/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "zfs_iter.h" #include "zfs_util.h" libzfs_handle_t *g_zfs; static FILE *mnttab_file; static char history_str[HIS_MAX_RECORD_LEN]; static int zfs_do_clone(int argc, char **argv); static int zfs_do_create(int argc, char **argv); static int zfs_do_destroy(int argc, char **argv); static int zfs_do_get(int argc, char **argv); static int zfs_do_inherit(int argc, char **argv); static int zfs_do_list(int argc, char **argv); static int zfs_do_mount(int argc, char **argv); static int zfs_do_rename(int argc, char **argv); static int zfs_do_rollback(int argc, char **argv); static int zfs_do_set(int argc, char **argv); static int zfs_do_upgrade(int argc, char **argv); static int zfs_do_snapshot(int argc, char **argv); static int zfs_do_unmount(int argc, char **argv); static int zfs_do_share(int argc, char **argv); static int zfs_do_unshare(int argc, char **argv); static int zfs_do_send(int argc, char **argv); static int zfs_do_receive(int argc, char **argv); static int zfs_do_promote(int argc, char **argv); static int zfs_do_allow(int argc, char **argv); static int zfs_do_unallow(int argc, char **argv); /* * Enable a reasonable set of defaults for libumem debugging on DEBUG builds. */ #ifdef DEBUG const char * _umem_debug_init(void) { return ("default,verbose"); /* $UMEM_DEBUG setting */ } const char * _umem_logging_init(void) { return ("fail,contents"); /* $UMEM_LOGGING setting */ } #endif typedef enum { HELP_CLONE, HELP_CREATE, HELP_DESTROY, HELP_GET, HELP_INHERIT, HELP_UPGRADE, HELP_LIST, HELP_MOUNT, HELP_PROMOTE, HELP_RECEIVE, HELP_RENAME, HELP_ROLLBACK, HELP_SEND, HELP_SET, HELP_SHARE, HELP_SNAPSHOT, HELP_UNMOUNT, HELP_UNSHARE, HELP_ALLOW, HELP_UNALLOW } zfs_help_t; typedef struct zfs_command { const char *name; int (*func)(int argc, char **argv); zfs_help_t usage; } zfs_command_t; /* * Master command table. Each ZFS command has a name, associated function, and * usage message. The usage messages need to be internationalized, so we have * to have a function to return the usage message based on a command index. * * These commands are organized according to how they are displayed in the usage * message. An empty command (one with a NULL name) indicates an empty line in * the generic usage message. */ static zfs_command_t command_table[] = { { "create", zfs_do_create, HELP_CREATE }, { "destroy", zfs_do_destroy, HELP_DESTROY }, { NULL }, { "snapshot", zfs_do_snapshot, HELP_SNAPSHOT }, { "rollback", zfs_do_rollback, HELP_ROLLBACK }, { "clone", zfs_do_clone, HELP_CLONE }, { "promote", zfs_do_promote, HELP_PROMOTE }, { "rename", zfs_do_rename, HELP_RENAME }, { NULL }, { "list", zfs_do_list, HELP_LIST }, { NULL }, { "set", zfs_do_set, HELP_SET }, { "get", zfs_do_get, HELP_GET }, { "inherit", zfs_do_inherit, HELP_INHERIT }, { "upgrade", zfs_do_upgrade, HELP_UPGRADE }, { NULL }, { "mount", zfs_do_mount, HELP_MOUNT }, { "unmount", zfs_do_unmount, HELP_UNMOUNT }, { "share", zfs_do_share, HELP_SHARE }, { "unshare", zfs_do_unshare, HELP_UNSHARE }, { NULL }, { "send", zfs_do_send, HELP_SEND }, { "receive", zfs_do_receive, HELP_RECEIVE }, { NULL }, { "allow", zfs_do_allow, HELP_ALLOW }, { NULL }, { "unallow", zfs_do_unallow, HELP_UNALLOW }, }; #define NCOMMAND (sizeof (command_table) / sizeof (command_table[0])) zfs_command_t *current_command; static const char * get_usage(zfs_help_t idx) { switch (idx) { case HELP_CLONE: return (gettext("\tclone [-p] [-o property=value] ... " " \n")); case HELP_CREATE: return (gettext("\tcreate [-p] [-o property=value] ... " "\n" "\tcreate [-ps] [-b blocksize] [-o property=value] ... " "-V \n")); case HELP_DESTROY: return (gettext("\tdestroy [-rRf] " "\n")); case HELP_GET: return (gettext("\tget [-rHp] [-o field[,...]] " "[-s source[,...]]\n" "\t <\"all\" | property[,...]> " "[filesystem|volume|snapshot] ...\n")); case HELP_INHERIT: return (gettext("\tinherit [-r] " " ...\n")); case HELP_UPGRADE: return (gettext("\tupgrade [-v]\n" "\tupgrade [-r] [-V version] <-a | filesystem ...>\n")); case HELP_LIST: return (gettext("\tlist [-rH] [-o property[,...]] " "[-t type[,...]] [-s property] ...\n" "\t [-S property] ... " "[filesystem|volume|snapshot] ...\n")); case HELP_MOUNT: return (gettext("\tmount\n" "\tmount [-vO] [-o opts] <-a | filesystem>\n")); case HELP_PROMOTE: return (gettext("\tpromote \n")); case HELP_RECEIVE: return (gettext("\treceive [-vnF] \n" "\treceive [-vnF] -d \n")); case HELP_RENAME: return (gettext("\trename " "\n" "\trename -p \n" "\trename -r ")); case HELP_ROLLBACK: return (gettext("\trollback [-rRf] \n")); case HELP_SEND: return (gettext("\tsend [-R] [-[iI] snapshot] \n")); case HELP_SET: return (gettext("\tset " " ...\n")); case HELP_SHARE: return (gettext("\tshare <-a | filesystem>\n")); case HELP_SNAPSHOT: return (gettext("\tsnapshot [-r] [-o property=value] ... " "\n")); case HELP_UNMOUNT: return (gettext("\tunmount [-f] " "<-a | filesystem|mountpoint>\n")); case HELP_UNSHARE: return (gettext("\tunshare [-f] " "<-a | filesystem|mountpoint>\n")); case HELP_ALLOW: return (gettext("\tallow [-ldug] " "<\"everyone\"|user|group>[,...] [,...]\n" "\t \n" "\tallow [-ld] -e [,...] " "\n" "\tallow -c [,...] \n" "\tallow -s @setname [,...] " "\n")); case HELP_UNALLOW: return (gettext("\tunallow [-rldug] " "<\"everyone\"|user|group>[,...]\n" "\t [[,...]] \n" "\tunallow [-rld] -e [[,...]] " "\n" "\tunallow [-r] -c [[,...]] " "\n" "\tunallow [-r] -s @setname [[,...]] " "\n")); } abort(); /* NOTREACHED */ } /* * Utility function to guarantee malloc() success. */ void * safe_malloc(size_t size) { void *data; if ((data = calloc(1, size)) == NULL) { (void) fprintf(stderr, "internal error: out of memory\n"); exit(1); } return (data); } /* * Callback routine that will print out information for each of * the properties. */ static int usage_prop_cb(int prop, void *cb) { FILE *fp = cb; (void) fprintf(fp, "\t%-15s ", zfs_prop_to_name(prop)); if (zfs_prop_readonly(prop)) (void) fprintf(fp, " NO "); else (void) fprintf(fp, "YES "); if (zfs_prop_inheritable(prop)) (void) fprintf(fp, " YES "); else (void) fprintf(fp, " NO "); if (zfs_prop_values(prop) == NULL) (void) fprintf(fp, "-\n"); else (void) fprintf(fp, "%s\n", zfs_prop_values(prop)); return (ZPROP_CONT); } /* * Display usage message. If we're inside a command, display only the usage for * that command. Otherwise, iterate over the entire command table and display * a complete usage message. */ static void usage(boolean_t requested) { int i; boolean_t show_properties = B_FALSE; boolean_t show_permissions = B_FALSE; FILE *fp = requested ? stdout : stderr; if (current_command == NULL) { (void) fprintf(fp, gettext("usage: zfs command args ...\n")); (void) fprintf(fp, gettext("where 'command' is one of the following:\n\n")); for (i = 0; i < NCOMMAND; i++) { if (command_table[i].name == NULL) (void) fprintf(fp, "\n"); else (void) fprintf(fp, "%s", get_usage(command_table[i].usage)); } (void) fprintf(fp, gettext("\nEach dataset is of the form: " "pool/[dataset/]*dataset[@name]\n")); } else { (void) fprintf(fp, gettext("usage:\n")); (void) fprintf(fp, "%s", get_usage(current_command->usage)); } if (current_command != NULL && (strcmp(current_command->name, "set") == 0 || strcmp(current_command->name, "get") == 0 || strcmp(current_command->name, "inherit") == 0 || strcmp(current_command->name, "list") == 0)) show_properties = B_TRUE; if (current_command != NULL && (strcmp(current_command->name, "allow") == 0 || strcmp(current_command->name, "unallow") == 0)) show_permissions = B_TRUE; if (show_properties) { (void) fprintf(fp, gettext("\nThe following properties are supported:\n")); (void) fprintf(fp, "\n\t%-14s %s %s %s\n\n", "PROPERTY", "EDIT", "INHERIT", "VALUES"); /* Iterate over all properties */ (void) zprop_iter(usage_prop_cb, fp, B_FALSE, B_TRUE, ZFS_TYPE_DATASET); (void) fprintf(fp, gettext("\nSizes are specified in bytes " "with standard units such as K, M, G, etc.\n")); (void) fprintf(fp, gettext("\nUser-defined properties can " "be specified by using a name containing a colon (:).\n")); } else if (show_permissions) { (void) fprintf(fp, gettext("\nThe following permissions are supported:\n")); zfs_deleg_permissions(); } else { (void) fprintf(fp, gettext("\nFor the property list, run: %s\n"), "zfs set|get"); (void) fprintf(fp, gettext("\nFor the delegated permission list, run: %s\n"), "zfs allow|unallow"); } /* * See comments at end of main(). */ if (getenv("ZFS_ABORT") != NULL) { (void) printf("dumping core by request\n"); abort(); } exit(requested ? 0 : 2); } static int parseprop(nvlist_t *props) { char *propname = optarg; char *propval, *strval; if ((propval = strchr(propname, '=')) == NULL) { (void) fprintf(stderr, gettext("missing " "'=' for -o option\n")); return (-1); } *propval = '\0'; propval++; if (nvlist_lookup_string(props, propname, &strval) == 0) { (void) fprintf(stderr, gettext("property '%s' " "specified multiple times\n"), propname); return (-1); } if (nvlist_add_string(props, propname, propval) != 0) { (void) fprintf(stderr, gettext("internal " "error: out of memory\n")); return (-1); } return (0); } /* * zfs clone [-p] [-o prop=value] ... * * Given an existing dataset, create a writable copy whose initial contents * are the same as the source. The newly created dataset maintains a * dependency on the original; the original cannot be destroyed so long as * the clone exists. * * The '-p' flag creates all the non-existing ancestors of the target first. */ static int zfs_do_clone(int argc, char **argv) { zfs_handle_t *zhp = NULL; boolean_t parents = B_FALSE; nvlist_t *props; int ret; int c; if (nvlist_alloc(&props, NV_UNIQUE_NAME, 0) != 0) { (void) fprintf(stderr, gettext("internal error: " "out of memory\n")); return (1); } /* check options */ while ((c = getopt(argc, argv, "o:p")) != -1) { switch (c) { case 'o': if (parseprop(props)) return (1); break; case 'p': parents = B_TRUE; break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); goto usage; } } argc -= optind; argv += optind; /* check number of arguments */ if (argc < 1) { (void) fprintf(stderr, gettext("missing source dataset " "argument\n")); goto usage; } if (argc < 2) { (void) fprintf(stderr, gettext("missing target dataset " "argument\n")); goto usage; } if (argc > 2) { (void) fprintf(stderr, gettext("too many arguments\n")); goto usage; } /* open the source dataset */ if ((zhp = zfs_open(g_zfs, argv[0], ZFS_TYPE_SNAPSHOT)) == NULL) return (1); if (parents && zfs_name_valid(argv[1], ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME)) { /* * Now create the ancestors of the target dataset. If the * target already exists and '-p' option was used we should not * complain. */ if (zfs_dataset_exists(g_zfs, argv[1], ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME)) return (0); if (zfs_create_ancestors(g_zfs, argv[1]) != 0) return (1); } /* pass to libzfs */ ret = zfs_clone(zhp, argv[1], props); /* create the mountpoint if necessary */ if (ret == 0) { zfs_handle_t *clone; clone = zfs_open(g_zfs, argv[1], ZFS_TYPE_DATASET); if (clone != NULL) { if ((ret = zfs_mount(clone, NULL, 0)) == 0) ret = zfs_share(clone); zfs_close(clone); } } zfs_close(zhp); nvlist_free(props); return (!!ret); usage: if (zhp) zfs_close(zhp); nvlist_free(props); usage(B_FALSE); return (-1); } /* * zfs create [-p] [-o prop=value] ... fs * zfs create [-ps] [-b blocksize] [-o prop=value] ... -V vol size * * Create a new dataset. This command can be used to create filesystems * and volumes. Snapshot creation is handled by 'zfs snapshot'. * For volumes, the user must specify a size to be used. * * The '-s' flag applies only to volumes, and indicates that we should not try * to set the reservation for this volume. By default we set a reservation * equal to the size for any volume. For pools with SPA_VERSION >= * SPA_VERSION_REFRESERVATION, we set a refreservation instead. * * The '-p' flag creates all the non-existing ancestors of the target first. */ static int zfs_do_create(int argc, char **argv) { zfs_type_t type = ZFS_TYPE_FILESYSTEM; zfs_handle_t *zhp = NULL; uint64_t volsize; int c; boolean_t noreserve = B_FALSE; boolean_t bflag = B_FALSE; boolean_t parents = B_FALSE; int ret = 1; nvlist_t *props; uint64_t intval; int canmount; if (nvlist_alloc(&props, NV_UNIQUE_NAME, 0) != 0) { (void) fprintf(stderr, gettext("internal error: " "out of memory\n")); return (1); } /* check options */ while ((c = getopt(argc, argv, ":V:b:so:p")) != -1) { switch (c) { case 'V': type = ZFS_TYPE_VOLUME; if (zfs_nicestrtonum(g_zfs, optarg, &intval) != 0) { (void) fprintf(stderr, gettext("bad volume " "size '%s': %s\n"), optarg, libzfs_error_description(g_zfs)); goto error; } if (nvlist_add_uint64(props, zfs_prop_to_name(ZFS_PROP_VOLSIZE), intval) != 0) { (void) fprintf(stderr, gettext("internal " "error: out of memory\n")); goto error; } volsize = intval; break; case 'p': parents = B_TRUE; break; case 'b': bflag = B_TRUE; if (zfs_nicestrtonum(g_zfs, optarg, &intval) != 0) { (void) fprintf(stderr, gettext("bad volume " "block size '%s': %s\n"), optarg, libzfs_error_description(g_zfs)); goto error; } if (nvlist_add_uint64(props, zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), intval) != 0) { (void) fprintf(stderr, gettext("internal " "error: out of memory\n")); goto error; } break; case 'o': if (parseprop(props)) goto error; break; case 's': noreserve = B_TRUE; break; case ':': (void) fprintf(stderr, gettext("missing size " "argument\n")); goto badusage; break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); goto badusage; } } if ((bflag || noreserve) && type != ZFS_TYPE_VOLUME) { (void) fprintf(stderr, gettext("'-s' and '-b' can only be " "used when creating a volume\n")); goto badusage; } argc -= optind; argv += optind; /* check number of arguments */ if (argc == 0) { (void) fprintf(stderr, gettext("missing %s argument\n"), zfs_type_to_name(type)); goto badusage; } if (argc > 1) { (void) fprintf(stderr, gettext("too many arguments\n")); goto badusage; } if (type == ZFS_TYPE_VOLUME && !noreserve) { zpool_handle_t *zpool_handle; uint64_t spa_version; char *p; zfs_prop_t resv_prop; char *strval; if (p = strchr(argv[0], '/')) *p = '\0'; zpool_handle = zpool_open(g_zfs, argv[0]); if (p != NULL) *p = '/'; if (zpool_handle == NULL) goto error; spa_version = zpool_get_prop_int(zpool_handle, ZPOOL_PROP_VERSION, NULL); zpool_close(zpool_handle); if (spa_version >= SPA_VERSION_REFRESERVATION) resv_prop = ZFS_PROP_REFRESERVATION; else resv_prop = ZFS_PROP_RESERVATION; if (nvlist_lookup_string(props, zfs_prop_to_name(resv_prop), &strval) != 0) { if (nvlist_add_uint64(props, zfs_prop_to_name(resv_prop), volsize) != 0) { (void) fprintf(stderr, gettext("internal " "error: out of memory\n")); nvlist_free(props); return (1); } } } if (parents && zfs_name_valid(argv[0], type)) { /* * Now create the ancestors of target dataset. If the target * already exists and '-p' option was used we should not * complain. */ if (zfs_dataset_exists(g_zfs, argv[0], type)) { ret = 0; goto error; } if (zfs_create_ancestors(g_zfs, argv[0]) != 0) goto error; } /* pass to libzfs */ if (zfs_create(g_zfs, argv[0], type, props) != 0) goto error; if ((zhp = zfs_open(g_zfs, argv[0], ZFS_TYPE_DATASET)) == NULL) goto error; /* * if the user doesn't want the dataset automatically mounted, * then skip the mount/share step */ canmount = zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT); /* * Mount and/or share the new filesystem as appropriate. We provide a * verbose error message to let the user know that their filesystem was * in fact created, even if we failed to mount or share it. */ ret = 0; if (canmount == ZFS_CANMOUNT_ON) { if (zfs_mount(zhp, NULL, 0) != 0) { (void) fprintf(stderr, gettext("filesystem " "successfully created, but not mounted\n")); ret = 1; } else if (zfs_share(zhp) != 0) { (void) fprintf(stderr, gettext("filesystem " "successfully created, but not shared\n")); ret = 1; } } error: if (zhp) zfs_close(zhp); nvlist_free(props); return (ret); badusage: nvlist_free(props); usage(B_FALSE); return (2); } /* * zfs destroy [-rf] * * -r Recursively destroy all children * -R Recursively destroy all dependents, including clones * -f Force unmounting of any dependents * * Destroys the given dataset. By default, it will unmount any filesystems, * and refuse to destroy a dataset that has any dependents. A dependent can * either be a child, or a clone of a child. */ typedef struct destroy_cbdata { boolean_t cb_first; int cb_force; int cb_recurse; int cb_error; int cb_needforce; int cb_doclones; boolean_t cb_closezhp; zfs_handle_t *cb_target; char *cb_snapname; } destroy_cbdata_t; /* * Check for any dependents based on the '-r' or '-R' flags. */ static int destroy_check_dependent(zfs_handle_t *zhp, void *data) { destroy_cbdata_t *cbp = data; const char *tname = zfs_get_name(cbp->cb_target); const char *name = zfs_get_name(zhp); if (strncmp(tname, name, strlen(tname)) == 0 && (name[strlen(tname)] == '/' || name[strlen(tname)] == '@')) { /* * This is a direct descendant, not a clone somewhere else in * the hierarchy. */ if (cbp->cb_recurse) goto out; if (cbp->cb_first) { (void) fprintf(stderr, gettext("cannot destroy '%s': " "%s has children\n"), zfs_get_name(cbp->cb_target), zfs_type_to_name(zfs_get_type(cbp->cb_target))); (void) fprintf(stderr, gettext("use '-r' to destroy " "the following datasets:\n")); cbp->cb_first = B_FALSE; cbp->cb_error = 1; } (void) fprintf(stderr, "%s\n", zfs_get_name(zhp)); } else { /* * This is a clone. We only want to report this if the '-r' * wasn't specified, or the target is a snapshot. */ if (!cbp->cb_recurse && zfs_get_type(cbp->cb_target) != ZFS_TYPE_SNAPSHOT) goto out; if (cbp->cb_first) { (void) fprintf(stderr, gettext("cannot destroy '%s': " "%s has dependent clones\n"), zfs_get_name(cbp->cb_target), zfs_type_to_name(zfs_get_type(cbp->cb_target))); (void) fprintf(stderr, gettext("use '-R' to destroy " "the following datasets:\n")); cbp->cb_first = B_FALSE; cbp->cb_error = 1; } (void) fprintf(stderr, "%s\n", zfs_get_name(zhp)); } out: zfs_close(zhp); return (0); } static int destroy_callback(zfs_handle_t *zhp, void *data) { destroy_cbdata_t *cbp = data; /* * Ignore pools (which we've already flagged as an error before getting * here. */ if (strchr(zfs_get_name(zhp), '/') == NULL && zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) { zfs_close(zhp); return (0); } /* * Bail out on the first error. */ if (zfs_unmount(zhp, NULL, cbp->cb_force ? MS_FORCE : 0) != 0 || zfs_destroy(zhp) != 0) { zfs_close(zhp); return (-1); } zfs_close(zhp); return (0); } static int destroy_snap_clones(zfs_handle_t *zhp, void *arg) { destroy_cbdata_t *cbp = arg; char thissnap[MAXPATHLEN]; zfs_handle_t *szhp; boolean_t closezhp = cbp->cb_closezhp; int rv; (void) snprintf(thissnap, sizeof (thissnap), "%s@%s", zfs_get_name(zhp), cbp->cb_snapname); libzfs_print_on_error(g_zfs, B_FALSE); szhp = zfs_open(g_zfs, thissnap, ZFS_TYPE_SNAPSHOT); libzfs_print_on_error(g_zfs, B_TRUE); if (szhp) { /* * Destroy any clones of this snapshot */ if (zfs_iter_dependents(szhp, B_FALSE, destroy_callback, cbp) != 0) { zfs_close(szhp); if (closezhp) zfs_close(zhp); return (-1); } zfs_close(szhp); } cbp->cb_closezhp = B_TRUE; rv = zfs_iter_filesystems(zhp, destroy_snap_clones, arg); if (closezhp) zfs_close(zhp); return (rv); } static int zfs_do_destroy(int argc, char **argv) { destroy_cbdata_t cb = { 0 }; int c; zfs_handle_t *zhp; char *cp; /* check options */ while ((c = getopt(argc, argv, "frR")) != -1) { switch (c) { case 'f': cb.cb_force = 1; break; case 'r': cb.cb_recurse = 1; break; case 'R': cb.cb_recurse = 1; cb.cb_doclones = 1; break; case '?': default: (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; /* check number of arguments */ if (argc == 0) { (void) fprintf(stderr, gettext("missing path argument\n")); usage(B_FALSE); } if (argc > 1) { (void) fprintf(stderr, gettext("too many arguments\n")); usage(B_FALSE); } /* * If we are doing recursive destroy of a snapshot, then the * named snapshot may not exist. Go straight to libzfs. */ if (cb.cb_recurse && (cp = strchr(argv[0], '@'))) { int ret; *cp = '\0'; if ((zhp = zfs_open(g_zfs, argv[0], ZFS_TYPE_DATASET)) == NULL) return (1); *cp = '@'; cp++; if (cb.cb_doclones) { cb.cb_snapname = cp; if (destroy_snap_clones(zhp, &cb) != 0) { zfs_close(zhp); return (1); } } ret = zfs_destroy_snaps(zhp, cp); zfs_close(zhp); if (ret) { (void) fprintf(stderr, gettext("no snapshots destroyed\n")); } return (ret != 0); } /* Open the given dataset */ if ((zhp = zfs_open(g_zfs, argv[0], ZFS_TYPE_DATASET)) == NULL) return (1); cb.cb_target = zhp; /* * Perform an explicit check for pools before going any further. */ if (!cb.cb_recurse && strchr(zfs_get_name(zhp), '/') == NULL && zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) { (void) fprintf(stderr, gettext("cannot destroy '%s': " "operation does not apply to pools\n"), zfs_get_name(zhp)); (void) fprintf(stderr, gettext("use 'zfs destroy -r " "%s' to destroy all datasets in the pool\n"), zfs_get_name(zhp)); (void) fprintf(stderr, gettext("use 'zpool destroy %s' " "to destroy the pool itself\n"), zfs_get_name(zhp)); zfs_close(zhp); return (1); } /* * Check for any dependents and/or clones. */ cb.cb_first = B_TRUE; if (!cb.cb_doclones && zfs_iter_dependents(zhp, B_TRUE, destroy_check_dependent, &cb) != 0) { zfs_close(zhp); return (1); } if (cb.cb_error || zfs_iter_dependents(zhp, B_FALSE, destroy_callback, &cb) != 0) { zfs_close(zhp); return (1); } /* * Do the real thing. The callback will close the handle regardless of * whether it succeeds or not. */ if (destroy_callback(zhp, &cb) != 0) return (1); return (0); } /* * zfs get [-rHp] [-o field[,field]...] [-s source[,source]...] * < all | property[,property]... > < fs | snap | vol > ... * * -r recurse over any child datasets * -H scripted mode. Headers are stripped, and fields are separated * by tabs instead of spaces. * -o Set of fields to display. One of "name,property,value,source". * Default is all four. * -s Set of sources to allow. One of * "local,default,inherited,temporary,none". Default is all * five. * -p Display values in parsable (literal) format. * * Prints properties for the given datasets. The user can control which * columns to display as well as which property types to allow. */ /* * Invoked to display the properties for a single dataset. */ static int get_callback(zfs_handle_t *zhp, void *data) { char buf[ZFS_MAXPROPLEN]; zprop_source_t sourcetype; char source[ZFS_MAXNAMELEN]; zprop_get_cbdata_t *cbp = data; nvlist_t *userprop = zfs_get_user_props(zhp); zprop_list_t *pl = cbp->cb_proplist; nvlist_t *propval; char *strval; char *sourceval; for (; pl != NULL; pl = pl->pl_next) { /* * Skip the special fake placeholder. This will also skip over * the name property when 'all' is specified. */ if (pl->pl_prop == ZFS_PROP_NAME && pl == cbp->cb_proplist) continue; if (pl->pl_prop != ZPROP_INVAL) { if (zfs_prop_get(zhp, pl->pl_prop, buf, sizeof (buf), &sourcetype, source, sizeof (source), cbp->cb_literal) != 0) { if (pl->pl_all) continue; if (!zfs_prop_valid_for_type(pl->pl_prop, ZFS_TYPE_DATASET)) { (void) fprintf(stderr, gettext("No such property '%s'\n"), zfs_prop_to_name(pl->pl_prop)); continue; } sourcetype = ZPROP_SRC_NONE; (void) strlcpy(buf, "-", sizeof (buf)); } zprop_print_one_property(zfs_get_name(zhp), cbp, zfs_prop_to_name(pl->pl_prop), buf, sourcetype, source); } else { if (nvlist_lookup_nvlist(userprop, pl->pl_user_prop, &propval) != 0) { if (pl->pl_all) continue; sourcetype = ZPROP_SRC_NONE; strval = "-"; } else { verify(nvlist_lookup_string(propval, ZPROP_VALUE, &strval) == 0); verify(nvlist_lookup_string(propval, ZPROP_SOURCE, &sourceval) == 0); if (strcmp(sourceval, zfs_get_name(zhp)) == 0) { sourcetype = ZPROP_SRC_LOCAL; } else { sourcetype = ZPROP_SRC_INHERITED; (void) strlcpy(source, sourceval, sizeof (source)); } } zprop_print_one_property(zfs_get_name(zhp), cbp, pl->pl_user_prop, strval, sourcetype, source); } } return (0); } static int zfs_do_get(int argc, char **argv) { zprop_get_cbdata_t cb = { 0 }; int i, c, flags = 0; char *value, *fields; int ret; zprop_list_t fake_name = { 0 }; /* * Set up default columns and sources. */ cb.cb_sources = ZPROP_SRC_ALL; cb.cb_columns[0] = GET_COL_NAME; cb.cb_columns[1] = GET_COL_PROPERTY; cb.cb_columns[2] = GET_COL_VALUE; cb.cb_columns[3] = GET_COL_SOURCE; cb.cb_type = ZFS_TYPE_DATASET; /* check options */ while ((c = getopt(argc, argv, ":o:s:rHp")) != -1) { switch (c) { case 'p': cb.cb_literal = B_TRUE; break; case 'r': flags |= ZFS_ITER_RECURSE; break; case 'H': cb.cb_scripted = B_TRUE; break; case ':': (void) fprintf(stderr, gettext("missing argument for " "'%c' option\n"), optopt); usage(B_FALSE); break; case 'o': /* * Process the set of columns to display. We zero out * the structure to give us a blank slate. */ bzero(&cb.cb_columns, sizeof (cb.cb_columns)); i = 0; while (*optarg != '\0') { static char *col_subopts[] = { "name", "property", "value", "source", NULL }; if (i == 4) { (void) fprintf(stderr, gettext("too " "many fields given to -o " "option\n")); usage(B_FALSE); } switch (getsubopt(&optarg, col_subopts, &value)) { case 0: cb.cb_columns[i++] = GET_COL_NAME; break; case 1: cb.cb_columns[i++] = GET_COL_PROPERTY; break; case 2: cb.cb_columns[i++] = GET_COL_VALUE; break; case 3: cb.cb_columns[i++] = GET_COL_SOURCE; break; default: (void) fprintf(stderr, gettext("invalid column name " "'%s'\n"), value); usage(B_FALSE); } } break; case 's': cb.cb_sources = 0; while (*optarg != '\0') { static char *source_subopts[] = { "local", "default", "inherited", "temporary", "none", NULL }; switch (getsubopt(&optarg, source_subopts, &value)) { case 0: cb.cb_sources |= ZPROP_SRC_LOCAL; break; case 1: cb.cb_sources |= ZPROP_SRC_DEFAULT; break; case 2: cb.cb_sources |= ZPROP_SRC_INHERITED; break; case 3: cb.cb_sources |= ZPROP_SRC_TEMPORARY; break; case 4: cb.cb_sources |= ZPROP_SRC_NONE; break; default: (void) fprintf(stderr, gettext("invalid source " "'%s'\n"), value); usage(B_FALSE); } } break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; if (argc < 1) { (void) fprintf(stderr, gettext("missing property " "argument\n")); usage(B_FALSE); } fields = argv[0]; if (zprop_get_list(g_zfs, fields, &cb.cb_proplist, ZFS_TYPE_DATASET) != 0) usage(B_FALSE); argc--; argv++; /* * As part of zfs_expand_proplist(), we keep track of the maximum column * width for each property. For the 'NAME' (and 'SOURCE') columns, we * need to know the maximum name length. However, the user likely did * not specify 'name' as one of the properties to fetch, so we need to * make sure we always include at least this property for * print_get_headers() to work properly. */ if (cb.cb_proplist != NULL) { fake_name.pl_prop = ZFS_PROP_NAME; fake_name.pl_width = strlen(gettext("NAME")); fake_name.pl_next = cb.cb_proplist; cb.cb_proplist = &fake_name; } cb.cb_first = B_TRUE; /* run for each object */ ret = zfs_for_each(argc, argv, flags, ZFS_TYPE_DATASET, NULL, &cb.cb_proplist, get_callback, &cb); if (cb.cb_proplist == &fake_name) zprop_free_list(fake_name.pl_next); else zprop_free_list(cb.cb_proplist); return (ret); } /* * inherit [-r] ... * * -r Recurse over all children * * For each dataset specified on the command line, inherit the given property * from its parent. Inheriting a property at the pool level will cause it to * use the default value. The '-r' flag will recurse over all children, and is * useful for setting a property on a hierarchy-wide basis, regardless of any * local modifications for each dataset. */ static int inherit_recurse_cb(zfs_handle_t *zhp, void *data) { char *propname = data; zfs_prop_t prop = zfs_name_to_prop(propname); /* * If we're doing it recursively, then ignore properties that * are not valid for this type of dataset. */ if (prop != ZPROP_INVAL && !zfs_prop_valid_for_type(prop, zfs_get_type(zhp))) return (0); return (zfs_prop_inherit(zhp, propname) != 0); } static int inherit_cb(zfs_handle_t *zhp, void *data) { char *propname = data; return (zfs_prop_inherit(zhp, propname) != 0); } static int zfs_do_inherit(int argc, char **argv) { int c; zfs_prop_t prop; char *propname; int ret; int flags = 0; /* check options */ while ((c = getopt(argc, argv, "r")) != -1) { switch (c) { case 'r': flags |= ZFS_ITER_RECURSE; break; case '?': default: (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; /* check number of arguments */ if (argc < 1) { (void) fprintf(stderr, gettext("missing property argument\n")); usage(B_FALSE); } if (argc < 2) { (void) fprintf(stderr, gettext("missing dataset argument\n")); usage(B_FALSE); } propname = argv[0]; argc--; argv++; if ((prop = zfs_name_to_prop(propname)) != ZPROP_INVAL) { if (zfs_prop_readonly(prop)) { (void) fprintf(stderr, gettext( "%s property is read-only\n"), propname); return (1); } if (!zfs_prop_inheritable(prop)) { (void) fprintf(stderr, gettext("'%s' property cannot " "be inherited\n"), propname); if (prop == ZFS_PROP_QUOTA || prop == ZFS_PROP_RESERVATION || prop == ZFS_PROP_REFQUOTA || prop == ZFS_PROP_REFRESERVATION) (void) fprintf(stderr, gettext("use 'zfs set " "%s=none' to clear\n"), propname); return (1); } } else if (!zfs_prop_user(propname)) { (void) fprintf(stderr, gettext("invalid property '%s'\n"), propname); usage(B_FALSE); } if (flags & ZFS_ITER_RECURSE) { ret = zfs_for_each(argc, argv, flags, ZFS_TYPE_DATASET, NULL, NULL, inherit_recurse_cb, propname); } else { ret = zfs_for_each(argc, argv, flags, ZFS_TYPE_DATASET, NULL, NULL, inherit_cb, propname); } return (ret); } typedef struct upgrade_cbdata { uint64_t cb_numupgraded; uint64_t cb_numsamegraded; uint64_t cb_numfailed; uint64_t cb_version; boolean_t cb_newer; boolean_t cb_foundone; char cb_lastfs[ZFS_MAXNAMELEN]; } upgrade_cbdata_t; static int same_pool(zfs_handle_t *zhp, const char *name) { int len1 = strcspn(name, "/@"); const char *zhname = zfs_get_name(zhp); int len2 = strcspn(zhname, "/@"); if (len1 != len2) return (B_FALSE); return (strncmp(name, zhname, len1) == 0); } static int upgrade_list_callback(zfs_handle_t *zhp, void *data) { upgrade_cbdata_t *cb = data; int version = zfs_prop_get_int(zhp, ZFS_PROP_VERSION); /* list if it's old/new */ if ((!cb->cb_newer && version < ZPL_VERSION) || (cb->cb_newer && version > ZPL_VERSION)) { char *str; if (cb->cb_newer) { str = gettext("The following filesystems are " "formatted using a newer software version and\n" "cannot be accessed on the current system.\n\n"); } else { str = gettext("The following filesystems are " "out of date, and can be upgraded. After being\n" "upgraded, these filesystems (and any 'zfs send' " "streams generated from\n" "subsequent snapshots) will no longer be " "accessible by older software versions.\n\n"); } if (!cb->cb_foundone) { (void) puts(str); (void) printf(gettext("VER FILESYSTEM\n")); (void) printf(gettext("--- ------------\n")); cb->cb_foundone = B_TRUE; } (void) printf("%2u %s\n", version, zfs_get_name(zhp)); } return (0); } static int upgrade_set_callback(zfs_handle_t *zhp, void *data) { upgrade_cbdata_t *cb = data; int version = zfs_prop_get_int(zhp, ZFS_PROP_VERSION); if (cb->cb_version >= ZPL_VERSION_FUID) { int spa_version; if (zfs_spa_version(zhp, &spa_version) < 0) return (-1); if (spa_version < SPA_VERSION_FUID) { /* can't upgrade */ (void) printf(gettext("%s: can not be upgraded; " "the pool version needs to first be upgraded\nto " "version %d\n\n"), zfs_get_name(zhp), SPA_VERSION_FUID); cb->cb_numfailed++; return (0); } } /* upgrade */ if (version < cb->cb_version) { char verstr[16]; (void) snprintf(verstr, sizeof (verstr), "%llu", cb->cb_version); if (cb->cb_lastfs[0] && !same_pool(zhp, cb->cb_lastfs)) { /* * If they did "zfs upgrade -a", then we could * be doing ioctls to different pools. We need * to log this history once to each pool. */ verify(zpool_stage_history(g_zfs, history_str) == 0); } if (zfs_prop_set(zhp, "version", verstr) == 0) cb->cb_numupgraded++; else cb->cb_numfailed++; (void) strcpy(cb->cb_lastfs, zfs_get_name(zhp)); } else if (version > cb->cb_version) { /* can't downgrade */ (void) printf(gettext("%s: can not be downgraded; " "it is already at version %u\n"), zfs_get_name(zhp), version); cb->cb_numfailed++; } else { cb->cb_numsamegraded++; } return (0); } /* * zfs upgrade * zfs upgrade -v * zfs upgrade [-r] [-V ] <-a | filesystem> */ static int zfs_do_upgrade(int argc, char **argv) { boolean_t all = B_FALSE; boolean_t showversions = B_FALSE; int ret; upgrade_cbdata_t cb = { 0 }; char c; int flags = ZFS_ITER_ARGS_CAN_BE_PATHS; /* check options */ while ((c = getopt(argc, argv, "rvV:a")) != -1) { switch (c) { case 'r': flags |= ZFS_ITER_RECURSE; break; case 'v': showversions = B_TRUE; break; case 'V': if (zfs_prop_string_to_index(ZFS_PROP_VERSION, optarg, &cb.cb_version) != 0) { (void) fprintf(stderr, gettext("invalid version %s\n"), optarg); usage(B_FALSE); } break; case 'a': all = B_TRUE; break; case '?': default: (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; if ((!all && !argc) && ((flags & ZFS_ITER_RECURSE) | cb.cb_version)) usage(B_FALSE); if (showversions && (flags & ZFS_ITER_RECURSE || all || cb.cb_version || argc)) usage(B_FALSE); if ((all || argc) && (showversions)) usage(B_FALSE); if (all && argc) usage(B_FALSE); if (showversions) { /* Show info on available versions. */ (void) printf(gettext("The following filesystem versions are " "supported:\n\n")); (void) printf(gettext("VER DESCRIPTION\n")); (void) printf("--- -----------------------------------------" "---------------\n"); (void) printf(gettext(" 1 Initial ZFS filesystem version\n")); (void) printf(gettext(" 2 Enhanced directory entries\n")); (void) printf(gettext(" 3 Case insensitive and File system " "unique identifer (FUID)\n")); (void) printf(gettext("\nFor more information on a particular " "version, including supported releases, see:\n\n")); (void) printf("http://www.opensolaris.org/os/community/zfs/" "version/zpl/N\n\n"); (void) printf(gettext("Where 'N' is the version number.\n")); ret = 0; } else if (argc || all) { /* Upgrade filesystems */ if (cb.cb_version == 0) cb.cb_version = ZPL_VERSION; ret = zfs_for_each(argc, argv, flags, ZFS_TYPE_FILESYSTEM, NULL, NULL, upgrade_set_callback, &cb); (void) printf(gettext("%llu filesystems upgraded\n"), cb.cb_numupgraded); if (cb.cb_numsamegraded) { (void) printf(gettext("%llu filesystems already at " "this version\n"), cb.cb_numsamegraded); } if (cb.cb_numfailed != 0) ret = 1; } else { /* List old-version filesytems */ boolean_t found; (void) printf(gettext("This system is currently running " "ZFS filesystem version %llu.\n\n"), ZPL_VERSION); flags |= ZFS_ITER_RECURSE; ret = zfs_for_each(0, NULL, flags, ZFS_TYPE_FILESYSTEM, NULL, NULL, upgrade_list_callback, &cb); found = cb.cb_foundone; cb.cb_foundone = B_FALSE; cb.cb_newer = B_TRUE; ret = zfs_for_each(0, NULL, flags, ZFS_TYPE_FILESYSTEM, NULL, NULL, upgrade_list_callback, &cb); if (!cb.cb_foundone && !found) { (void) printf(gettext("All filesystems are " "formatted with the current version.\n")); } } return (ret); } /* * list [-rH] [-o property[,property]...] [-t type[,type]...] * [-s property [-s property]...] [-S property [-S property]...] * ... * * -r Recurse over all children * -H Scripted mode; elide headers and separate columns by tabs * -o Control which fields to display. * -t Control which object types to display. * -s Specify sort columns, descending order. * -S Specify sort columns, ascending order. * * When given no arguments, lists all filesystems in the system. * Otherwise, list the specified datasets, optionally recursing down them if * '-r' is specified. */ typedef struct list_cbdata { boolean_t cb_first; boolean_t cb_scripted; zprop_list_t *cb_proplist; } list_cbdata_t; /* * Given a list of columns to display, output appropriate headers for each one. */ static void print_header(zprop_list_t *pl) { char headerbuf[ZFS_MAXPROPLEN]; const char *header; int i; boolean_t first = B_TRUE; boolean_t right_justify; for (; pl != NULL; pl = pl->pl_next) { if (!first) { (void) printf(" "); } else { first = B_FALSE; } right_justify = B_FALSE; if (pl->pl_prop != ZPROP_INVAL) { header = zfs_prop_column_name(pl->pl_prop); right_justify = zfs_prop_align_right(pl->pl_prop); } else { for (i = 0; pl->pl_user_prop[i] != '\0'; i++) headerbuf[i] = toupper(pl->pl_user_prop[i]); headerbuf[i] = '\0'; header = headerbuf; } if (pl->pl_next == NULL && !right_justify) (void) printf("%s", header); else if (right_justify) (void) printf("%*s", pl->pl_width, header); else (void) printf("%-*s", pl->pl_width, header); } (void) printf("\n"); } /* * Given a dataset and a list of fields, print out all the properties according * to the described layout. */ static void print_dataset(zfs_handle_t *zhp, zprop_list_t *pl, boolean_t scripted) { boolean_t first = B_TRUE; char property[ZFS_MAXPROPLEN]; nvlist_t *userprops = zfs_get_user_props(zhp); nvlist_t *propval; char *propstr; boolean_t right_justify; int width; for (; pl != NULL; pl = pl->pl_next) { if (!first) { if (scripted) (void) printf("\t"); else (void) printf(" "); } else { first = B_FALSE; } right_justify = B_FALSE; if (pl->pl_prop != ZPROP_INVAL) { if (zfs_prop_get(zhp, pl->pl_prop, property, sizeof (property), NULL, NULL, 0, B_FALSE) != 0) propstr = "-"; else propstr = property; right_justify = zfs_prop_align_right(pl->pl_prop); } else { if (nvlist_lookup_nvlist(userprops, pl->pl_user_prop, &propval) != 0) propstr = "-"; else verify(nvlist_lookup_string(propval, ZPROP_VALUE, &propstr) == 0); } width = pl->pl_width; /* * If this is being called in scripted mode, or if this is the * last column and it is left-justified, don't include a width * format specifier. */ if (scripted || (pl->pl_next == NULL && !right_justify)) (void) printf("%s", propstr); else if (right_justify) (void) printf("%*s", width, propstr); else (void) printf("%-*s", width, propstr); } (void) printf("\n"); } /* * Generic callback function to list a dataset or snapshot. */ static int list_callback(zfs_handle_t *zhp, void *data) { list_cbdata_t *cbp = data; if (cbp->cb_first) { if (!cbp->cb_scripted) print_header(cbp->cb_proplist); cbp->cb_first = B_FALSE; } print_dataset(zhp, cbp->cb_proplist, cbp->cb_scripted); return (0); } static int zfs_do_list(int argc, char **argv) { int c; boolean_t scripted = B_FALSE; static char default_fields[] = "name,used,available,referenced,mountpoint"; int types = ZFS_TYPE_DATASET; boolean_t types_specified = B_FALSE; char *fields = NULL; list_cbdata_t cb = { 0 }; char *value; int ret; zfs_sort_column_t *sortcol = NULL; int flags = ZFS_ITER_PROP_LISTSNAPS | ZFS_ITER_ARGS_CAN_BE_PATHS; /* check options */ while ((c = getopt(argc, argv, ":o:rt:Hs:S:")) != -1) { switch (c) { case 'o': fields = optarg; break; case 'r': flags |= ZFS_ITER_RECURSE; break; case 'H': scripted = B_TRUE; break; case 's': if (zfs_add_sort_column(&sortcol, optarg, B_FALSE) != 0) { (void) fprintf(stderr, gettext("invalid property '%s'\n"), optarg); usage(B_FALSE); } break; case 'S': if (zfs_add_sort_column(&sortcol, optarg, B_TRUE) != 0) { (void) fprintf(stderr, gettext("invalid property '%s'\n"), optarg); usage(B_FALSE); } break; case 't': types = 0; types_specified = B_TRUE; flags &= ~ZFS_ITER_PROP_LISTSNAPS; while (*optarg != '\0') { static char *type_subopts[] = { "filesystem", "volume", "snapshot", "all", NULL }; switch (getsubopt(&optarg, type_subopts, &value)) { case 0: types |= ZFS_TYPE_FILESYSTEM; break; case 1: types |= ZFS_TYPE_VOLUME; break; case 2: types |= ZFS_TYPE_SNAPSHOT; break; case 3: types = ZFS_TYPE_DATASET; break; default: (void) fprintf(stderr, gettext("invalid type '%s'\n"), value); usage(B_FALSE); } } break; case ':': (void) fprintf(stderr, gettext("missing argument for " "'%c' option\n"), optopt); usage(B_FALSE); break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; if (fields == NULL) fields = default_fields; /* * If "-o space" and no types were specified, don't display snapshots. */ if (strcmp(fields, "space") == 0 && types_specified == B_FALSE) types &= ~ZFS_TYPE_SNAPSHOT; /* * If the user specifies '-o all', the zprop_get_list() doesn't * normally include the name of the dataset. For 'zfs list', we always * want this property to be first. */ if (zprop_get_list(g_zfs, fields, &cb.cb_proplist, ZFS_TYPE_DATASET) != 0) usage(B_FALSE); cb.cb_scripted = scripted; cb.cb_first = B_TRUE; ret = zfs_for_each(argc, argv, flags, types, sortcol, &cb.cb_proplist, list_callback, &cb); zprop_free_list(cb.cb_proplist); zfs_free_sort_columns(sortcol); if (ret == 0 && cb.cb_first && !cb.cb_scripted) (void) printf(gettext("no datasets available\n")); return (ret); } /* * zfs rename * zfs rename -p * zfs rename -r * * Renames the given dataset to another of the same type. * * The '-p' flag creates all the non-existing ancestors of the target first. */ /* ARGSUSED */ static int zfs_do_rename(int argc, char **argv) { zfs_handle_t *zhp; int c; int ret; boolean_t recurse = B_FALSE; boolean_t parents = B_FALSE; /* check options */ while ((c = getopt(argc, argv, "pr")) != -1) { switch (c) { case 'p': parents = B_TRUE; break; case 'r': recurse = B_TRUE; break; case '?': default: (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; /* check number of arguments */ if (argc < 1) { (void) fprintf(stderr, gettext("missing source dataset " "argument\n")); usage(B_FALSE); } if (argc < 2) { (void) fprintf(stderr, gettext("missing target dataset " "argument\n")); usage(B_FALSE); } if (argc > 2) { (void) fprintf(stderr, gettext("too many arguments\n")); usage(B_FALSE); } if (recurse && parents) { (void) fprintf(stderr, gettext("-p and -r options are mutually " "exclusive\n")); usage(B_FALSE); } if (recurse && strchr(argv[0], '@') == 0) { (void) fprintf(stderr, gettext("source dataset for recursive " "rename must be a snapshot\n")); usage(B_FALSE); } if ((zhp = zfs_open(g_zfs, argv[0], parents ? ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME : ZFS_TYPE_DATASET)) == NULL) return (1); /* If we were asked and the name looks good, try to create ancestors. */ if (parents && zfs_name_valid(argv[1], zfs_get_type(zhp)) && zfs_create_ancestors(g_zfs, argv[1]) != 0) { zfs_close(zhp); return (1); } ret = (zfs_rename(zhp, argv[1], recurse) != 0); zfs_close(zhp); return (ret); } /* * zfs promote * * Promotes the given clone fs to be the parent */ /* ARGSUSED */ static int zfs_do_promote(int argc, char **argv) { zfs_handle_t *zhp; int ret; /* check options */ if (argc > 1 && argv[1][0] == '-') { (void) fprintf(stderr, gettext("invalid option '%c'\n"), argv[1][1]); usage(B_FALSE); } /* check number of arguments */ if (argc < 2) { (void) fprintf(stderr, gettext("missing clone filesystem" " argument\n")); usage(B_FALSE); } if (argc > 2) { (void) fprintf(stderr, gettext("too many arguments\n")); usage(B_FALSE); } zhp = zfs_open(g_zfs, argv[1], ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME); if (zhp == NULL) return (1); ret = (zfs_promote(zhp) != 0); zfs_close(zhp); return (ret); } /* * zfs rollback [-rRf] * * -r Delete any intervening snapshots before doing rollback * -R Delete any snapshots and their clones * -f ignored for backwards compatability * * Given a filesystem, rollback to a specific snapshot, discarding any changes * since then and making it the active dataset. If more recent snapshots exist, * the command will complain unless the '-r' flag is given. */ typedef struct rollback_cbdata { uint64_t cb_create; boolean_t cb_first; int cb_doclones; char *cb_target; int cb_error; boolean_t cb_recurse; boolean_t cb_dependent; } rollback_cbdata_t; /* * Report any snapshots more recent than the one specified. Used when '-r' is * not specified. We reuse this same callback for the snapshot dependents - if * 'cb_dependent' is set, then this is a dependent and we should report it * without checking the transaction group. */ static int rollback_check(zfs_handle_t *zhp, void *data) { rollback_cbdata_t *cbp = data; if (cbp->cb_doclones) { zfs_close(zhp); return (0); } if (!cbp->cb_dependent) { if (strcmp(zfs_get_name(zhp), cbp->cb_target) != 0 && zfs_get_type(zhp) == ZFS_TYPE_SNAPSHOT && zfs_prop_get_int(zhp, ZFS_PROP_CREATETXG) > cbp->cb_create) { if (cbp->cb_first && !cbp->cb_recurse) { (void) fprintf(stderr, gettext("cannot " "rollback to '%s': more recent snapshots " "exist\n"), cbp->cb_target); (void) fprintf(stderr, gettext("use '-r' to " "force deletion of the following " "snapshots:\n")); cbp->cb_first = 0; cbp->cb_error = 1; } if (cbp->cb_recurse) { cbp->cb_dependent = B_TRUE; if (zfs_iter_dependents(zhp, B_TRUE, rollback_check, cbp) != 0) { zfs_close(zhp); return (-1); } cbp->cb_dependent = B_FALSE; } else { (void) fprintf(stderr, "%s\n", zfs_get_name(zhp)); } } } else { if (cbp->cb_first && cbp->cb_recurse) { (void) fprintf(stderr, gettext("cannot rollback to " "'%s': clones of previous snapshots exist\n"), cbp->cb_target); (void) fprintf(stderr, gettext("use '-R' to " "force deletion of the following clones and " "dependents:\n")); cbp->cb_first = 0; cbp->cb_error = 1; } (void) fprintf(stderr, "%s\n", zfs_get_name(zhp)); } zfs_close(zhp); return (0); } static int zfs_do_rollback(int argc, char **argv) { int ret; int c; boolean_t force = B_FALSE; rollback_cbdata_t cb = { 0 }; zfs_handle_t *zhp, *snap; char parentname[ZFS_MAXNAMELEN]; char *delim; /* check options */ while ((c = getopt(argc, argv, "rRf")) != -1) { switch (c) { case 'r': cb.cb_recurse = 1; break; case 'R': cb.cb_recurse = 1; cb.cb_doclones = 1; break; case 'f': force = B_TRUE; break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; /* check number of arguments */ if (argc < 1) { (void) fprintf(stderr, gettext("missing dataset argument\n")); usage(B_FALSE); } if (argc > 1) { (void) fprintf(stderr, gettext("too many arguments\n")); usage(B_FALSE); } /* open the snapshot */ if ((snap = zfs_open(g_zfs, argv[0], ZFS_TYPE_SNAPSHOT)) == NULL) return (1); /* open the parent dataset */ (void) strlcpy(parentname, argv[0], sizeof (parentname)); verify((delim = strrchr(parentname, '@')) != NULL); *delim = '\0'; if ((zhp = zfs_open(g_zfs, parentname, ZFS_TYPE_DATASET)) == NULL) { zfs_close(snap); return (1); } /* * Check for more recent snapshots and/or clones based on the presence * of '-r' and '-R'. */ cb.cb_target = argv[0]; cb.cb_create = zfs_prop_get_int(snap, ZFS_PROP_CREATETXG); cb.cb_first = B_TRUE; cb.cb_error = 0; if ((ret = zfs_iter_children(zhp, rollback_check, &cb)) != 0) goto out; if ((ret = cb.cb_error) != 0) goto out; /* * Rollback parent to the given snapshot. */ ret = zfs_rollback(zhp, snap, force); out: zfs_close(snap); zfs_close(zhp); if (ret == 0) return (0); else return (1); } /* * zfs set property=value { fs | snap | vol } ... * * Sets the given property for all datasets specified on the command line. */ typedef struct set_cbdata { char *cb_propname; char *cb_value; } set_cbdata_t; static int set_callback(zfs_handle_t *zhp, void *data) { set_cbdata_t *cbp = data; if (zfs_prop_set(zhp, cbp->cb_propname, cbp->cb_value) != 0) { switch (libzfs_errno(g_zfs)) { case EZFS_MOUNTFAILED: (void) fprintf(stderr, gettext("property may be set " "but unable to remount filesystem\n")); break; case EZFS_SHARENFSFAILED: (void) fprintf(stderr, gettext("property may be set " "but unable to reshare filesystem\n")); break; } return (1); } return (0); } static int zfs_do_set(int argc, char **argv) { set_cbdata_t cb; int ret; /* check for options */ if (argc > 1 && argv[1][0] == '-') { (void) fprintf(stderr, gettext("invalid option '%c'\n"), argv[1][1]); usage(B_FALSE); } /* check number of arguments */ if (argc < 2) { (void) fprintf(stderr, gettext("missing property=value " "argument\n")); usage(B_FALSE); } if (argc < 3) { (void) fprintf(stderr, gettext("missing dataset name\n")); usage(B_FALSE); } /* validate property=value argument */ cb.cb_propname = argv[1]; if (((cb.cb_value = strchr(cb.cb_propname, '=')) == NULL) || (cb.cb_value[1] == '\0')) { (void) fprintf(stderr, gettext("missing value in " "property=value argument\n")); usage(B_FALSE); } *cb.cb_value = '\0'; cb.cb_value++; if (*cb.cb_propname == '\0') { (void) fprintf(stderr, gettext("missing property in property=value argument\n")); usage(B_FALSE); } ret = zfs_for_each(argc - 2, argv + 2, NULL, ZFS_TYPE_DATASET, NULL, NULL, set_callback, &cb); return (ret); } /* * zfs snapshot [-r] [-o prop=value] ... * * Creates a snapshot with the given name. While functionally equivalent to * 'zfs create', it is a separate command to differentiate intent. */ static int zfs_do_snapshot(int argc, char **argv) { boolean_t recursive = B_FALSE; int ret; char c; nvlist_t *props; if (nvlist_alloc(&props, NV_UNIQUE_NAME, 0) != 0) { (void) fprintf(stderr, gettext("internal error: " "out of memory\n")); return (1); } /* check options */ while ((c = getopt(argc, argv, "ro:")) != -1) { switch (c) { case 'o': if (parseprop(props)) return (1); break; case 'r': recursive = B_TRUE; break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); goto usage; } } argc -= optind; argv += optind; /* check number of arguments */ if (argc < 1) { (void) fprintf(stderr, gettext("missing snapshot argument\n")); goto usage; } if (argc > 1) { (void) fprintf(stderr, gettext("too many arguments\n")); goto usage; } ret = zfs_snapshot(g_zfs, argv[0], recursive, props); nvlist_free(props); if (ret && recursive) (void) fprintf(stderr, gettext("no snapshots were created\n")); return (ret != 0); usage: nvlist_free(props); usage(B_FALSE); return (-1); } /* * zfs send [-v] -R [-i|-I <@snap>] * zfs send [-v] [-i|-I <@snap>] * * Send a backup stream to stdout. */ static int zfs_do_send(int argc, char **argv) { char *fromname = NULL; char *toname = NULL; char *cp; zfs_handle_t *zhp; boolean_t doall = B_FALSE; boolean_t replicate = B_FALSE; boolean_t fromorigin = B_FALSE; boolean_t verbose = B_FALSE; int c, err; /* check options */ while ((c = getopt(argc, argv, ":i:I:Rv")) != -1) { switch (c) { case 'i': if (fromname) usage(B_FALSE); fromname = optarg; break; case 'I': if (fromname) usage(B_FALSE); fromname = optarg; doall = B_TRUE; break; case 'R': replicate = B_TRUE; break; case 'v': verbose = B_TRUE; break; case ':': (void) fprintf(stderr, gettext("missing argument for " "'%c' option\n"), optopt); usage(B_FALSE); break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; /* check number of arguments */ if (argc < 1) { (void) fprintf(stderr, gettext("missing snapshot argument\n")); usage(B_FALSE); } if (argc > 1) { (void) fprintf(stderr, gettext("too many arguments\n")); usage(B_FALSE); } if (isatty(STDOUT_FILENO)) { (void) fprintf(stderr, gettext("Error: Stream can not be written to a terminal.\n" "You must redirect standard output.\n")); return (1); } cp = strchr(argv[0], '@'); if (cp == NULL) { (void) fprintf(stderr, gettext("argument must be a snapshot\n")); usage(B_FALSE); } *cp = '\0'; toname = cp + 1; zhp = zfs_open(g_zfs, argv[0], ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME); if (zhp == NULL) return (1); /* * If they specified the full path to the snapshot, chop off * everything except the short name of the snapshot, but special * case if they specify the origin. */ if (fromname && (cp = strchr(fromname, '@')) != NULL) { char origin[ZFS_MAXNAMELEN]; zprop_source_t src; (void) zfs_prop_get(zhp, ZFS_PROP_ORIGIN, origin, sizeof (origin), &src, NULL, 0, B_FALSE); if (strcmp(origin, fromname) == 0) { fromname = NULL; fromorigin = B_TRUE; } else { *cp = '\0'; if (cp != fromname && strcmp(argv[0], fromname)) { (void) fprintf(stderr, gettext("incremental source must be " "in same filesystem\n")); usage(B_FALSE); } fromname = cp + 1; if (strchr(fromname, '@') || strchr(fromname, '/')) { (void) fprintf(stderr, gettext("invalid incremental source\n")); usage(B_FALSE); } } } if (replicate && fromname == NULL) doall = B_TRUE; err = zfs_send(zhp, fromname, toname, replicate, doall, fromorigin, verbose, STDOUT_FILENO); zfs_close(zhp); return (err != 0); } /* * zfs receive [-dnvF] * * Restore a backup stream from stdin. */ static int zfs_do_receive(int argc, char **argv) { int c, err; recvflags_t flags; bzero(&flags, sizeof (recvflags_t)); /* check options */ while ((c = getopt(argc, argv, ":dnuvF")) != -1) { switch (c) { case 'd': flags.isprefix = B_TRUE; break; case 'n': flags.dryrun = B_TRUE; break; case 'u': flags.nomount = B_TRUE; break; case 'v': flags.verbose = B_TRUE; break; case 'F': flags.force = B_TRUE; break; case ':': (void) fprintf(stderr, gettext("missing argument for " "'%c' option\n"), optopt); usage(B_FALSE); break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; /* check number of arguments */ if (argc < 1) { (void) fprintf(stderr, gettext("missing snapshot argument\n")); usage(B_FALSE); } if (argc > 1) { (void) fprintf(stderr, gettext("too many arguments\n")); usage(B_FALSE); } if (isatty(STDIN_FILENO)) { (void) fprintf(stderr, gettext("Error: Backup stream can not be read " "from a terminal.\n" "You must redirect standard input.\n")); return (1); } err = zfs_receive(g_zfs, argv[0], flags, STDIN_FILENO, NULL); return (err != 0); } typedef struct allow_cb { int a_permcnt; size_t a_treeoffset; } allow_cb_t; static void zfs_print_perms(avl_tree_t *tree) { zfs_perm_node_t *permnode; permnode = avl_first(tree); while (permnode != NULL) { (void) printf("%s", permnode->z_pname); permnode = AVL_NEXT(tree, permnode); if (permnode) (void) printf(","); else (void) printf("\n"); } } /* * Iterate over user/groups/everyone/... and the call perm_iter * function to print actual permission when tree has >0 nodes. */ static void zfs_iter_perms(avl_tree_t *tree, const char *banner, allow_cb_t *cb) { zfs_allow_node_t *item; avl_tree_t *ptree; item = avl_first(tree); while (item) { ptree = (void *)((char *)item + cb->a_treeoffset); if (avl_numnodes(ptree)) { if (cb->a_permcnt++ == 0) (void) printf("%s\n", banner); (void) printf("\t%s", item->z_key); /* * Avoid an extra space being printed * for "everyone" which is keyed with a null * string */ if (item->z_key[0] != '\0') (void) printf(" "); zfs_print_perms(ptree); } item = AVL_NEXT(tree, item); } } #define LINES "-------------------------------------------------------------\n" static int zfs_print_allows(char *ds) { zfs_allow_t *curperms, *perms; zfs_handle_t *zhp; allow_cb_t allowcb = { 0 }; char banner[MAXPATHLEN]; if (ds[0] == '-') usage(B_FALSE); if (strrchr(ds, '@')) { (void) fprintf(stderr, gettext("Snapshots don't have 'allow'" " permissions\n")); return (1); } if ((zhp = zfs_open(g_zfs, ds, ZFS_TYPE_DATASET)) == NULL) return (1); if (zfs_perm_get(zhp, &perms)) { (void) fprintf(stderr, gettext("Failed to retrieve 'allows' on %s\n"), ds); zfs_close(zhp); return (1); } zfs_close(zhp); if (perms != NULL) (void) printf("%s", LINES); for (curperms = perms; curperms; curperms = curperms->z_next) { (void) snprintf(banner, sizeof (banner), gettext("Permission sets on (%s)"), curperms->z_setpoint); allowcb.a_treeoffset = offsetof(zfs_allow_node_t, z_localdescend); allowcb.a_permcnt = 0; zfs_iter_perms(&curperms->z_sets, banner, &allowcb); (void) snprintf(banner, sizeof (banner), gettext("Create time permissions on (%s)"), curperms->z_setpoint); allowcb.a_treeoffset = offsetof(zfs_allow_node_t, z_localdescend); allowcb.a_permcnt = 0; zfs_iter_perms(&curperms->z_crperms, banner, &allowcb); (void) snprintf(banner, sizeof (banner), gettext("Local permissions on (%s)"), curperms->z_setpoint); allowcb.a_treeoffset = offsetof(zfs_allow_node_t, z_local); allowcb.a_permcnt = 0; zfs_iter_perms(&curperms->z_user, banner, &allowcb); zfs_iter_perms(&curperms->z_group, banner, &allowcb); zfs_iter_perms(&curperms->z_everyone, banner, &allowcb); (void) snprintf(banner, sizeof (banner), gettext("Descendent permissions on (%s)"), curperms->z_setpoint); allowcb.a_treeoffset = offsetof(zfs_allow_node_t, z_descend); allowcb.a_permcnt = 0; zfs_iter_perms(&curperms->z_user, banner, &allowcb); zfs_iter_perms(&curperms->z_group, banner, &allowcb); zfs_iter_perms(&curperms->z_everyone, banner, &allowcb); (void) snprintf(banner, sizeof (banner), gettext("Local+Descendent permissions on (%s)"), curperms->z_setpoint); allowcb.a_treeoffset = offsetof(zfs_allow_node_t, z_localdescend); allowcb.a_permcnt = 0; zfs_iter_perms(&curperms->z_user, banner, &allowcb); zfs_iter_perms(&curperms->z_group, banner, &allowcb); zfs_iter_perms(&curperms->z_everyone, banner, &allowcb); (void) printf("%s", LINES); } zfs_free_allows(perms); return (0); } #define ALLOWOPTIONS "ldcsu:g:e" #define UNALLOWOPTIONS "ldcsu:g:er" /* * Validate options, and build necessary datastructure to display/remove/add * permissions. * Returns 0 - If permissions should be added/removed * Returns 1 - If permissions should be displayed. * Returns -1 - on failure */ int parse_allow_args(int *argc, char **argv[], boolean_t unallow, char **ds, int *recurse, nvlist_t **zperms) { int c; char *options = unallow ? UNALLOWOPTIONS : ALLOWOPTIONS; zfs_deleg_inherit_t deleg_type = ZFS_DELEG_NONE; zfs_deleg_who_type_t who_type = ZFS_DELEG_WHO_UNKNOWN; char *who = NULL; char *perms = NULL; zfs_handle_t *zhp; while ((c = getopt(*argc, *argv, options)) != -1) { switch (c) { case 'l': if (who_type == ZFS_DELEG_CREATE || who_type == ZFS_DELEG_NAMED_SET) usage(B_FALSE); deleg_type |= ZFS_DELEG_PERM_LOCAL; break; case 'd': if (who_type == ZFS_DELEG_CREATE || who_type == ZFS_DELEG_NAMED_SET) usage(B_FALSE); deleg_type |= ZFS_DELEG_PERM_DESCENDENT; break; case 'r': *recurse = B_TRUE; break; case 'c': if (who_type != ZFS_DELEG_WHO_UNKNOWN) usage(B_FALSE); if (deleg_type) usage(B_FALSE); who_type = ZFS_DELEG_CREATE; break; case 's': if (who_type != ZFS_DELEG_WHO_UNKNOWN) usage(B_FALSE); if (deleg_type) usage(B_FALSE); who_type = ZFS_DELEG_NAMED_SET; break; case 'u': if (who_type != ZFS_DELEG_WHO_UNKNOWN) usage(B_FALSE); who_type = ZFS_DELEG_USER; who = optarg; break; case 'g': if (who_type != ZFS_DELEG_WHO_UNKNOWN) usage(B_FALSE); who_type = ZFS_DELEG_GROUP; who = optarg; break; case 'e': if (who_type != ZFS_DELEG_WHO_UNKNOWN) usage(B_FALSE); who_type = ZFS_DELEG_EVERYONE; break; default: usage(B_FALSE); break; } } if (deleg_type == 0) deleg_type = ZFS_DELEG_PERM_LOCALDESCENDENT; *argc -= optind; *argv += optind; if (unallow == B_FALSE && *argc == 1) { /* * Only print permissions if no options were processed */ if (optind == 1) return (1); else usage(B_FALSE); } /* * initialize variables for zfs_build_perms based on number * of arguments. * 3 arguments ==> zfs [un]allow joe perm,perm,perm or * zfs [un]allow -s @set1 perm,perm * 2 arguments ==> zfs [un]allow -c perm,perm or * zfs [un]allow -u|-g perm or * zfs [un]allow -e perm,perm * zfs unallow joe * zfs unallow -s @set1 * 1 argument ==> zfs [un]allow -e or * zfs [un]allow -c */ switch (*argc) { case 3: perms = (*argv)[1]; who = (*argv)[0]; *ds = (*argv)[2]; /* * advance argc/argv for do_allow cases. * for do_allow case make sure who have a know who type * and its not a permission set. */ if (unallow == B_TRUE) { *argc -= 2; *argv += 2; } else if (who_type != ZFS_DELEG_WHO_UNKNOWN && who_type != ZFS_DELEG_NAMED_SET) usage(B_FALSE); break; case 2: if (unallow == B_TRUE && (who_type == ZFS_DELEG_EVERYONE || who_type == ZFS_DELEG_CREATE || who != NULL)) { perms = (*argv)[0]; *ds = (*argv)[1]; } else { if (unallow == B_FALSE && (who_type == ZFS_DELEG_WHO_UNKNOWN || who_type == ZFS_DELEG_NAMED_SET)) usage(B_FALSE); else if (who_type == ZFS_DELEG_WHO_UNKNOWN || who_type == ZFS_DELEG_NAMED_SET) who = (*argv)[0]; else if (who_type != ZFS_DELEG_NAMED_SET) perms = (*argv)[0]; *ds = (*argv)[1]; } if (unallow == B_TRUE) { (*argc)--; (*argv)++; } break; case 1: if (unallow == B_FALSE) usage(B_FALSE); if (who == NULL && who_type != ZFS_DELEG_CREATE && who_type != ZFS_DELEG_EVERYONE) usage(B_FALSE); *ds = (*argv)[0]; break; default: usage(B_FALSE); } if (strrchr(*ds, '@')) { (void) fprintf(stderr, gettext("Can't set or remove 'allow' permissions " "on snapshots.\n")); return (-1); } if ((zhp = zfs_open(g_zfs, *ds, ZFS_TYPE_DATASET)) == NULL) return (-1); if ((zfs_build_perms(zhp, who, perms, who_type, deleg_type, zperms)) != 0) { zfs_close(zhp); return (-1); } zfs_close(zhp); return (0); } static int zfs_do_allow(int argc, char **argv) { char *ds; nvlist_t *zperms = NULL; zfs_handle_t *zhp; int unused; int ret; if ((ret = parse_allow_args(&argc, &argv, B_FALSE, &ds, &unused, &zperms)) == -1) return (1); if (ret == 1) return (zfs_print_allows(argv[0])); if ((zhp = zfs_open(g_zfs, ds, ZFS_TYPE_DATASET)) == NULL) return (1); if (zfs_perm_set(zhp, zperms)) { zfs_close(zhp); nvlist_free(zperms); return (1); } nvlist_free(zperms); zfs_close(zhp); return (0); } static int unallow_callback(zfs_handle_t *zhp, void *data) { nvlist_t *nvp = (nvlist_t *)data; int error; error = zfs_perm_remove(zhp, nvp); if (error) { (void) fprintf(stderr, gettext("Failed to remove permissions " "on %s\n"), zfs_get_name(zhp)); } return (error); } static int zfs_do_unallow(int argc, char **argv) { int recurse = B_FALSE; char *ds; int error; nvlist_t *zperms = NULL; int flags = 0; if (parse_allow_args(&argc, &argv, B_TRUE, &ds, &recurse, &zperms) == -1) return (1); if (recurse) flags |= ZFS_ITER_RECURSE; error = zfs_for_each(argc, argv, flags, ZFS_TYPE_FILESYSTEM|ZFS_TYPE_VOLUME, NULL, NULL, unallow_callback, (void *)zperms); if (zperms) nvlist_free(zperms); return (error); } typedef struct get_all_cbdata { zfs_handle_t **cb_handles; size_t cb_alloc; size_t cb_used; uint_t cb_types; boolean_t cb_verbose; } get_all_cbdata_t; #define CHECK_SPINNER 30 #define SPINNER_TIME 3 /* seconds */ #define MOUNT_TIME 5 /* seconds */ static int get_one_dataset(zfs_handle_t *zhp, void *data) { static char spin[] = { '-', '\\', '|', '/' }; static int spinval = 0; static int spincheck = 0; static time_t last_spin_time = (time_t)0; get_all_cbdata_t *cbp = data; zfs_type_t type = zfs_get_type(zhp); if (cbp->cb_verbose) { if (--spincheck < 0) { time_t now = time(NULL); if (last_spin_time + SPINNER_TIME < now) { (void) printf("\b%c", spin[spinval++ % 4]); (void) fflush(stdout); last_spin_time = now; } spincheck = CHECK_SPINNER; } } /* * Interate over any nested datasets. */ if (type == ZFS_TYPE_FILESYSTEM && zfs_iter_filesystems(zhp, get_one_dataset, data) != 0) { zfs_close(zhp); return (1); } /* * Skip any datasets whose type does not match. */ if ((type & cbp->cb_types) == 0) { zfs_close(zhp); return (0); } if (cbp->cb_alloc == cbp->cb_used) { zfs_handle_t **handles; if (cbp->cb_alloc == 0) cbp->cb_alloc = 64; else cbp->cb_alloc *= 2; handles = safe_malloc(cbp->cb_alloc * sizeof (void *)); if (cbp->cb_handles) { bcopy(cbp->cb_handles, handles, cbp->cb_used * sizeof (void *)); free(cbp->cb_handles); } cbp->cb_handles = handles; } cbp->cb_handles[cbp->cb_used++] = zhp; return (0); } static void get_all_datasets(uint_t types, zfs_handle_t ***dslist, size_t *count, boolean_t verbose) { get_all_cbdata_t cb = { 0 }; cb.cb_types = types; cb.cb_verbose = verbose; if (verbose) { (void) printf("%s: *", gettext("Reading ZFS config")); (void) fflush(stdout); } (void) zfs_iter_root(g_zfs, get_one_dataset, &cb); *dslist = cb.cb_handles; *count = cb.cb_used; if (verbose) { (void) printf("\b%s\n", gettext("done.")); } } static int dataset_cmp(const void *a, const void *b) { zfs_handle_t **za = (zfs_handle_t **)a; zfs_handle_t **zb = (zfs_handle_t **)b; char mounta[MAXPATHLEN]; char mountb[MAXPATHLEN]; boolean_t gota, gotb; if ((gota = (zfs_get_type(*za) == ZFS_TYPE_FILESYSTEM)) != 0) verify(zfs_prop_get(*za, ZFS_PROP_MOUNTPOINT, mounta, sizeof (mounta), NULL, NULL, 0, B_FALSE) == 0); if ((gotb = (zfs_get_type(*zb) == ZFS_TYPE_FILESYSTEM)) != 0) verify(zfs_prop_get(*zb, ZFS_PROP_MOUNTPOINT, mountb, sizeof (mountb), NULL, NULL, 0, B_FALSE) == 0); if (gota && gotb) return (strcmp(mounta, mountb)); if (gota) return (-1); if (gotb) return (1); return (strcmp(zfs_get_name(a), zfs_get_name(b))); } /* * Generic callback for sharing or mounting filesystems. Because the code is so * similar, we have a common function with an extra parameter to determine which * mode we are using. */ #define OP_SHARE 0x1 #define OP_MOUNT 0x2 /* * Share or mount a dataset. */ static int share_mount_one(zfs_handle_t *zhp, int op, int flags, char *protocol, boolean_t explicit, const char *options) { char mountpoint[ZFS_MAXPROPLEN]; char shareopts[ZFS_MAXPROPLEN]; char smbshareopts[ZFS_MAXPROPLEN]; const char *cmdname = op == OP_SHARE ? "share" : "mount"; struct mnttab mnt; uint64_t zoned, canmount; zfs_type_t type = zfs_get_type(zhp); boolean_t shared_nfs, shared_smb; assert(type & (ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME)); if (type == ZFS_TYPE_FILESYSTEM) { /* * Check to make sure we can mount/share this dataset. If we * are in the global zone and the filesystem is exported to a * local zone, or if we are in a local zone and the * filesystem is not exported, then it is an error. */ zoned = zfs_prop_get_int(zhp, ZFS_PROP_ZONED); if (zoned && getzoneid() == GLOBAL_ZONEID) { if (!explicit) return (0); (void) fprintf(stderr, gettext("cannot %s '%s': " "dataset is exported to a local zone\n"), cmdname, zfs_get_name(zhp)); return (1); } else if (!zoned && getzoneid() != GLOBAL_ZONEID) { if (!explicit) return (0); (void) fprintf(stderr, gettext("cannot %s '%s': " "permission denied\n"), cmdname, zfs_get_name(zhp)); return (1); } /* * Ignore any filesystems which don't apply to us. This * includes those with a legacy mountpoint, or those with * legacy share options. */ verify(zfs_prop_get(zhp, ZFS_PROP_MOUNTPOINT, mountpoint, sizeof (mountpoint), NULL, NULL, 0, B_FALSE) == 0); verify(zfs_prop_get(zhp, ZFS_PROP_SHARENFS, shareopts, sizeof (shareopts), NULL, NULL, 0, B_FALSE) == 0); verify(zfs_prop_get(zhp, ZFS_PROP_SHARESMB, smbshareopts, sizeof (smbshareopts), NULL, NULL, 0, B_FALSE) == 0); if (op == OP_SHARE && strcmp(shareopts, "off") == 0 && strcmp(smbshareopts, "off") == 0) { if (!explicit) return (0); (void) fprintf(stderr, gettext("cannot share '%s': " "legacy share\n"), zfs_get_name(zhp)); (void) fprintf(stderr, gettext("use share(1M) to " "share this filesystem, or set " "sharenfs property on\n")); return (1); } /* * We cannot share or mount legacy filesystems. If the * shareopts is non-legacy but the mountpoint is legacy, we * treat it as a legacy share. */ if (strcmp(mountpoint, "legacy") == 0) { if (!explicit) return (0); (void) fprintf(stderr, gettext("cannot %s '%s': " "legacy mountpoint\n"), cmdname, zfs_get_name(zhp)); (void) fprintf(stderr, gettext("use %s(1M) to " "%s this filesystem\n"), cmdname, cmdname); return (1); } if (strcmp(mountpoint, "none") == 0) { if (!explicit) return (0); (void) fprintf(stderr, gettext("cannot %s '%s': no " "mountpoint set\n"), cmdname, zfs_get_name(zhp)); return (1); } /* * canmount explicit outcome * on no pass through * on yes pass through * off no return 0 * off yes display error, return 1 * noauto no return 0 * noauto yes pass through */ canmount = zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT); if (canmount == ZFS_CANMOUNT_OFF) { if (!explicit) return (0); (void) fprintf(stderr, gettext("cannot %s '%s': " "'canmount' property is set to 'off'\n"), cmdname, zfs_get_name(zhp)); return (1); } else if (canmount == ZFS_CANMOUNT_NOAUTO && !explicit) { return (0); } /* * At this point, we have verified that the mountpoint and/or * shareopts are appropriate for auto management. If the * filesystem is already mounted or shared, return (failing * for explicit requests); otherwise mount or share the * filesystem. */ switch (op) { case OP_SHARE: shared_nfs = zfs_is_shared_nfs(zhp, NULL); shared_smb = zfs_is_shared_smb(zhp, NULL); if (shared_nfs && shared_smb || (shared_nfs && strcmp(shareopts, "on") == 0 && strcmp(smbshareopts, "off") == 0) || (shared_smb && strcmp(smbshareopts, "on") == 0 && strcmp(shareopts, "off") == 0)) { if (!explicit) return (0); (void) fprintf(stderr, gettext("cannot share " "'%s': filesystem already shared\n"), zfs_get_name(zhp)); return (1); } if (!zfs_is_mounted(zhp, NULL) && zfs_mount(zhp, NULL, 0) != 0) return (1); if (protocol == NULL) { if (zfs_shareall(zhp) != 0) return (1); } else if (strcmp(protocol, "nfs") == 0) { if (zfs_share_nfs(zhp)) return (1); } else if (strcmp(protocol, "smb") == 0) { if (zfs_share_smb(zhp)) return (1); } else { (void) fprintf(stderr, gettext("cannot share " "'%s': invalid share type '%s' " "specified\n"), zfs_get_name(zhp), protocol); return (1); } break; case OP_MOUNT: if (options == NULL) mnt.mnt_mntopts = ""; else mnt.mnt_mntopts = (char *)options; if (!hasmntopt(&mnt, MNTOPT_REMOUNT) && zfs_is_mounted(zhp, NULL)) { if (!explicit) return (0); (void) fprintf(stderr, gettext("cannot mount " "'%s': filesystem already mounted\n"), zfs_get_name(zhp)); return (1); } if (zfs_mount(zhp, options, flags) != 0) return (1); break; } } else { assert(op == OP_SHARE); /* * Ignore any volumes that aren't shared. */ verify(zfs_prop_get(zhp, ZFS_PROP_SHAREISCSI, shareopts, sizeof (shareopts), NULL, NULL, 0, B_FALSE) == 0); if (strcmp(shareopts, "off") == 0) { if (!explicit) return (0); (void) fprintf(stderr, gettext("cannot share '%s': " "'shareiscsi' property not set\n"), zfs_get_name(zhp)); (void) fprintf(stderr, gettext("set 'shareiscsi' " "property or use iscsitadm(1M) to share this " "volume\n")); return (1); } if (zfs_is_shared_iscsi(zhp)) { if (!explicit) return (0); (void) fprintf(stderr, gettext("cannot share " "'%s': volume already shared\n"), zfs_get_name(zhp)); return (1); } if (zfs_share_iscsi(zhp) != 0) return (1); } return (0); } /* * Reports progress in the form "(current/total)". Not thread-safe. */ static void report_mount_progress(int current, int total) { static int len; static char *reverse = "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b" "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b"; static time_t last_progress_time; time_t now = time(NULL); /* report 1..n instead of 0..n-1 */ ++current; /* display header if we're here for the first time */ if (current == 1) { (void) printf(gettext("Mounting ZFS filesystems: ")); len = 0; } else if (current != total && last_progress_time + MOUNT_TIME >= now) { /* too soon to report again */ return; } last_progress_time = now; /* back up to prepare for overwriting */ if (len) (void) printf("%*.*s", len, len, reverse); /* We put a newline at the end if this is the last one. */ len = printf("(%d/%d)%s", current, total, current == total ? "\n" : ""); (void) fflush(stdout); } static void append_options(char *mntopts, char *newopts) { int len = strlen(mntopts); /* original length plus new string to append plus 1 for the comma */ if (len + 1 + strlen(newopts) >= MNT_LINE_MAX) { (void) fprintf(stderr, gettext("the opts argument for " "'%c' option is too long (more than %d chars)\n"), "-o", MNT_LINE_MAX); usage(B_FALSE); } if (*mntopts) mntopts[len++] = ','; (void) strcpy(&mntopts[len], newopts); } static int share_mount(int op, int argc, char **argv) { int do_all = 0; boolean_t verbose = B_FALSE; int c, ret = 0; char *options = NULL; int types, flags = 0; /* check options */ while ((c = getopt(argc, argv, op == OP_MOUNT ? ":avo:O" : "a")) != -1) { switch (c) { case 'a': do_all = 1; break; case 'v': verbose = B_TRUE; break; case 'o': if (*optarg == '\0') { (void) fprintf(stderr, gettext("empty mount " "options (-o) specified\n")); usage(B_FALSE); } if (options == NULL) options = safe_malloc(MNT_LINE_MAX + 1); /* option validation is done later */ append_options(options, optarg); break; case 'O': flags |= MS_OVERLAY; break; case ':': (void) fprintf(stderr, gettext("missing argument for " "'%c' option\n"), optopt); usage(B_FALSE); break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; /* check number of arguments */ if (do_all) { zfs_handle_t **dslist = NULL; size_t i, count = 0; char *protocol = NULL; if (op == OP_MOUNT) { types = ZFS_TYPE_FILESYSTEM; } else if (argc > 0) { if (strcmp(argv[0], "nfs") == 0 || strcmp(argv[0], "smb") == 0) { types = ZFS_TYPE_FILESYSTEM; } else if (strcmp(argv[0], "iscsi") == 0) { types = ZFS_TYPE_VOLUME; } else { (void) fprintf(stderr, gettext("share type " "must be 'nfs', 'smb' or 'iscsi'\n")); usage(B_FALSE); } protocol = argv[0]; argc--; argv++; } else { types = ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME; } if (argc != 0) { (void) fprintf(stderr, gettext("too many arguments\n")); usage(B_FALSE); } get_all_datasets(types, &dslist, &count, verbose); if (count == 0) return (0); qsort(dslist, count, sizeof (void *), dataset_cmp); for (i = 0; i < count; i++) { if (verbose) report_mount_progress(i, count); if (share_mount_one(dslist[i], op, flags, protocol, B_FALSE, options) != 0) ret = 1; zfs_close(dslist[i]); } free(dslist); } else if (argc == 0) { struct mnttab entry; if ((op == OP_SHARE) || (options != NULL)) { (void) fprintf(stderr, gettext("missing filesystem " "argument (specify -a for all)\n")); usage(B_FALSE); } /* * When mount is given no arguments, go through /etc/mnttab and * display any active ZFS mounts. We hide any snapshots, since * they are controlled automatically. */ rewind(mnttab_file); while (getmntent(mnttab_file, &entry) == 0) { if (strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0 || strchr(entry.mnt_special, '@') != NULL) continue; (void) printf("%-30s %s\n", entry.mnt_special, entry.mnt_mountp); } } else { zfs_handle_t *zhp; types = ZFS_TYPE_FILESYSTEM; if (op == OP_SHARE) types |= ZFS_TYPE_VOLUME; if (argc > 1) { (void) fprintf(stderr, gettext("too many arguments\n")); usage(B_FALSE); } if ((zhp = zfs_open(g_zfs, argv[0], types)) == NULL) { ret = 1; } else { ret = share_mount_one(zhp, op, flags, NULL, B_TRUE, options); zfs_close(zhp); } } return (ret); } /* * zfs mount -a [nfs | iscsi] * zfs mount filesystem * * Mount all filesystems, or mount the given filesystem. */ static int zfs_do_mount(int argc, char **argv) { return (share_mount(OP_MOUNT, argc, argv)); } /* * zfs share -a [nfs | iscsi | smb] * zfs share filesystem * * Share all filesystems, or share the given filesystem. */ static int zfs_do_share(int argc, char **argv) { return (share_mount(OP_SHARE, argc, argv)); } typedef struct unshare_unmount_node { zfs_handle_t *un_zhp; char *un_mountp; uu_avl_node_t un_avlnode; } unshare_unmount_node_t; /* ARGSUSED */ static int unshare_unmount_compare(const void *larg, const void *rarg, void *unused) { const unshare_unmount_node_t *l = larg; const unshare_unmount_node_t *r = rarg; return (strcmp(l->un_mountp, r->un_mountp)); } /* * Convenience routine used by zfs_do_umount() and manual_unmount(). Given an * absolute path, find the entry /etc/mnttab, verify that its a ZFS filesystem, * and unmount it appropriately. */ static int unshare_unmount_path(int op, char *path, int flags, boolean_t is_manual) { zfs_handle_t *zhp; int ret; struct stat64 statbuf; struct extmnttab entry; const char *cmdname = (op == OP_SHARE) ? "unshare" : "unmount"; ino_t path_inode; /* * Search for the path in /etc/mnttab. Rather than looking for the * specific path, which can be fooled by non-standard paths (i.e. ".." * or "//"), we stat() the path and search for the corresponding * (major,minor) device pair. */ if (stat64(path, &statbuf) != 0) { (void) fprintf(stderr, gettext("cannot %s '%s': %s\n"), cmdname, path, strerror(errno)); return (1); } path_inode = statbuf.st_ino; /* * Search for the given (major,minor) pair in the mount table. */ rewind(mnttab_file); while ((ret = getextmntent(mnttab_file, &entry, 0)) == 0) { if (entry.mnt_major == major(statbuf.st_dev) && entry.mnt_minor == minor(statbuf.st_dev)) break; } if (ret != 0) { if (op == OP_SHARE) { (void) fprintf(stderr, gettext("cannot %s '%s': not " "currently mounted\n"), cmdname, path); return (1); } (void) fprintf(stderr, gettext("warning: %s not in mnttab\n"), path); if ((ret = umount2(path, flags)) != 0) (void) fprintf(stderr, gettext("%s: %s\n"), path, strerror(errno)); return (ret != 0); } if (strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0) { (void) fprintf(stderr, gettext("cannot %s '%s': not a ZFS " "filesystem\n"), cmdname, path); return (1); } if ((zhp = zfs_open(g_zfs, entry.mnt_special, ZFS_TYPE_FILESYSTEM)) == NULL) return (1); ret = 1; if (stat64(entry.mnt_mountp, &statbuf) != 0) { (void) fprintf(stderr, gettext("cannot %s '%s': %s\n"), cmdname, path, strerror(errno)); goto out; } else if (statbuf.st_ino != path_inode) { (void) fprintf(stderr, gettext("cannot " "%s '%s': not a mountpoint\n"), cmdname, path); goto out; } if (op == OP_SHARE) { char nfs_mnt_prop[ZFS_MAXPROPLEN]; char smbshare_prop[ZFS_MAXPROPLEN]; verify(zfs_prop_get(zhp, ZFS_PROP_SHARENFS, nfs_mnt_prop, sizeof (nfs_mnt_prop), NULL, NULL, 0, B_FALSE) == 0); verify(zfs_prop_get(zhp, ZFS_PROP_SHARESMB, smbshare_prop, sizeof (smbshare_prop), NULL, NULL, 0, B_FALSE) == 0); if (strcmp(nfs_mnt_prop, "off") == 0 && strcmp(smbshare_prop, "off") == 0) { (void) fprintf(stderr, gettext("cannot unshare " "'%s': legacy share\n"), path); (void) fprintf(stderr, gettext("use " "unshare(1M) to unshare this filesystem\n")); } else if (!zfs_is_shared(zhp)) { (void) fprintf(stderr, gettext("cannot unshare '%s': " "not currently shared\n"), path); } else { ret = zfs_unshareall_bypath(zhp, path); } } else { char mtpt_prop[ZFS_MAXPROPLEN]; verify(zfs_prop_get(zhp, ZFS_PROP_MOUNTPOINT, mtpt_prop, sizeof (mtpt_prop), NULL, NULL, 0, B_FALSE) == 0); if (is_manual) { ret = zfs_unmount(zhp, NULL, flags); } else if (strcmp(mtpt_prop, "legacy") == 0) { (void) fprintf(stderr, gettext("cannot unmount " "'%s': legacy mountpoint\n"), zfs_get_name(zhp)); (void) fprintf(stderr, gettext("use umount(1M) " "to unmount this filesystem\n")); } else { ret = zfs_unmountall(zhp, flags); } } out: zfs_close(zhp); return (ret != 0); } /* * Generic callback for unsharing or unmounting a filesystem. */ static int unshare_unmount(int op, int argc, char **argv) { int do_all = 0; int flags = 0; int ret = 0; int types, c; zfs_handle_t *zhp; char nfsiscsi_mnt_prop[ZFS_MAXPROPLEN]; char sharesmb[ZFS_MAXPROPLEN]; /* check options */ while ((c = getopt(argc, argv, op == OP_SHARE ? "a" : "af")) != -1) { switch (c) { case 'a': do_all = 1; break; case 'f': flags = MS_FORCE; break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; if (do_all) { /* * We could make use of zfs_for_each() to walk all datasets in * the system, but this would be very inefficient, especially * since we would have to linearly search /etc/mnttab for each * one. Instead, do one pass through /etc/mnttab looking for * zfs entries and call zfs_unmount() for each one. * * Things get a little tricky if the administrator has created * mountpoints beneath other ZFS filesystems. In this case, we * have to unmount the deepest filesystems first. To accomplish * this, we place all the mountpoints in an AVL tree sorted by * the special type (dataset name), and walk the result in * reverse to make sure to get any snapshots first. */ struct mnttab entry; uu_avl_pool_t *pool; uu_avl_t *tree; unshare_unmount_node_t *node; uu_avl_index_t idx; uu_avl_walk_t *walk; if (argc != 0) { (void) fprintf(stderr, gettext("too many arguments\n")); usage(B_FALSE); } if ((pool = uu_avl_pool_create("unmount_pool", sizeof (unshare_unmount_node_t), offsetof(unshare_unmount_node_t, un_avlnode), unshare_unmount_compare, UU_DEFAULT)) == NULL) { (void) fprintf(stderr, gettext("internal error: " "out of memory\n")); exit(1); } if ((tree = uu_avl_create(pool, NULL, UU_DEFAULT)) == NULL) { (void) fprintf(stderr, gettext("internal error: " "out of memory\n")); exit(1); } rewind(mnttab_file); while (getmntent(mnttab_file, &entry) == 0) { /* ignore non-ZFS entries */ if (strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0) continue; /* ignore snapshots */ if (strchr(entry.mnt_special, '@') != NULL) continue; if ((zhp = zfs_open(g_zfs, entry.mnt_special, ZFS_TYPE_FILESYSTEM)) == NULL) { ret = 1; continue; } switch (op) { case OP_SHARE: verify(zfs_prop_get(zhp, ZFS_PROP_SHARENFS, nfsiscsi_mnt_prop, sizeof (nfsiscsi_mnt_prop), NULL, NULL, 0, B_FALSE) == 0); if (strcmp(nfsiscsi_mnt_prop, "off") != 0) break; verify(zfs_prop_get(zhp, ZFS_PROP_SHARESMB, nfsiscsi_mnt_prop, sizeof (nfsiscsi_mnt_prop), NULL, NULL, 0, B_FALSE) == 0); if (strcmp(nfsiscsi_mnt_prop, "off") == 0) continue; break; case OP_MOUNT: /* Ignore legacy mounts */ verify(zfs_prop_get(zhp, ZFS_PROP_MOUNTPOINT, nfsiscsi_mnt_prop, sizeof (nfsiscsi_mnt_prop), NULL, NULL, 0, B_FALSE) == 0); if (strcmp(nfsiscsi_mnt_prop, "legacy") == 0) continue; /* Ignore canmount=noauto mounts */ if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_NOAUTO) continue; default: break; } node = safe_malloc(sizeof (unshare_unmount_node_t)); node->un_zhp = zhp; if ((node->un_mountp = strdup(entry.mnt_mountp)) == NULL) { (void) fprintf(stderr, gettext("internal error:" " out of memory\n")); exit(1); } uu_avl_node_init(node, &node->un_avlnode, pool); if (uu_avl_find(tree, node, NULL, &idx) == NULL) { uu_avl_insert(tree, node, idx); } else { zfs_close(node->un_zhp); free(node->un_mountp); free(node); } } /* * Walk the AVL tree in reverse, unmounting each filesystem and * removing it from the AVL tree in the process. */ if ((walk = uu_avl_walk_start(tree, UU_WALK_REVERSE | UU_WALK_ROBUST)) == NULL) { (void) fprintf(stderr, gettext("internal error: out of memory")); exit(1); } while ((node = uu_avl_walk_next(walk)) != NULL) { uu_avl_remove(tree, node); switch (op) { case OP_SHARE: if (zfs_unshareall_bypath(node->un_zhp, node->un_mountp) != 0) ret = 1; break; case OP_MOUNT: if (zfs_unmount(node->un_zhp, node->un_mountp, flags) != 0) ret = 1; break; } zfs_close(node->un_zhp); free(node->un_mountp); free(node); } uu_avl_walk_end(walk); uu_avl_destroy(tree); uu_avl_pool_destroy(pool); if (op == OP_SHARE) { /* * Finally, unshare any volumes shared via iSCSI. */ zfs_handle_t **dslist = NULL; size_t i, count = 0; get_all_datasets(ZFS_TYPE_VOLUME, &dslist, &count, B_FALSE); if (count != 0) { qsort(dslist, count, sizeof (void *), dataset_cmp); for (i = 0; i < count; i++) { if (zfs_unshare_iscsi(dslist[i]) != 0) ret = 1; zfs_close(dslist[i]); } free(dslist); } } } else { if (argc != 1) { if (argc == 0) (void) fprintf(stderr, gettext("missing filesystem argument\n")); else (void) fprintf(stderr, gettext("too many arguments\n")); usage(B_FALSE); } /* * We have an argument, but it may be a full path or a ZFS * filesystem. Pass full paths off to unmount_path() (shared by * manual_unmount), otherwise open the filesystem and pass to * zfs_unmount(). */ if (argv[0][0] == '/') return (unshare_unmount_path(op, argv[0], flags, B_FALSE)); types = ZFS_TYPE_FILESYSTEM; if (op == OP_SHARE) types |= ZFS_TYPE_VOLUME; if ((zhp = zfs_open(g_zfs, argv[0], types)) == NULL) return (1); if (zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) { verify(zfs_prop_get(zhp, op == OP_SHARE ? ZFS_PROP_SHARENFS : ZFS_PROP_MOUNTPOINT, nfsiscsi_mnt_prop, sizeof (nfsiscsi_mnt_prop), NULL, NULL, 0, B_FALSE) == 0); switch (op) { case OP_SHARE: verify(zfs_prop_get(zhp, ZFS_PROP_SHARENFS, nfsiscsi_mnt_prop, sizeof (nfsiscsi_mnt_prop), NULL, NULL, 0, B_FALSE) == 0); verify(zfs_prop_get(zhp, ZFS_PROP_SHARESMB, sharesmb, sizeof (sharesmb), NULL, NULL, 0, B_FALSE) == 0); if (strcmp(nfsiscsi_mnt_prop, "off") == 0 && strcmp(sharesmb, "off") == 0) { (void) fprintf(stderr, gettext("cannot " "unshare '%s': legacy share\n"), zfs_get_name(zhp)); (void) fprintf(stderr, gettext("use " "unshare(1M) to unshare this " "filesystem\n")); ret = 1; } else if (!zfs_is_shared(zhp)) { (void) fprintf(stderr, gettext("cannot " "unshare '%s': not currently " "shared\n"), zfs_get_name(zhp)); ret = 1; } else if (zfs_unshareall(zhp) != 0) { ret = 1; } break; case OP_MOUNT: if (strcmp(nfsiscsi_mnt_prop, "legacy") == 0) { (void) fprintf(stderr, gettext("cannot " "unmount '%s': legacy " "mountpoint\n"), zfs_get_name(zhp)); (void) fprintf(stderr, gettext("use " "umount(1M) to unmount this " "filesystem\n")); ret = 1; } else if (!zfs_is_mounted(zhp, NULL)) { (void) fprintf(stderr, gettext("cannot " "unmount '%s': not currently " "mounted\n"), zfs_get_name(zhp)); ret = 1; } else if (zfs_unmountall(zhp, flags) != 0) { ret = 1; } break; } } else { assert(op == OP_SHARE); verify(zfs_prop_get(zhp, ZFS_PROP_SHAREISCSI, nfsiscsi_mnt_prop, sizeof (nfsiscsi_mnt_prop), NULL, NULL, 0, B_FALSE) == 0); if (strcmp(nfsiscsi_mnt_prop, "off") == 0) { (void) fprintf(stderr, gettext("cannot unshare " "'%s': 'shareiscsi' property not set\n"), zfs_get_name(zhp)); (void) fprintf(stderr, gettext("set " "'shareiscsi' property or use " "iscsitadm(1M) to share this volume\n")); ret = 1; } else if (!zfs_is_shared_iscsi(zhp)) { (void) fprintf(stderr, gettext("cannot " "unshare '%s': not currently shared\n"), zfs_get_name(zhp)); ret = 1; } else if (zfs_unshare_iscsi(zhp) != 0) { ret = 1; } } zfs_close(zhp); } return (ret); } /* * zfs unmount -a * zfs unmount filesystem * * Unmount all filesystems, or a specific ZFS filesystem. */ static int zfs_do_unmount(int argc, char **argv) { return (unshare_unmount(OP_MOUNT, argc, argv)); } /* * zfs unshare -a * zfs unshare filesystem * * Unshare all filesystems, or a specific ZFS filesystem. */ static int zfs_do_unshare(int argc, char **argv) { return (unshare_unmount(OP_SHARE, argc, argv)); } /* * Called when invoked as /etc/fs/zfs/mount. Do the mount if the mountpoint is * 'legacy'. Otherwise, complain that use should be using 'zfs mount'. */ static int manual_mount(int argc, char **argv) { zfs_handle_t *zhp; char mountpoint[ZFS_MAXPROPLEN]; char mntopts[MNT_LINE_MAX] = { '\0' }; int ret; int c; int flags = 0; char *dataset, *path; /* check options */ while ((c = getopt(argc, argv, ":mo:O")) != -1) { switch (c) { case 'o': (void) strlcpy(mntopts, optarg, sizeof (mntopts)); break; case 'O': flags |= MS_OVERLAY; break; case 'm': flags |= MS_NOMNTTAB; break; case ':': (void) fprintf(stderr, gettext("missing argument for " "'%c' option\n"), optopt); usage(B_FALSE); break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); (void) fprintf(stderr, gettext("usage: mount [-o opts] " "\n")); return (2); } } argc -= optind; argv += optind; /* check that we only have two arguments */ if (argc != 2) { if (argc == 0) (void) fprintf(stderr, gettext("missing dataset " "argument\n")); else if (argc == 1) (void) fprintf(stderr, gettext("missing mountpoint argument\n")); else (void) fprintf(stderr, gettext("too many arguments\n")); (void) fprintf(stderr, "usage: mount \n"); return (2); } dataset = argv[0]; path = argv[1]; /* try to open the dataset */ if ((zhp = zfs_open(g_zfs, dataset, ZFS_TYPE_FILESYSTEM)) == NULL) return (1); (void) zfs_prop_get(zhp, ZFS_PROP_MOUNTPOINT, mountpoint, sizeof (mountpoint), NULL, NULL, 0, B_FALSE); /* check for legacy mountpoint and complain appropriately */ ret = 0; if (strcmp(mountpoint, ZFS_MOUNTPOINT_LEGACY) == 0) { if (mount(dataset, path, MS_OPTIONSTR | flags, MNTTYPE_ZFS, NULL, 0, mntopts, sizeof (mntopts)) != 0) { (void) fprintf(stderr, gettext("mount failed: %s\n"), strerror(errno)); ret = 1; } } else { (void) fprintf(stderr, gettext("filesystem '%s' cannot be " "mounted using 'mount -F zfs'\n"), dataset); (void) fprintf(stderr, gettext("Use 'zfs set mountpoint=%s' " "instead.\n"), path); (void) fprintf(stderr, gettext("If you must use 'mount -F zfs' " "or /etc/vfstab, use 'zfs set mountpoint=legacy'.\n")); (void) fprintf(stderr, gettext("See zfs(1M) for more " "information.\n")); ret = 1; } return (ret); } /* * Called when invoked as /etc/fs/zfs/umount. Unlike a manual mount, we allow * unmounts of non-legacy filesystems, as this is the dominant administrative * interface. */ static int manual_unmount(int argc, char **argv) { int flags = 0; int c; /* check options */ while ((c = getopt(argc, argv, "f")) != -1) { switch (c) { case 'f': flags = MS_FORCE; break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); (void) fprintf(stderr, gettext("usage: unmount [-f] " "\n")); return (2); } } argc -= optind; argv += optind; /* check arguments */ if (argc != 1) { if (argc == 0) (void) fprintf(stderr, gettext("missing path " "argument\n")); else (void) fprintf(stderr, gettext("too many arguments\n")); (void) fprintf(stderr, gettext("usage: unmount [-f] \n")); return (2); } return (unshare_unmount_path(OP_MOUNT, argv[0], flags, B_TRUE)); } static int volcheck(zpool_handle_t *zhp, void *data) { boolean_t isinit = *((boolean_t *)data); if (isinit) return (zpool_create_zvol_links(zhp)); else return (zpool_remove_zvol_links(zhp)); } /* * Iterate over all pools in the system and either create or destroy /dev/zvol * links, depending on the value of 'isinit'. */ static int do_volcheck(boolean_t isinit) { return (zpool_iter(g_zfs, volcheck, &isinit) ? 1 : 0); } static int find_command_idx(char *command, int *idx) { int i; for (i = 0; i < NCOMMAND; i++) { if (command_table[i].name == NULL) continue; if (strcmp(command, command_table[i].name) == 0) { *idx = i; return (0); } } return (1); } int main(int argc, char **argv) { int ret; int i; char *progname; char *cmdname; (void) setlocale(LC_ALL, ""); (void) textdomain(TEXT_DOMAIN); opterr = 0; if ((g_zfs = libzfs_init()) == NULL) { (void) fprintf(stderr, gettext("internal error: failed to " "initialize ZFS library\n")); return (1); } zpool_set_history_str("zfs", argc, argv, history_str); verify(zpool_stage_history(g_zfs, history_str) == 0); libzfs_print_on_error(g_zfs, B_TRUE); if ((mnttab_file = fopen(MNTTAB, "r")) == NULL) { (void) fprintf(stderr, gettext("internal error: unable to " "open %s\n"), MNTTAB); return (1); } /* * This command also doubles as the /etc/fs mount and unmount program. * Determine if we should take this behavior based on argv[0]. */ progname = basename(argv[0]); if (strcmp(progname, "mount") == 0) { ret = manual_mount(argc, argv); } else if (strcmp(progname, "umount") == 0) { ret = manual_unmount(argc, argv); } else { /* * Make sure the user has specified some command. */ if (argc < 2) { (void) fprintf(stderr, gettext("missing command\n")); usage(B_FALSE); } cmdname = argv[1]; /* * The 'umount' command is an alias for 'unmount' */ if (strcmp(cmdname, "umount") == 0) cmdname = "unmount"; /* * The 'recv' command is an alias for 'receive' */ if (strcmp(cmdname, "recv") == 0) cmdname = "receive"; /* * Special case '-?' */ if (strcmp(cmdname, "-?") == 0) usage(B_TRUE); /* * 'volinit' and 'volfini' do not appear in the usage message, * so we have to special case them here. */ if (strcmp(cmdname, "volinit") == 0) return (do_volcheck(B_TRUE)); else if (strcmp(cmdname, "volfini") == 0) return (do_volcheck(B_FALSE)); /* * Run the appropriate command. */ libzfs_mnttab_cache(g_zfs, B_TRUE); if (find_command_idx(cmdname, &i) == 0) { current_command = &command_table[i]; ret = command_table[i].func(argc - 1, argv + 1); } else if (strchr(cmdname, '=') != NULL) { verify(find_command_idx("set", &i) == 0); current_command = &command_table[i]; ret = command_table[i].func(argc, argv); } else { (void) fprintf(stderr, gettext("unrecognized " "command '%s'\n"), cmdname); usage(B_FALSE); } libzfs_mnttab_cache(g_zfs, B_FALSE); } (void) fclose(mnttab_file); libzfs_fini(g_zfs); /* * The 'ZFS_ABORT' environment variable causes us to dump core on exit * for the purposes of running ::findleaks. */ if (getenv("ZFS_ABORT") != NULL) { (void) printf("dumping core by request\n"); abort(); } return (ret); }