/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ ! .seg "data" ! .asciz "Copyr 1986 Sun Micro" .seg "text" #ident "%Z%%M% %I% %E% SMI" /* * Copyright 1986 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * divison/remainder * * Input is: * dividend -- the thing being divided * divisor -- how many ways to divide * Important parameters: * N -- how many bits per iteration we try to get * as our current guess: * WORDSIZE -- how many bits altogether we're talking about: * obviously: * A derived constant: * TOPBITS -- how many bits are in the top "decade" of a number: * * Important variables are: * Q -- the partial quotient under development -- initally 0 * R -- the remainder so far -- initially == the dividend * ITER -- number of iterations of the main division loop will * be required. Equal to CEIL( lg2(quotient)/4 ) * Note that this is log_base_(2^4) of the quotient. * V -- the current comparand -- initially divisor*2^(ITER*4-1) * Cost: * current estimate for non-large dividend is * CEIL( lg2(quotient) / 4 ) x ( 10 + 74/2 ) + C * a large dividend is one greater than 2^(31-4 ) and takes a * different path, as the upper bits of the quotient must be developed * one bit at a time. */ #include <sys/trap.h> #include <sys/asm_linkage.h> ! working variable /* * this is the recursive definition of how we develop quotient digits. * it takes three important parameters: * $1 -- the current depth, 1<=$1<=4 * $2 -- the current accumulation of quotient bits * 4 -- max depth * We add a new bit to $2 and either recurse or * insert the bits in the quotient. * Dynamic input: * %o3 -- current remainder * %o2 -- current quotient * %o5 -- current comparand * cc -- set on current value of %o3 * Dynamic output: * %o3', %o2', %o5', cc' */ ! RTENTRY(.urem) ! UNSIGNED REMAINDER .global .urem .urem: b divide mov 0,%g1 ! result always positive ! RTENTRY(.rem) ! SIGNED REMAINDER .global .rem .rem: orcc %o1,%o0,%g0 ! are either %o0 or %o1 negative bge divide ! if not, skip this junk mov %o0,%g1 ! record sign of result in sign of %g1 tst %o1 bge 2f tst %o0 ! %o1 < 0 bge divide neg %o1 2: ! %o0 < 0 neg %o0 ! FALL THROUGH divide: ! compute size of quotient, scale comparand orcc %o1,%g0,%o5 ! movcc %o1,%o5 bnz 0f ! if %o1 != 0 mov %o0,%o3 ba zero_divide nop 0: cmp %o3,%o5 blu got_result ! if %o3<%o5 already, there's no point in continuing mov 0,%o2 sethi %hi(1<<(32-4 -1)),%g2 cmp %o3,%g2 blu not_really_big mov 0,%o4 ! ! here, the %o0 is >= 2^(31-4) or so. We must be careful here, as ! our usual 4-at-a-shot divide step will cause overflow and havoc. The ! total number of bits in the result here is 4*%o4+%g3, where %g3 <= 4. ! compute %o4, in an unorthodox manner: know we need to Shift %o5 into ! the top decade: so don't even bother to compare to %o3. 1: cmp %o5,%g2 bgeu 3f mov 1,%g3 sll %o5,4,%o5 b 1b inc %o4 ! now compute %g3 2: addcc %o5,%o5,%o5 bcc not_too_big ! bcc not_too_big add %g3,1,%g3 ! ! here if the %o1 overflowed when Shifting ! this means that %o3 has the high-order bit set ! restore %o5 and subtract from %o3 sll %g2,4 ,%g2 ! high order bit srl %o5,1,%o5 ! rest of %o5 add %o5,%g2,%o5 b do_single_div sub %g3,1,%g3 not_too_big: 3: cmp %o5,%o3 blu 2b nop be do_single_div nop ! %o5 > %o3: went too far: back up 1 step ! srl %o5,1,%o5 ! dec %g3 ! do single-bit divide steps ! ! we have to be careful here. We know that %o3 >= %o5, so we can do the ! first divide step without thinking. BUT, the others are conditional, ! and are only done if %o3 >= 0. Because both %o3 and %o5 may have the high- ! order bit set in the first step, just falling into the regular ! division loop will mess up the first time around. ! So we unroll slightly... do_single_div: deccc %g3 bl end_regular_divide nop sub %o3,%o5,%o3 mov 1,%o2 b,a end_single_divloop single_divloop: sll %o2,1,%o2 bl 1f srl %o5,1,%o5 ! %o3 >= 0 sub %o3,%o5,%o3 b 2f inc %o2 1: ! %o3 < 0 add %o3,%o5,%o3 dec %o2 2: end_single_divloop: deccc %g3 bge single_divloop tst %o3 b,a end_regular_divide not_really_big: 1: sll %o5,4,%o5 cmp %o5,%o3 bleu 1b inccc %o4 be got_result dec %o4 do_regular_divide: ! do the main division iteration tst %o3 ! fall through into divide loop divloop: sll %o2,4,%o2 !depth 1, accumulated bits 0 bl L.1.16 srl %o5,1,%o5 ! remainder is positive subcc %o3,%o5,%o3 !depth 2, accumulated bits 1 bl L.2.17 srl %o5,1,%o5 ! remainder is positive subcc %o3,%o5,%o3 !depth 3, accumulated bits 3 bl L.3.19 srl %o5,1,%o5 ! remainder is positive subcc %o3,%o5,%o3 !depth 4, accumulated bits 7 bl L.4.23 srl %o5,1,%o5 ! remainder is positive subcc %o3,%o5,%o3 b 9f add %o2, (7*2+1), %o2 L.4.23: ! remainder is negative addcc %o3,%o5,%o3 b 9f add %o2, (7*2-1), %o2 L.3.19: ! remainder is negative addcc %o3,%o5,%o3 !depth 4, accumulated bits 5 bl L.4.21 srl %o5,1,%o5 ! remainder is positive subcc %o3,%o5,%o3 b 9f add %o2, (5*2+1), %o2 L.4.21: ! remainder is negative addcc %o3,%o5,%o3 b 9f add %o2, (5*2-1), %o2 L.2.17: ! remainder is negative addcc %o3,%o5,%o3 !depth 3, accumulated bits 1 bl L.3.17 srl %o5,1,%o5 ! remainder is positive subcc %o3,%o5,%o3 !depth 4, accumulated bits 3 bl L.4.19 srl %o5,1,%o5 ! remainder is positive subcc %o3,%o5,%o3 b 9f add %o2, (3*2+1), %o2 L.4.19: ! remainder is negative addcc %o3,%o5,%o3 b 9f add %o2, (3*2-1), %o2 L.3.17: ! remainder is negative addcc %o3,%o5,%o3 !depth 4, accumulated bits 1 bl L.4.17 srl %o5,1,%o5 ! remainder is positive subcc %o3,%o5,%o3 b 9f add %o2, (1*2+1), %o2 L.4.17: ! remainder is negative addcc %o3,%o5,%o3 b 9f add %o2, (1*2-1), %o2 L.1.16: ! remainder is negative addcc %o3,%o5,%o3 !depth 2, accumulated bits -1 bl L.2.15 srl %o5,1,%o5 ! remainder is positive subcc %o3,%o5,%o3 !depth 3, accumulated bits -1 bl L.3.15 srl %o5,1,%o5 ! remainder is positive subcc %o3,%o5,%o3 !depth 4, accumulated bits -1 bl L.4.15 srl %o5,1,%o5 ! remainder is positive subcc %o3,%o5,%o3 b 9f add %o2, (-1*2+1), %o2 L.4.15: ! remainder is negative addcc %o3,%o5,%o3 b 9f add %o2, (-1*2-1), %o2 L.3.15: ! remainder is negative addcc %o3,%o5,%o3 !depth 4, accumulated bits -3 bl L.4.13 srl %o5,1,%o5 ! remainder is positive subcc %o3,%o5,%o3 b 9f add %o2, (-3*2+1), %o2 L.4.13: ! remainder is negative addcc %o3,%o5,%o3 b 9f add %o2, (-3*2-1), %o2 L.2.15: ! remainder is negative addcc %o3,%o5,%o3 !depth 3, accumulated bits -3 bl L.3.13 srl %o5,1,%o5 ! remainder is positive subcc %o3,%o5,%o3 !depth 4, accumulated bits -5 bl L.4.11 srl %o5,1,%o5 ! remainder is positive subcc %o3,%o5,%o3 b 9f add %o2, (-5*2+1), %o2 L.4.11: ! remainder is negative addcc %o3,%o5,%o3 b 9f add %o2, (-5*2-1), %o2 L.3.13: ! remainder is negative addcc %o3,%o5,%o3 !depth 4, accumulated bits -7 bl L.4.9 srl %o5,1,%o5 ! remainder is positive subcc %o3,%o5,%o3 b 9f add %o2, (-7*2+1), %o2 L.4.9: ! remainder is negative addcc %o3,%o5,%o3 b 9f add %o2, (-7*2-1), %o2 9: end_regular_divide: deccc %o4 bge divloop tst %o3 bl,a got_result add %o3,%o1,%o3 got_result: tst %g1 bl,a 1f neg %o3 ! remainder <- -%o3 1: retl mov %o3,%o0 ! remainder <- %o3 zero_divide: ta ST_DIV0 ! divide by zero trap retl ! if handled, ignored, return mov 0, %o0