */ return (CRYPTO_DATA_LEN_RANGE); } /* * Now do the digesting on the iovecs. */ while (vec_idx < data->cd_uio->uio_iovcnt && length > 0) { cur_len = MIN(data->cd_uio->uio_iov[vec_idx].iov_len - offset, length); MD5Update(md5_ctx, data->cd_uio->uio_iov[vec_idx].iov_base + offset, cur_len); length -= cur_len; vec_idx++; offset = 0; } if (vec_idx == data->cd_uio->uio_iovcnt && length > 0) { /* * The end of the specified iovec's was reached but * the length requested could not be processed, i.e. * The caller requested to digest more data than it provided. */ return (CRYPTO_DATA_LEN_RANGE); } return (CRYPTO_SUCCESS); } /* * Helper MD5 digest final function for uio data. * digest_len is the length of the desired digest. If digest_len * is smaller than the default MD5 digest length, the caller * must pass a scratch buffer, digest_scratch, which must * be at least MD5_DIGEST_LENGTH bytes. */ static int md5_digest_final_uio(MD5_CTX *md5_ctx, crypto_data_t *digest, ulong_t digest_len, uchar_t *digest_scratch) { off_t offset = digest->cd_offset; uint_t vec_idx; /* we support only kernel buffer */ if (digest->cd_uio->uio_segflg != UIO_SYSSPACE) return (CRYPTO_ARGUMENTS_BAD); /* * Jump to the first iovec containing ptr to the digest to * be returned. */ for (vec_idx = 0; offset >= digest->cd_uio->uio_iov[vec_idx].iov_len && vec_idx < digest->cd_uio->uio_iovcnt; offset -= digest->cd_uio->uio_iov[vec_idx++].iov_len); if (vec_idx == digest->cd_uio->uio_iovcnt) { /* * The caller specified an offset that is * larger than the total size of the buffers * it provided. */ return (CRYPTO_DATA_LEN_RANGE); } if (offset + digest_len <= digest->cd_uio->uio_iov[vec_idx].iov_len) { /* * The computed MD5 digest will fit in the current * iovec. */ if (digest_len != MD5_DIGEST_LENGTH) { /* * The caller requested a short digest. Digest * into a scratch buffer and return to * the user only what was requested. */ MD5Final(digest_scratch, md5_ctx); bcopy(digest_scratch, (uchar_t *)digest-> cd_uio->uio_iov[vec_idx].iov_base + offset, digest_len); } else { MD5Final((uchar_t *)digest-> cd_uio->uio_iov[vec_idx].iov_base + offset, md5_ctx); } } else { /* * The computed digest will be crossing one or more iovec's. * This is bad performance-wise but we need to support it. * Allocate a small scratch buffer on the stack and * copy it piece meal to the specified digest iovec's. */ uchar_t digest_tmp[MD5_DIGEST_LENGTH]; off_t scratch_offset = 0; size_t length = digest_len; size_t cur_len; MD5Final(digest_tmp, md5_ctx); while (vec_idx < digest->cd_uio->uio_iovcnt && length > 0) { cur_len = MIN(digest->cd_uio->uio_iov[vec_idx].iov_len - offset, length); bcopy(digest_tmp + scratch_offset, digest->cd_uio->uio_iov[vec_idx].iov_base + offset, cur_len); length -= cur_len; vec_idx++; scratch_offset += cur_len; offset = 0; } if (vec_idx == digest->cd_uio->uio_iovcnt && length > 0) { /* * The end of the specified iovec's was reached but * the length requested could not be processed, i.e. * The caller requested to digest more data than it * provided. */ return (CRYPTO_DATA_LEN_RANGE); } } return (CRYPTO_SUCCESS); } /* * Helper MD5 digest update for mblk's. */ static int md5_digest_update_mblk(MD5_CTX *md5_ctx, crypto_data_t *data) { off_t offset = data->cd_offset; size_t length = data->cd_length; mblk_t *mp; size_t cur_len; /* * Jump to the first mblk_t containing data to be digested. */ for (mp = data->cd_mp; mp != NULL && offset >= MBLKL(mp); offset -= MBLKL(mp), mp = mp->b_cont); if (mp == NULL) { /* * The caller specified an offset that is larger than the * total size of the buffers it provided. */ return (CRYPTO_DATA_LEN_RANGE); } /* * Now do the digesting on the mblk chain. */ while (mp != NULL && length > 0) { cur_len = MIN(MBLKL(mp) - offset, length); MD5Update(md5_ctx, mp->b_rptr + offset, cur_len); length -= cur_len; offset = 0; mp = mp->b_cont; } if (mp == NULL && length > 0) { /* * The end of the mblk was reached but the length requested * could not be processed, i.e. The caller requested * to digest more data than it provided. */ return (CRYPTO_DATA_LEN_RANGE); } return (CRYPTO_SUCCESS); } /* * Helper MD5 digest final for mblk's. * digest_len is the length of the desired digest. If digest_len * is smaller than the default MD5 digest length, the caller * must pass a scratch buffer, digest_scratch, which must * be at least MD5_DIGEST_LENGTH bytes. */ static int md5_digest_final_mblk(MD5_CTX *md5_ctx, crypto_data_t *digest, ulong_t digest_len, uchar_t *digest_scratch) { off_t offset = digest->cd_offset; mblk_t *mp; /* * Jump to the first mblk_t that will be used to store the digest. */ for (mp = digest->cd_mp; mp != NULL && offset >= MBLKL(mp); offset -= MBLKL(mp), mp = mp->b_cont); if (mp == NULL) { /* * The caller specified an offset that is larger than the * total size of the buffers it provided. */ return (CRYPTO_DATA_LEN_RANGE); } if (offset + digest_len <= MBLKL(mp)) { /* * The computed MD5 digest will fit in the current mblk. * Do the MD5Final() in-place. */ if (digest_len != MD5_DIGEST_LENGTH) { /* * The caller requested a short digest. Digest * into a scratch buffer and return to * the user only what was requested. */ MD5Final(digest_scratch, md5_ctx); bcopy(digest_scratch, mp->b_rptr + offset, digest_len); } else { MD5Final(mp->b_rptr + offset, md5_ctx); } } else { /* * The computed digest will be crossing one or more mblk's. * This is bad performance-wise but we need to support it. * Allocate a small scratch buffer on the stack and * copy it piece meal to the specified digest iovec's. */ uchar_t digest_tmp[MD5_DIGEST_LENGTH]; off_t scratch_offset = 0; size_t length = digest_len; size_t cur_len; MD5Final(digest_tmp, md5_ctx); while (mp != NULL && length > 0) { cur_len = MIN(MBLKL(mp) - offset, length); bcopy(digest_tmp + scratch_offset, mp->b_rptr + offset, cur_len); length -= cur_len; mp = mp->b_cont; scratch_offset += cur_len; offset = 0; } if (mp == NULL && length > 0) { /* * The end of the specified mblk was reached but * the length requested could not be processed, i.e. * The caller requested to digest more data than it * provided. */ return (CRYPTO_DATA_LEN_RANGE); } } return (CRYPTO_SUCCESS); } /* ARGSUSED */ static int md5_digest(crypto_ctx_t *ctx, crypto_data_t *data, crypto_data_t *digest, crypto_req_handle_t req) { int ret = CRYPTO_SUCCESS; ASSERT(ctx->cc_provider_private != NULL); /* * We need to just return the length needed to store the output. * We should not destroy the context for the following cases. */ if ((digest->cd_length == 0) || (digest->cd_length < MD5_DIGEST_LENGTH)) { digest->cd_length = MD5_DIGEST_LENGTH; return (CRYPTO_BUFFER_TOO_SMALL); } /* * Do the MD5 update on the specified input data. */ switch (data->cd_format) { case CRYPTO_DATA_RAW: MD5Update(&PROV_MD5_CTX(ctx)->mc_md5_ctx, data->cd_raw.iov_base + data->cd_offset, data->cd_length); break; case CRYPTO_DATA_UIO: ret = md5_digest_update_uio(&PROV_MD5_CTX(ctx)->mc_md5_ctx, data); break; case CRYPTO_DATA_MBLK: ret = md5_digest_update_mblk(&PROV_MD5_CTX(ctx)->mc_md5_ctx, data); break; default: ret = CRYPTO_ARGUMENTS_BAD; } if (ret != CRYPTO_SUCCESS) { /* the update failed, free context and bail */ kmem_free(ctx->cc_provider_private, sizeof (md5_ctx_t)); ctx->cc_provider_private = NULL; digest->cd_length = 0; return (ret); } /* * Do an MD5 final, must be done separately since the digest * type can be different than the input data type. */ switch (digest->cd_format) { case CRYPTO_DATA_RAW: MD5Final((unsigned char *)digest->cd_raw.iov_base + digest->cd_offset, &PROV_MD5_CTX(ctx)->mc_md5_ctx); break; case CRYPTO_DATA_UIO: ret = md5_digest_final_uio(&PROV_MD5_CTX(ctx)->mc_md5_ctx, digest, MD5_DIGEST_LENGTH, NULL); break; case CRYPTO_DATA_MBLK: ret = md5_digest_final_mblk(&PROV_MD5_CTX(ctx)->mc_md5_ctx, digest, MD5_DIGEST_LENGTH, NULL); break; default: ret = CRYPTO_ARGUMENTS_BAD; } /* all done, free context and return */ if (ret == CRYPTO_SUCCESS) { digest->cd_length = MD5_DIGEST_LENGTH; } else { digest->cd_length = 0; } kmem_free(ctx->cc_provider_private, sizeof (md5_ctx_t)); ctx->cc_provider_private = NULL; return (ret); } /* ARGSUSED */ static int md5_digest_update(crypto_ctx_t *ctx, crypto_data_t *data, crypto_req_handle_t req) { int ret = CRYPTO_SUCCESS; ASSERT(ctx->cc_provider_private != NULL); /* * Do the MD5 update on the specified input data. */ switch (data->cd_format) { case CRYPTO_DATA_RAW: MD5Update(&PROV_MD5_CTX(ctx)->mc_md5_ctx, data->cd_raw.iov_base + data->cd_offset, data->cd_length); break; case CRYPTO_DATA_UIO: ret = md5_digest_update_uio(&PROV_MD5_CTX(ctx)->mc_md5_ctx, data); break; case CRYPTO_DATA_MBLK: ret = md5_digest_update_mblk(&PROV_MD5_CTX(ctx)->mc_md5_ctx, data); break; default: ret = CRYPTO_ARGUMENTS_BAD; } return (ret); } /* ARGSUSED */ static int md5_digest_final(crypto_ctx_t *ctx, crypto_data_t *digest, crypto_req_handle_t req) { int ret = CRYPTO_SUCCESS; ASSERT(ctx->cc_provider_private != NULL); /* * We need to just return the length needed to store the output. * We should not destroy the context for the following cases. */ if ((digest->cd_length == 0) || (digest->cd_length < MD5_DIGEST_LENGTH)) { digest->cd_length = MD5_DIGEST_LENGTH; return (CRYPTO_BUFFER_TOO_SMALL); } /* * Do an MD5 final. */ switch (digest->cd_format) { case CRYPTO_DATA_RAW: MD5Final((unsigned char *)digest->cd_raw.iov_base + digest->cd_offset, &PROV_MD5_CTX(ctx)->mc_md5_ctx); break; case CRYPTO_DATA_UIO: ret = md5_digest_final_uio(&PROV_MD5_CTX(ctx)->mc_md5_ctx, digest, MD5_DIGEST_LENGTH, NULL); break; case CRYPTO_DATA_MBLK: ret = md5_digest_final_mblk(&PROV_MD5_CTX(ctx)->mc_md5_ctx, digest, MD5_DIGEST_LENGTH, NULL); break; default: ret = CRYPTO_ARGUMENTS_BAD; } /* all done, free context and return */ if (ret == CRYPTO_SUCCESS) { digest->cd_length = MD5_DIGEST_LENGTH; } else { digest->cd_length = 0; } kmem_free(ctx->cc_provider_private, sizeof (md5_ctx_t)); ctx->cc_provider_private = NULL; return (ret); } /* ARGSUSED */ static int md5_digest_atomic(crypto_provider_handle_t provider, crypto_session_id_t session_id, crypto_mechanism_t *mechanism, crypto_data_t *data, crypto_data_t *digest, crypto_req_handle_t req) { int ret = CRYPTO_SUCCESS; MD5_CTX md5_ctx; if (mechanism->cm_type != MD5_MECH_INFO_TYPE) return (CRYPTO_MECHANISM_INVALID); /* * Do the MD5 init. */ MD5Init(&md5_ctx); /* * Do the MD5 update on the specified input data. */ switch (data->cd_format) { case CRYPTO_DATA_RAW: MD5Update(&md5_ctx, data->cd_raw.iov_base + data->cd_offset, data->cd_length); break; case CRYPTO_DATA_UIO: ret = md5_digest_update_uio(&md5_ctx, data); break; case CRYPTO_DATA_MBLK: ret = md5_digest_update_mblk(&md5_ctx, data); break; default: ret = CRYPTO_ARGUMENTS_BAD; } if (ret != CRYPTO_SUCCESS) { /* the update failed, bail */ digest->cd_length = 0; return (ret); } /* * Do an MD5 final, must be done separately since the digest * type can be different than the input data type. */ switch (digest->cd_format) { case CRYPTO_DATA_RAW: MD5Final((unsigned char *)digest->cd_raw.iov_base + digest->cd_offset, &md5_ctx); break; case CRYPTO_DATA_UIO: ret = md5_digest_final_uio(&md5_ctx, digest, MD5_DIGEST_LENGTH, NULL); break; case CRYPTO_DATA_MBLK: ret = md5_digest_final_mblk(&md5_ctx, digest, MD5_DIGEST_LENGTH, NULL); break; default: ret = CRYPTO_ARGUMENTS_BAD; } if (ret == CRYPTO_SUCCESS) { digest->cd_length = MD5_DIGEST_LENGTH; } else { digest->cd_length = 0; } return (ret); } /* * KCF software provider mac entry points. * * MD5 HMAC is: MD5(key XOR opad, MD5(key XOR ipad, text)) * * Init: * The initialization routine initializes what we denote * as the inner and outer contexts by doing * - for inner context: MD5(key XOR ipad) * - for outer context: MD5(key XOR opad) * * Update: * Each subsequent MD5 HMAC update will result in an * update of the inner context with the specified data. * * Final: * The MD5 HMAC final will do a MD5 final operation on the * inner context, and the resulting digest will be used * as the data for an update on the outer context. Last * but not least, an MD5 final on the outer context will * be performed to obtain the MD5 HMAC digest to return * to the user. */ /* * Initialize a MD5-HMAC context. */ static void md5_mac_init_ctx(md5_hmac_ctx_t *ctx, void *keyval, uint_t length_in_bytes) { uint32_t ipad[MD5_HMAC_INTS_PER_BLOCK]; uint32_t opad[MD5_HMAC_INTS_PER_BLOCK]; uint_t i; bzero(ipad, MD5_HMAC_BLOCK_SIZE); bzero(opad, MD5_HMAC_BLOCK_SIZE); bcopy(keyval, ipad, length_in_bytes); bcopy(keyval, opad, length_in_bytes); /* XOR key with ipad (0x36) and opad (0x5c) */ for (i = 0; i < MD5_HMAC_INTS_PER_BLOCK; i++) { ipad[i] ^= 0x36363636; opad[i] ^= 0x5c5c5c5c; } /* perform MD5 on ipad */ MD5Init(&ctx->hc_icontext); MD5Update(&ctx->hc_icontext, ipad, MD5_HMAC_BLOCK_SIZE); /* perform MD5 on opad */ MD5Init(&ctx->hc_ocontext); MD5Update(&ctx->hc_ocontext, opad, MD5_HMAC_BLOCK_SIZE); } /* * Initializes a multi-part MAC operation. */ static int md5_mac_init(crypto_ctx_t *ctx, crypto_mechanism_t *mechanism, crypto_key_t *key, crypto_spi_ctx_template_t ctx_template, crypto_req_handle_t req) { int ret = CRYPTO_SUCCESS; uint_t keylen_in_bytes = CRYPTO_BITS2BYTES(key->ck_length); if (mechanism->cm_type != MD5_HMAC_MECH_INFO_TYPE && mechanism->cm_type != MD5_HMAC_GEN_MECH_INFO_TYPE) return (CRYPTO_MECHANISM_INVALID); /* Add support for key by attributes (RFE 4706552) */ if (key->ck_format != CRYPTO_KEY_RAW) return (CRYPTO_ARGUMENTS_BAD); ctx->cc_provider_private = kmem_alloc(sizeof (md5_hmac_ctx_t), crypto_kmflag(req)); if (ctx->cc_provider_private == NULL) return (CRYPTO_HOST_MEMORY); if (ctx_template != NULL) { /* reuse context template */ bcopy(ctx_template, PROV_MD5_HMAC_CTX(ctx), sizeof (md5_hmac_ctx_t)); } else { /* no context template, compute context */ if (keylen_in_bytes > MD5_HMAC_BLOCK_SIZE) { uchar_t digested_key[MD5_DIGEST_LENGTH]; md5_hmac_ctx_t *hmac_ctx = ctx->cc_provider_private; /* * Hash the passed-in key to get a smaller key. * The inner context is used since it hasn't been * initialized yet. */ PROV_MD5_DIGEST_KEY(&hmac_ctx->hc_icontext, key->ck_data, keylen_in_bytes, digested_key); md5_mac_init_ctx(PROV_MD5_HMAC_CTX(ctx), digested_key, MD5_DIGEST_LENGTH); } else { md5_mac_init_ctx(PROV_MD5_HMAC_CTX(ctx), key->ck_data, keylen_in_bytes); } } /* * Get the mechanism parameters, if applicable. */ PROV_MD5_HMAC_CTX(ctx)->hc_mech_type = mechanism->cm_type; if (mechanism->cm_type == MD5_HMAC_GEN_MECH_INFO_TYPE) { if (mechanism->cm_param == NULL || mechanism->cm_param_len != sizeof (ulong_t)) ret = CRYPTO_MECHANISM_PARAM_INVALID; PROV_MD5_GET_DIGEST_LEN(mechanism, PROV_MD5_HMAC_CTX(ctx)->hc_digest_len); if (PROV_MD5_HMAC_CTX(ctx)->hc_digest_len > MD5_DIGEST_LENGTH) ret = CRYPTO_MECHANISM_PARAM_INVALID; } if (ret != CRYPTO_SUCCESS) { bzero(ctx->cc_provider_private, sizeof (md5_hmac_ctx_t)); kmem_free(ctx->cc_provider_private, sizeof (md5_hmac_ctx_t)); ctx->cc_provider_private = NULL; } return (ret); } /* ARGSUSED */ static int md5_mac_update(crypto_ctx_t *ctx, crypto_data_t *data, crypto_req_handle_t req) { int ret = CRYPTO_SUCCESS; ASSERT(ctx->cc_provider_private != NULL); /* * Do an MD5 update of the inner context using the specified * data. */ switch (data->cd_format) { case CRYPTO_DATA_RAW: MD5Update(&PROV_MD5_HMAC_CTX(ctx)->hc_icontext, data->cd_raw.iov_base + data->cd_offset, data->cd_length); break; case CRYPTO_DATA_UIO: ret = md5_digest_update_uio( &PROV_MD5_HMAC_CTX(ctx)->hc_icontext, data); break; case CRYPTO_DATA_MBLK: ret = md5_digest_update_mblk( &PROV_MD5_HMAC_CTX(ctx)->hc_icontext, data); break; default: ret = CRYPTO_ARGUMENTS_BAD; } return (ret); } /* ARGSUSED */ static int md5_mac_final(crypto_ctx_t *ctx, crypto_data_t *mac, crypto_req_handle_t req) { int ret = CRYPTO_SUCCESS; uchar_t digest[MD5_DIGEST_LENGTH]; uint32_t digest_len = MD5_DIGEST_LENGTH; ASSERT(ctx->cc_provider_private != NULL); if (PROV_MD5_HMAC_CTX(ctx)->hc_mech_type == MD5_HMAC_GEN_MECH_INFO_TYPE) digest_len = PROV_MD5_HMAC_CTX(ctx)->hc_digest_len; /* * We need to just return the length needed to store the output. * We should not destroy the context for the following cases. */ if ((mac->cd_length == 0) || (mac->cd_length < digest_len)) { mac->cd_length = digest_len; return (CRYPTO_BUFFER_TOO_SMALL); } /* * Do an MD5 final on the inner context. */ MD5Final(digest, &PROV_MD5_HMAC_CTX(ctx)->hc_icontext); /* * Do an MD5 update on the outer context, feeding the inner * digest as data. */ MD5Update(&PROV_MD5_HMAC_CTX(ctx)->hc_ocontext, digest, MD5_DIGEST_LENGTH); /* * Do an MD5 final on the outer context, storing the computing * digest in the users buffer. */ switch (mac->cd_format) { case CRYPTO_DATA_RAW: if (digest_len != MD5_DIGEST_LENGTH) { /* * The caller requested a short digest. Digest * into a scratch buffer and return to * the user only what was requested. */ MD5Final(digest, &PROV_MD5_HMAC_CTX(ctx)->hc_ocontext); bcopy(digest, (unsigned char *)mac->cd_raw.iov_base + mac->cd_offset, digest_len); } else { MD5Final((unsigned char *)mac->cd_raw.iov_base + mac->cd_offset, &PROV_MD5_HMAC_CTX(ctx)->hc_ocontext); } break; case CRYPTO_DATA_UIO: ret = md5_digest_final_uio( &PROV_MD5_HMAC_CTX(ctx)->hc_ocontext, mac, digest_len, digest); break; case CRYPTO_DATA_MBLK: ret = md5_digest_final_mblk( &PROV_MD5_HMAC_CTX(ctx)->hc_ocontext, mac, digest_len, digest); break; default: ret = CRYPTO_ARGUMENTS_BAD; } if (ret == CRYPTO_SUCCESS) { mac->cd_length = digest_len; } else { mac->cd_length = 0; } bzero(ctx->cc_provider_private, sizeof (md5_hmac_ctx_t)); kmem_free(ctx->cc_provider_private, sizeof (md5_hmac_ctx_t)); ctx->cc_provider_private = NULL; return (ret); } #define MD5_MAC_UPDATE(data, ctx, ret) { \ switch (data->cd_format) { \ case CRYPTO_DATA_RAW: \ MD5Update(&(ctx).hc_icontext, \ data->cd_raw.iov_base + data->cd_offset, \ data->cd_length); \ break; \ case CRYPTO_DATA_UIO: \ ret = md5_digest_update_uio(&(ctx).hc_icontext, data); \ break; \ case CRYPTO_DATA_MBLK: \ ret = md5_digest_update_mblk(&(ctx).hc_icontext, \ data); \ break; \ default: \ ret = CRYPTO_ARGUMENTS_BAD; \ } \ } /* ARGSUSED */ static int md5_mac_atomic(crypto_provider_handle_t provider, crypto_session_id_t session_id, crypto_mechanism_t *mechanism, crypto_key_t *key, crypto_data_t *data, crypto_data_t *mac, crypto_spi_ctx_template_t ctx_template, crypto_req_handle_t req) { int ret = CRYPTO_SUCCESS; uchar_t digest[MD5_DIGEST_LENGTH]; md5_hmac_ctx_t md5_hmac_ctx; uint32_t digest_len = MD5_DIGEST_LENGTH; uint_t keylen_in_bytes = CRYPTO_BITS2BYTES(key->ck_length); if (mechanism->cm_type != MD5_HMAC_MECH_INFO_TYPE && mechanism->cm_type != MD5_HMAC_GEN_MECH_INFO_TYPE) return (CRYPTO_MECHANISM_INVALID); /* Add support for key by attributes (RFE 4706552) */ if (key->ck_format != CRYPTO_KEY_RAW) return (CRYPTO_ARGUMENTS_BAD); if (ctx_template != NULL) { /* reuse context template */ bcopy(ctx_template, &md5_hmac_ctx, sizeof (md5_hmac_ctx_t)); } else { /* no context template, compute context */ if (keylen_in_bytes > MD5_HMAC_BLOCK_SIZE) { /* * Hash the passed-in key to get a smaller key. * The inner context is used since it hasn't been * initialized yet. */ PROV_MD5_DIGEST_KEY(&md5_hmac_ctx.hc_icontext, key->ck_data, keylen_in_bytes, digest); md5_mac_init_ctx(&md5_hmac_ctx, digest, MD5_DIGEST_LENGTH); } else { md5_mac_init_ctx(&md5_hmac_ctx, key->ck_data, keylen_in_bytes); } } /* * Get the mechanism parameters, if applicable. */ if (mechanism->cm_type == MD5_HMAC_GEN_MECH_INFO_TYPE) { if (mechanism->cm_param == NULL || mechanism->cm_param_len != sizeof (ulong_t)) { ret = CRYPTO_MECHANISM_PARAM_INVALID; goto bail; } PROV_MD5_GET_DIGEST_LEN(mechanism, digest_len); if (digest_len > MD5_DIGEST_LENGTH) { ret = CRYPTO_MECHANISM_PARAM_INVALID; goto bail; } } /* do an MD5 update of the inner context using the specified data */ MD5_MAC_UPDATE(data, md5_hmac_ctx, ret); if (ret != CRYPTO_SUCCESS) /* the update failed, free context and bail */ goto bail; /* do an MD5 final on the inner context */ MD5Final(digest, &md5_hmac_ctx.hc_icontext); /* * Do an MD5 update on the outer context, feeding the inner * digest as data. */ MD5Update(&md5_hmac_ctx.hc_ocontext, digest, MD5_DIGEST_LENGTH); /* * Do an MD5 final on the outer context, storing the computed * digest in the users buffer. */ switch (mac->cd_format) { case CRYPTO_DATA_RAW: if (digest_len != MD5_DIGEST_LENGTH) { /* * The caller requested a short digest. Digest * into a scratch buffer and return to * the user only what was requested. */ MD5Final(digest, &md5_hmac_ctx.hc_ocontext); bcopy(digest, (unsigned char *)mac->cd_raw.iov_base + mac->cd_offset, digest_len); } else { MD5Final((unsigned char *)mac->cd_raw.iov_base + mac->cd_offset, &md5_hmac_ctx.hc_ocontext); } break; case CRYPTO_DATA_UIO: ret = md5_digest_final_uio(&md5_hmac_ctx.hc_ocontext, mac, digest_len, digest); break; case CRYPTO_DATA_MBLK: ret = md5_digest_final_mblk(&md5_hmac_ctx.hc_ocontext, mac, digest_len, digest); break; default: ret = CRYPTO_ARGUMENTS_BAD; } if (ret == CRYPTO_SUCCESS) { mac->cd_length = digest_len; } else { mac->cd_length = 0; } /* Extra paranoia: zeroizing the local context on the stack */ bzero(&md5_hmac_ctx, sizeof (md5_hmac_ctx_t)); return (ret); bail: bzero(&md5_hmac_ctx, sizeof (md5_hmac_ctx_t)); mac->cd_length = 0; return (ret); } /* ARGSUSED */ static int md5_mac_verify_atomic(crypto_provider_handle_t provider, crypto_session_id_t session_id, crypto_mechanism_t *mechanism, crypto_key_t *key, crypto_data_t *data, crypto_data_t *mac, crypto_spi_ctx_template_t ctx_template, crypto_req_handle_t req) { int ret = CRYPTO_SUCCESS; uchar_t digest[MD5_DIGEST_LENGTH]; md5_hmac_ctx_t md5_hmac_ctx; uint32_t digest_len = MD5_DIGEST_LENGTH; uint_t keylen_in_bytes = CRYPTO_BITS2BYTES(key->ck_length); if (mechanism->cm_type != MD5_HMAC_MECH_INFO_TYPE && mechanism->cm_type != MD5_HMAC_GEN_MECH_INFO_TYPE) return (CRYPTO_MECHANISM_INVALID); /* Add support for key by attributes (RFE 4706552) */ if (key->ck_format != CRYPTO_KEY_RAW) return (CRYPTO_ARGUMENTS_BAD); if (ctx_template != NULL) { /* reuse context template */ bcopy(ctx_template, &md5_hmac_ctx, sizeof (md5_hmac_ctx_t)); } else { /* no context template, compute context */ if (keylen_in_bytes > MD5_HMAC_BLOCK_SIZE) { /* * Hash the passed-in key to get a smaller key. * The inner context is used since it hasn't been * initialized yet. */ PROV_MD5_DIGEST_KEY(&md5_hmac_ctx.hc_icontext, key->ck_data, keylen_in_bytes, digest); md5_mac_init_ctx(&md5_hmac_ctx, digest, MD5_DIGEST_LENGTH); } else { md5_mac_init_ctx(&md5_hmac_ctx, key->ck_data, keylen_in_bytes); } } /* * Get the mechanism parameters, if applicable. */ if (mechanism->cm_type == MD5_HMAC_GEN_MECH_INFO_TYPE) { if (mechanism->cm_param == NULL || mechanism->cm_param_len != sizeof (ulong_t)) { ret = CRYPTO_MECHANISM_PARAM_INVALID; goto bail; } PROV_MD5_GET_DIGEST_LEN(mechanism, digest_len); if (digest_len > MD5_DIGEST_LENGTH) { ret = CRYPTO_MECHANISM_PARAM_INVALID; goto bail; } } if (mac->cd_length != digest_len) { ret = CRYPTO_INVALID_MAC; goto bail; } /* do an MD5 update of the inner context using the specified data */ MD5_MAC_UPDATE(data, md5_hmac_ctx, ret); if (ret != CRYPTO_SUCCESS) /* the update failed, free context and bail */ goto bail; /* do an MD5 final on the inner context */ MD5Final(digest, &md5_hmac_ctx.hc_icontext); /* * Do an MD5 update on the outer context, feeding the inner * digest as data. */ MD5Update(&md5_hmac_ctx.hc_ocontext, digest, MD5_DIGEST_LENGTH); /* * Do an MD5 final on the outer context, storing the computed * digest in the local digest buffer. */ MD5Final(digest, &md5_hmac_ctx.hc_ocontext); /* * Compare the computed digest against the expected digest passed * as argument. */ switch (mac->cd_format) { case CRYPTO_DATA_RAW: if (bcmp(digest, (unsigned char *)mac->cd_raw.iov_base + mac->cd_offset, digest_len) != 0) ret = CRYPTO_INVALID_MAC; break; case CRYPTO_DATA_UIO: { off_t offset = mac->cd_offset; uint_t vec_idx; off_t scratch_offset = 0; size_t length = digest_len; size_t cur_len; /* we support only kernel buffer */ if (mac->cd_uio->uio_segflg != UIO_SYSSPACE) return (CRYPTO_ARGUMENTS_BAD); /* jump to the first iovec containing the expected digest */ for (vec_idx = 0; offset >= mac->cd_uio->uio_iov[vec_idx].iov_len && vec_idx < mac->cd_uio->uio_iovcnt; offset -= mac->cd_uio->uio_iov[vec_idx++].iov_len); if (vec_idx == mac->cd_uio->uio_iovcnt) { /* * The caller specified an offset that is * larger than the total size of the buffers * it provided. */ ret = CRYPTO_DATA_LEN_RANGE; break; } /* do the comparison of computed digest vs specified one */ while (vec_idx < mac->cd_uio->uio_iovcnt && length > 0) { cur_len = MIN(mac->cd_uio->uio_iov[vec_idx].iov_len - offset, length); if (bcmp(digest + scratch_offset, mac->cd_uio->uio_iov[vec_idx].iov_base + offset, cur_len) != 0) { ret = CRYPTO_INVALID_MAC; break; } length -= cur_len; vec_idx++; scratch_offset += cur_len; offset = 0; } break; } case CRYPTO_DATA_MBLK: { off_t offset = mac->cd_offset; mblk_t *mp; off_t scratch_offset = 0; size_t length = digest_len; size_t cur_len; /* jump to the first mblk_t containing the expected digest */ for (mp = mac->cd_mp; mp != NULL && offset >= MBLKL(mp); offset -= MBLKL(mp), mp = mp->b_cont); if (mp == NULL) { /* * The caller specified an offset that is larger than * the total size of the buffers it provided. */ ret = CRYPTO_DATA_LEN_RANGE; break; } while (mp != NULL && length > 0) { cur_len = MIN(MBLKL(mp) - offset, length); if (bcmp(digest + scratch_offset, mp->b_rptr + offset, cur_len) != 0) { ret = CRYPTO_INVALID_MAC; break; } length -= cur_len; mp = mp->b_cont; scratch_offset += cur_len; offset = 0; } break; } default: ret = CRYPTO_ARGUMENTS_BAD; } bzero(&md5_hmac_ctx, sizeof (md5_hmac_ctx_t)); return (ret); bail: bzero(&md5_hmac_ctx, sizeof (md5_hmac_ctx_t)); mac->cd_length = 0; return (ret); } /* * KCF software provider context management entry points. */ /* ARGSUSED */ static int md5_create_ctx_template(crypto_provider_handle_t provider, crypto_mechanism_t *mechanism, crypto_key_t *key, crypto_spi_ctx_template_t *ctx_template, size_t *ctx_template_size, crypto_req_handle_t req) { md5_hmac_ctx_t *md5_hmac_ctx_tmpl; uint_t keylen_in_bytes = CRYPTO_BITS2BYTES(key->ck_length); if ((mechanism->cm_type != MD5_HMAC_MECH_INFO_TYPE) && (mechanism->cm_type != MD5_HMAC_GEN_MECH_INFO_TYPE)) return (CRYPTO_MECHANISM_INVALID); /* Add support for key by attributes (RFE 4706552) */ if (key->ck_format != CRYPTO_KEY_RAW) return (CRYPTO_ARGUMENTS_BAD); /* * Allocate and initialize MD5 context. */ md5_hmac_ctx_tmpl = kmem_alloc(sizeof (md5_hmac_ctx_t), crypto_kmflag(req)); if (md5_hmac_ctx_tmpl == NULL) return (CRYPTO_HOST_MEMORY); if (keylen_in_bytes > MD5_HMAC_BLOCK_SIZE) { uchar_t digested_key[MD5_DIGEST_LENGTH]; /* * Hash the passed-in key to get a smaller key. * The inner context is used since it hasn't been * initialized yet. */ PROV_MD5_DIGEST_KEY(&md5_hmac_ctx_tmpl->hc_icontext, key->ck_data, keylen_in_bytes, digested_key); md5_mac_init_ctx(md5_hmac_ctx_tmpl, digested_key, MD5_DIGEST_LENGTH); } else { md5_mac_init_ctx(md5_hmac_ctx_tmpl, key->ck_data, keylen_in_bytes); } md5_hmac_ctx_tmpl->hc_mech_type = mechanism->cm_type; *ctx_template = (crypto_spi_ctx_template_t)md5_hmac_ctx_tmpl; *ctx_template_size = sizeof (md5_hmac_ctx_t); return (CRYPTO_SUCCESS); } static int md5_free_context(crypto_ctx_t *ctx) { uint_t ctx_len; md5_mech_type_t mech_type; if (ctx->cc_provider_private == NULL) return (CRYPTO_SUCCESS); /* * We have to free either MD5 or MD5-HMAC contexts, which * have different lengths. */ mech_type = PROV_MD5_CTX(ctx)->mc_mech_type; if (mech_type == MD5_MECH_INFO_TYPE) ctx_len = sizeof (md5_ctx_t); else { ASSERT(mech_type == MD5_HMAC_MECH_INFO_TYPE || mech_type == MD5_HMAC_GEN_MECH_INFO_TYPE); ctx_len = sizeof (md5_hmac_ctx_t); } bzero(ctx->cc_provider_private, ctx_len); kmem_free(ctx->cc_provider_private, ctx_len); ctx->cc_provider_private = NULL; return (CRYPTO_SUCCESS); } #endif /* _KERNEL && !_BOOT */