/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2007 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #include #include #include #include #include #include "_rtld.h" #include "_elf.h" #include "msg.h" #include "conv.h" /* * * Matrix of legal combinations of usage of a given register: * * Obj1\Obj2 Scratch Named * Scratch OK NO * Named NO * * * * OK if the symbols are identical, NO if they are not. Two symbols * are identical if and only if one of the following is true: * A. They are both global and have the same name. * B. They are both local, have the same name, and are defined in * the same object. (Note that a local symbol in one object is * never identical to a local symbol in another object, even if the * name is the same.) * * Matrix of legal combinations of st_shndx for the same register symbol: * * Obj1\Obj2 UNDEF ABS * UNDEF OK OK * ABS OK NO */ /* * Test the compatiblity of two register symbols, 0 pass, >0 fail */ static uintptr_t check_regsyms(Sym *sym1, const char *name1, Sym *sym2, const char *name2) { if ((sym1->st_name == 0) && (sym2->st_name == 0)) return (0); /* scratches are always compatible */ if ((ELF_ST_BIND(sym1->st_info) == STB_LOCAL) || (ELF_ST_BIND(sym2->st_info) == STB_LOCAL)) { if (sym1->st_value == sym2->st_value) return (1); /* local symbol incompat */ return (0); /* no other prob from locals */ } if (sym1->st_value == sym2->st_value) { /* NOTE this just avoids strcmp */ if ((sym1->st_name == 0) || (sym2->st_name == 0)) return (2); /* can't match scratch to named */ if (strcmp(name1, name2) != 0) return (4); /* diff name, same register value */ if ((sym1->st_shndx == SHN_ABS) && (sym2->st_shndx == SHN_ABS)) return (3); /* multiply defined */ } else if (strcmp(name1, name2) == 0) return (5); /* same name, diff register value */ return (0); } int elf_regsyms(Rt_map * lmp) { Dyn * dyn; Sym * symdef; ulong_t rsymndx; /* * Scan through the .dynamic section of this object looking for all * DT_REGISTER entries. For each DT_REGISTER entry found identify the * register symbol it identifies and confirm that it doesn't conflict * with any other register symbols. */ for (dyn = DYN(lmp); dyn->d_tag != DT_NULL; dyn++) { Reglist * rp; if ((dyn->d_tag != DT_SPARC_REGISTER) && (dyn->d_tag != DT_DEPRECATED_SPARC_REGISTER)) continue; /* * Get the local symbol table entry. */ rsymndx = dyn->d_un.d_val; symdef = (Sym *)((unsigned long)SYMTAB(lmp) + (rsymndx * SYMENT(lmp))); for (rp = reglist; rp; rp = rp->rl_next) { Conv_inv_buf_t inv_buf; const char *str, *sym1, *sym2; if (rp->rl_sym == symdef) { /* * Same symbol definition - everything is a-ok. */ return (1); } sym1 = (STRTAB(rp->rl_lmp) + rp->rl_sym->st_name); sym2 = (STRTAB(lmp) + symdef->st_name); if (check_regsyms(rp->rl_sym, sym1, symdef, sym2) == 0) continue; if ((str = demangle(sym1)) != sym1) { char *_str = alloca(strlen(str) + 1); (void) strcpy(_str, str); sym1 = (const char *)_str; } sym2 = demangle(sym2); if (LIST(lmp)->lm_flags & LML_FLG_TRC_WARN) { (void) printf(MSG_INTL(MSG_LDD_REG_SYMCONF), conv_sym_SPARC_value(symdef->st_value, 0, &inv_buf), NAME(rp->rl_lmp), sym1, NAME(lmp), sym2); } else { eprintf(LIST(lmp), ERR_FATAL, MSG_INTL(MSG_REG_SYMCONF), conv_sym_SPARC_value(symdef->st_value, 0, &inv_buf), NAME(rp->rl_lmp), sym1, NAME(lmp), sym2); return (0); } } if ((rp = calloc(sizeof (Reglist), 1)) == (Reglist *)0) return (0); rp->rl_lmp = lmp; rp->rl_sym = symdef; rp->rl_next = reglist; reglist = rp; } return (1); } /* * When the relocation loop realizes that it's dealing with relative * relocations in a shared object, it breaks into this tighter loop * as an optimization. */ ulong_t elf_reloc_relative(ulong_t relbgn, ulong_t relend, ulong_t relsiz, ulong_t basebgn, ulong_t etext, ulong_t emap) { ulong_t roffset = ((Rela *) relbgn)->r_offset; Byte rtype; do { roffset += basebgn; /* * If this relocation is against an address not mapped in, * then break out of the relative relocation loop, falling * back on the main relocation loop. */ if (roffset < etext || roffset > emap) break; /* * Perform the actual relocation. */ *((ulong_t *)roffset) += basebgn + (long)(((Rela *)relbgn)->r_addend); relbgn += relsiz; if (relbgn >= relend) break; rtype = (Byte)ELF_R_TYPE(((Rela *)relbgn)->r_info); roffset = ((Rela *)relbgn)->r_offset; } while (rtype == R_SPARC_RELATIVE); return (relbgn); } /* * This is the tightest loop for RELATIVE relocations for those * objects built with the DT_RELACOUNT .dynamic entry. */ ulong_t elf_reloc_relacount(ulong_t relbgn, ulong_t relacount, ulong_t relsiz, ulong_t basebgn) { ulong_t roffset = ((Rela *) relbgn)->r_offset; for (; relacount; relacount--) { roffset += basebgn; /* * Perform the actual relocation. */ *((ulong_t *)roffset) = basebgn + (long)(((Rela *)relbgn)->r_addend); relbgn += relsiz; roffset = ((Rela *)relbgn)->r_offset; } return (relbgn); }