/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2008 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" /* * This module contains functions used to bring up and tear down the * Virtual Platform: [un]mounting file-systems, [un]plumbing network * interfaces, [un]configuring devices, establishing resource controls, * and creating/destroying the zone in the kernel. These actions, on * the way up, ready the zone; on the way down, they halt the zone. * See the much longer block comment at the beginning of zoneadmd.c * for a bigger picture of how the whole program functions. * * This module also has primary responsibility for the layout of "scratch * zones." These are mounted, but inactive, zones that are used during * operating system upgrade and potentially other administrative action. The * scratch zone environment is similar to the miniroot environment. The zone's * actual root is mounted read-write on /a, and the standard paths (/usr, * /sbin, /lib) all lead to read-only copies of the running system's binaries. * This allows the administrative tools to manipulate the zone using "-R /a" * without relying on any binaries in the zone itself. * * If the scratch zone is on an alternate root (Live Upgrade [LU] boot * environment), then we must resolve the lofs mounts used there to uncover * writable (unshared) resources. Shared resources, though, are always * read-only. In addition, if the "same" zone with a different root path is * currently running, then "/b" inside the zone points to the running zone's * root. This allows LU to synchronize configuration files during the upgrade * process. * * To construct this environment, this module creates a tmpfs mount on * $ZONEPATH/lu. Inside this scratch area, the miniroot-like environment as * described above is constructed on the fly. The zone is then created using * $ZONEPATH/lu as the root. * * Note that scratch zones are inactive. The zone's bits are not running and * likely cannot be run correctly until upgrade is done. Init is not running * there, nor is SMF. Because of this, the "mounted" state of a scratch zone * is not a part of the usual halt/ready/boot state machine. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* for _autofssys() */ #include #include #include #include #include #include #include #include #include #include "zoneadmd.h" #include #include #include #include /* DLIOCHOLDVLAN and friends */ #define V4_ADDR_LEN 32 #define V6_ADDR_LEN 128 #define IPD_DEFAULT_OPTS \ MNTOPT_RO "," MNTOPT_LOFS_NOSUB "," MNTOPT_NODEVICES #define DFSTYPES "/etc/dfs/fstypes" #define MAXTNZLEN 2048 #define ALT_MOUNT(mount_cmd) ((mount_cmd) != Z_MNT_BOOT) /* for routing socket */ static int rts_seqno = 0; /* mangled zone name when mounting in an alternate root environment */ static char kernzone[ZONENAME_MAX]; /* array of cached mount entries for resolve_lofs */ static struct mnttab *resolve_lofs_mnts, *resolve_lofs_mnt_max; /* for Trusted Extensions */ static tsol_zcent_t *get_zone_label(zlog_t *, priv_set_t *); static int tsol_mounts(zlog_t *, char *, char *); static void tsol_unmounts(zlog_t *, char *); static int driver_hold_link(const char *name, zoneid_t zoneid); static int driver_rele_link(const char *name, zoneid_t zoneid); static m_label_t *zlabel = NULL; static m_label_t *zid_label = NULL; static priv_set_t *zprivs = NULL; /* from libsocket, not in any header file */ extern int getnetmaskbyaddr(struct in_addr, struct in_addr *); /* * An optimization for build_mnttable: reallocate (and potentially copy the * data) only once every N times through the loop. */ #define MNTTAB_HUNK 32 /* * Private autofs system call */ extern int _autofssys(int, void *); static int autofs_cleanup(zoneid_t zoneid) { /* * Ask autofs to unmount all trigger nodes in the given zone. */ return (_autofssys(AUTOFS_UNMOUNTALL, (void *)zoneid)); } static void free_mnttable(struct mnttab *mnt_array, uint_t nelem) { uint_t i; if (mnt_array == NULL) return; for (i = 0; i < nelem; i++) { free(mnt_array[i].mnt_mountp); free(mnt_array[i].mnt_fstype); free(mnt_array[i].mnt_special); free(mnt_array[i].mnt_mntopts); assert(mnt_array[i].mnt_time == NULL); } free(mnt_array); } /* * Build the mount table for the zone rooted at "zroot", storing the resulting * array of struct mnttabs in "mnt_arrayp" and the number of elements in the * array in "nelemp". */ static int build_mnttable(zlog_t *zlogp, const char *zroot, size_t zrootlen, FILE *mnttab, struct mnttab **mnt_arrayp, uint_t *nelemp) { struct mnttab mnt; struct mnttab *mnts; struct mnttab *mnp; uint_t nmnt; rewind(mnttab); resetmnttab(mnttab); nmnt = 0; mnts = NULL; while (getmntent(mnttab, &mnt) == 0) { struct mnttab *tmp_array; if (strncmp(mnt.mnt_mountp, zroot, zrootlen) != 0) continue; if (nmnt % MNTTAB_HUNK == 0) { tmp_array = realloc(mnts, (nmnt + MNTTAB_HUNK) * sizeof (*mnts)); if (tmp_array == NULL) { free_mnttable(mnts, nmnt); return (-1); } mnts = tmp_array; } mnp = &mnts[nmnt++]; /* * Zero out any fields we're not using. */ (void) memset(mnp, 0, sizeof (*mnp)); if (mnt.mnt_special != NULL) mnp->mnt_special = strdup(mnt.mnt_special); if (mnt.mnt_mntopts != NULL) mnp->mnt_mntopts = strdup(mnt.mnt_mntopts); mnp->mnt_mountp = strdup(mnt.mnt_mountp); mnp->mnt_fstype = strdup(mnt.mnt_fstype); if ((mnt.mnt_special != NULL && mnp->mnt_special == NULL) || (mnt.mnt_mntopts != NULL && mnp->mnt_mntopts == NULL) || mnp->mnt_mountp == NULL || mnp->mnt_fstype == NULL) { zerror(zlogp, B_TRUE, "memory allocation failed"); free_mnttable(mnts, nmnt); return (-1); } } *mnt_arrayp = mnts; *nelemp = nmnt; return (0); } /* * This is an optimization. The resolve_lofs function is used quite frequently * to manipulate file paths, and on a machine with a large number of zones, * there will be a huge number of mounted file systems. Thus, we trigger a * reread of the list of mount points */ static void lofs_discard_mnttab(void) { free_mnttable(resolve_lofs_mnts, resolve_lofs_mnt_max - resolve_lofs_mnts); resolve_lofs_mnts = resolve_lofs_mnt_max = NULL; } static int lofs_read_mnttab(zlog_t *zlogp) { FILE *mnttab; uint_t nmnts; if ((mnttab = fopen(MNTTAB, "r")) == NULL) return (-1); if (build_mnttable(zlogp, "", 0, mnttab, &resolve_lofs_mnts, &nmnts) == -1) { (void) fclose(mnttab); return (-1); } (void) fclose(mnttab); resolve_lofs_mnt_max = resolve_lofs_mnts + nmnts; return (0); } /* * This function loops over potential loopback mounts and symlinks in a given * path and resolves them all down to an absolute path. */ void resolve_lofs(zlog_t *zlogp, char *path, size_t pathlen) { int len, arlen; const char *altroot; char tmppath[MAXPATHLEN]; boolean_t outside_altroot; if ((len = resolvepath(path, tmppath, sizeof (tmppath))) == -1) return; tmppath[len] = '\0'; (void) strlcpy(path, tmppath, sizeof (tmppath)); /* This happens once per zoneadmd operation. */ if (resolve_lofs_mnts == NULL && lofs_read_mnttab(zlogp) == -1) return; altroot = zonecfg_get_root(); arlen = strlen(altroot); outside_altroot = B_FALSE; for (;;) { struct mnttab *mnp; /* Search in reverse order to find longest match */ for (mnp = resolve_lofs_mnt_max - 1; mnp >= resolve_lofs_mnts; mnp--) { if (mnp->mnt_fstype == NULL || mnp->mnt_mountp == NULL || mnp->mnt_special == NULL) continue; len = strlen(mnp->mnt_mountp); if (strncmp(mnp->mnt_mountp, path, len) == 0 && (path[len] == '/' || path[len] == '\0')) break; } if (mnp < resolve_lofs_mnts) break; /* If it's not a lofs then we're done */ if (strcmp(mnp->mnt_fstype, MNTTYPE_LOFS) != 0) break; if (outside_altroot) { char *cp; int olen = sizeof (MNTOPT_RO) - 1; /* * If we run into a read-only mount outside of the * alternate root environment, then the user doesn't * want this path to be made read-write. */ if (mnp->mnt_mntopts != NULL && (cp = strstr(mnp->mnt_mntopts, MNTOPT_RO)) != NULL && (cp == mnp->mnt_mntopts || cp[-1] == ',') && (cp[olen] == '\0' || cp[olen] == ',')) { break; } } else if (arlen > 0 && (strncmp(mnp->mnt_special, altroot, arlen) != 0 || (mnp->mnt_special[arlen] != '\0' && mnp->mnt_special[arlen] != '/'))) { outside_altroot = B_TRUE; } /* use temporary buffer because new path might be longer */ (void) snprintf(tmppath, sizeof (tmppath), "%s%s", mnp->mnt_special, path + len); if ((len = resolvepath(tmppath, path, pathlen)) == -1) break; path[len] = '\0'; } } /* * For a regular mount, check if a replacement lofs mount is needed because the * referenced device is already mounted somewhere. */ static int check_lofs_needed(zlog_t *zlogp, struct zone_fstab *fsptr) { struct mnttab *mnp; zone_fsopt_t *optptr, *onext; /* This happens once per zoneadmd operation. */ if (resolve_lofs_mnts == NULL && lofs_read_mnttab(zlogp) == -1) return (-1); /* * If this special node isn't already in use, then it's ours alone; * no need to worry about conflicting mounts. */ for (mnp = resolve_lofs_mnts; mnp < resolve_lofs_mnt_max; mnp++) { if (strcmp(mnp->mnt_special, fsptr->zone_fs_special) == 0) break; } if (mnp >= resolve_lofs_mnt_max) return (0); /* * Convert this duplicate mount into a lofs mount. */ (void) strlcpy(fsptr->zone_fs_special, mnp->mnt_mountp, sizeof (fsptr->zone_fs_special)); (void) strlcpy(fsptr->zone_fs_type, MNTTYPE_LOFS, sizeof (fsptr->zone_fs_type)); fsptr->zone_fs_raw[0] = '\0'; /* * Discard all but one of the original options and set that to be the * same set of options used for inherit package directory resources. */ optptr = fsptr->zone_fs_options; if (optptr == NULL) { optptr = malloc(sizeof (*optptr)); if (optptr == NULL) { zerror(zlogp, B_TRUE, "cannot mount %s", fsptr->zone_fs_dir); return (-1); } } else { while ((onext = optptr->zone_fsopt_next) != NULL) { optptr->zone_fsopt_next = onext->zone_fsopt_next; free(onext); } } (void) strcpy(optptr->zone_fsopt_opt, IPD_DEFAULT_OPTS); optptr->zone_fsopt_next = NULL; fsptr->zone_fs_options = optptr; return (0); } int make_one_dir(zlog_t *zlogp, const char *prefix, const char *subdir, mode_t mode, uid_t userid, gid_t groupid) { char path[MAXPATHLEN]; struct stat st; if (snprintf(path, sizeof (path), "%s%s", prefix, subdir) > sizeof (path)) { zerror(zlogp, B_FALSE, "pathname %s%s is too long", prefix, subdir); return (-1); } if (lstat(path, &st) == 0) { /* * We don't check the file mode since presumably the zone * administrator may have had good reason to change the mode, * and we don't need to second guess him. */ if (!S_ISDIR(st.st_mode)) { if (is_system_labeled() && S_ISREG(st.st_mode)) { /* * The need to mount readonly copies of * global zone /etc/ files is unique to * Trusted Extensions. */ if (strncmp(subdir, "/etc/", strlen("/etc/")) != 0) { zerror(zlogp, B_FALSE, "%s is not in /etc", path); return (-1); } } else { zerror(zlogp, B_FALSE, "%s is not a directory", path); return (-1); } } return (0); } if (mkdirp(path, mode) != 0) { if (errno == EROFS) zerror(zlogp, B_FALSE, "Could not mkdir %s.\nIt is on " "a read-only file system in this local zone.\nMake " "sure %s exists in the global zone.", path, subdir); else zerror(zlogp, B_TRUE, "mkdirp of %s failed", path); return (-1); } (void) chown(path, userid, groupid); return (0); } static void free_remote_fstypes(char **types) { uint_t i; if (types == NULL) return; for (i = 0; types[i] != NULL; i++) free(types[i]); free(types); } static char ** get_remote_fstypes(zlog_t *zlogp) { char **types = NULL; FILE *fp; char buf[MAXPATHLEN]; char fstype[MAXPATHLEN]; uint_t lines = 0; uint_t i; if ((fp = fopen(DFSTYPES, "r")) == NULL) { zerror(zlogp, B_TRUE, "failed to open %s", DFSTYPES); return (NULL); } /* * Count the number of lines */ while (fgets(buf, sizeof (buf), fp) != NULL) lines++; if (lines == 0) /* didn't read anything; empty file */ goto out; rewind(fp); /* * Allocate enough space for a NULL-terminated array. */ types = calloc(lines + 1, sizeof (char *)); if (types == NULL) { zerror(zlogp, B_TRUE, "memory allocation failed"); goto out; } i = 0; while (fgets(buf, sizeof (buf), fp) != NULL) { /* LINTED - fstype is big enough to hold buf */ if (sscanf(buf, "%s", fstype) == 0) { zerror(zlogp, B_FALSE, "unable to parse %s", DFSTYPES); free_remote_fstypes(types); types = NULL; goto out; } types[i] = strdup(fstype); if (types[i] == NULL) { zerror(zlogp, B_TRUE, "memory allocation failed"); free_remote_fstypes(types); types = NULL; goto out; } i++; } out: (void) fclose(fp); return (types); } static boolean_t is_remote_fstype(const char *fstype, char *const *remote_fstypes) { uint_t i; if (remote_fstypes == NULL) return (B_FALSE); for (i = 0; remote_fstypes[i] != NULL; i++) { if (strcmp(remote_fstypes[i], fstype) == 0) return (B_TRUE); } return (B_FALSE); } /* * This converts a zone root path (normally of the form .../root) to a Live * Upgrade scratch zone root (of the form .../lu). */ static void root_to_lu(zlog_t *zlogp, char *zroot, size_t zrootlen, boolean_t isresolved) { assert(zone_isnative || zone_iscluster); if (!isresolved && zonecfg_in_alt_root()) resolve_lofs(zlogp, zroot, zrootlen); (void) strcpy(strrchr(zroot, '/') + 1, "lu"); } /* * The general strategy for unmounting filesystems is as follows: * * - Remote filesystems may be dead, and attempting to contact them as * part of a regular unmount may hang forever; we want to always try to * forcibly unmount such filesystems and only fall back to regular * unmounts if the filesystem doesn't support forced unmounts. * * - We don't want to unnecessarily corrupt metadata on local * filesystems (ie UFS), so we want to start off with graceful unmounts, * and only escalate to doing forced unmounts if we get stuck. * * We start off walking backwards through the mount table. This doesn't * give us strict ordering but ensures that we try to unmount submounts * first. We thus limit the number of failed umount2(2) calls. * * The mechanism for determining if we're stuck is to count the number * of failed unmounts each iteration through the mount table. This * gives us an upper bound on the number of filesystems which remain * mounted (autofs trigger nodes are dealt with separately). If at the * end of one unmount+autofs_cleanup cycle we still have the same number * of mounts that we started out with, we're stuck and try a forced * unmount. If that fails (filesystem doesn't support forced unmounts) * then we bail and are unable to teardown the zone. If it succeeds, * we're no longer stuck so we continue with our policy of trying * graceful mounts first. * * Zone must be down (ie, no processes or threads active). */ static int unmount_filesystems(zlog_t *zlogp, zoneid_t zoneid, boolean_t unmount_cmd) { int error = 0; FILE *mnttab; struct mnttab *mnts; uint_t nmnt; char zroot[MAXPATHLEN + 1]; size_t zrootlen; uint_t oldcount = UINT_MAX; boolean_t stuck = B_FALSE; char **remote_fstypes = NULL; if (zone_get_rootpath(zone_name, zroot, sizeof (zroot)) != Z_OK) { zerror(zlogp, B_FALSE, "unable to determine zone root"); return (-1); } if (unmount_cmd) root_to_lu(zlogp, zroot, sizeof (zroot), B_FALSE); (void) strcat(zroot, "/"); zrootlen = strlen(zroot); /* * For Trusted Extensions unmount each higher level zone's mount * of our zone's /export/home */ if (!unmount_cmd) tsol_unmounts(zlogp, zone_name); if ((mnttab = fopen(MNTTAB, "r")) == NULL) { zerror(zlogp, B_TRUE, "failed to open %s", MNTTAB); return (-1); } /* * Use our hacky mntfs ioctl so we see everything, even mounts with * MS_NOMNTTAB. */ if (ioctl(fileno(mnttab), MNTIOC_SHOWHIDDEN, NULL) < 0) { zerror(zlogp, B_TRUE, "unable to configure %s", MNTTAB); error++; goto out; } /* * Build the list of remote fstypes so we know which ones we * should forcibly unmount. */ remote_fstypes = get_remote_fstypes(zlogp); for (; /* ever */; ) { uint_t newcount = 0; boolean_t unmounted; struct mnttab *mnp; char *path; uint_t i; mnts = NULL; nmnt = 0; /* * MNTTAB gives us a way to walk through mounted * filesystems; we need to be able to walk them in * reverse order, so we build a list of all mounted * filesystems. */ if (build_mnttable(zlogp, zroot, zrootlen, mnttab, &mnts, &nmnt) != 0) { error++; goto out; } for (i = 0; i < nmnt; i++) { mnp = &mnts[nmnt - i - 1]; /* access in reverse order */ path = mnp->mnt_mountp; unmounted = B_FALSE; /* * Try forced unmount first for remote filesystems. * * Not all remote filesystems support forced unmounts, * so if this fails (ENOTSUP) we'll continue on * and try a regular unmount. */ if (is_remote_fstype(mnp->mnt_fstype, remote_fstypes)) { if (umount2(path, MS_FORCE) == 0) unmounted = B_TRUE; } /* * Try forced unmount if we're stuck. */ if (stuck) { if (umount2(path, MS_FORCE) == 0) { unmounted = B_TRUE; stuck = B_FALSE; } else { /* * The first failure indicates a * mount we won't be able to get * rid of automatically, so we * bail. */ error++; zerror(zlogp, B_FALSE, "unable to unmount '%s'", path); free_mnttable(mnts, nmnt); goto out; } } /* * Try regular unmounts for everything else. */ if (!unmounted && umount2(path, 0) != 0) newcount++; } free_mnttable(mnts, nmnt); if (newcount == 0) break; if (newcount >= oldcount) { /* * Last round didn't unmount anything; we're stuck and * should start trying forced unmounts. */ stuck = B_TRUE; } oldcount = newcount; /* * Autofs doesn't let you unmount its trigger nodes from * userland so we have to tell the kernel to cleanup for us. */ if (autofs_cleanup(zoneid) != 0) { zerror(zlogp, B_TRUE, "unable to remove autofs nodes"); error++; goto out; } } out: free_remote_fstypes(remote_fstypes); (void) fclose(mnttab); return (error ? -1 : 0); } static int fs_compare(const void *m1, const void *m2) { struct zone_fstab *i = (struct zone_fstab *)m1; struct zone_fstab *j = (struct zone_fstab *)m2; return (strcmp(i->zone_fs_dir, j->zone_fs_dir)); } /* * Fork and exec (and wait for) the mentioned binary with the provided * arguments. Returns (-1) if something went wrong with fork(2) or exec(2), * returns the exit status otherwise. * * If we were unable to exec the provided pathname (for whatever * reason), we return the special token ZEXIT_EXEC. The current value * of ZEXIT_EXEC doesn't conflict with legitimate exit codes of the * consumers of this function; any future consumers must make sure this * remains the case. */ static int forkexec(zlog_t *zlogp, const char *path, char *const argv[]) { pid_t child_pid; int child_status = 0; /* * Do not let another thread localize a message while we are forking. */ (void) mutex_lock(&msglock); child_pid = fork(); (void) mutex_unlock(&msglock); if (child_pid == -1) { zerror(zlogp, B_TRUE, "could not fork for %s", argv[0]); return (-1); } else if (child_pid == 0) { closefrom(0); /* redirect stdin, stdout & stderr to /dev/null */ (void) open("/dev/null", O_RDONLY); /* stdin */ (void) open("/dev/null", O_WRONLY); /* stdout */ (void) open("/dev/null", O_WRONLY); /* stderr */ (void) execv(path, argv); /* * Since we are in the child, there is no point calling zerror() * since there is nobody waiting to consume it. So exit with a * special code that the parent will recognize and call zerror() * accordingly. */ _exit(ZEXIT_EXEC); } else { (void) waitpid(child_pid, &child_status, 0); } if (WIFSIGNALED(child_status)) { zerror(zlogp, B_FALSE, "%s unexpectedly terminated due to " "signal %d", path, WTERMSIG(child_status)); return (-1); } assert(WIFEXITED(child_status)); if (WEXITSTATUS(child_status) == ZEXIT_EXEC) { zerror(zlogp, B_FALSE, "failed to exec %s", path); return (-1); } return (WEXITSTATUS(child_status)); } static int dofsck(zlog_t *zlogp, const char *fstype, const char *rawdev) { char cmdbuf[MAXPATHLEN]; char *argv[4]; int status; /* * We could alternatively have called /usr/sbin/fsck -F , but * that would cost us an extra fork/exec without buying us anything. */ if (snprintf(cmdbuf, sizeof (cmdbuf), "/usr/lib/fs/%s/fsck", fstype) >= sizeof (cmdbuf)) { zerror(zlogp, B_FALSE, "file-system type %s too long", fstype); return (-1); } argv[0] = "fsck"; argv[1] = "-m"; argv[2] = (char *)rawdev; argv[3] = NULL; status = forkexec(zlogp, cmdbuf, argv); if (status == 0 || status == -1) return (status); zerror(zlogp, B_FALSE, "fsck of '%s' failed with exit status %d; " "run fsck manually", rawdev, status); return (-1); } static int domount(zlog_t *zlogp, const char *fstype, const char *opts, const char *special, const char *directory) { char cmdbuf[MAXPATHLEN]; char *argv[6]; int status; /* * We could alternatively have called /usr/sbin/mount -F , but * that would cost us an extra fork/exec without buying us anything. */ if (snprintf(cmdbuf, sizeof (cmdbuf), "/usr/lib/fs/%s/mount", fstype) >= sizeof (cmdbuf)) { zerror(zlogp, B_FALSE, "file-system type %s too long", fstype); return (-1); } argv[0] = "mount"; if (opts[0] == '\0') { argv[1] = (char *)special; argv[2] = (char *)directory; argv[3] = NULL; } else { argv[1] = "-o"; argv[2] = (char *)opts; argv[3] = (char *)special; argv[4] = (char *)directory; argv[5] = NULL; } status = forkexec(zlogp, cmdbuf, argv); if (status == 0 || status == -1) return (status); if (opts[0] == '\0') zerror(zlogp, B_FALSE, "\"%s %s %s\" " "failed with exit code %d", cmdbuf, special, directory, status); else zerror(zlogp, B_FALSE, "\"%s -o %s %s %s\" " "failed with exit code %d", cmdbuf, opts, special, directory, status); return (-1); } /* * Check if a given mount point path exists. * If it does, make sure it doesn't contain any symlinks. * Note that if "leaf" is false we're checking an intermediate * component of the mount point path, so it must be a directory. * If "leaf" is true, then we're checking the entire mount point * path, so the mount point itself can be anything aside from a * symbolic link. * * If the path is invalid then a negative value is returned. If the * path exists and is a valid mount point path then 0 is returned. * If the path doesn't exist return a positive value. */ static int valid_mount_point(zlog_t *zlogp, const char *path, const boolean_t leaf) { struct stat statbuf; char respath[MAXPATHLEN]; int res; if (lstat(path, &statbuf) != 0) { if (errno == ENOENT) return (1); zerror(zlogp, B_TRUE, "can't stat %s", path); return (-1); } if (S_ISLNK(statbuf.st_mode)) { zerror(zlogp, B_FALSE, "%s is a symlink", path); return (-1); } if (!leaf && !S_ISDIR(statbuf.st_mode)) { zerror(zlogp, B_FALSE, "%s is not a directory", path); return (-1); } if ((res = resolvepath(path, respath, sizeof (respath))) == -1) { zerror(zlogp, B_TRUE, "unable to resolve path %s", path); return (-1); } respath[res] = '\0'; if (strcmp(path, respath) != 0) { /* * We don't like ".."s, "."s, or "//"s throwing us off */ zerror(zlogp, B_FALSE, "%s is not a canonical path", path); return (-1); } return (0); } /* * Validate a mount point path. A valid mount point path is an * absolute path that either doesn't exist, or, if it does exists it * must be an absolute canonical path that doesn't have any symbolic * links in it. The target of a mount point path can be any filesystem * object. (Different filesystems can support different mount points, * for example "lofs" and "mntfs" both support files and directories * while "ufs" just supports directories.) * * If the path is invalid then a negative value is returned. If the * path exists and is a valid mount point path then 0 is returned. * If the path doesn't exist return a positive value. */ int valid_mount_path(zlog_t *zlogp, const char *rootpath, const char *spec, const char *dir, const char *fstype) { char abspath[MAXPATHLEN], *slashp, *slashp_next; int rv; /* * Sanity check the target mount point path. * It must be a non-null string that starts with a '/'. */ if (dir[0] != '/') { if (spec[0] == '\0') { /* * This must be an invalid ipd entry (see comments * in mount_filesystems_ipdent()). */ zerror(zlogp, B_FALSE, "invalid inherit-pkg-dir entry: \"%s\"", dir); } else { /* Something went wrong. */ zerror(zlogp, B_FALSE, "invalid mount directory, " "type: \"%s\", special: \"%s\", dir: \"%s\"", fstype, spec, dir); } return (-1); } /* * Join rootpath and dir. Make sure abspath ends with '/', this * is added to all paths (even non-directory paths) to allow us * to detect the end of paths below. If the path already ends * in a '/', then that's ok too (although we'll fail the * cannonical path check in valid_mount_point()). */ if (snprintf(abspath, sizeof (abspath), "%s%s/", rootpath, dir) >= sizeof (abspath)) { zerror(zlogp, B_FALSE, "pathname %s%s is too long", rootpath, dir); return (-1); } /* * Starting with rootpath, verify the mount path one component * at a time. Continue until we've evaluated all of abspath. */ slashp = &abspath[strlen(rootpath)]; assert(*slashp == '/'); do { slashp_next = strchr(slashp + 1, '/'); *slashp = '\0'; if (slashp_next != NULL) { /* This is an intermediary mount path component. */ rv = valid_mount_point(zlogp, abspath, B_FALSE); } else { /* This is the last component of the mount path. */ rv = valid_mount_point(zlogp, abspath, B_TRUE); } if (rv < 0) return (rv); *slashp = '/'; } while ((slashp = slashp_next) != NULL); return (rv); } static int mount_one_dev_device_cb(void *arg, const char *match, const char *name) { di_prof_t prof = arg; if (name == NULL) return (di_prof_add_dev(prof, match)); return (di_prof_add_map(prof, match, name)); } static int mount_one_dev_symlink_cb(void *arg, const char *source, const char *target) { di_prof_t prof = arg; return (di_prof_add_symlink(prof, source, target)); } static int get_iptype(zlog_t *zlogp, zone_iptype_t *iptypep) { zone_dochandle_t handle; if ((handle = zonecfg_init_handle()) == NULL) { zerror(zlogp, B_TRUE, "getting zone configuration handle"); return (-1); } if (zonecfg_get_snapshot_handle(zone_name, handle) != Z_OK) { zerror(zlogp, B_FALSE, "invalid configuration"); zonecfg_fini_handle(handle); return (-1); } if (zonecfg_get_iptype(handle, iptypep) != Z_OK) { zerror(zlogp, B_FALSE, "invalid ip-type configuration"); zonecfg_fini_handle(handle); return (-1); } zonecfg_fini_handle(handle); return (0); } /* * Apply the standard lists of devices/symlinks/mappings and the user-specified * list of devices (via zonecfg) to the /dev filesystem. The filesystem will * use these as a profile/filter to determine what exists in /dev. */ static int mount_one_dev(zlog_t *zlogp, char *devpath) { char brand[MAXNAMELEN]; zone_dochandle_t handle = NULL; brand_handle_t bh = NULL; struct zone_devtab ztab; di_prof_t prof = NULL; int err; int retval = -1; zone_iptype_t iptype; const char *curr_iptype; if (di_prof_init(devpath, &prof)) { zerror(zlogp, B_TRUE, "failed to initialize profile"); goto cleanup; } /* Get a handle to the brand info for this zone */ if ((zone_get_brand(zone_name, brand, sizeof (brand)) != Z_OK) || (bh = brand_open(brand)) == NULL) { zerror(zlogp, B_FALSE, "unable to determine zone brand"); goto cleanup; } if (get_iptype(zlogp, &iptype) < 0) { zerror(zlogp, B_TRUE, "unable to determine ip-type"); goto cleanup; } switch (iptype) { case ZS_SHARED: curr_iptype = "shared"; break; case ZS_EXCLUSIVE: curr_iptype = "exclusive"; break; } if (brand_platform_iter_devices(bh, zone_name, mount_one_dev_device_cb, prof, curr_iptype) != 0) { zerror(zlogp, B_TRUE, "failed to add standard device"); goto cleanup; } if (brand_platform_iter_link(bh, mount_one_dev_symlink_cb, prof) != 0) { zerror(zlogp, B_TRUE, "failed to add standard symlink"); goto cleanup; } /* Add user-specified devices and directories */ if ((handle = zonecfg_init_handle()) == NULL) { zerror(zlogp, B_FALSE, "can't initialize zone handle"); goto cleanup; } if (err = zonecfg_get_handle(zone_name, handle)) { zerror(zlogp, B_FALSE, "can't get handle for zone " "%s: %s", zone_name, zonecfg_strerror(err)); goto cleanup; } if (err = zonecfg_setdevent(handle)) { zerror(zlogp, B_FALSE, "%s: %s", zone_name, zonecfg_strerror(err)); goto cleanup; } while (zonecfg_getdevent(handle, &ztab) == Z_OK) { if (di_prof_add_dev(prof, ztab.zone_dev_match)) { zerror(zlogp, B_TRUE, "failed to add " "user-specified device"); goto cleanup; } } (void) zonecfg_enddevent(handle); /* Send profile to kernel */ if (di_prof_commit(prof)) { zerror(zlogp, B_TRUE, "failed to commit profile"); goto cleanup; } retval = 0; cleanup: if (bh != NULL) brand_close(bh); if (handle != NULL) zonecfg_fini_handle(handle); if (prof) di_prof_fini(prof); return (retval); } static int mount_one(zlog_t *zlogp, struct zone_fstab *fsptr, const char *rootpath) { char path[MAXPATHLEN]; char specpath[MAXPATHLEN]; char optstr[MAX_MNTOPT_STR]; zone_fsopt_t *optptr; int rv; if ((rv = valid_mount_path(zlogp, rootpath, fsptr->zone_fs_special, fsptr->zone_fs_dir, fsptr->zone_fs_type)) < 0) { zerror(zlogp, B_FALSE, "%s%s is not a valid mount point", rootpath, fsptr->zone_fs_dir); return (-1); } else if (rv > 0) { /* The mount point path doesn't exist, create it now. */ if (make_one_dir(zlogp, rootpath, fsptr->zone_fs_dir, DEFAULT_DIR_MODE, DEFAULT_DIR_USER, DEFAULT_DIR_GROUP) != 0) { zerror(zlogp, B_FALSE, "failed to create mount point"); return (-1); } /* * Now this might seem weird, but we need to invoke * valid_mount_path() again. Why? Because it checks * to make sure that the mount point path is canonical, * which it can only do if the path exists, so now that * we've created the path we have to verify it again. */ if ((rv = valid_mount_path(zlogp, rootpath, fsptr->zone_fs_special, fsptr->zone_fs_dir, fsptr->zone_fs_type)) < 0) { zerror(zlogp, B_FALSE, "%s%s is not a valid mount point", rootpath, fsptr->zone_fs_dir); return (-1); } } (void) snprintf(path, sizeof (path), "%s%s", rootpath, fsptr->zone_fs_dir); if (strlen(fsptr->zone_fs_special) == 0) { /* * A zero-length special is how we distinguish IPDs from * general-purpose FSs. Make sure it mounts from a place that * can be seen via the alternate zone's root. */ if (snprintf(specpath, sizeof (specpath), "%s%s", zonecfg_get_root(), fsptr->zone_fs_dir) >= sizeof (specpath)) { zerror(zlogp, B_FALSE, "cannot mount %s: path too " "long in alternate root", fsptr->zone_fs_dir); return (-1); } if (zonecfg_in_alt_root()) resolve_lofs(zlogp, specpath, sizeof (specpath)); if (domount(zlogp, MNTTYPE_LOFS, IPD_DEFAULT_OPTS, specpath, path) != 0) { zerror(zlogp, B_TRUE, "failed to loopback mount %s", specpath); return (-1); } return (0); } /* * In general the strategy here is to do just as much verification as * necessary to avoid crashing or otherwise doing something bad; if the * administrator initiated the operation via zoneadm(1m), he'll get * auto-verification which will let him know what's wrong. If he * modifies the zone configuration of a running zone and doesn't attempt * to verify that it's OK we won't crash but won't bother trying to be * too helpful either. zoneadm verify is only a couple keystrokes away. */ if (!zonecfg_valid_fs_type(fsptr->zone_fs_type)) { zerror(zlogp, B_FALSE, "cannot mount %s on %s: " "invalid file-system type %s", fsptr->zone_fs_special, fsptr->zone_fs_dir, fsptr->zone_fs_type); return (-1); } /* * If we're looking at an alternate root environment, then construct * read-only loopback mounts as necessary. Note that any special * paths for lofs zone mounts in an alternate root must have * already been pre-pended with any alternate root path by the * time we get here. */ if (zonecfg_in_alt_root()) { struct stat64 st; if (stat64(fsptr->zone_fs_special, &st) != -1 && S_ISBLK(st.st_mode)) { /* * If we're going to mount a block device we need * to check if that device is already mounted * somewhere else, and if so, do a lofs mount * of the device instead of a direct mount */ if (check_lofs_needed(zlogp, fsptr) == -1) return (-1); } else if (strcmp(fsptr->zone_fs_type, MNTTYPE_LOFS) == 0) { /* * For lofs mounts, the special node is inside the * alternate root. We need lofs resolution for * this case in order to get at the underlying * read-write path. */ resolve_lofs(zlogp, fsptr->zone_fs_special, sizeof (fsptr->zone_fs_special)); } } /* * Run 'fsck -m' if there's a device to fsck. */ if (fsptr->zone_fs_raw[0] != '\0' && dofsck(zlogp, fsptr->zone_fs_type, fsptr->zone_fs_raw) != 0) return (-1); /* * Build up mount option string. */ optstr[0] = '\0'; if (fsptr->zone_fs_options != NULL) { (void) strlcpy(optstr, fsptr->zone_fs_options->zone_fsopt_opt, sizeof (optstr)); for (optptr = fsptr->zone_fs_options->zone_fsopt_next; optptr != NULL; optptr = optptr->zone_fsopt_next) { (void) strlcat(optstr, ",", sizeof (optstr)); (void) strlcat(optstr, optptr->zone_fsopt_opt, sizeof (optstr)); } } if ((rv = domount(zlogp, fsptr->zone_fs_type, optstr, fsptr->zone_fs_special, path)) != 0) return (rv); /* * The mount succeeded. If this was not a mount of /dev then * we're done. */ if (strcmp(fsptr->zone_fs_type, MNTTYPE_DEV) != 0) return (0); /* * We just mounted an instance of a /dev filesystem, so now we * need to configure it. */ return (mount_one_dev(zlogp, path)); } static void free_fs_data(struct zone_fstab *fsarray, uint_t nelem) { uint_t i; if (fsarray == NULL) return; for (i = 0; i < nelem; i++) zonecfg_free_fs_option_list(fsarray[i].zone_fs_options); free(fsarray); } /* * This function initiates the creation of a small Solaris Environment for * scratch zone. The Environment creation process is split up into two * functions(build_mounted_pre_var() and build_mounted_post_var()). It * is done this way because: * We need to have both /etc and /var in the root of the scratchzone. * We loopback mount zone's own /etc and /var into the root of the * scratch zone. Unlike /etc, /var can be a seperate filesystem. So we * need to delay the mount of /var till the zone's root gets populated. * So mounting of localdirs[](/etc and /var) have been moved to the * build_mounted_post_var() which gets called only after the zone * specific filesystems are mounted. * * Note that the scratch zone we set up for updating the zone (Z_MNT_UPDATE) * does not loopback mount the zone's own /etc and /var into the root of the * scratch zone. */ static boolean_t build_mounted_pre_var(zlog_t *zlogp, char *rootpath, size_t rootlen, const char *zonepath, char *luroot, size_t lurootlen) { char tmp[MAXPATHLEN], fromdir[MAXPATHLEN]; const char **cpp; static const char *mkdirs[] = { "/system", "/system/contract", "/system/object", "/proc", "/dev", "/tmp", "/a", NULL }; char *altstr; FILE *fp; uuid_t uuid; assert(zone_isnative || zone_iscluster); resolve_lofs(zlogp, rootpath, rootlen); (void) snprintf(luroot, lurootlen, "%s/lu", zonepath); resolve_lofs(zlogp, luroot, lurootlen); (void) snprintf(tmp, sizeof (tmp), "%s/bin", luroot); (void) symlink("./usr/bin", tmp); /* * These are mostly special mount points; not handled here. (See * zone_mount_early.) */ for (cpp = mkdirs; *cpp != NULL; cpp++) { (void) snprintf(tmp, sizeof (tmp), "%s%s", luroot, *cpp); if (mkdir(tmp, 0755) != 0) { zerror(zlogp, B_TRUE, "cannot create %s", tmp); return (B_FALSE); } } /* * This is here to support lucopy. If there's an instance of this same * zone on the current running system, then we mount its root up as * read-only inside the scratch zone. */ (void) zonecfg_get_uuid(zone_name, uuid); altstr = strdup(zonecfg_get_root()); if (altstr == NULL) { zerror(zlogp, B_TRUE, "memory allocation failed"); return (B_FALSE); } zonecfg_set_root(""); (void) strlcpy(tmp, zone_name, sizeof (tmp)); (void) zonecfg_get_name_by_uuid(uuid, tmp, sizeof (tmp)); if (zone_get_rootpath(tmp, fromdir, sizeof (fromdir)) == Z_OK && strcmp(fromdir, rootpath) != 0) { (void) snprintf(tmp, sizeof (tmp), "%s/b", luroot); if (mkdir(tmp, 0755) != 0) { zerror(zlogp, B_TRUE, "cannot create %s", tmp); return (B_FALSE); } if (domount(zlogp, MNTTYPE_LOFS, IPD_DEFAULT_OPTS, fromdir, tmp) != 0) { zerror(zlogp, B_TRUE, "cannot mount %s on %s", tmp, fromdir); return (B_FALSE); } } zonecfg_set_root(altstr); free(altstr); if ((fp = zonecfg_open_scratch(luroot, B_TRUE)) == NULL) { zerror(zlogp, B_TRUE, "cannot open zone mapfile"); return (B_FALSE); } (void) ftruncate(fileno(fp), 0); if (zonecfg_add_scratch(fp, zone_name, kernzone, "/") == -1) { zerror(zlogp, B_TRUE, "cannot add zone mapfile entry"); } zonecfg_close_scratch(fp); (void) snprintf(tmp, sizeof (tmp), "%s/a", luroot); if (domount(zlogp, MNTTYPE_LOFS, "", rootpath, tmp) != 0) return (B_FALSE); (void) strlcpy(rootpath, tmp, rootlen); return (B_TRUE); } static boolean_t build_mounted_post_var(zlog_t *zlogp, zone_mnt_t mount_cmd, char *rootpath, const char *luroot) { char tmp[MAXPATHLEN], fromdir[MAXPATHLEN]; const char **cpp; const char **loopdirs; const char **tmpdirs; static const char *localdirs[] = { "/etc", "/var", NULL }; static const char *scr_loopdirs[] = { "/etc/lib", "/etc/fs", "/lib", "/sbin", "/platform", "/usr", NULL }; static const char *upd_loopdirs[] = { "/etc", "/kernel", "/lib", "/opt", "/platform", "/sbin", "/usr", "/var", NULL }; static const char *scr_tmpdirs[] = { "/tmp", "/var/run", NULL }; static const char *upd_tmpdirs[] = { "/tmp", "/var/run", "/var/tmp", NULL }; struct stat st; if (mount_cmd == Z_MNT_SCRATCH) { /* * These are mounted read-write from the zone undergoing * upgrade. We must be careful not to 'leak' things from the * main system into the zone, and this accomplishes that goal. */ for (cpp = localdirs; *cpp != NULL; cpp++) { (void) snprintf(tmp, sizeof (tmp), "%s%s", luroot, *cpp); (void) snprintf(fromdir, sizeof (fromdir), "%s%s", rootpath, *cpp); if (mkdir(tmp, 0755) != 0) { zerror(zlogp, B_TRUE, "cannot create %s", tmp); return (B_FALSE); } if (domount(zlogp, MNTTYPE_LOFS, "", fromdir, tmp) != 0) { zerror(zlogp, B_TRUE, "cannot mount %s on %s", tmp, *cpp); return (B_FALSE); } } } if (mount_cmd == Z_MNT_UPDATE) loopdirs = upd_loopdirs; else loopdirs = scr_loopdirs; /* * These are things mounted read-only from the running system because * they contain binaries that must match system. */ for (cpp = loopdirs; *cpp != NULL; cpp++) { (void) snprintf(tmp, sizeof (tmp), "%s%s", luroot, *cpp); if (mkdir(tmp, 0755) != 0) { if (errno != EEXIST) { zerror(zlogp, B_TRUE, "cannot create %s", tmp); return (B_FALSE); } if (lstat(tmp, &st) != 0) { zerror(zlogp, B_TRUE, "cannot stat %s", tmp); return (B_FALSE); } /* * Ignore any non-directories encountered. These are * things that have been converted into symlinks * (/etc/fs and /etc/lib) and no longer need a lofs * fixup. */ if (!S_ISDIR(st.st_mode)) continue; } if (domount(zlogp, MNTTYPE_LOFS, IPD_DEFAULT_OPTS, *cpp, tmp) != 0) { zerror(zlogp, B_TRUE, "cannot mount %s on %s", tmp, *cpp); return (B_FALSE); } } if (mount_cmd == Z_MNT_UPDATE) tmpdirs = upd_tmpdirs; else tmpdirs = scr_tmpdirs; /* * These are things with tmpfs mounted inside. */ for (cpp = tmpdirs; *cpp != NULL; cpp++) { (void) snprintf(tmp, sizeof (tmp), "%s%s", luroot, *cpp); if (mount_cmd == Z_MNT_SCRATCH && mkdir(tmp, 0755) != 0 && errno != EEXIST) { zerror(zlogp, B_TRUE, "cannot create %s", tmp); return (B_FALSE); } /* * We could set the mode for /tmp when we do the mkdir but * since that can be modified by the umask we will just set * the correct mode for /tmp now. */ if (strcmp(*cpp, "/tmp") == 0 && chmod(tmp, 01777) != 0) { zerror(zlogp, B_TRUE, "cannot chmod %s", tmp); return (B_FALSE); } if (domount(zlogp, MNTTYPE_TMPFS, "", "swap", tmp) != 0) { zerror(zlogp, B_TRUE, "cannot mount swap on %s", *cpp); return (B_FALSE); } } return (B_TRUE); } typedef struct plat_gmount_cb_data { zlog_t *pgcd_zlogp; struct zone_fstab **pgcd_fs_tab; int *pgcd_num_fs; } plat_gmount_cb_data_t; /* * plat_gmount_cb() is a callback function invoked by libbrand to iterate * through all global brand platform mounts. */ int plat_gmount_cb(void *data, const char *spec, const char *dir, const char *fstype, const char *opt) { plat_gmount_cb_data_t *cp = data; zlog_t *zlogp = cp->pgcd_zlogp; struct zone_fstab *fs_ptr = *cp->pgcd_fs_tab; int num_fs = *cp->pgcd_num_fs; struct zone_fstab *fsp, *tmp_ptr; num_fs++; if ((tmp_ptr = realloc(fs_ptr, num_fs * sizeof (*tmp_ptr))) == NULL) { zerror(zlogp, B_TRUE, "memory allocation failed"); return (-1); } fs_ptr = tmp_ptr; fsp = &fs_ptr[num_fs - 1]; /* update the callback struct passed in */ *cp->pgcd_fs_tab = fs_ptr; *cp->pgcd_num_fs = num_fs; fsp->zone_fs_raw[0] = '\0'; (void) strlcpy(fsp->zone_fs_special, spec, sizeof (fsp->zone_fs_special)); (void) strlcpy(fsp->zone_fs_dir, dir, sizeof (fsp->zone_fs_dir)); (void) strlcpy(fsp->zone_fs_type, fstype, sizeof (fsp->zone_fs_type)); fsp->zone_fs_options = NULL; if ((opt != NULL) && (zonecfg_add_fs_option(fsp, (char *)opt) != Z_OK)) { zerror(zlogp, B_FALSE, "error adding property"); return (-1); } return (0); } static int mount_filesystems_ipdent(zone_dochandle_t handle, zlog_t *zlogp, struct zone_fstab **fs_tabp, int *num_fsp) { struct zone_fstab *tmp_ptr, *fs_ptr, *fsp, fstab; int num_fs; num_fs = *num_fsp; fs_ptr = *fs_tabp; if (zonecfg_setipdent(handle) != Z_OK) { zerror(zlogp, B_FALSE, "invalid configuration"); return (-1); } while (zonecfg_getipdent(handle, &fstab) == Z_OK) { num_fs++; if ((tmp_ptr = realloc(fs_ptr, num_fs * sizeof (*tmp_ptr))) == NULL) { zerror(zlogp, B_TRUE, "memory allocation failed"); (void) zonecfg_endipdent(handle); return (-1); } /* update the pointers passed in */ *fs_tabp = tmp_ptr; *num_fsp = num_fs; /* * IPDs logically only have a mount point; all other properties * are implied. */ fs_ptr = tmp_ptr; fsp = &fs_ptr[num_fs - 1]; (void) strlcpy(fsp->zone_fs_dir, fstab.zone_fs_dir, sizeof (fsp->zone_fs_dir)); fsp->zone_fs_special[0] = '\0'; fsp->zone_fs_raw[0] = '\0'; fsp->zone_fs_type[0] = '\0'; fsp->zone_fs_options = NULL; } (void) zonecfg_endipdent(handle); return (0); } static int mount_filesystems_fsent(zone_dochandle_t handle, zlog_t *zlogp, struct zone_fstab **fs_tabp, int *num_fsp, zone_mnt_t mount_cmd) { struct zone_fstab *tmp_ptr, *fs_ptr, *fsp, fstab; int num_fs; num_fs = *num_fsp; fs_ptr = *fs_tabp; if (zonecfg_setfsent(handle) != Z_OK) { zerror(zlogp, B_FALSE, "invalid configuration"); return (-1); } while (zonecfg_getfsent(handle, &fstab) == Z_OK) { /* * ZFS filesystems will not be accessible under an alternate * root, since the pool will not be known. Ignore them in this * case. */ if (ALT_MOUNT(mount_cmd) && strcmp(fstab.zone_fs_type, MNTTYPE_ZFS) == 0) continue; num_fs++; if ((tmp_ptr = realloc(fs_ptr, num_fs * sizeof (*tmp_ptr))) == NULL) { zerror(zlogp, B_TRUE, "memory allocation failed"); (void) zonecfg_endfsent(handle); return (-1); } /* update the pointers passed in */ *fs_tabp = tmp_ptr; *num_fsp = num_fs; fs_ptr = tmp_ptr; fsp = &fs_ptr[num_fs - 1]; (void) strlcpy(fsp->zone_fs_dir, fstab.zone_fs_dir, sizeof (fsp->zone_fs_dir)); (void) strlcpy(fsp->zone_fs_raw, fstab.zone_fs_raw, sizeof (fsp->zone_fs_raw)); (void) strlcpy(fsp->zone_fs_type, fstab.zone_fs_type, sizeof (fsp->zone_fs_type)); fsp->zone_fs_options = fstab.zone_fs_options; /* * For all lofs mounts, make sure that the 'special' * entry points inside the alternate root. The * source path for a lofs mount in a given zone needs * to be relative to the root of the boot environment * that contains the zone. Note that we don't do this * for non-lofs mounts since they will have a device * as a backing store and device paths must always be * specified relative to the current boot environment. */ fsp->zone_fs_special[0] = '\0'; if (strcmp(fsp->zone_fs_type, MNTTYPE_LOFS) == 0) { (void) strlcat(fsp->zone_fs_special, zonecfg_get_root(), sizeof (fsp->zone_fs_special)); } (void) strlcat(fsp->zone_fs_special, fstab.zone_fs_special, sizeof (fsp->zone_fs_special)); } (void) zonecfg_endfsent(handle); return (0); } static int mount_filesystems(zlog_t *zlogp, zone_mnt_t mount_cmd) { char rootpath[MAXPATHLEN]; char zonepath[MAXPATHLEN]; char brand[MAXNAMELEN]; char luroot[MAXPATHLEN]; int i, num_fs = 0; struct zone_fstab *fs_ptr = NULL; zone_dochandle_t handle = NULL; zone_state_t zstate; brand_handle_t bh; plat_gmount_cb_data_t cb; if (zone_get_state(zone_name, &zstate) != Z_OK || (zstate != ZONE_STATE_READY && zstate != ZONE_STATE_MOUNTED)) { zerror(zlogp, B_FALSE, "zone must be in '%s' or '%s' state to mount file-systems", zone_state_str(ZONE_STATE_READY), zone_state_str(ZONE_STATE_MOUNTED)); goto bad; } if (zone_get_zonepath(zone_name, zonepath, sizeof (zonepath)) != Z_OK) { zerror(zlogp, B_TRUE, "unable to determine zone path"); goto bad; } if (zone_get_rootpath(zone_name, rootpath, sizeof (rootpath)) != Z_OK) { zerror(zlogp, B_TRUE, "unable to determine zone root"); goto bad; } if ((handle = zonecfg_init_handle()) == NULL) { zerror(zlogp, B_TRUE, "getting zone configuration handle"); goto bad; } if (zonecfg_get_snapshot_handle(zone_name, handle) != Z_OK || zonecfg_setfsent(handle) != Z_OK) { zerror(zlogp, B_FALSE, "invalid configuration"); goto bad; } /* Get a handle to the brand info for this zone */ if ((zone_get_brand(zone_name, brand, sizeof (brand)) != Z_OK) || (bh = brand_open(brand)) == NULL) { zerror(zlogp, B_FALSE, "unable to determine zone brand"); zonecfg_fini_handle(handle); return (-1); } /* * Get the list of global filesystems to mount from the brand * configuration. */ cb.pgcd_zlogp = zlogp; cb.pgcd_fs_tab = &fs_ptr; cb.pgcd_num_fs = &num_fs; if (brand_platform_iter_gmounts(bh, zonepath, plat_gmount_cb, &cb) != 0) { zerror(zlogp, B_FALSE, "unable to mount filesystems"); brand_close(bh); zonecfg_fini_handle(handle); return (-1); } brand_close(bh); /* * Iterate through the rest of the filesystems, first the IPDs, then * the general FSs. Sort them all, then mount them in sorted order. * This is to make sure the higher level directories (e.g., /usr) * get mounted before any beneath them (e.g., /usr/local). */ if (mount_filesystems_ipdent(handle, zlogp, &fs_ptr, &num_fs) != 0) goto bad; if (mount_filesystems_fsent(handle, zlogp, &fs_ptr, &num_fs, mount_cmd) != 0) goto bad; zonecfg_fini_handle(handle); handle = NULL; /* * Normally when we mount a zone all the zone filesystems * get mounted relative to rootpath, which is usually * /root. But when mounting a zone for administration * purposes via the zone "mount" state, build_mounted_pre_var() * updates rootpath to be /lu/a so we'll mount all * the zones filesystems there instead. * * build_mounted_pre_var() and build_mounted_post_var() will * also do some extra work to create directories and lofs mount * a bunch of global zone file system paths into /lu. * * This allows us to be able to enter the zone (now rooted at * /lu) and run the upgrade/patch tools that are in the * global zone and have them upgrade the to-be-modified zone's * files mounted on /a. (Which mirrors the existing standard * upgrade environment.) * * There is of course one catch. When doing the upgrade * we need /lu/dev to be the /dev filesystem * for the zone and we don't want to have any /dev filesystem * mounted at /lu/a/dev. Since /dev is specified * as a normal zone filesystem by default we'll try to mount * it at /lu/a/dev, so we have to detect this * case and instead mount it at /lu/dev. * * All this work is done in three phases: * 1) Create and populate lu directory (build_mounted_pre_var()). * 2) Mount the required filesystems as per the zone configuration. * 3) Set up the rest of the scratch zone environment * (build_mounted_post_var()). */ if (ALT_MOUNT(mount_cmd) && !build_mounted_pre_var(zlogp, rootpath, sizeof (rootpath), zonepath, luroot, sizeof (luroot))) goto bad; qsort(fs_ptr, num_fs, sizeof (*fs_ptr), fs_compare); for (i = 0; i < num_fs; i++) { if (ALT_MOUNT(mount_cmd) && strcmp(fs_ptr[i].zone_fs_dir, "/dev") == 0) { size_t slen = strlen(rootpath) - 2; /* * By default we'll try to mount /dev as /a/dev * but /dev is special and always goes at the top * so strip the trailing '/a' from the rootpath. */ assert(zone_isnative || zone_iscluster); assert(strcmp(&rootpath[slen], "/a") == 0); rootpath[slen] = '\0'; if (mount_one(zlogp, &fs_ptr[i], rootpath) != 0) goto bad; rootpath[slen] = '/'; continue; } if (mount_one(zlogp, &fs_ptr[i], rootpath) != 0) goto bad; } if (ALT_MOUNT(mount_cmd) && !build_mounted_post_var(zlogp, mount_cmd, rootpath, luroot)) goto bad; /* * For Trusted Extensions cross-mount each lower level /export/home */ if (mount_cmd == Z_MNT_BOOT && tsol_mounts(zlogp, zone_name, rootpath) != 0) goto bad; free_fs_data(fs_ptr, num_fs); /* * Everything looks fine. */ return (0); bad: if (handle != NULL) zonecfg_fini_handle(handle); free_fs_data(fs_ptr, num_fs); return (-1); } /* caller makes sure neither parameter is NULL */ static int addr2netmask(char *prefixstr, int maxprefixlen, uchar_t *maskstr) { int prefixlen; prefixlen = atoi(prefixstr); if (prefixlen < 0 || prefixlen > maxprefixlen) return (1); while (prefixlen > 0) { if (prefixlen >= 8) { *maskstr++ = 0xFF; prefixlen -= 8; continue; } *maskstr |= 1 << (8 - prefixlen); prefixlen--; } return (0); } /* * Tear down all interfaces belonging to the given zone. This should * be called with the zone in a state other than "running", so that * interfaces can't be assigned to the zone after this returns. * * If anything goes wrong, log an error message and return an error. */ static int unconfigure_shared_network_interfaces(zlog_t *zlogp, zoneid_t zone_id) { struct lifnum lifn; struct lifconf lifc; struct lifreq *lifrp, lifrl; int64_t lifc_flags = LIFC_NOXMIT | LIFC_ALLZONES; int num_ifs, s, i, ret_code = 0; uint_t bufsize; char *buf = NULL; if ((s = socket(AF_INET, SOCK_DGRAM, 0)) < 0) { zerror(zlogp, B_TRUE, "could not get socket"); ret_code = -1; goto bad; } lifn.lifn_family = AF_UNSPEC; lifn.lifn_flags = (int)lifc_flags; if (ioctl(s, SIOCGLIFNUM, (char *)&lifn) < 0) { zerror(zlogp, B_TRUE, "could not determine number of network interfaces"); ret_code = -1; goto bad; } num_ifs = lifn.lifn_count; bufsize = num_ifs * sizeof (struct lifreq); if ((buf = malloc(bufsize)) == NULL) { zerror(zlogp, B_TRUE, "memory allocation failed"); ret_code = -1; goto bad; } lifc.lifc_family = AF_UNSPEC; lifc.lifc_flags = (int)lifc_flags; lifc.lifc_len = bufsize; lifc.lifc_buf = buf; if (ioctl(s, SIOCGLIFCONF, (char *)&lifc) < 0) { zerror(zlogp, B_TRUE, "could not get configured network " "interfaces"); ret_code = -1; goto bad; } lifrp = lifc.lifc_req; for (i = lifc.lifc_len / sizeof (struct lifreq); i > 0; i--, lifrp++) { (void) close(s); if ((s = socket(lifrp->lifr_addr.ss_family, SOCK_DGRAM, 0)) < 0) { zerror(zlogp, B_TRUE, "%s: could not get socket", lifrl.lifr_name); ret_code = -1; continue; } (void) memset(&lifrl, 0, sizeof (lifrl)); (void) strncpy(lifrl.lifr_name, lifrp->lifr_name, sizeof (lifrl.lifr_name)); if (ioctl(s, SIOCGLIFZONE, (caddr_t)&lifrl) < 0) { if (errno == ENXIO) /* * Interface may have been removed by admin or * another zone halting. */ continue; zerror(zlogp, B_TRUE, "%s: could not determine the zone to which this " "network interface is bound", lifrl.lifr_name); ret_code = -1; continue; } if (lifrl.lifr_zoneid == zone_id) { if (ioctl(s, SIOCLIFREMOVEIF, (caddr_t)&lifrl) < 0) { zerror(zlogp, B_TRUE, "%s: could not remove network interface", lifrl.lifr_name); ret_code = -1; continue; } } } bad: if (s > 0) (void) close(s); if (buf) free(buf); return (ret_code); } static union sockunion { struct sockaddr sa; struct sockaddr_in sin; struct sockaddr_dl sdl; struct sockaddr_in6 sin6; } so_dst, so_ifp; static struct { struct rt_msghdr hdr; char space[512]; } rtmsg; static int salen(struct sockaddr *sa) { switch (sa->sa_family) { case AF_INET: return (sizeof (struct sockaddr_in)); case AF_LINK: return (sizeof (struct sockaddr_dl)); case AF_INET6: return (sizeof (struct sockaddr_in6)); default: return (sizeof (struct sockaddr)); } } #define ROUNDUP_LONG(a) \ ((a) > 0 ? (1 + (((a) - 1) | (sizeof (long) - 1))) : sizeof (long)) /* * Look up which zone is using a given IP address. The address in question * is expected to have been stuffed into the structure to which lifr points * via a previous SIOCGLIFADDR ioctl(). * * This is done using black router socket magic. * * Return the name of the zone on success or NULL on failure. * * This is a lot of code for a simple task; a new ioctl request to take care * of this might be a useful RFE. */ static char * who_is_using(zlog_t *zlogp, struct lifreq *lifr) { static char answer[ZONENAME_MAX]; pid_t pid; int s, rlen, l, i; char *cp = rtmsg.space; struct sockaddr_dl *ifp = NULL; struct sockaddr *sa; char save_if_name[LIFNAMSIZ]; answer[0] = '\0'; pid = getpid(); if ((s = socket(PF_ROUTE, SOCK_RAW, 0)) < 0) { zerror(zlogp, B_TRUE, "could not get routing socket"); return (NULL); } if (lifr->lifr_addr.ss_family == AF_INET) { struct sockaddr_in *sin4; so_dst.sa.sa_family = AF_INET; sin4 = (struct sockaddr_in *)&lifr->lifr_addr; so_dst.sin.sin_addr = sin4->sin_addr; } else { struct sockaddr_in6 *sin6; so_dst.sa.sa_family = AF_INET6; sin6 = (struct sockaddr_in6 *)&lifr->lifr_addr; so_dst.sin6.sin6_addr = sin6->sin6_addr; } so_ifp.sa.sa_family = AF_LINK; (void) memset(&rtmsg, 0, sizeof (rtmsg)); rtmsg.hdr.rtm_type = RTM_GET; rtmsg.hdr.rtm_flags = RTF_UP | RTF_HOST; rtmsg.hdr.rtm_version = RTM_VERSION; rtmsg.hdr.rtm_seq = ++rts_seqno; rtmsg.hdr.rtm_addrs = RTA_IFP | RTA_DST; l = ROUNDUP_LONG(salen(&so_dst.sa)); (void) memmove(cp, &(so_dst), l); cp += l; l = ROUNDUP_LONG(salen(&so_ifp.sa)); (void) memmove(cp, &(so_ifp), l); cp += l; rtmsg.hdr.rtm_msglen = l = cp - (char *)&rtmsg; if ((rlen = write(s, &rtmsg, l)) < 0) { zerror(zlogp, B_TRUE, "writing to routing socket"); return (NULL); } else if (rlen < (int)rtmsg.hdr.rtm_msglen) { zerror(zlogp, B_TRUE, "write to routing socket got only %d for len\n", rlen); return (NULL); } do { l = read(s, &rtmsg, sizeof (rtmsg)); } while (l > 0 && (rtmsg.hdr.rtm_seq != rts_seqno || rtmsg.hdr.rtm_pid != pid)); if (l < 0) { zerror(zlogp, B_TRUE, "reading from routing socket"); return (NULL); } if (rtmsg.hdr.rtm_version != RTM_VERSION) { zerror(zlogp, B_FALSE, "routing message version %d not understood", rtmsg.hdr.rtm_version); return (NULL); } if (rtmsg.hdr.rtm_msglen != (ushort_t)l) { zerror(zlogp, B_FALSE, "message length mismatch, " "expected %d bytes, returned %d bytes", rtmsg.hdr.rtm_msglen, l); return (NULL); } if (rtmsg.hdr.rtm_errno != 0) { errno = rtmsg.hdr.rtm_errno; zerror(zlogp, B_TRUE, "RTM_GET routing socket message"); return (NULL); } if ((rtmsg.hdr.rtm_addrs & RTA_IFP) == 0) { zerror(zlogp, B_FALSE, "network interface not found"); return (NULL); } cp = ((char *)(&rtmsg.hdr + 1)); for (i = 1; i != 0; i <<= 1) { /* LINTED E_BAD_PTR_CAST_ALIGN */ sa = (struct sockaddr *)cp; if (i != RTA_IFP) { if ((i & rtmsg.hdr.rtm_addrs) != 0) cp += ROUNDUP_LONG(salen(sa)); continue; } if (sa->sa_family == AF_LINK && ((struct sockaddr_dl *)sa)->sdl_nlen != 0) ifp = (struct sockaddr_dl *)sa; break; } if (ifp == NULL) { zerror(zlogp, B_FALSE, "network interface could not be " "determined"); return (NULL); } /* * We need to set the I/F name to what we got above, then do the * appropriate ioctl to get its zone name. But lifr->lifr_name is * used by the calling function to do a REMOVEIF, so if we leave the * "good" zone's I/F name in place, *that* I/F will be removed instead * of the bad one. So we save the old (bad) I/F name before over- * writing it and doing the ioctl, then restore it after the ioctl. */ (void) strlcpy(save_if_name, lifr->lifr_name, sizeof (save_if_name)); (void) strncpy(lifr->lifr_name, ifp->sdl_data, ifp->sdl_nlen); lifr->lifr_name[ifp->sdl_nlen] = '\0'; i = ioctl(s, SIOCGLIFZONE, lifr); (void) strlcpy(lifr->lifr_name, save_if_name, sizeof (save_if_name)); if (i < 0) { zerror(zlogp, B_TRUE, "%s: could not determine the zone network interface " "belongs to", lifr->lifr_name); return (NULL); } if (getzonenamebyid(lifr->lifr_zoneid, answer, sizeof (answer)) < 0) (void) snprintf(answer, sizeof (answer), "%d", lifr->lifr_zoneid); if (strlen(answer) > 0) return (answer); return (NULL); } typedef struct mcast_rtmsg_s { struct rt_msghdr m_rtm; union { struct { struct sockaddr_in m_dst; struct sockaddr_in m_gw; struct sockaddr_in m_netmask; } m_v4; struct { struct sockaddr_in6 m_dst; struct sockaddr_in6 m_gw; struct sockaddr_in6 m_netmask; } m_v6; } m_u; } mcast_rtmsg_t; #define m_dst4 m_u.m_v4.m_dst #define m_dst6 m_u.m_v6.m_dst #define m_gw4 m_u.m_v4.m_gw #define m_gw6 m_u.m_v6.m_gw #define m_netmask4 m_u.m_v4.m_netmask #define m_netmask6 m_u.m_v6.m_netmask /* * Configures a single interface: a new virtual interface is added, based on * the physical interface nwiftabptr->zone_nwif_physical, with the address * specified in nwiftabptr->zone_nwif_address, for zone zone_id. Note that * the "address" can be an IPv6 address (with a /prefixlength required), an * IPv4 address (with a /prefixlength optional), or a name; for the latter, * an IPv4 name-to-address resolution will be attempted. * * A default interface route for multicast is created on the first IPv4 and * IPv6 interfaces (that have the IFF_MULTICAST flag set), respectively. * This should really be done in the init scripts if we ever allow zones to * modify the routing tables. * * If anything goes wrong, we log an detailed error message, attempt to tear * down whatever we set up and return an error. */ static int configure_one_interface(zlog_t *zlogp, zoneid_t zone_id, struct zone_nwiftab *nwiftabptr, boolean_t *mcast_rt_v4_setp, boolean_t *mcast_rt_v6_setp) { struct lifreq lifr; struct sockaddr_in netmask4; struct sockaddr_in6 netmask6; struct in_addr in4; struct in6_addr in6; sa_family_t af; char *slashp = strchr(nwiftabptr->zone_nwif_address, '/'); mcast_rtmsg_t mcast_rtmsg; int s; int rs; int rlen; boolean_t got_netmask = B_FALSE; char addrstr4[INET_ADDRSTRLEN]; int res; res = zonecfg_valid_net_address(nwiftabptr->zone_nwif_address, &lifr); if (res != Z_OK) { zerror(zlogp, B_FALSE, "%s: %s", zonecfg_strerror(res), nwiftabptr->zone_nwif_address); return (-1); } af = lifr.lifr_addr.ss_family; if (af == AF_INET) in4 = ((struct sockaddr_in *)(&lifr.lifr_addr))->sin_addr; else in6 = ((struct sockaddr_in6 *)(&lifr.lifr_addr))->sin6_addr; if ((s = socket(af, SOCK_DGRAM, 0)) < 0) { zerror(zlogp, B_TRUE, "could not get socket"); return (-1); } (void) strlcpy(lifr.lifr_name, nwiftabptr->zone_nwif_physical, sizeof (lifr.lifr_name)); if (ioctl(s, SIOCLIFADDIF, (caddr_t)&lifr) < 0) { /* * Here, we know that the interface can't be brought up. * A similar warning message was already printed out to * the console by zoneadm(1M) so instead we log the * message to syslog and continue. */ zerror(&logsys, B_TRUE, "WARNING: skipping network interface " "'%s' which may not be present/plumbed in the " "global zone.", lifr.lifr_name); (void) close(s); return (Z_OK); } if (ioctl(s, SIOCSLIFADDR, (caddr_t)&lifr) < 0) { zerror(zlogp, B_TRUE, "%s: could not set IP address to %s", lifr.lifr_name, nwiftabptr->zone_nwif_address); goto bad; } /* Preserve literal IPv4 address for later potential printing. */ if (af == AF_INET) (void) inet_ntop(AF_INET, &in4, addrstr4, INET_ADDRSTRLEN); lifr.lifr_zoneid = zone_id; if (ioctl(s, SIOCSLIFZONE, (caddr_t)&lifr) < 0) { zerror(zlogp, B_TRUE, "%s: could not place network interface " "into zone", lifr.lifr_name); goto bad; } if (strcmp(nwiftabptr->zone_nwif_physical, "lo0") == 0) { got_netmask = B_TRUE; /* default setting will be correct */ } else { if (af == AF_INET) { /* * The IPv4 netmask can be determined either * directly if a prefix length was supplied with * the address or via the netmasks database. Not * being able to determine it is a common failure, * but it often is not fatal to operation of the * interface. In that case, a warning will be * printed after the rest of the interface's * parameters have been configured. */ (void) memset(&netmask4, 0, sizeof (netmask4)); if (slashp != NULL) { if (addr2netmask(slashp + 1, V4_ADDR_LEN, (uchar_t *)&netmask4.sin_addr) != 0) { *slashp = '/'; zerror(zlogp, B_FALSE, "%s: invalid prefix length in %s", lifr.lifr_name, nwiftabptr->zone_nwif_address); goto bad; } got_netmask = B_TRUE; } else if (getnetmaskbyaddr(in4, &netmask4.sin_addr) == 0) { got_netmask = B_TRUE; } if (got_netmask) { netmask4.sin_family = af; (void) memcpy(&lifr.lifr_addr, &netmask4, sizeof (netmask4)); } } else { (void) memset(&netmask6, 0, sizeof (netmask6)); if (addr2netmask(slashp + 1, V6_ADDR_LEN, (uchar_t *)&netmask6.sin6_addr) != 0) { *slashp = '/'; zerror(zlogp, B_FALSE, "%s: invalid prefix length in %s", lifr.lifr_name, nwiftabptr->zone_nwif_address); goto bad; } got_netmask = B_TRUE; netmask6.sin6_family = af; (void) memcpy(&lifr.lifr_addr, &netmask6, sizeof (netmask6)); } if (got_netmask && ioctl(s, SIOCSLIFNETMASK, (caddr_t)&lifr) < 0) { zerror(zlogp, B_TRUE, "%s: could not set netmask", lifr.lifr_name); goto bad; } /* * This doesn't set the broadcast address at all. Rather, it * gets, then sets the interface's address, relying on the fact * that resetting the address will reset the broadcast address. */ if (ioctl(s, SIOCGLIFADDR, (caddr_t)&lifr) < 0) { zerror(zlogp, B_TRUE, "%s: could not get address", lifr.lifr_name); goto bad; } if (ioctl(s, SIOCSLIFADDR, (caddr_t)&lifr) < 0) { zerror(zlogp, B_TRUE, "%s: could not reset broadcast address", lifr.lifr_name); goto bad; } } if (ioctl(s, SIOCGLIFFLAGS, (caddr_t)&lifr) < 0) { zerror(zlogp, B_TRUE, "%s: could not get flags", lifr.lifr_name); goto bad; } lifr.lifr_flags |= IFF_UP; if (ioctl(s, SIOCSLIFFLAGS, (caddr_t)&lifr) < 0) { int save_errno = errno; char *zone_using; /* * If we failed with something other than EADDRNOTAVAIL, * then skip to the end. Otherwise, look up our address, * then call a function to determine which zone is already * using that address. */ if (errno != EADDRNOTAVAIL) { zerror(zlogp, B_TRUE, "%s: could not bring network interface up", lifr.lifr_name); goto bad; } if (ioctl(s, SIOCGLIFADDR, (caddr_t)&lifr) < 0) { zerror(zlogp, B_TRUE, "%s: could not get address", lifr.lifr_name); goto bad; } zone_using = who_is_using(zlogp, &lifr); errno = save_errno; if (zone_using == NULL) zerror(zlogp, B_TRUE, "%s: could not bring network interface up", lifr.lifr_name); else zerror(zlogp, B_TRUE, "%s: could not bring network " "interface up: address in use by zone '%s'", lifr.lifr_name, zone_using); goto bad; } if ((lifr.lifr_flags & IFF_MULTICAST) && ((af == AF_INET && mcast_rt_v4_setp != NULL && *mcast_rt_v4_setp == B_FALSE) || (af == AF_INET6 && mcast_rt_v6_setp != NULL && *mcast_rt_v6_setp == B_FALSE))) { rs = socket(PF_ROUTE, SOCK_RAW, 0); if (rs < 0) { zerror(zlogp, B_TRUE, "%s: could not create " "routing socket", lifr.lifr_name); goto bad; } (void) shutdown(rs, 0); (void) memset((void *)&mcast_rtmsg, 0, sizeof (mcast_rtmsg_t)); mcast_rtmsg.m_rtm.rtm_msglen = sizeof (struct rt_msghdr) + 3 * (af == AF_INET ? sizeof (struct sockaddr_in) : sizeof (struct sockaddr_in6)); mcast_rtmsg.m_rtm.rtm_version = RTM_VERSION; mcast_rtmsg.m_rtm.rtm_type = RTM_ADD; mcast_rtmsg.m_rtm.rtm_flags = RTF_UP; mcast_rtmsg.m_rtm.rtm_addrs = RTA_DST | RTA_GATEWAY | RTA_NETMASK; mcast_rtmsg.m_rtm.rtm_seq = ++rts_seqno; if (af == AF_INET) { mcast_rtmsg.m_dst4.sin_family = AF_INET; mcast_rtmsg.m_dst4.sin_addr.s_addr = htonl(INADDR_UNSPEC_GROUP); mcast_rtmsg.m_gw4.sin_family = AF_INET; mcast_rtmsg.m_gw4.sin_addr = in4; mcast_rtmsg.m_netmask4.sin_family = AF_INET; mcast_rtmsg.m_netmask4.sin_addr.s_addr = htonl(IN_CLASSD_NET); } else { mcast_rtmsg.m_dst6.sin6_family = AF_INET6; mcast_rtmsg.m_dst6.sin6_addr.s6_addr[0] = 0xffU; mcast_rtmsg.m_gw6.sin6_family = AF_INET6; mcast_rtmsg.m_gw6.sin6_addr = in6; mcast_rtmsg.m_netmask6.sin6_family = AF_INET6; mcast_rtmsg.m_netmask6.sin6_addr.s6_addr[0] = 0xffU; } rlen = write(rs, (char *)&mcast_rtmsg, mcast_rtmsg.m_rtm.rtm_msglen); /* * The write to the multicast socket will fail if the * interface belongs to a failed IPMP group. This is a * non-fatal error and the zone will continue booting. * While the zone is running, if any interface in the * failed IPMP group recovers, the zone will fallback to * using that interface. */ if (rlen < mcast_rtmsg.m_rtm.rtm_msglen) { if (rlen < 0) { zerror(zlogp, B_TRUE, "WARNING: network " "interface '%s' not available as default " "for multicast.", lifr.lifr_name); } else { zerror(zlogp, B_FALSE, "WARNING: network " "interface '%s' not available as default " "for multicast; routing socket returned " "unexpected %d bytes.", lifr.lifr_name, rlen); } } else { if (af == AF_INET) { *mcast_rt_v4_setp = B_TRUE; } else { *mcast_rt_v6_setp = B_TRUE; } } (void) close(rs); } if (!got_netmask) { /* * A common, but often non-fatal problem, is that the system * cannot find the netmask for an interface address. This is * often caused by it being only in /etc/inet/netmasks, but * /etc/nsswitch.conf says to use NIS or NIS+ and it's not * in that. This doesn't show up at boot because the netmask * is obtained from /etc/inet/netmasks when no network * interfaces are up, but isn't consulted when NIS/NIS+ is * available. We warn the user here that something like this * has happened and we're just running with a default and * possible incorrect netmask. */ char buffer[INET6_ADDRSTRLEN]; void *addr; if (af == AF_INET) addr = &((struct sockaddr_in *) (&lifr.lifr_addr))->sin_addr; else addr = &((struct sockaddr_in6 *) (&lifr.lifr_addr))->sin6_addr; /* Find out what netmask interface is going to be using */ if (ioctl(s, SIOCGLIFNETMASK, (caddr_t)&lifr) < 0 || inet_ntop(af, addr, buffer, sizeof (buffer)) == NULL) goto bad; zerror(zlogp, B_FALSE, "WARNING: %s: no matching subnet found in netmasks(4) for " "%s; using default of %s.", lifr.lifr_name, addrstr4, buffer); } (void) close(s); return (Z_OK); bad: (void) ioctl(s, SIOCLIFREMOVEIF, (caddr_t)&lifr); (void) close(s); return (-1); } /* * Sets up network interfaces based on information from the zone configuration. * An IPv4 loopback interface is set up "for free", modeling the global system. * If any of the configuration interfaces were IPv6, then an IPv6 loopback * address is set up as well. * * If anything goes wrong, we log a general error message, attempt to tear down * whatever we set up, and return an error. */ static int configure_shared_network_interfaces(zlog_t *zlogp) { zone_dochandle_t handle; struct zone_nwiftab nwiftab, loopback_iftab; boolean_t saw_v6 = B_FALSE; boolean_t mcast_rt_v4_set = B_FALSE; boolean_t mcast_rt_v6_set = B_FALSE; zoneid_t zoneid; if ((zoneid = getzoneidbyname(zone_name)) == ZONE_ID_UNDEFINED) { zerror(zlogp, B_TRUE, "unable to get zoneid"); return (-1); } if ((handle = zonecfg_init_handle()) == NULL) { zerror(zlogp, B_TRUE, "getting zone configuration handle"); return (-1); } if (zonecfg_get_snapshot_handle(zone_name, handle) != Z_OK) { zerror(zlogp, B_FALSE, "invalid configuration"); zonecfg_fini_handle(handle); return (-1); } if (zonecfg_setnwifent(handle) == Z_OK) { for (;;) { struct in6_addr in6; if (zonecfg_getnwifent(handle, &nwiftab) != Z_OK) break; if (configure_one_interface(zlogp, zoneid, &nwiftab, &mcast_rt_v4_set, &mcast_rt_v6_set) != Z_OK) { (void) zonecfg_endnwifent(handle); zonecfg_fini_handle(handle); return (-1); } if (inet_pton(AF_INET6, nwiftab.zone_nwif_address, &in6) == 1) saw_v6 = B_TRUE; } (void) zonecfg_endnwifent(handle); } zonecfg_fini_handle(handle); (void) strlcpy(loopback_iftab.zone_nwif_physical, "lo0", sizeof (loopback_iftab.zone_nwif_physical)); (void) strlcpy(loopback_iftab.zone_nwif_address, "127.0.0.1", sizeof (loopback_iftab.zone_nwif_address)); if (configure_one_interface(zlogp, zoneid, &loopback_iftab, NULL, NULL) != Z_OK) { return (-1); } if (saw_v6) { (void) strlcpy(loopback_iftab.zone_nwif_address, "::1/128", sizeof (loopback_iftab.zone_nwif_address)); if (configure_one_interface(zlogp, zoneid, &loopback_iftab, NULL, NULL) != Z_OK) { return (-1); } } return (0); } static void show_owner(zlog_t *zlogp, char *dlname) { zoneid_t dl_owner_zid; char dl_owner_zname[ZONENAME_MAX]; dl_owner_zid = ALL_ZONES; if (zone_check_datalink(&dl_owner_zid, dlname) != 0) (void) snprintf(dl_owner_zname, ZONENAME_MAX, ""); else if (getzonenamebyid(dl_owner_zid, dl_owner_zname, ZONENAME_MAX) < 0) (void) snprintf(dl_owner_zname, ZONENAME_MAX, "<%d>", dl_owner_zid); errno = EPERM; zerror(zlogp, B_TRUE, "WARNING: skipping network interface '%s' " "which is used by the non-global zone '%s'.\n", dlname, dl_owner_zname); } static int add_datalink(zlog_t *zlogp, zoneid_t zoneid, char *dlname) { /* First check if it's in use by global zone. */ if (zonecfg_ifname_exists(AF_INET, dlname) || zonecfg_ifname_exists(AF_INET6, dlname)) { errno = EPERM; zerror(zlogp, B_TRUE, "WARNING: skipping network interface " "'%s' which is used in the global zone.", dlname); return (-1); } /* Add access control information */ if (zone_add_datalink(zoneid, dlname) != 0) { /* If someone got this link before us, show its name */ if (errno == EPERM) show_owner(zlogp, dlname); else zerror(zlogp, B_TRUE, "WARNING: unable to add network " "interface '%s'.", dlname); return (-1); } /* Hold the link for this zone */ if (dladm_hold_link(dlname, zoneid, B_FALSE) < 0) { int res, old_errno; dladm_attr_t da; /* * The following check is similar to 'dladm show-link' * to determine if this is a legacy interface. */ old_errno = errno; res = dladm_info(dlname, &da); if (res < 0 && errno == ENODEV) { /* * Check if this is a link like 'ce*' which supports * a direct ioctl. */ res = driver_hold_link(dlname, zoneid); if (res == 0) return (0); zerror(zlogp, B_FALSE, "WARNING: legacy network " "interface '%s'\nunsupported with an " "ip-type=exclusive configuration.", dlname); } else { errno = old_errno; zerror(zlogp, B_TRUE, "WARNING: unable to hold network " "interface '%s'.", dlname); } (void) zone_remove_datalink(zoneid, dlname); return (-1); } return (0); } static int remove_datalink(zlog_t *zlogp, zoneid_t zoneid, char *dlname) { /* * Remove access control information. * If the errno is ENXIO, the interface is not added yet, * nothing to report then. */ if (zone_remove_datalink(zoneid, dlname) != 0) { if (errno == ENXIO) return (0); zerror(zlogp, B_TRUE, "unable to remove network interface '%s'", dlname); return (-1); } if (dladm_rele_link(dlname, 0, B_FALSE) < 0) { /* Fallback to 'ce*' type link */ if (driver_rele_link(dlname, 0) < 0) { zerror(zlogp, B_TRUE, "unable to release network " "interface '%s'", dlname); return (-1); } } return (0); } /* * Add the kernel access control information for the interface names. * If anything goes wrong, we log a general error message, attempt to tear down * whatever we set up, and return an error. */ static int configure_exclusive_network_interfaces(zlog_t *zlogp) { zone_dochandle_t handle; struct zone_nwiftab nwiftab; zoneid_t zoneid; char rootpath[MAXPATHLEN]; char path[MAXPATHLEN]; di_prof_t prof = NULL; boolean_t added = B_FALSE; if ((zoneid = getzoneidbyname(zone_name)) == -1) { zerror(zlogp, B_TRUE, "unable to get zoneid"); return (-1); } if ((handle = zonecfg_init_handle()) == NULL) { zerror(zlogp, B_TRUE, "getting zone configuration handle"); return (-1); } if (zonecfg_get_snapshot_handle(zone_name, handle) != Z_OK) { zerror(zlogp, B_FALSE, "invalid configuration"); zonecfg_fini_handle(handle); return (-1); } if (zonecfg_setnwifent(handle) != Z_OK) { zonecfg_fini_handle(handle); return (0); } for (;;) { if (zonecfg_getnwifent(handle, &nwiftab) != Z_OK) break; if (prof == NULL) { if (zone_get_devroot(zone_name, rootpath, sizeof (rootpath)) != Z_OK) { (void) zonecfg_endnwifent(handle); zonecfg_fini_handle(handle); zerror(zlogp, B_TRUE, "unable to determine dev root"); return (-1); } (void) snprintf(path, sizeof (path), "%s%s", rootpath, "/dev"); if (di_prof_init(path, &prof) != 0) { (void) zonecfg_endnwifent(handle); zonecfg_fini_handle(handle); zerror(zlogp, B_TRUE, "failed to initialize profile"); return (-1); } } /* * Only create the /dev entry if it's not in use. * Note here the zone still boots when the interfaces * assigned is inaccessible, used by others, etc. */ if (add_datalink(zlogp, zoneid, nwiftab.zone_nwif_physical) == 0) { if (di_prof_add_dev(prof, nwiftab.zone_nwif_physical) != 0) { (void) zonecfg_endnwifent(handle); zonecfg_fini_handle(handle); zerror(zlogp, B_TRUE, "failed to add network device"); return (-1); } added = B_TRUE; } } (void) zonecfg_endnwifent(handle); zonecfg_fini_handle(handle); if (prof != NULL && added) { if (di_prof_commit(prof) != 0) { zerror(zlogp, B_TRUE, "failed to commit profile"); return (-1); } } if (prof != NULL) di_prof_fini(prof); return (0); } /* * Get the list of the data-links from kernel, and try to remove it */ static int unconfigure_exclusive_network_interfaces_run(zlog_t *zlogp, zoneid_t zoneid) { char *dlnames, *ptr; int dlnum, dlnum_saved, i; dlnum = 0; if (zone_list_datalink(zoneid, &dlnum, NULL) != 0) { zerror(zlogp, B_TRUE, "unable to list network interfaces"); return (-1); } again: /* this zone doesn't have any data-links */ if (dlnum == 0) return (0); dlnames = malloc(dlnum * LIFNAMSIZ); if (dlnames == NULL) { zerror(zlogp, B_TRUE, "memory allocation failed"); return (-1); } dlnum_saved = dlnum; if (zone_list_datalink(zoneid, &dlnum, dlnames) != 0) { zerror(zlogp, B_TRUE, "unable to list network interfaces"); free(dlnames); return (-1); } if (dlnum_saved < dlnum) { /* list increased, try again */ free(dlnames); goto again; } ptr = dlnames; for (i = 0; i < dlnum; i++) { /* Remove access control information */ if (remove_datalink(zlogp, zoneid, ptr) != 0) { free(dlnames); return (-1); } ptr += LIFNAMSIZ; } free(dlnames); return (0); } /* * Get the list of the data-links from configuration, and try to remove it */ static int unconfigure_exclusive_network_interfaces_static(zlog_t *zlogp, zoneid_t zoneid) { zone_dochandle_t handle; struct zone_nwiftab nwiftab; if ((handle = zonecfg_init_handle()) == NULL) { zerror(zlogp, B_TRUE, "getting zone configuration handle"); return (-1); } if (zonecfg_get_snapshot_handle(zone_name, handle) != Z_OK) { zerror(zlogp, B_FALSE, "invalid configuration"); zonecfg_fini_handle(handle); return (-1); } if (zonecfg_setnwifent(handle) != Z_OK) { zonecfg_fini_handle(handle); return (0); } for (;;) { if (zonecfg_getnwifent(handle, &nwiftab) != Z_OK) break; /* Remove access control information */ if (remove_datalink(zlogp, zoneid, nwiftab.zone_nwif_physical) != 0) { (void) zonecfg_endnwifent(handle); zonecfg_fini_handle(handle); return (-1); } } (void) zonecfg_endnwifent(handle); zonecfg_fini_handle(handle); return (0); } /* * Remove the access control information from the kernel for the exclusive * network interfaces. */ static int unconfigure_exclusive_network_interfaces(zlog_t *zlogp, zoneid_t zoneid) { if (unconfigure_exclusive_network_interfaces_run(zlogp, zoneid) != 0) { return (unconfigure_exclusive_network_interfaces_static(zlogp, zoneid)); } return (0); } static int tcp_abort_conn(zlog_t *zlogp, zoneid_t zoneid, const struct sockaddr_storage *local, const struct sockaddr_storage *remote) { int fd; struct strioctl ioc; tcp_ioc_abort_conn_t conn; int error; conn.ac_local = *local; conn.ac_remote = *remote; conn.ac_start = TCPS_SYN_SENT; conn.ac_end = TCPS_TIME_WAIT; conn.ac_zoneid = zoneid; ioc.ic_cmd = TCP_IOC_ABORT_CONN; ioc.ic_timout = -1; /* infinite timeout */ ioc.ic_len = sizeof (conn); ioc.ic_dp = (char *)&conn; if ((fd = open("/dev/tcp", O_RDONLY)) < 0) { zerror(zlogp, B_TRUE, "unable to open %s", "/dev/tcp"); return (-1); } error = ioctl(fd, I_STR, &ioc); (void) close(fd); if (error == 0 || errno == ENOENT) /* ENOENT is not an error */ return (0); return (-1); } static int tcp_abort_connections(zlog_t *zlogp, zoneid_t zoneid) { struct sockaddr_storage l, r; struct sockaddr_in *local, *remote; struct sockaddr_in6 *local6, *remote6; int error; /* * Abort IPv4 connections. */ bzero(&l, sizeof (*local)); local = (struct sockaddr_in *)&l; local->sin_family = AF_INET; local->sin_addr.s_addr = INADDR_ANY; local->sin_port = 0; bzero(&r, sizeof (*remote)); remote = (struct sockaddr_in *)&r; remote->sin_family = AF_INET; remote->sin_addr.s_addr = INADDR_ANY; remote->sin_port = 0; if ((error = tcp_abort_conn(zlogp, zoneid, &l, &r)) != 0) return (error); /* * Abort IPv6 connections. */ bzero(&l, sizeof (*local6)); local6 = (struct sockaddr_in6 *)&l; local6->sin6_family = AF_INET6; local6->sin6_port = 0; local6->sin6_addr = in6addr_any; bzero(&r, sizeof (*remote6)); remote6 = (struct sockaddr_in6 *)&r; remote6->sin6_family = AF_INET6; remote6->sin6_port = 0; remote6->sin6_addr = in6addr_any; if ((error = tcp_abort_conn(zlogp, zoneid, &l, &r)) != 0) return (error); return (0); } static int get_privset(zlog_t *zlogp, priv_set_t *privs, zone_mnt_t mount_cmd) { int error = -1; zone_dochandle_t handle; char *privname = NULL; if ((handle = zonecfg_init_handle()) == NULL) { zerror(zlogp, B_TRUE, "getting zone configuration handle"); return (-1); } if (zonecfg_get_snapshot_handle(zone_name, handle) != Z_OK) { zerror(zlogp, B_FALSE, "invalid configuration"); zonecfg_fini_handle(handle); return (-1); } if (ALT_MOUNT(mount_cmd)) { zone_iptype_t iptype; const char *curr_iptype; if (zonecfg_get_iptype(handle, &iptype) != Z_OK) { zerror(zlogp, B_TRUE, "unable to determine ip-type"); zonecfg_fini_handle(handle); return (-1); } switch (iptype) { case ZS_SHARED: curr_iptype = "shared"; break; case ZS_EXCLUSIVE: curr_iptype = "exclusive"; break; } if (zonecfg_default_privset(privs, curr_iptype) == Z_OK) { zonecfg_fini_handle(handle); return (0); } zerror(zlogp, B_FALSE, "failed to determine the zone's default privilege set"); zonecfg_fini_handle(handle); return (-1); } switch (zonecfg_get_privset(handle, privs, &privname)) { case Z_OK: error = 0; break; case Z_PRIV_PROHIBITED: zerror(zlogp, B_FALSE, "privilege \"%s\" is not permitted " "within the zone's privilege set", privname); break; case Z_PRIV_REQUIRED: zerror(zlogp, B_FALSE, "required privilege \"%s\" is missing " "from the zone's privilege set", privname); break; case Z_PRIV_UNKNOWN: zerror(zlogp, B_FALSE, "unknown privilege \"%s\" specified " "in the zone's privilege set", privname); break; default: zerror(zlogp, B_FALSE, "failed to determine the zone's " "privilege set"); break; } free(privname); zonecfg_fini_handle(handle); return (error); } static int get_rctls(zlog_t *zlogp, char **bufp, size_t *bufsizep) { nvlist_t *nvl = NULL; char *nvl_packed = NULL; size_t nvl_size = 0; nvlist_t **nvlv = NULL; int rctlcount = 0; int error = -1; zone_dochandle_t handle; struct zone_rctltab rctltab; rctlblk_t *rctlblk = NULL; *bufp = NULL; *bufsizep = 0; if ((handle = zonecfg_init_handle()) == NULL) { zerror(zlogp, B_TRUE, "getting zone configuration handle"); return (-1); } if (zonecfg_get_snapshot_handle(zone_name, handle) != Z_OK) { zerror(zlogp, B_FALSE, "invalid configuration"); zonecfg_fini_handle(handle); return (-1); } rctltab.zone_rctl_valptr = NULL; if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, 0) != 0) { zerror(zlogp, B_TRUE, "%s failed", "nvlist_alloc"); goto out; } if (zonecfg_setrctlent(handle) != Z_OK) { zerror(zlogp, B_FALSE, "%s failed", "zonecfg_setrctlent"); goto out; } if ((rctlblk = malloc(rctlblk_size())) == NULL) { zerror(zlogp, B_TRUE, "memory allocation failed"); goto out; } while (zonecfg_getrctlent(handle, &rctltab) == Z_OK) { struct zone_rctlvaltab *rctlval; uint_t i, count; const char *name = rctltab.zone_rctl_name; /* zoneadm should have already warned about unknown rctls. */ if (!zonecfg_is_rctl(name)) { zonecfg_free_rctl_value_list(rctltab.zone_rctl_valptr); rctltab.zone_rctl_valptr = NULL; continue; } count = 0; for (rctlval = rctltab.zone_rctl_valptr; rctlval != NULL; rctlval = rctlval->zone_rctlval_next) { count++; } if (count == 0) { /* ignore */ continue; /* Nothing to free */ } if ((nvlv = malloc(sizeof (*nvlv) * count)) == NULL) goto out; i = 0; for (rctlval = rctltab.zone_rctl_valptr; rctlval != NULL; rctlval = rctlval->zone_rctlval_next, i++) { if (nvlist_alloc(&nvlv[i], NV_UNIQUE_NAME, 0) != 0) { zerror(zlogp, B_TRUE, "%s failed", "nvlist_alloc"); goto out; } if (zonecfg_construct_rctlblk(rctlval, rctlblk) != Z_OK) { zerror(zlogp, B_FALSE, "invalid rctl value: " "(priv=%s,limit=%s,action=%s)", rctlval->zone_rctlval_priv, rctlval->zone_rctlval_limit, rctlval->zone_rctlval_action); goto out; } if (!zonecfg_valid_rctl(name, rctlblk)) { zerror(zlogp, B_FALSE, "(priv=%s,limit=%s,action=%s) is not a " "valid value for rctl '%s'", rctlval->zone_rctlval_priv, rctlval->zone_rctlval_limit, rctlval->zone_rctlval_action, name); goto out; } if (nvlist_add_uint64(nvlv[i], "privilege", rctlblk_get_privilege(rctlblk)) != 0) { zerror(zlogp, B_FALSE, "%s failed", "nvlist_add_uint64"); goto out; } if (nvlist_add_uint64(nvlv[i], "limit", rctlblk_get_value(rctlblk)) != 0) { zerror(zlogp, B_FALSE, "%s failed", "nvlist_add_uint64"); goto out; } if (nvlist_add_uint64(nvlv[i], "action", (uint_t)rctlblk_get_local_action(rctlblk, NULL)) != 0) { zerror(zlogp, B_FALSE, "%s failed", "nvlist_add_uint64"); goto out; } } zonecfg_free_rctl_value_list(rctltab.zone_rctl_valptr); rctltab.zone_rctl_valptr = NULL; if (nvlist_add_nvlist_array(nvl, (char *)name, nvlv, count) != 0) { zerror(zlogp, B_FALSE, "%s failed", "nvlist_add_nvlist_array"); goto out; } for (i = 0; i < count; i++) nvlist_free(nvlv[i]); free(nvlv); nvlv = NULL; rctlcount++; } (void) zonecfg_endrctlent(handle); if (rctlcount == 0) { error = 0; goto out; } if (nvlist_pack(nvl, &nvl_packed, &nvl_size, NV_ENCODE_NATIVE, 0) != 0) { zerror(zlogp, B_FALSE, "%s failed", "nvlist_pack"); goto out; } error = 0; *bufp = nvl_packed; *bufsizep = nvl_size; out: free(rctlblk); zonecfg_free_rctl_value_list(rctltab.zone_rctl_valptr); if (error && nvl_packed != NULL) free(nvl_packed); if (nvl != NULL) nvlist_free(nvl); if (nvlv != NULL) free(nvlv); if (handle != NULL) zonecfg_fini_handle(handle); return (error); } static int get_datasets(zlog_t *zlogp, char **bufp, size_t *bufsizep) { zone_dochandle_t handle; struct zone_dstab dstab; size_t total, offset, len; int error = -1; char *str = NULL; *bufp = NULL; *bufsizep = 0; if ((handle = zonecfg_init_handle()) == NULL) { zerror(zlogp, B_TRUE, "getting zone configuration handle"); return (-1); } if (zonecfg_get_snapshot_handle(zone_name, handle) != Z_OK) { zerror(zlogp, B_FALSE, "invalid configuration"); zonecfg_fini_handle(handle); return (-1); } if (zonecfg_setdsent(handle) != Z_OK) { zerror(zlogp, B_FALSE, "%s failed", "zonecfg_setdsent"); goto out; } total = 0; while (zonecfg_getdsent(handle, &dstab) == Z_OK) total += strlen(dstab.zone_dataset_name) + 1; (void) zonecfg_enddsent(handle); if (total == 0) { error = 0; goto out; } if ((str = malloc(total)) == NULL) { zerror(zlogp, B_TRUE, "memory allocation failed"); goto out; } if (zonecfg_setdsent(handle) != Z_OK) { zerror(zlogp, B_FALSE, "%s failed", "zonecfg_setdsent"); goto out; } offset = 0; while (zonecfg_getdsent(handle, &dstab) == Z_OK) { len = strlen(dstab.zone_dataset_name); (void) strlcpy(str + offset, dstab.zone_dataset_name, total - offset); offset += len; if (offset < total - 1) str[offset++] = ','; } (void) zonecfg_enddsent(handle); error = 0; *bufp = str; *bufsizep = total; out: if (error != 0 && str != NULL) free(str); if (handle != NULL) zonecfg_fini_handle(handle); return (error); } static int validate_datasets(zlog_t *zlogp) { zone_dochandle_t handle; struct zone_dstab dstab; zfs_handle_t *zhp; libzfs_handle_t *hdl; if ((handle = zonecfg_init_handle()) == NULL) { zerror(zlogp, B_TRUE, "getting zone configuration handle"); return (-1); } if (zonecfg_get_snapshot_handle(zone_name, handle) != Z_OK) { zerror(zlogp, B_FALSE, "invalid configuration"); zonecfg_fini_handle(handle); return (-1); } if (zonecfg_setdsent(handle) != Z_OK) { zerror(zlogp, B_FALSE, "invalid configuration"); zonecfg_fini_handle(handle); return (-1); } if ((hdl = libzfs_init()) == NULL) { zerror(zlogp, B_FALSE, "opening ZFS library"); zonecfg_fini_handle(handle); return (-1); } while (zonecfg_getdsent(handle, &dstab) == Z_OK) { if ((zhp = zfs_open(hdl, dstab.zone_dataset_name, ZFS_TYPE_FILESYSTEM)) == NULL) { zerror(zlogp, B_FALSE, "cannot open ZFS dataset '%s'", dstab.zone_dataset_name); zonecfg_fini_handle(handle); libzfs_fini(hdl); return (-1); } /* * Automatically set the 'zoned' property. We check the value * first because we'll get EPERM if it is already set. */ if (!zfs_prop_get_int(zhp, ZFS_PROP_ZONED) && zfs_prop_set(zhp, zfs_prop_to_name(ZFS_PROP_ZONED), "on") != 0) { zerror(zlogp, B_FALSE, "cannot set 'zoned' " "property for ZFS dataset '%s'\n", dstab.zone_dataset_name); zonecfg_fini_handle(handle); zfs_close(zhp); libzfs_fini(hdl); return (-1); } zfs_close(zhp); } (void) zonecfg_enddsent(handle); zonecfg_fini_handle(handle); libzfs_fini(hdl); return (0); } /* * Mount lower level home directories into/from current zone * Share exported directories specified in dfstab for zone */ static int tsol_mounts(zlog_t *zlogp, char *zone_name, char *rootpath) { zoneid_t *zids = NULL; priv_set_t *zid_privs; const priv_impl_info_t *ip = NULL; uint_t nzents_saved; uint_t nzents; int i; char readonly[] = "ro"; struct zone_fstab lower_fstab; char *argv[4]; if (!is_system_labeled()) return (0); if (zid_label == NULL) { zid_label = m_label_alloc(MAC_LABEL); if (zid_label == NULL) return (-1); } /* Make sure our zone has an /export/home dir */ (void) make_one_dir(zlogp, rootpath, "/export/home", DEFAULT_DIR_MODE, DEFAULT_DIR_USER, DEFAULT_DIR_GROUP); lower_fstab.zone_fs_raw[0] = '\0'; (void) strlcpy(lower_fstab.zone_fs_type, MNTTYPE_LOFS, sizeof (lower_fstab.zone_fs_type)); lower_fstab.zone_fs_options = NULL; (void) zonecfg_add_fs_option(&lower_fstab, readonly); /* * Get the list of zones from the kernel */ if (zone_list(NULL, &nzents) != 0) { zerror(zlogp, B_TRUE, "unable to list zones"); zonecfg_free_fs_option_list(lower_fstab.zone_fs_options); return (-1); } again: if (nzents == 0) { zonecfg_free_fs_option_list(lower_fstab.zone_fs_options); return (-1); } zids = malloc(nzents * sizeof (zoneid_t)); if (zids == NULL) { zerror(zlogp, B_TRUE, "memory allocation failed"); return (-1); } nzents_saved = nzents; if (zone_list(zids, &nzents) != 0) { zerror(zlogp, B_TRUE, "unable to list zones"); zonecfg_free_fs_option_list(lower_fstab.zone_fs_options); free(zids); return (-1); } if (nzents != nzents_saved) { /* list changed, try again */ free(zids); goto again; } ip = getprivimplinfo(); if ((zid_privs = priv_allocset()) == NULL) { zerror(zlogp, B_TRUE, "%s failed", "priv_allocset"); zonecfg_free_fs_option_list( lower_fstab.zone_fs_options); free(zids); return (-1); } for (i = 0; i < nzents; i++) { char zid_name[ZONENAME_MAX]; zone_state_t zid_state; char zid_rpath[MAXPATHLEN]; struct stat stat_buf; if (zids[i] == GLOBAL_ZONEID) continue; if (getzonenamebyid(zids[i], zid_name, ZONENAME_MAX) == -1) continue; /* * Do special setup for the zone we are booting */ if (strcmp(zid_name, zone_name) == 0) { struct zone_fstab autofs_fstab; char map_path[MAXPATHLEN]; int fd; /* * Create auto_home_ map for this zone * in the global zone. The non-global zone entry * will be created by automount when the zone * is booted. */ (void) snprintf(autofs_fstab.zone_fs_special, MAXPATHLEN, "auto_home_%s", zid_name); (void) snprintf(autofs_fstab.zone_fs_dir, MAXPATHLEN, "/zone/%s/home", zid_name); (void) snprintf(map_path, sizeof (map_path), "/etc/%s", autofs_fstab.zone_fs_special); /* * If the map file doesn't exist create a template */ if ((fd = open(map_path, O_RDWR | O_CREAT | O_EXCL, S_IRUSR | S_IWUSR | S_IRGRP| S_IROTH)) != -1) { int len; char map_rec[MAXPATHLEN]; len = snprintf(map_rec, sizeof (map_rec), "+%s\n*\t-fstype=lofs\t:%s/export/home/&\n", autofs_fstab.zone_fs_special, rootpath); (void) write(fd, map_rec, len); (void) close(fd); } /* * Mount auto_home_ in the global zone if absent. * If it's already of type autofs, then * don't mount it again. */ if ((stat(autofs_fstab.zone_fs_dir, &stat_buf) == -1) || strcmp(stat_buf.st_fstype, MNTTYPE_AUTOFS) != 0) { char optstr[] = "indirect,ignore,nobrowse"; (void) make_one_dir(zlogp, "", autofs_fstab.zone_fs_dir, DEFAULT_DIR_MODE, DEFAULT_DIR_USER, DEFAULT_DIR_GROUP); /* * Mount will fail if automounter has already * processed the auto_home_ map */ (void) domount(zlogp, MNTTYPE_AUTOFS, optstr, autofs_fstab.zone_fs_special, autofs_fstab.zone_fs_dir); } continue; } if (zone_get_state(zid_name, &zid_state) != Z_OK || (zid_state != ZONE_STATE_READY && zid_state != ZONE_STATE_RUNNING)) /* Skip over zones without mounted filesystems */ continue; if (zone_getattr(zids[i], ZONE_ATTR_SLBL, zid_label, sizeof (m_label_t)) < 0) /* Skip over zones with unspecified label */ continue; if (zone_getattr(zids[i], ZONE_ATTR_ROOT, zid_rpath, sizeof (zid_rpath)) == -1) /* Skip over zones with bad path */ continue; if (zone_getattr(zids[i], ZONE_ATTR_PRIVSET, zid_privs, sizeof (priv_chunk_t) * ip->priv_setsize) == -1) /* Skip over zones with bad privs */ continue; /* * Reading down is valid according to our label model * but some customers want to disable it because it * allows execute down and other possible attacks. * Therefore, we restrict this feature to zones that * have the NET_MAC_AWARE privilege which is required * for NFS read-down semantics. */ if ((bldominates(zlabel, zid_label)) && (priv_ismember(zprivs, PRIV_NET_MAC_AWARE))) { /* * Our zone dominates this one. * Create a lofs mount from lower zone's /export/home */ (void) snprintf(lower_fstab.zone_fs_dir, MAXPATHLEN, "%s/zone/%s/export/home", rootpath, zid_name); /* * If the target is already an LOFS mount * then don't do it again. */ if ((stat(lower_fstab.zone_fs_dir, &stat_buf) == -1) || strcmp(stat_buf.st_fstype, MNTTYPE_LOFS) != 0) { if (snprintf(lower_fstab.zone_fs_special, MAXPATHLEN, "%s/export", zid_rpath) > MAXPATHLEN) continue; /* * Make sure the lower-level home exists */ if (make_one_dir(zlogp, lower_fstab.zone_fs_special, "/home", DEFAULT_DIR_MODE, DEFAULT_DIR_USER, DEFAULT_DIR_GROUP) != 0) continue; (void) strlcat(lower_fstab.zone_fs_special, "/home", MAXPATHLEN); /* * Mount can fail because the lower-level * zone may have already done a mount up. */ (void) mount_one(zlogp, &lower_fstab, ""); } } else if ((bldominates(zid_label, zlabel)) && (priv_ismember(zid_privs, PRIV_NET_MAC_AWARE))) { /* * This zone dominates our zone. * Create a lofs mount from our zone's /export/home */ if (snprintf(lower_fstab.zone_fs_dir, MAXPATHLEN, "%s/zone/%s/export/home", zid_rpath, zone_name) > MAXPATHLEN) continue; /* * If the target is already an LOFS mount * then don't do it again. */ if ((stat(lower_fstab.zone_fs_dir, &stat_buf) == -1) || strcmp(stat_buf.st_fstype, MNTTYPE_LOFS) != 0) { (void) snprintf(lower_fstab.zone_fs_special, MAXPATHLEN, "%s/export/home", rootpath); /* * Mount can fail because the higher-level * zone may have already done a mount down. */ (void) mount_one(zlogp, &lower_fstab, ""); } } } zonecfg_free_fs_option_list(lower_fstab.zone_fs_options); priv_freeset(zid_privs); free(zids); /* * Now share any exported directories from this zone. * Each zone can have its own dfstab. */ argv[0] = "zoneshare"; argv[1] = "-z"; argv[2] = zone_name; argv[3] = NULL; (void) forkexec(zlogp, "/usr/lib/zones/zoneshare", argv); /* Don't check for errors since they don't affect the zone */ return (0); } /* * Unmount lofs mounts from higher level zones * Unshare nfs exported directories */ static void tsol_unmounts(zlog_t *zlogp, char *zone_name) { zoneid_t *zids = NULL; uint_t nzents_saved; uint_t nzents; int i; char *argv[4]; char path[MAXPATHLEN]; if (!is_system_labeled()) return; /* * Get the list of zones from the kernel */ if (zone_list(NULL, &nzents) != 0) { return; } if (zid_label == NULL) { zid_label = m_label_alloc(MAC_LABEL); if (zid_label == NULL) return; } again: if (nzents == 0) return; zids = malloc(nzents * sizeof (zoneid_t)); if (zids == NULL) { zerror(zlogp, B_TRUE, "memory allocation failed"); return; } nzents_saved = nzents; if (zone_list(zids, &nzents) != 0) { free(zids); return; } if (nzents != nzents_saved) { /* list changed, try again */ free(zids); goto again; } for (i = 0; i < nzents; i++) { char zid_name[ZONENAME_MAX]; zone_state_t zid_state; char zid_rpath[MAXPATHLEN]; if (zids[i] == GLOBAL_ZONEID) continue; if (getzonenamebyid(zids[i], zid_name, ZONENAME_MAX) == -1) continue; /* * Skip the zone we are halting */ if (strcmp(zid_name, zone_name) == 0) continue; if ((zone_getattr(zids[i], ZONE_ATTR_STATUS, &zid_state, sizeof (zid_state)) < 0) || (zid_state < ZONE_IS_READY)) /* Skip over zones without mounted filesystems */ continue; if (zone_getattr(zids[i], ZONE_ATTR_SLBL, zid_label, sizeof (m_label_t)) < 0) /* Skip over zones with unspecified label */ continue; if (zone_getattr(zids[i], ZONE_ATTR_ROOT, zid_rpath, sizeof (zid_rpath)) == -1) /* Skip over zones with bad path */ continue; if (zlabel != NULL && bldominates(zid_label, zlabel)) { /* * This zone dominates our zone. * Unmount the lofs mount of our zone's /export/home */ if (snprintf(path, MAXPATHLEN, "%s/zone/%s/export/home", zid_rpath, zone_name) > MAXPATHLEN) continue; /* Skip over mount failures */ (void) umount(path); } } free(zids); /* * Unmount global zone autofs trigger for this zone */ (void) snprintf(path, MAXPATHLEN, "/zone/%s/home", zone_name); /* Skip over mount failures */ (void) umount(path); /* * Next unshare any exported directories from this zone. */ argv[0] = "zoneunshare"; argv[1] = "-z"; argv[2] = zone_name; argv[3] = NULL; (void) forkexec(zlogp, "/usr/lib/zones/zoneunshare", argv); /* Don't check for errors since they don't affect the zone */ /* * Finally, deallocate any devices in the zone. */ argv[0] = "deallocate"; argv[1] = "-Isz"; argv[2] = zone_name; argv[3] = NULL; (void) forkexec(zlogp, "/usr/sbin/deallocate", argv); /* Don't check for errors since they don't affect the zone */ } /* * Fetch the Trusted Extensions label and multi-level ports (MLPs) for * this zone. */ static tsol_zcent_t * get_zone_label(zlog_t *zlogp, priv_set_t *privs) { FILE *fp; tsol_zcent_t *zcent = NULL; char line[MAXTNZLEN]; if ((fp = fopen(TNZONECFG_PATH, "r")) == NULL) { zerror(zlogp, B_TRUE, "%s", TNZONECFG_PATH); return (NULL); } while (fgets(line, sizeof (line), fp) != NULL) { /* * Check for malformed database */ if (strlen(line) == MAXTNZLEN - 1) break; if ((zcent = tsol_sgetzcent(line, NULL, NULL)) == NULL) continue; if (strcmp(zcent->zc_name, zone_name) == 0) break; tsol_freezcent(zcent); zcent = NULL; } (void) fclose(fp); if (zcent == NULL) { zerror(zlogp, B_FALSE, "zone requires a label assignment. " "See tnzonecfg(4)"); } else { if (zlabel == NULL) zlabel = m_label_alloc(MAC_LABEL); /* * Save this zone's privileges for later read-down processing */ if ((zprivs = priv_allocset()) == NULL) { zerror(zlogp, B_TRUE, "%s failed", "priv_allocset"); return (NULL); } else { priv_copyset(privs, zprivs); } } return (zcent); } /* * Add the Trusted Extensions multi-level ports for this zone. */ static void set_mlps(zlog_t *zlogp, zoneid_t zoneid, tsol_zcent_t *zcent) { tsol_mlp_t *mlp; tsol_mlpent_t tsme; if (!is_system_labeled()) return; tsme.tsme_zoneid = zoneid; tsme.tsme_flags = 0; for (mlp = zcent->zc_private_mlp; !TSOL_MLP_END(mlp); mlp++) { tsme.tsme_mlp = *mlp; if (tnmlp(TNDB_LOAD, &tsme) != 0) { zerror(zlogp, B_TRUE, "cannot set zone-specific MLP " "on %d-%d/%d", mlp->mlp_port, mlp->mlp_port_upper, mlp->mlp_ipp); } } tsme.tsme_flags = TSOL_MEF_SHARED; for (mlp = zcent->zc_shared_mlp; !TSOL_MLP_END(mlp); mlp++) { tsme.tsme_mlp = *mlp; if (tnmlp(TNDB_LOAD, &tsme) != 0) { zerror(zlogp, B_TRUE, "cannot set shared MLP " "on %d-%d/%d", mlp->mlp_port, mlp->mlp_port_upper, mlp->mlp_ipp); } } } static void remove_mlps(zlog_t *zlogp, zoneid_t zoneid) { tsol_mlpent_t tsme; if (!is_system_labeled()) return; (void) memset(&tsme, 0, sizeof (tsme)); tsme.tsme_zoneid = zoneid; if (tnmlp(TNDB_FLUSH, &tsme) != 0) zerror(zlogp, B_TRUE, "cannot flush MLPs"); } int prtmount(const char *fs, void *x) { zerror((zlog_t *)x, B_FALSE, " %s", fs); return (0); } /* * Look for zones running on the main system that are using this root (or any * subdirectory of it). Return B_TRUE and print an error if a conflicting zone * is found or if we can't tell. */ static boolean_t duplicate_zone_root(zlog_t *zlogp, const char *rootpath) { zoneid_t *zids = NULL; uint_t nzids = 0; boolean_t retv; int rlen, zlen; char zroot[MAXPATHLEN]; char zonename[ZONENAME_MAX]; for (;;) { nzids += 10; zids = malloc(nzids * sizeof (*zids)); if (zids == NULL) { zerror(zlogp, B_TRUE, "memory allocation failed"); return (B_TRUE); } if (zone_list(zids, &nzids) == 0) break; free(zids); } retv = B_FALSE; rlen = strlen(rootpath); while (nzids > 0) { /* * Ignore errors; they just mean that the zone has disappeared * while we were busy. */ if (zone_getattr(zids[--nzids], ZONE_ATTR_ROOT, zroot, sizeof (zroot)) == -1) continue; zlen = strlen(zroot); if (zlen > rlen) zlen = rlen; if (strncmp(rootpath, zroot, zlen) == 0 && (zroot[zlen] == '\0' || zroot[zlen] == '/') && (rootpath[zlen] == '\0' || rootpath[zlen] == '/')) { if (getzonenamebyid(zids[nzids], zonename, sizeof (zonename)) == -1) (void) snprintf(zonename, sizeof (zonename), "id %d", (int)zids[nzids]); zerror(zlogp, B_FALSE, "zone root %s already in use by zone %s", rootpath, zonename); retv = B_TRUE; break; } } free(zids); return (retv); } /* * Search for loopback mounts that use this same source node (same device and * inode). Return B_TRUE if there is one or if we can't tell. */ static boolean_t duplicate_reachable_path(zlog_t *zlogp, const char *rootpath) { struct stat64 rst, zst; struct mnttab *mnp; if (stat64(rootpath, &rst) == -1) { zerror(zlogp, B_TRUE, "can't stat %s", rootpath); return (B_TRUE); } if (resolve_lofs_mnts == NULL && lofs_read_mnttab(zlogp) == -1) return (B_TRUE); for (mnp = resolve_lofs_mnts; mnp < resolve_lofs_mnt_max; mnp++) { if (mnp->mnt_fstype == NULL || strcmp(MNTTYPE_LOFS, mnp->mnt_fstype) != 0) continue; /* We're looking at a loopback mount. Stat it. */ if (mnp->mnt_special != NULL && stat64(mnp->mnt_special, &zst) != -1 && rst.st_dev == zst.st_dev && rst.st_ino == zst.st_ino) { zerror(zlogp, B_FALSE, "zone root %s is reachable through %s", rootpath, mnp->mnt_mountp); return (B_TRUE); } } return (B_FALSE); } /* * Set memory cap and pool info for the zone's resource management * configuration. */ static int setup_zone_rm(zlog_t *zlogp, char *zone_name, zoneid_t zoneid) { int res; uint64_t tmp; struct zone_mcaptab mcap; char sched[MAXNAMELEN]; zone_dochandle_t handle = NULL; char pool_err[128]; if ((handle = zonecfg_init_handle()) == NULL) { zerror(zlogp, B_TRUE, "getting zone configuration handle"); return (Z_BAD_HANDLE); } if ((res = zonecfg_get_snapshot_handle(zone_name, handle)) != Z_OK) { zerror(zlogp, B_FALSE, "invalid configuration"); zonecfg_fini_handle(handle); return (res); } /* * If a memory cap is configured, set the cap in the kernel using * zone_setattr() and make sure the rcapd SMF service is enabled. */ if (zonecfg_getmcapent(handle, &mcap) == Z_OK) { uint64_t num; char smf_err[128]; num = (uint64_t)strtoull(mcap.zone_physmem_cap, NULL, 10); if (zone_setattr(zoneid, ZONE_ATTR_PHYS_MCAP, &num, 0) == -1) { zerror(zlogp, B_TRUE, "could not set zone memory cap"); zonecfg_fini_handle(handle); return (Z_INVAL); } if (zonecfg_enable_rcapd(smf_err, sizeof (smf_err)) != Z_OK) { zerror(zlogp, B_FALSE, "enabling system/rcap service " "failed: %s", smf_err); zonecfg_fini_handle(handle); return (Z_INVAL); } } /* Get the scheduling class set in the zone configuration. */ if (zonecfg_get_sched_class(handle, sched, sizeof (sched)) == Z_OK && strlen(sched) > 0) { if (zone_setattr(zoneid, ZONE_ATTR_SCHED_CLASS, sched, strlen(sched)) == -1) zerror(zlogp, B_TRUE, "WARNING: unable to set the " "default scheduling class"); } else if (zonecfg_get_aliased_rctl(handle, ALIAS_SHARES, &tmp) == Z_OK) { /* * If the zone has the zone.cpu-shares rctl set then we want to * use the Fair Share Scheduler (FSS) for processes in the * zone. Check what scheduling class the zone would be running * in by default so we can print a warning and modify the class * if we wouldn't be using FSS. */ char class_name[PC_CLNMSZ]; if (zonecfg_get_dflt_sched_class(handle, class_name, sizeof (class_name)) != Z_OK) { zerror(zlogp, B_FALSE, "WARNING: unable to determine " "the zone's scheduling class"); } else if (strcmp("FSS", class_name) != 0) { zerror(zlogp, B_FALSE, "WARNING: The zone.cpu-shares " "rctl is set but\nFSS is not the default " "scheduling class for\nthis zone. FSS will be " "used for processes\nin the zone but to get the " "full benefit of FSS,\nit should be the default " "scheduling class.\nSee dispadmin(1M) for more " "details."); if (zone_setattr(zoneid, ZONE_ATTR_SCHED_CLASS, "FSS", strlen("FSS")) == -1) zerror(zlogp, B_TRUE, "WARNING: unable to set " "zone scheduling class to FSS"); } } /* * The next few blocks of code attempt to set up temporary pools as * well as persistent pools. In all cases we call the functions * unconditionally. Within each funtion the code will check if the * zone is actually configured for a temporary pool or persistent pool * and just return if there is nothing to do. * * If we are rebooting we want to attempt to reuse any temporary pool * that was previously set up. zonecfg_bind_tmp_pool() will do the * right thing in all cases (reuse or create) based on the current * zonecfg. */ if ((res = zonecfg_bind_tmp_pool(handle, zoneid, pool_err, sizeof (pool_err))) != Z_OK) { if (res == Z_POOL || res == Z_POOL_CREATE || res == Z_POOL_BIND) zerror(zlogp, B_FALSE, "%s: %s\ndedicated-cpu setting " "cannot be instantiated", zonecfg_strerror(res), pool_err); else zerror(zlogp, B_FALSE, "could not bind zone to " "temporary pool: %s", zonecfg_strerror(res)); zonecfg_fini_handle(handle); return (Z_POOL_BIND); } /* * Check if we need to warn about poold not being enabled. */ if (zonecfg_warn_poold(handle)) { zerror(zlogp, B_FALSE, "WARNING: A range of dedicated-cpus has " "been specified\nbut the dynamic pool service is not " "enabled.\nThe system will not dynamically adjust the\n" "processor allocation within the specified range\n" "until svc:/system/pools/dynamic is enabled.\n" "See poold(1M)."); } /* The following is a warning, not an error. */ if ((res = zonecfg_bind_pool(handle, zoneid, pool_err, sizeof (pool_err))) != Z_OK) { if (res == Z_POOL_BIND) zerror(zlogp, B_FALSE, "WARNING: unable to bind to " "pool '%s'; using default pool.", pool_err); else if (res == Z_POOL) zerror(zlogp, B_FALSE, "WARNING: %s: %s", zonecfg_strerror(res), pool_err); else zerror(zlogp, B_FALSE, "WARNING: %s", zonecfg_strerror(res)); } zonecfg_fini_handle(handle); return (Z_OK); } zoneid_t vplat_create(zlog_t *zlogp, zone_mnt_t mount_cmd) { zoneid_t rval = -1; priv_set_t *privs; char rootpath[MAXPATHLEN]; char modname[MAXPATHLEN]; struct brand_attr attr; brand_handle_t bh; char *rctlbuf = NULL; size_t rctlbufsz = 0; char *zfsbuf = NULL; size_t zfsbufsz = 0; zoneid_t zoneid = -1; int xerr; char *kzone; FILE *fp = NULL; tsol_zcent_t *zcent = NULL; int match = 0; int doi = 0; int flags; zone_iptype_t iptype; if (zone_get_rootpath(zone_name, rootpath, sizeof (rootpath)) != Z_OK) { zerror(zlogp, B_TRUE, "unable to determine zone root"); return (-1); } if (zonecfg_in_alt_root()) resolve_lofs(zlogp, rootpath, sizeof (rootpath)); if (get_iptype(zlogp, &iptype) < 0) { zerror(zlogp, B_TRUE, "unable to determine ip-type"); return (-1); } switch (iptype) { case ZS_SHARED: flags = 0; break; case ZS_EXCLUSIVE: flags = ZCF_NET_EXCL; break; } if ((privs = priv_allocset()) == NULL) { zerror(zlogp, B_TRUE, "%s failed", "priv_allocset"); return (-1); } priv_emptyset(privs); if (get_privset(zlogp, privs, mount_cmd) != 0) goto error; if (mount_cmd == Z_MNT_BOOT && get_rctls(zlogp, &rctlbuf, &rctlbufsz) != 0) { zerror(zlogp, B_FALSE, "Unable to get list of rctls"); goto error; } if (get_datasets(zlogp, &zfsbuf, &zfsbufsz) != 0) { zerror(zlogp, B_FALSE, "Unable to get list of ZFS datasets"); goto error; } if (mount_cmd == Z_MNT_BOOT && is_system_labeled()) { zcent = get_zone_label(zlogp, privs); if (zcent != NULL) { match = zcent->zc_match; doi = zcent->zc_doi; *zlabel = zcent->zc_label; } else { goto error; } } kzone = zone_name; /* * We must do this scan twice. First, we look for zones running on the * main system that are using this root (or any subdirectory of it). * Next, we reduce to the shortest path and search for loopback mounts * that use this same source node (same device and inode). */ if (duplicate_zone_root(zlogp, rootpath)) goto error; if (duplicate_reachable_path(zlogp, rootpath)) goto error; if (ALT_MOUNT(mount_cmd)) { assert(zone_isnative || zone_iscluster); root_to_lu(zlogp, rootpath, sizeof (rootpath), B_TRUE); /* * Forge up a special root for this zone. When a zone is * mounted, we can't let the zone have its own root because the * tools that will be used in this "scratch zone" need access * to both the zone's resources and the running machine's * executables. * * Note that the mkdir here also catches read-only filesystems. */ if (mkdir(rootpath, 0755) != 0 && errno != EEXIST) { zerror(zlogp, B_TRUE, "cannot create %s", rootpath); goto error; } if (domount(zlogp, "tmpfs", "", "swap", rootpath) != 0) goto error; } if (zonecfg_in_alt_root()) { /* * If we are mounting up a zone in an alternate root partition, * then we have some additional work to do before starting the * zone. First, resolve the root path down so that we're not * fooled by duplicates. Then forge up an internal name for * the zone. */ if ((fp = zonecfg_open_scratch("", B_TRUE)) == NULL) { zerror(zlogp, B_TRUE, "cannot open mapfile"); goto error; } if (zonecfg_lock_scratch(fp) != 0) { zerror(zlogp, B_TRUE, "cannot lock mapfile"); goto error; } if (zonecfg_find_scratch(fp, zone_name, zonecfg_get_root(), NULL, 0) == 0) { zerror(zlogp, B_FALSE, "scratch zone already running"); goto error; } /* This is the preferred name */ (void) snprintf(kernzone, sizeof (kernzone), "SUNWlu-%s", zone_name); srandom(getpid()); while (zonecfg_reverse_scratch(fp, kernzone, NULL, 0, NULL, 0) == 0) { /* This is just an arbitrary name; note "." usage */ (void) snprintf(kernzone, sizeof (kernzone), "SUNWlu.%08lX%08lX", random(), random()); } kzone = kernzone; } xerr = 0; if ((zoneid = zone_create(kzone, rootpath, privs, rctlbuf, rctlbufsz, zfsbuf, zfsbufsz, &xerr, match, doi, zlabel, flags)) == -1) { if (xerr == ZE_AREMOUNTS) { if (zonecfg_find_mounts(rootpath, NULL, NULL) < 1) { zerror(zlogp, B_FALSE, "An unknown file-system is mounted on " "a subdirectory of %s", rootpath); } else { zerror(zlogp, B_FALSE, "These file-systems are mounted on " "subdirectories of %s:", rootpath); (void) zonecfg_find_mounts(rootpath, prtmount, zlogp); } } else if (xerr == ZE_CHROOTED) { zerror(zlogp, B_FALSE, "%s: " "cannot create a zone from a chrooted " "environment", "zone_create"); } else if (xerr == ZE_LABELINUSE) { char zonename[ZONENAME_MAX]; (void) getzonenamebyid(getzoneidbylabel(zlabel), zonename, ZONENAME_MAX); zerror(zlogp, B_FALSE, "The zone label is already " "used by the zone '%s'.", zonename); } else { zerror(zlogp, B_TRUE, "%s failed", "zone_create"); } goto error; } if (zonecfg_in_alt_root() && zonecfg_add_scratch(fp, zone_name, kernzone, zonecfg_get_root()) == -1) { zerror(zlogp, B_TRUE, "cannot add mapfile entry"); goto error; } if ((zone_get_brand(zone_name, attr.ba_brandname, MAXNAMELEN) != Z_OK) || (bh = brand_open(attr.ba_brandname)) == NULL) { zerror(zlogp, B_FALSE, "unable to determine brand name"); return (-1); } /* * If this brand requires any kernel support, now is the time to * get it loaded and initialized. */ if (brand_get_modname(bh, modname, MAXPATHLEN) < 0) { brand_close(bh); zerror(zlogp, B_FALSE, "unable to determine brand kernel " "module"); return (-1); } brand_close(bh); if (strlen(modname) > 0) { (void) strlcpy(attr.ba_modname, modname, MAXPATHLEN); if (zone_setattr(zoneid, ZONE_ATTR_BRAND, &attr, sizeof (attr) != 0)) { zerror(zlogp, B_TRUE, "could not set zone brand " "attribute."); goto error; } } /* * The following actions are not performed when merely mounting a zone * for administrative use. */ if (mount_cmd == Z_MNT_BOOT) { if (setup_zone_rm(zlogp, zone_name, zoneid) != Z_OK) { (void) zone_shutdown(zoneid); goto error; } set_mlps(zlogp, zoneid, zcent); } rval = zoneid; zoneid = -1; error: if (zoneid != -1) (void) zone_destroy(zoneid); if (rctlbuf != NULL) free(rctlbuf); priv_freeset(privs); if (fp != NULL) zonecfg_close_scratch(fp); lofs_discard_mnttab(); if (zcent != NULL) tsol_freezcent(zcent); return (rval); } /* * Enter the zone and write a /etc/zones/index file there. This allows * libzonecfg (and thus zoneadm) to report the UUID and potentially other zone * details from inside the zone. */ static void write_index_file(zoneid_t zoneid) { FILE *zef; FILE *zet; struct zoneent *zep; pid_t child; int tmpl_fd; ctid_t ct; int fd; char uuidstr[UUID_PRINTABLE_STRING_LENGTH]; /* Locate the zone entry in the global zone's index file */ if ((zef = setzoneent()) == NULL) return; while ((zep = getzoneent_private(zef)) != NULL) { if (strcmp(zep->zone_name, zone_name) == 0) break; free(zep); } endzoneent(zef); if (zep == NULL) return; if ((tmpl_fd = init_template()) == -1) { free(zep); return; } if ((child = fork()) == -1) { (void) ct_tmpl_clear(tmpl_fd); (void) close(tmpl_fd); free(zep); return; } /* parent waits for child to finish */ if (child != 0) { free(zep); if (contract_latest(&ct) == -1) ct = -1; (void) ct_tmpl_clear(tmpl_fd); (void) close(tmpl_fd); (void) waitpid(child, NULL, 0); (void) contract_abandon_id(ct); return; } /* child enters zone and sets up index file */ (void) ct_tmpl_clear(tmpl_fd); if (zone_enter(zoneid) != -1) { (void) mkdir(ZONE_CONFIG_ROOT, ZONE_CONFIG_MODE); (void) chown(ZONE_CONFIG_ROOT, ZONE_CONFIG_UID, ZONE_CONFIG_GID); fd = open(ZONE_INDEX_FILE, O_WRONLY|O_CREAT|O_TRUNC, ZONE_INDEX_MODE); if (fd != -1 && (zet = fdopen(fd, "w")) != NULL) { (void) fchown(fd, ZONE_INDEX_UID, ZONE_INDEX_GID); if (uuid_is_null(zep->zone_uuid)) uuidstr[0] = '\0'; else uuid_unparse(zep->zone_uuid, uuidstr); (void) fprintf(zet, "%s:%s:/:%s\n", zep->zone_name, zone_state_str(zep->zone_state), uuidstr); (void) fclose(zet); } } _exit(0); } int vplat_bringup(zlog_t *zlogp, zone_mnt_t mount_cmd, zoneid_t zoneid) { char zonepath[MAXPATHLEN]; if (mount_cmd == Z_MNT_BOOT && validate_datasets(zlogp) != 0) { lofs_discard_mnttab(); return (-1); } /* * Before we try to mount filesystems we need to create the * attribute backing store for /dev */ if (zone_get_zonepath(zone_name, zonepath, sizeof (zonepath)) != Z_OK) { lofs_discard_mnttab(); return (-1); } resolve_lofs(zlogp, zonepath, sizeof (zonepath)); /* Make /dev directory owned by root, grouped sys */ if (make_one_dir(zlogp, zonepath, "/dev", DEFAULT_DIR_MODE, 0, 3) != 0) { lofs_discard_mnttab(); return (-1); } if (mount_filesystems(zlogp, mount_cmd) != 0) { lofs_discard_mnttab(); return (-1); } if (mount_cmd == Z_MNT_BOOT) { zone_iptype_t iptype; if (get_iptype(zlogp, &iptype) < 0) { zerror(zlogp, B_TRUE, "unable to determine ip-type"); lofs_discard_mnttab(); return (-1); } switch (iptype) { case ZS_SHARED: /* Always do this to make lo0 get configured */ if (configure_shared_network_interfaces(zlogp) != 0) { lofs_discard_mnttab(); return (-1); } break; case ZS_EXCLUSIVE: if (configure_exclusive_network_interfaces(zlogp) != 0) { lofs_discard_mnttab(); return (-1); } break; } } write_index_file(zoneid); lofs_discard_mnttab(); return (0); } static int lu_root_teardown(zlog_t *zlogp) { char zroot[MAXPATHLEN]; assert(zone_isnative || zone_iscluster); if (zone_get_rootpath(zone_name, zroot, sizeof (zroot)) != Z_OK) { zerror(zlogp, B_FALSE, "unable to determine zone root"); return (-1); } root_to_lu(zlogp, zroot, sizeof (zroot), B_FALSE); /* * At this point, the processes are gone, the filesystems (save the * root) are unmounted, and the zone is on death row. But there may * still be creds floating about in the system that reference the * zone_t, and which pin down zone_rootvp causing this call to fail * with EBUSY. Thus, we try for a little while before just giving up. * (How I wish this were not true, and umount2 just did the right * thing, or tmpfs supported MS_FORCE This is a gross hack.) */ if (umount2(zroot, MS_FORCE) != 0) { if (errno == ENOTSUP && umount2(zroot, 0) == 0) goto unmounted; if (errno == EBUSY) { int tries = 10; while (--tries >= 0) { (void) sleep(1); if (umount2(zroot, 0) == 0) goto unmounted; if (errno != EBUSY) break; } } zerror(zlogp, B_TRUE, "unable to unmount '%s'", zroot); return (-1); } unmounted: /* * Only zones in an alternate root environment have scratch zone * entries. */ if (zonecfg_in_alt_root()) { FILE *fp; int retv; if ((fp = zonecfg_open_scratch("", B_FALSE)) == NULL) { zerror(zlogp, B_TRUE, "cannot open mapfile"); return (-1); } retv = -1; if (zonecfg_lock_scratch(fp) != 0) zerror(zlogp, B_TRUE, "cannot lock mapfile"); else if (zonecfg_delete_scratch(fp, kernzone) != 0) zerror(zlogp, B_TRUE, "cannot delete map entry"); else retv = 0; zonecfg_close_scratch(fp); return (retv); } else { return (0); } } int vplat_teardown(zlog_t *zlogp, boolean_t unmount_cmd, boolean_t rebooting) { char *kzone; zoneid_t zoneid; int res; char pool_err[128]; char zroot[MAXPATHLEN]; char cmdbuf[MAXPATHLEN]; char brand[MAXNAMELEN]; brand_handle_t bh = NULL; ushort_t flags; kzone = zone_name; if (zonecfg_in_alt_root()) { FILE *fp; if ((fp = zonecfg_open_scratch("", B_FALSE)) == NULL) { zerror(zlogp, B_TRUE, "unable to open map file"); goto error; } if (zonecfg_find_scratch(fp, zone_name, zonecfg_get_root(), kernzone, sizeof (kernzone)) != 0) { zerror(zlogp, B_FALSE, "unable to find scratch zone"); zonecfg_close_scratch(fp); goto error; } zonecfg_close_scratch(fp); kzone = kernzone; } if ((zoneid = getzoneidbyname(kzone)) == ZONE_ID_UNDEFINED) { if (!bringup_failure_recovery) zerror(zlogp, B_TRUE, "unable to get zoneid"); if (unmount_cmd) (void) lu_root_teardown(zlogp); goto error; } if (zone_shutdown(zoneid) != 0) { zerror(zlogp, B_TRUE, "unable to shutdown zone"); goto error; } /* Get the path to the root of this zone */ if (zone_get_zonepath(zone_name, zroot, sizeof (zroot)) != Z_OK) { zerror(zlogp, B_FALSE, "unable to determine zone root"); goto error; } /* Get a handle to the brand info for this zone */ if ((zone_get_brand(zone_name, brand, sizeof (brand)) != Z_OK) || (bh = brand_open(brand)) == NULL) { zerror(zlogp, B_FALSE, "unable to determine zone brand"); return (-1); } /* * If there is a brand 'halt' callback, execute it now to give the * brand a chance to cleanup any custom configuration. */ (void) strcpy(cmdbuf, EXEC_PREFIX); if (brand_get_halt(bh, zone_name, zroot, cmdbuf + EXEC_LEN, sizeof (cmdbuf) - EXEC_LEN, 0, NULL) < 0) { brand_close(bh); zerror(zlogp, B_FALSE, "unable to determine branded zone's " "halt callback."); goto error; } brand_close(bh); if ((strlen(cmdbuf) > EXEC_LEN) && (do_subproc(zlogp, cmdbuf) != Z_OK)) { zerror(zlogp, B_FALSE, "%s failed", cmdbuf); goto error; } if (!unmount_cmd) { zone_iptype_t iptype; if (zone_getattr(zoneid, ZONE_ATTR_FLAGS, &flags, sizeof (flags)) < 0) { if (get_iptype(zlogp, &iptype) < 0) { zerror(zlogp, B_TRUE, "unable to determine " "ip-type"); goto error; } } else { if (flags & ZF_NET_EXCL) iptype = ZS_EXCLUSIVE; else iptype = ZS_SHARED; } switch (iptype) { case ZS_SHARED: if (unconfigure_shared_network_interfaces(zlogp, zoneid) != 0) { zerror(zlogp, B_FALSE, "unable to unconfigure " "network interfaces in zone"); goto error; } break; case ZS_EXCLUSIVE: if (unconfigure_exclusive_network_interfaces(zlogp, zoneid) != 0) { zerror(zlogp, B_FALSE, "unable to unconfigure " "network interfaces in zone"); goto error; } break; } } if (!unmount_cmd && tcp_abort_connections(zlogp, zoneid) != 0) { zerror(zlogp, B_TRUE, "unable to abort TCP connections"); goto error; } /* destroy zconsole before umount /dev */ if (!unmount_cmd) destroy_console_slave(); if (unmount_filesystems(zlogp, zoneid, unmount_cmd) != 0) { zerror(zlogp, B_FALSE, "unable to unmount file systems in zone"); goto error; } /* * If we are rebooting then we normally don't want to destroy an * existing temporary pool at this point so that we can just reuse it * when the zone boots back up. However, it is also possible we were * running with a temporary pool and the zone configuration has been * modified to no longer use a temporary pool. In that case we need * to destroy the temporary pool now. This case looks like the case * where we never had a temporary pool configured but * zonecfg_destroy_tmp_pool will do the right thing either way. */ if (!unmount_cmd) { boolean_t destroy_tmp_pool = B_TRUE; if (rebooting) { struct zone_psettab pset_tab; zone_dochandle_t handle; if ((handle = zonecfg_init_handle()) != NULL && zonecfg_get_handle(zone_name, handle) == Z_OK && zonecfg_lookup_pset(handle, &pset_tab) == Z_OK) destroy_tmp_pool = B_FALSE; zonecfg_fini_handle(handle); } if (destroy_tmp_pool) { if ((res = zonecfg_destroy_tmp_pool(zone_name, pool_err, sizeof (pool_err))) != Z_OK) { if (res == Z_POOL) zerror(zlogp, B_FALSE, pool_err); } } } remove_mlps(zlogp, zoneid); if (zone_destroy(zoneid) != 0) { zerror(zlogp, B_TRUE, "unable to destroy zone"); goto error; } /* * Special teardown for alternate boot environments: remove the tmpfs * root for the zone and then remove it from the map file. */ if (unmount_cmd && lu_root_teardown(zlogp) != 0) goto error; lofs_discard_mnttab(); return (0); error: lofs_discard_mnttab(); return (-1); } /* * Common routine for driver_hold_link and driver_rele_link. * It invokes ioctl for a link like "ce*", for which the driver has been * enhanced to support DLDIOC{HOLD,RELE}VLAN. */ static int driver_vlan_ioctl(const char *name, zoneid_t zoneid, int cmd) { int fd; uint_t ppa; dld_hold_vlan_t dhv; struct strioctl istr; char providername[IFNAMSIZ]; char path[MAXPATHLEN]; if (strlen(name) >= IFNAMSIZ) { errno = EINVAL; return (-1); } if (dlpi_parselink(name, providername, &ppa) != DLPI_SUCCESS) { errno = EINVAL; return (-1); } (void) snprintf(path, sizeof (path), "/dev/%s", providername); fd = open(path, O_RDWR); if (fd < 0) return (-1); bzero(&dhv, sizeof (dld_hold_vlan_t)); (void) strlcpy(dhv.dhv_name, name, IFNAMSIZ); dhv.dhv_zid = zoneid; dhv.dhv_docheck = B_FALSE; istr.ic_cmd = cmd; istr.ic_len = sizeof (dhv); istr.ic_dp = (void *)&dhv; istr.ic_timout = 0; if (ioctl(fd, I_STR, &istr) < 0) { int olderrno = errno; (void) close(fd); errno = olderrno; return (-1); } (void) close(fd); return (0); } /* * Hold a data-link where the style-2 datalink driver supports DLDIOCHOLDVLAN. */ static int driver_hold_link(const char *name, zoneid_t zoneid) { return (driver_vlan_ioctl(name, zoneid, DLDIOCHOLDVLAN)); } /* * Release a data-link where the style-2 datalink driver supports * DLDIOC{HOLD,RELE}VLAN. */ static int driver_rele_link(const char *name, zoneid_t zoneid) { return (driver_vlan_ioctl(name, zoneid, DLDIOCRELEVLAN)); }